1
|
van Dinteren S, Araya-Cloutier C, Bastiaan-Net S, Boudewijn A, van Heek T, Vincken JP, Witkamp R, Meijerink J. Biotransformation and Epithelial Toxicity of Prenylated Phenolics from Licorice Roots ( Glycyrrhiza spp.) in 3D Apical-Out Mucus-Producing Human Enteroids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20396-20409. [PMID: 39240776 PMCID: PMC11421016 DOI: 10.1021/acs.jafc.4c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 09/08/2024]
Abstract
Apical-out enteroids mimic the in vivo environment well due to their accessible apical surface and mucus layer, making them an ideal model for studying the impact of (bioactive) food compounds. Generated human ileal apical-out enteroids showed a fucose-containing mucus layer surrounding the apical brush border on their exposure side, indicating their physiological relevance. Effects on the mucosal epithelium of antibacterial prenylated phenolics (glabridin, licochalcone A, and glycycoumarin) from licorice roots were investigated for cytotoxicity, cell viability, barrier integrity, and biotransformation. At concentrations up to 500 μg mL-1, licochalcone A and glycycoumarin did not significantly affect apical-out enteroids, with cytotoxicities of -6 ± 2 and -2 ± 2% and cell viabilities of 77 ± 22 and 77 ± 13%, respectively (p > 0.05). Conversely, 500 μg mL-1 glabridin induced significant cytotoxicity (31 ± 25%, p < 0.05) and reduced cell viability (21 ± 14%, p < 0.01). Apical-out enteroids revealed differential sensitivities to prenylated phenolics not observed in apical-in enteroids and Caco-2 cells. Both enteroid models showed phase II biotransformation but differed in the extent of glucuronide conversion. The apical mucus layer of apical-out enteroids likely contributed to these differential interactions, potentially due to differences in electrostatic repulsion. This study underscores the relevance of 3D apical-out enteroid models and highlights the promise of prenylated phenolics for antimicrobial applications.
Collapse
Affiliation(s)
- Sarah van Dinteren
- Division
of Human Nutrition and Health, Wageningen
University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Carla Araya-Cloutier
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Shanna Bastiaan-Net
- Wageningen
Food & Biobased Research, Wageningen
University & Research, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Anouk Boudewijn
- Wageningen
Food & Biobased Research, Wageningen
University & Research, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Tjarda van Heek
- Department
of Abdominal Surgery, Hospital Gelderse
Vallei, Willy Brandtlaan 10, Ede 6716 RP, The Netherlands
| | - Jean-Paul Vincken
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Renger Witkamp
- Division
of Human Nutrition and Health, Wageningen
University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Jocelijn Meijerink
- Division
of Human Nutrition and Health, Wageningen
University, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| |
Collapse
|
2
|
Yin Q, Huang Q, Zhang H, Zhang X, Fan C, Wang H. Anti-rheumatoid arthritis effects of traditional Chinese medicine Fufang Xiaohuoluo pill on collagen-induced arthritis rats and MH7A cells. Front Pharmacol 2024; 15:1374485. [PMID: 38741593 PMCID: PMC11089244 DOI: 10.3389/fphar.2024.1374485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Background Fufang Xiaohuoluo pill (FFXHL) is a commonly used prescription in clinical practice for treating rheumatoid arthritis in China, yet its specific mechanism remains unclear. This study aims to elucidate the pharmacological mechanisms of FFXHL using both in vivo and in vitro experiments. Methods The collagen-induced arthritis (CIA) rat model was established to evaluate FFXHL's therapeutic impact. Parameters that include paw swelling, arthritis scores, and inflammatory markers were examined to assess the anti-inflammatory and analgesic effects of FFXHL. Human fibroblast-like synoviocytes (MH7A cells) is activated by tumour necrosis factor-alpha (TNF-α) were used to explore the anti-inflammatory mechanism on FFXHL. Results Our findings indicate that FFXHL effectively reduced paw swelling, joint pain, arthritis scores, and synovial pannus hyperplasia. It also lowered serum levels of TNF-α, interleukin-1β (IL1β), and interleukin-6 (IL-6). Immunohistochemical analysis revealed decreased expression of nuclear factor-kappa B (NF-κB) p65 in FFXHL-treated CIA rat joints. In vitro experiments demonstrated FFXHL's ability to decrease protein secretion of IL-1β and IL-6, suppress mRNA expression of matrix metalloproteinases (MMP) -3, -9, and -13, reduce reactive oxygen species (ROS) levels, and inhibit NF-κB p65 translocation in TNF-α stimulated MH7A cells. FFXHL also suppressed protein levels of extracellular signal-regulated kinase (ERK), c-Jun Nterminal kinase (JNK), p38 MAP kinase (p38), protein kinase B (Akt), p65, inhibitor of kappa B kinase α/β (IKKα/β), Toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) induced by TNF-α in MH7A cells. Conclusion The findings imply that FFXHL exhibits significant anti-inflammatory and antiarthritic effects in both CIA rat models and TNF-α-induced MH7A cells. The potential mechanism involves the inactivation of TLR4/MyD88, mitogen-activated protein kinases (MAPKs), NF-κB, and Akt pathways by FFXHL.
Collapse
Affiliation(s)
- Qiong Yin
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | - Qian Huang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | - Hantao Zhang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | - Xiaodi Zhang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| | | | - Hongping Wang
- Scientific Research Institute of Beijing Tongrentang Co., Ltd., Beijing, China
| |
Collapse
|
3
|
Yang B, Wu X, Zeng J, Song J, Qi T, Yang Y, Liu D, Mo Y, He M, Feng L, Jia X. A Multi-Component Nano-Co-Delivery System Utilizing Astragalus Polysaccharides as Carriers for Improving Biopharmaceutical Properties of Astragalus Flavonoids. Int J Nanomedicine 2023; 18:6705-6724. [PMID: 38026532 PMCID: PMC10656867 DOI: 10.2147/ijn.s434196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Enhancing the dissolution, permeation and absorption of active components with low solubility and poor permeability is crucial for maximizing therapeutic efficacy and optimizing functionality. The objective of this study is to investigate the potential of natural polysaccharides as carriers to improve the biopharmaceutical properties of active components. Methods In this study, we employed four representative flavonoids in Astragali Radix, namely Calycosin-7-O-β-D-glucoside (CAG), Ononin (ON), Calycosin (CA) and Formononetin (FMN), as a demonstration to evaluate the potential of Astragalus polysaccharides (APS) as carriers to improve the biopharmaceutical properties, sush as solubility, permeability, and absorption in vivo. In addition, the microstructure of the flavonoids-APS complexes was characterized, and the interaction mechanism between APS and flavonoids was investigated using multispectral technique and molecular dynamics simulation. Results The results showed that APS can self-assemble into aggregates with a porous structure and large surface area in aqueous solutions. These aggregates can be loaded with flavonoids through weak intermolecular interactions, such as hydrogen bonding, thereby improving their gastrointestinal stability, solubility, permeability and absorption in vivo. Conclusion We discovered the self-assembly properties of APS and its potential as carriers. Compared with introducing external excipients, the utilization of natural polysaccharides in plants as carriers may have a unique advantage in enhancing dissolution, permeation and absorption.
Collapse
Affiliation(s)
- Bing Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaochun Wu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jinjing Song
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Tianhao Qi
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Dingkun Liu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yulin Mo
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Miao He
- College of Pharmacy, Dali University, Dali, Yunnan, People’s Republic of China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| |
Collapse
|
4
|
Luo R, Fang C, Chen C, Zhang Y, Yao R, Wang J, Shi H, Feng K, Hu M, Zhong C. Adjuvant therapy with Jianpi Huayu decoction improves overall and recurrence-free survival after hepatectomy for hepatocellular carcinoma: a retrospective propensity score-matching study. Front Pharmacol 2023; 14:1212116. [PMID: 37818186 PMCID: PMC10561391 DOI: 10.3389/fphar.2023.1212116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) patients experience high rates of recurrence following hepatectomy. Many herbal preparations used in traditional Chinese medicine have been shown to improve the postoperative condition of cancer patients. This retrospective study examined the efficacy and safety of Jianpi Huayu decoction (JPHYD) as adjuvant therapy for HCC following hepatectomy. HCC patients received postoperative management according to Chinese Society of Clinical Oncology recommendations, either alone (Control group) or in addition to daily JPHYD (1 week in hospital and 3 months after release). To reduce selection bias, we performed 1:1 propensity score matching between the Control and JPHYD groups. The main endpoint was recurrence-free survival (RFS), and secondary endpoints included overall survival (OS) and adverse event frequency. A total of 207 patients meeting inclusion criteria were enrolled, 127 in the Control group and 80 in the JPHYD group. Patients were then propensity score-matched, yielding each group of 80. Recurrence-free survival rate was significantly higher in the JPHYD group than in the Control group at 1 year (67.9% vs. 38.1%), 2 years (39.1% vs. 26.2%), and 3 years (31.3% vs. 26.2%) following hepatectomy (HR 0.5666 [95%CI, 0.3655 to 0.8784]; p = 0.0066). Additionally, OS was significantly higher in the JPHYD group than the Control group at 1 year (94.3% vs. 81.9%), 2 years (76.4% vs. 58.8%), and 3 years (66.3% vs. 51.4%) following hepatectomy (HR 0.5199 [95%CI, 0.2849 to 0.9490]; p = 0.027). Adverse events frequencies did not differ between the two groups. In conclusion, JPHYD can safely improve RFS and OS following hepatectomy for HCC.
Collapse
Affiliation(s)
- Rui Luo
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chongkai Fang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuyao Chen
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiwei Yao
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinan Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanqian Shi
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kunliang Feng
- Department of Surgery, Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingli Hu
- The Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, China
| | - Chong Zhong
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Lv X, Xu Q, Zhang Z, Wang J, Wan M, Zhang X, Wu B, Yan T, Jia Y. Biomarkers based on multiplatform comprehensive analysis: A systematic analysis of Geng-Nian-Shu in perimenopausal syndrome. J Sep Sci 2023; 46:e2300011. [PMID: 37344998 DOI: 10.1002/jssc.202300011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/13/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
Although Geng-Nian-Shu has been shown to be clinically effective in perimenopausal syndrome, its active components and mechanism have not yet been elucidated. To demonstrate the mechanism-based biomarkers of Geng-Nian-Shu in treating perimenopausal syndrome, a total of 135 chemical constituents including 52 prototype blood constituents were identified via high-performance liquid chromatography-quadrupole-time of flight/mass spectrometry. Then, network pharmacology showed significant enrichment for the PhosphoInositide-3 Kinase/Akt pathway, suggesting that it may be the main regulatory pathway for the Geng-Nian-Shu treatment of the perimenopausal syndrome. Subsequently, multivariate analysis was performed between the Geng-Nian-Shu sham-treated and Geng-Nian-Shu ovariectomy-treated groups and further screened out 18 prototype blood constituents by correlation analysis with plasma estrogen levels to identify potential biomarkers associated with Geng-Nian-Shu treat the ovariectomy-induced perimenopausal syndrome. Finally, the results of pharmacological experimental verification and Pearson correlation analysis indicated that catalpol, ligustilide, paeoniflorin, and gallic acid were selected as biomarkers of Geng-Nian-Shu which were strongly and positively correlated with PhosphoInositide-3 Kinase/Akt signaling pathway. In this study, based on high-performance liquid chromatography-quadrupole-time of flight/mass spectrometry combined with pharmacodynamics, network pharmacology, pharmacology, and other disciplines, we explored the effects and mechanisms of Geng-Nian-Shu in the treatment of perimenopausal syndrome at multiple levels. Using multiplatform technology to investigate the role of Geng-Nian-Shu represents a new strategy for the selection and verification of biomarkers of Geng-Nian-Shu and provides a basis for further development and utilization of Geng-Nian-Shu.
Collapse
Affiliation(s)
- Xinyan Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| | - Qinghua Xu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| | - Zhiqin Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| | - Jinyu Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| | - Meiqi Wan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| | - Xiaoying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| | - Bo Wu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| | - Tingxu Yan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
6
|
Xiao Y, Zhang J, Zhu X, Zhao W, Li Y, Jin N, Lu H, Han J. Fu-Zheng-Xuan-Fei formula promotes macrophage polarization and Th17/Treg cell homeostasis against the influenza B virus (Victoria strain) infection. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116485. [PMID: 37044232 DOI: 10.1016/j.jep.2023.116485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fu-Zheng-Xuan-Fei formula (FF) is a prescription that has been clinically used through the basic theory of traditional Chinese medicine (TCM) for treating viral pneumonia. Although FF possesses a prominent clinical therapeutic effect, seldom pharmacological studies have been reported on its anti-influenza B virus (IBV) activity. AIM OF THE STUDY Influenza is an acute infectious respiratory disease caused by the influenza virus, which has high annual morbidity and mortality worldwide. With a global decline in the COVID-19 control, the infection rate of influenza virus is gradually increasing. Therefore, it is of great importance to develop novel drugs for the effective treatment of influenza virus. Apart from conventional antiviral drugs, TCM has been widely used in the clinical treatment of influenza in China. Therefore, studying the antiviral mechanism of TCM can facilitate the scientific development of TCM. MATERIALS AND METHODS Madin-Darby canine kidney cells (MDCK) and BALB/c mice were infected with IBV, and FF was added to evaluate the anti-IBV effects of FF both in vitro and in vivo by Western blotting, immunofluorescence, flow cytometry, and pathological assessment. RESULTS It was found that FF exhibited anti-viral activity against IBV infection both in vivo and in vitro, while inducing macrophage activation and promoting M1 macrophage polarization. In addition, FF effectively regulated the signal transducer and activator of transcription (STAT) signaling pathway-mediated Th17/Treg balance to improve the lung tissue damage caused by IBV infection-induced inflammation. The findings provided the scientific basis for the antiviral mechanism of FF against IBV infection. CONCLUSIONS This study shows that FF is a potentially effective antiviral drug against IBV infection.
Collapse
Affiliation(s)
- Yan Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Jinxin Zhang
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xiangyu Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Wenxin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Yiquan Li
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Jicheng Han
- Academician Workstation, Changchun University of Chinese Medicine, Changchun, 130117, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
7
|
He L, Kang Q, Zhang Y, Chen M, Wang Z, Wu Y, Gao H, Zhong Z, Tan W. Glycyrrhizae Radix et Rhizoma: The popular occurrence of herbal medicine applied in classical prescriptions. Phytother Res 2023. [PMID: 37196671 DOI: 10.1002/ptr.7869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Glycyrrhizae Radix et Rhizoma is a well-known herbal medicine with a wide range of pharmacological functions that has been used throughout Chinese history. This review presents a comprehensive introduction to this herb and its classical prescriptions. The article discusses the resources and distribution of species, methods of authentication and determination chemical composition, quality control of the original plants and herbal medicines, dosages use, common classical prescriptions, indications, and relevant mechanisms of the active content. Pharmacokinetic parameters, toxicity tests, clinical trials, and patent applications are discussed. The review will provide a good starting point for the research and development of classical prescriptions to develop herbal medicines for clinical use.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zefei Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yonghui Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hetong Gao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Zhang H, Xu Z, Gao H, Zhang Q. Systematic analysis on the mechanism of Zhizi-Bopi decoction against hepatitis B via network pharmacology and molecular docking. Biotechnol Lett 2023; 45:463-478. [PMID: 36807721 DOI: 10.1007/s10529-023-03359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 02/21/2023]
Abstract
PURPOSE Zhizi-Bopi decoction (ZZBPD) is a classic herbal formula with wide clinical applications in treating liver diseases including hepatitis B. However, the mechanism needs to be elucidated. METHODS Chemical components of ZZBPD were identified by ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry (UHPLC-TOF-MS). Then we used network pharmacology to identify their potential targets. Network construction, coupled with protein-protein interaction and enrichment analysis was used to identify representative components and core targets. Finally, molecular docking simulation was conducted to further refine the drug-target interaction. RESULTS One hundred and forty-eight active compounds were identified in ZZBPD, targeting 779 genes/proteins, among which 174 were related to hepatitis B. ZZBPD mainly influences the progression of hepatitis B through the hepatitis B pathway (hsa05161) via core anti-HBV targets (AKT1, PIK3CA, PIK3R1, SRC, TNF, MAPK1, and MAPK3). Enrichment analysis indicated that ZZBPD can also potentially regulate lipid metabolism and enhance cell survival. Molecular docking suggested that the representative active compounds can bind to the core anti-HBV targets with high affinity. CONCLUSION The potential molecular mechanisms of ZZBPD in hepatitis B treatment were identified using network pharmacology and molecular docking approaches. The results serve as an important basis for the modernization of ZZBPD.
Collapse
Affiliation(s)
- He Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, University Road, Changqing District, Ji'nan, 250355, Shandong Province, China
| | - Zhouyi Xu
- School of Aerospace Engineering, Xiamen University, Xiamen, 361000, China
| | - Haojun Gao
- New Zhonglu Traditional Chinese Medicine Hospital, Ji'nan, 250011, China
| | - Qinyuan Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, University Road, Changqing District, Ji'nan, 250355, Shandong Province, China.
| |
Collapse
|
9
|
Yuan X, Cheng S, Chen L, Cheng Z, Liu J, Zhang H, Yang J, Li Y. Iron oxides based nanozyme sensor arrays for the detection of active substances in licorice. Talanta 2023; 258:124407. [PMID: 36871515 DOI: 10.1016/j.talanta.2023.124407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
With the increasing applications of traditional Chinese medicines worldwide, authenticity identification and quality control are significant for them to go global. Licorice is a kind of medicinal material with various functions and wide applications. In this work, colorimetric sensor arrays based on iron oxide nanozymes were constructed to discriminate active indicators in licorice. Fe2O3, Fe3O4, and His-Fe3O4 nanoparticles were synthesized by a hydrothermal method, possessing excellent peroxidase-like activity that can catalyze the oxidation of 3,3',5,5' -tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue product. When licorice active substances were introduced in the reaction system, they showed competitive effect on peroxidase-mimicking activity of nanozymes, resulting in inhibitory effect on the oxidation of TMB. Based on this principle, four licorice active substances including glycyrrhizic acid, liquiritin, licochalcone A, and isolicoflavonol with the concentration ranging from 1 μM to 200 μM were successfully discriminated by the proposed sensor arrays. This work supplies a low cost, rapid and accurate method for multiplex discrimination of active substances to guarantee the authenticity and quality of licorice, which is also expected to be applied to distinguish other substances.
Collapse
Affiliation(s)
- Xiaohua Yuan
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Shaochun Cheng
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Linyi Chen
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Ziyu Cheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jie Liu
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Hua Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China.
| | - Jiao Yang
- Flexible Printed Electronics Technology Center and College of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Yingchun Li
- Flexible Printed Electronics Technology Center and College of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Wang X, Ma Y, Xu Q, Shikov AN, Pozharitskaya ON, Flisyuk EV, Liu M, Li H, Vargas-Murga L, Duez P. Flavonoids and saponins: What have we got or missed? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154580. [PMID: 36610132 DOI: 10.1016/j.phymed.2022.154580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Flavonoids and saponins are important bioactive compounds that have attracted wide research interests. This review aims to summarise the state of the art of the pharmacology, toxicology and clinical efficacy of these compounds. METHODS Data were retrieved from PubMed, Cochrane Library, Web of Science, Proquest, CNKI, Chongqing VIP, Wanfang, NPASS and HIT 2.0 databases. Meta-analysis and systematic reviews were evaluated following the PRISMA guideline. Statistical analyses were conducted using SPSS23.0. RESULTS Rising research trends on flavonoids and saponins were observed since the 1990s and the 2000s, respectively. Studies on pharmacological targets and activities of flavonoids and saponins represent an important area of research advances over the past decade, and these important resources have been documented in open-access specialised databases and can be retrieved with ease. The rising research on flavonoids and saponins can be attributed, at least in part, to their links with some highly investigated fields of research, e.g., oxidative stress, inflammation and cancer; i.e., 6.88% and 3.03% of publications on oxidative stress cited by PubMed in 1990 - 2021 involved flavonoids and saponins, respectively, significantly higher than the percentage involving alkaloids (1.88%). The effects of flavonoids concern chronic venous insufficiency, cervical lesions, diabetes, rhinitis, dermatopathy, prostatitis, menopausal symptoms, angina pectoris, male pattern hair loss, lymphocytic leukaemia, gastrointestinal diseases and traumatic cerebral infarction, etc, while those of saponins may have impact on venous oedema in chronic deep vein incompetence, erectile dysfunction, acute impact injuries and systemic lupus erythematosus, etc. The volume of in vitro research appears way higher than in vivo and clinical studies, with only 10 meta-analyses and systematic reviews (involving 290 interventional and observational studies), and 36 clinical studies on flavonoids and saponins. Data are sorely needed on pharmacokinetics, in vitro pan-assay interferences, purity of tested compounds, interactions in complex herbal extracts, real impact of anti-oxidative strategies, and mid- and long-term toxicities. To fill these important gaps, further investigations are warranted. On the other hand, drug interactions may cause adverse effects but might also be useful for synergism, with the goals of enhancing effects or of detoxifying. Furthermore, the interactions between phytochemicals and the intestinal microbiota are worth investigating as the field may present a promising potential for novel drug development.
Collapse
Affiliation(s)
- Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital; Hubei Key Laboratory of Wudang Local Chinese Medicine Research; Biomedical Research Institute; School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, South Renmin Road, Shiyan, 442000, China..
| | - Yan Ma
- Molecular Research in Traditional Chinese Medicine, Division of Comparative Immunology and Oncology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Vienna General Hospital, Medical University of Vienna
| | - Qihe Xu
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alexander N Shikov
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, Saint-Petersburg, 197376, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences, Vladimirskaya, 17, Murmansk, 183010, Russia
| | - Elena V Flisyuk
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, Saint-Petersburg, 197376, Russia
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital; Hubei Key Laboratory of Wudang Local Chinese Medicine Research; Biomedical Research Institute; School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, South Renmin Road, Shiyan, 442000, China
| | - Liliana Vargas-Murga
- BIOTHANI, Can Lleganya, 17451 Sant Feliu de Buixalleu, Catalonia, Spain; Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona (UdG), 17003 Girona, Catalonia, Spain
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium..
| |
Collapse
|
11
|
Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans. Nutrients 2022; 14:nu14194199. [PMID: 36235851 PMCID: PMC9570774 DOI: 10.3390/nu14194199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, both extracts improved the resistance towards oxidative stress, and decreased the intracellular level of reactive oxygen species. Chemical analyses of the extracts revealed the presence of several bioactive compounds such as chlorogenic acid, cinnamic acid, and quercetin. A fraction from the C. chinensis extract enriched in zingibroside R1 improved the lifespan, the survival after heat stress, and the locomotion in a manner similar to the full C. chinensis extract. Thus, zingibroside R1 could be (partly) responsible for the observed health benefits of C. chinensis. Furthermore, a hydroxygallic acid derivative and the sterol lipid 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol are abundantly present in the C. chinensis extract and its most bioactive fraction, but hardly in E. ulmoides, making them good candidates to explain the overall healthspan benefits of C. chinensis compared to the specific positive effects on stress resistance by E. ulmoides. Our findings highlight the overall anti-aging effects of C. chinensis in C. elegans and provide first hints about the components responsible for these effects.
Collapse
|
12
|
Guan H, Li P, Wang Q, Zeng F, Wu J, Zhang F, Liao S, Shi Y. Deciphering the chemical constituents of Shengjiang Xiexin decoction by ultra-high-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry and the impact of 20 characteristic components on multidrug resistance-associated protein 2 in the vesicular transport assay. J Sep Sci 2022; 45:3459-3479. [PMID: 35838583 DOI: 10.1002/jssc.202200370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022]
Abstract
Shengjiang Xiexin decoction, a traditional Chinese medical formula, has been utilized to alleviate the delayed-onset diarrhea induced by irinotecan. However, the chemical constituents of this formula and the activities of its constituents remain unclear. In this study, an ultra-high-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry was employed to comprehensively analyze the chemical constituents of Shengjiang Xiexin decoction. A total of 270 components including flavonoids, coumarins, triterpenoids, alkaloids, diarylheptanoids and others were identified or characterized. The multidrug resistance-associated protein 2 is an efflux transporter responsible for regulating drug absorption. A total of 20 characteristic components from the formula were selected to evaluate their effects on the function of multidrug resistance-associated protein 2 using the vesicular transport assay. Glycyrrhizic acid and glycyrrhetinic acid were identified as potential multidrug resistance-associated protein 2 inhibitors, while 9 flavonoid aglycones increased the uptake of the substrate [3 H]-estradiol 17-β-glucuronide in the vesicles. This was the first systematical investigation on the chemical constituents from Shengjiang Xiexin decoction and the effect of its characteristic components on the transporter. The results offered a basis for further exploring the detoxification mechanisms of this formula and its interactions with other drugs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huanyu Guan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.,State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Pengfei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.,National Institute of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guizhou, 550002, China
| | - Qian Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Fanli Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Fangqing Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shanggao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guizhou, 550025, China
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
13
|
Wang Y, Ning Y, He T, Chen Y, Han W, Yang Y, Zhang CX. Explore the Potential Ingredients for Detoxification of Honey-Fired Licorice (ZGC) Based on the Metabolic Profile by UPLC-Q-TOF-MS. Front Chem 2022; 10:924685. [PMID: 35910719 PMCID: PMC9335949 DOI: 10.3389/fchem.2022.924685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Licorice is well known for its ability to reduce the toxicity of the whole prescription in traditional Chinese medicine theory. However, honey-fired licorice (ZGC for short), which is made of licorice after being stir-fried with honey water, is more commonly used for clinical practice. The metabolism in vivo and detoxification-related compounds of ZGC have not been fully elucidated. In this work, the chemical constituents in ZGC and its metabolic profile in rats were both identified by high ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The network pharmacology was applied to predict the potential detoxifying ingredients of ZGC. As a result, a total of 115 chemical compounds were identified or tentatively characterized in ZGC aqueous extract, and 232 xenobiotics (70 prototypes and 162 metabolites) were identified in serum, heart, liver, kidneys, feces, and urine. Furthermore, 41 compounds absorbed in serum, heart, liver, and kidneys were employed for exploring the detoxification of ZGC by network pharmacology. Ultimately, 13 compounds (five prototypes including P5, P24, P30, P41 and P44, and 8 phase Ⅰ metabolites including M23, M47, M53, M93, M100, M106, M118, and M134) and nine targets were anticipated to be potential mediums regulating detoxification actions. The network pharmacology analysis had shown that the ZGC could detoxify mainly through regulating the related targets of cytochrome P450 and glutathione. In summary, this study would help reveal potential active ingredients in vivo for detoxification of ZGC and provided practical evidence for explaining the theory of traditional Chinese medicine with modern technology.
Collapse
Affiliation(s)
- Yinjie Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Ning
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| | - Ting He
- Ningxia Hui Medicine Research Institute, Yinchuan, China
| | - Yingtong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhui Han
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yinping Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Cui-Xian Zhang,
| |
Collapse
|
14
|
Liu W, Liu Y, Fang S, Yao W, Wang X, Bao Y, Shi W. Salvia miltiorrhiza polysaccharides alleviates florfenicol-induced liver metabolic disorder in chicks by regulating drug and amino acid metabolic signaling pathways. Poult Sci 2022; 101:101989. [PMID: 35841637 PMCID: PMC9289867 DOI: 10.1016/j.psj.2022.101989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/14/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Excessive and nonstandard use of florfenicol (FFC) can damage animal body, pollute ecological environment, and even harm human health. The toxic and side effects of FFC directly affect the production performance of poultry and the safe supply of chicken-related food. Salvia miltiorrhaza polysaccharides (SMPs) are natural macromolecular compounds, and were proved to have the effect of protecting animal liver. We used transcriptome and proteome sequencing technologies to study the effect of FFC on specific signal transduction pathways in chick livers and further explored the regulatory effect of SMPs on the above same signal pathways, and finally revealed the intervention effect and mechanism of SMPs on FFC-induced changes of liver function. The screened sequencing results were verified by qPCR and PRM methods. The results showed that FFC changed significantly 9 genes and 5 proteins in drug metabolism-cytochrome P450 signaling pathway, and the intervention of SMPs adjusted the expression levels of 5 genes and 4 proteins of the above factors. In glycine, serine and threonine metabolism signaling pathway, 8 genes and 8 proteins were significantly changed due to FFC exposure, and SMPs corrected the expression levels of 5 genes and 6 proteins to a certain extent. In conclusion, SMPs alleviated FFC-induced liver metabolic disorder in chicks by regulating the drug and amino acid metabolism pathway. This study is of great significance for promoting the healthy breeding of broilers and ensuring the safe supply of chicken-related products.
Collapse
Affiliation(s)
- Wei Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Ying Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Siyuan Fang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Weiyu Yao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China; Veterinary Biotechnology Innovation Center of Hebei Province, Baoding, 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China; Veterinary Biotechnology Innovation Center of Hebei Province, Baoding, 071001, China.
| |
Collapse
|
15
|
Hao DC, Wang F, Xiao PG. Impact of Drug Metabolism/Pharmacokinetics and their Relevance Upon Traditional Medicine-based anti-COVID-19 Drug Research. Curr Drug Metab 2022; 23:374-393. [PMID: 35440304 DOI: 10.2174/1389200223666220418110133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The representative anti-COVID-19 herbs, i.e. Poria cocos, Pogostemon, Prunus, and Glycyrrhiza plants, are commonly used in the prevention and treatment of COVID-19, a pandemic caused by SARS-CoV-2. Diverse medicinal compounds with favorable anti-COVID-19 activities are abundant in these plants, and their unique pharmacological/pharmacokinetic properties are being revealed. However, the current trends of drug metabolism/pharmacokinetic (DMPK) investigations of anti-COVID-19 herbs have not been systematically summarized. METHODS Here, the latest awareness, as well as the perception gaps of DMPK attributes, in the anti-COVID-19 drug development and clinical usage was elaborated and critically commented. RESULTS The extracts and compounds of P. cocos, Pogostemon, Prunus, and Glycyrrhiza plants show distinct and diverse absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. The complicated herb-herb interactions (HHIs) and herb-drug interactions (HDIs) of anti-COVID-19 Traditional Chinese Medicine (TCM) herb pair/formula dramatically influence the PK/pharmacodynamic (PD) performance of compounds thereof, which may inspire researchers to design innovative herbal/compound formulas for optimizing the therapeutic outcome of COVID-19 and related epidemic diseases. The ADME/T of some abundant compounds in anti-COVID-19 plants have been elucidated, but DMPK studies should be extended to more compounds of different medicinal parts, species and formulations, and would be facilitated by various omics platforms and computational analyses. CONCLUSION In the framework of systems pharmacology and pharmacophylogeny, the DMPK knowledge base would promote the translation of bench findings into the clinical practice of anti-COVID-19, and speed up the anti-COVID-19 drug discovery and development.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China.,Institute of Molecular Plant Science, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Fan Wang
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
16
|
Pradhan SK, Li Y, Gantenbein AR, Angst F, Lehmann S, Shaban H. Wen Dan Tang: A Potential Jing Fang Decoction for Headache Disorders? MEDICINES (BASEL, SWITZERLAND) 2022; 9:22. [PMID: 35323721 PMCID: PMC8955743 DOI: 10.3390/medicines9030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chinese herbal medicine is considered relatively safe, inexpensive, and easily accessible. Wen Dan Tang (WDT), a Jing Fang ancient classical Chinese herbal formula with a broad indication profile has been used for several centuries in China to treat various illnesses. QUESTION Are there evidence-based clinical trials that show that WDT has a significant impact on the treatment of various diseases, especially in patients with migraine and tension-type headaches (TTH)? METHODS This study is based on an online database search using PubMed, Medline, Cochrane Library, AcuTrials, Embase, Semantic Scholar, Jstor, internet research, and review of ancient and modern Chinese medical textbooks regarding WDT and its compounds. RESULTS There were no studies on WDT in migraine and TTH; therefore, this work gathers and describes data for every single compound in the formula. CONCLUSION This study suggests that the bioactive compounds found in WDT composition show potential in treating patients with neurological, psychiatric disorders, cardiovascular diseases, metabolic syndrome, and digestive disorders. Some coherence between WDT in headache reduction and improvements in the quality of life in patients with migraines and TTH could be evaluated, showing positive results of WDT in these patients.
Collapse
Affiliation(s)
- Saroj K. Pradhan
- Research Department Rehaklinik, TCM Ming Dao, ZURZACH Care, 5330 Bad Zurzach, Switzerland;
- Research Department, Swiss TCM Academy, 5330 Bad Zurzach, Switzerland
- Research Department, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yiming Li
- Research Department Rehaklinik, TCM Ming Dao, ZURZACH Care, 5330 Bad Zurzach, Switzerland;
- Research Department, Swiss TCM Academy, 5330 Bad Zurzach, Switzerland
- Research Department, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Andreas R. Gantenbein
- Neurology & Neurorehabilitation Department Rehaklinik, ZURZACH Care, 5330 Bad Zurzach, Switzerland;
| | - Felix Angst
- Research Department Rehaklinik, ZURZACH Care, 5330 Bad Zurzach, Switzerland; (F.A.); (S.L.)
| | - Susanne Lehmann
- Research Department Rehaklinik, ZURZACH Care, 5330 Bad Zurzach, Switzerland; (F.A.); (S.L.)
| | - Hamdy Shaban
- Department of Private Psychiatry Clinic of UPK, University Psychiatric Clinics, 4002 Basel, Switzerland;
| |
Collapse
|
17
|
Shan Q, Tian G, Han X, Hui H, Yamamoto M, Hao M, Wang J, Wang K, Sang X, Qin L, Chen G, Cao G. Toxicity of Tetradium ruticarpum: Subacute Toxicity Assessment and Metabolomic Identification of Relevant Biomarkers. Front Pharmacol 2022; 13:803855. [PMID: 35295336 PMCID: PMC8918793 DOI: 10.3389/fphar.2022.803855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
Tetradium ruticarpum (TR) is widely used in Asia to treat gastrointestinal disorders and pain. Stir-frying with licorice aqueous extract is a traditional processing procedure of TR formed in a long-term practice and performed before clinical application, and believed to reduce TR’s toxicity. However, its toxicity and possible toxicity attenuation approach are yet to be well investigated. Subacute toxicity and metabolomics studies were conducted to help understand the toxicity of TR. The subacute toxicity assessment indicated that 3 fold of the recommended therapeutic dose of TR did not show obvious subacute toxicity in rats. Although an extremely high dose (i.e., 60 fold of the recommended dose) may cause toxicity in rats, it reversed to normal after 2 weeks of recovery. Hepatocellular injury was the major toxic phenotype of TR-induced liver damage, indicating as aspartate aminotransferase (AST) and liver index increasing, with histopathologic findings as local hepatocyte necrosis, focal inflammatory cell infiltration, slightly bile duct hyperplasia, and partial hepatocyte vacuolation. Moreover, we evaluated the impact of processing in toxicity. TR processed with licorice could effectively reduce drug-induced toxicity, which is a valuable step in TR pretreatment before clinical application. Metabolomics profiling revealed that primary bile acid biosynthesis, steroid biosynthesis, and arachidonic acid metabolism were mainly involved in profiling the toxicity metabolic regulatory network. The processing procedure could back-regulate these three pathways, and may be in an Aryl hydrocarbon Receptor (AhR) dependent manner to alleviate the metabolic perturbations induced by TR. 7α-hydroxycholesterol, calcitriol, and taurocholic acid were screened and validated as the toxicity biomarkers of TR for potential clinical translation. Overall, the extensive subacute toxicity evaluation and metabolomic analysis would not only expand knowledge of the toxicity mechanisms of TR, but also provide scientific insight of traditional processing theory, and support clinical rational use of TR.
Collapse
Affiliation(s)
- Qiyuan Shan
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Gang Tian
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Hui
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mai Yamamoto
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Min Hao
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingwei Wang
- The Public Platform of Medical Research Center, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kuilong Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Luping Qin, ; Guanqun Chen, ; Gang Cao,
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Luping Qin, ; Guanqun Chen, ; Gang Cao,
| | - Gang Cao
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Luping Qin, ; Guanqun Chen, ; Gang Cao,
| |
Collapse
|
18
|
Wang B, Wu Z, Li W, Liu G, Tang Y. Insights into the molecular mechanisms of Huangqi decoction on liver fibrosis via computational systems pharmacology approaches. Chin Med 2021; 16:59. [PMID: 34301291 PMCID: PMC8306236 DOI: 10.1186/s13020-021-00473-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The traditional Chinese medicine Huangqi decoction (HQD) consists of Radix Astragali and Radix Glycyrrhizae in a ratio of 6: 1, which has been used for the treatment of liver fibrosis. In this study, we tried to elucidate its action of mechanism (MoA) via a combination of metabolomics data, network pharmacology and molecular docking methods. METHODS Firstly, we collected prototype components and metabolic products after administration of HQD from a publication. With known and predicted targets, compound-target interactions were obtained. Then, the global compound-liver fibrosis target bipartite network and the HQD-liver fibrosis protein-protein interaction network were constructed, separately. KEGG pathway analysis was applied to further understand the mechanisms related to the target proteins of HQD. Additionally, molecular docking simulation was performed to determine the binding efficiency of compounds with targets. Finally, considering the concentrations of prototype compounds and metabolites of HQD, the critical compound-liver fibrosis target bipartite network was constructed. RESULTS 68 compounds including 17 prototype components and 51 metabolic products were collected. 540 compound-target interactions were obtained between the 68 compounds and 95 targets. Combining network analysis, molecular docking and concentration of compounds, our final results demonstrated that eight compounds (three prototype compounds and five metabolites) and eight targets (CDK1, MMP9, PPARD, PPARG, PTGS2, SERPINE1, TP53, and HIF1A) might contribute to the effects of HQD on liver fibrosis. These interactions would maintain the balance of ECM, reduce liver damage, inhibit hepatocyte apoptosis, and alleviate liver inflammation through five signaling pathways including p53, PPAR, HIF-1, IL-17, and TNF signaling pathway. CONCLUSIONS This study provides a new way to understand the MoA of HQD on liver fibrosis by considering the concentrations of components and metabolites, which might be a model for investigation of MoA of other Chinese herbs.
Collapse
Affiliation(s)
- Biting Wang
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zengrui Wu
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weihua Li
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Guixia Liu
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Tang
- Laboratory of Molecular Modeling and Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
19
|
Lu JZ, Ye D, Ma BL. Constituents, Pharmacokinetics, and Pharmacology of Gegen-Qinlian Decoction. Front Pharmacol 2021; 12:668418. [PMID: 34025427 PMCID: PMC8139575 DOI: 10.3389/fphar.2021.668418] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Gegen-Qinlian decoction (GQD) is a classic traditional Chinese medicine (TCM) formula. It is composed of four TCMs, including Puerariae Lobatae Radix, Scutellariae Radix, Coptidis Rhizoma, and Glycyrrhizae Radix et Rhizoma Praeparata cum Melle. GQD is traditionally and clinically used to treat both the "external and internal symptoms" of diarrhea with fever. In this review, key words related to GQD were searched in the Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), and other databases. Literature published mainly from 2000 to 2020 was screened and summarized. The main constituents of GQD could be classified into eight groups according to their structures: flavonoid C-glycosides, flavonoid O-glucuronides, benzylisoquinoline alkaloids, free flavonoids, flavonoid O-glycosides, coumarins, triterpenoid saponins, and others. The parent constituents of GQD that enter circulation mainly include puerarin and daidzein from Puerariae Lobatae Radix, baicalin and wogonoside from Scutellariae Radix, berberine and magnoflorine from Coptidis Rhizoma, as well as glycyrrhetinic acid and glycyrrhizic acid from Glycyrrhizae Radix et Rhizoma Praeparata cum Melle. GQD is effective against inflammatory intestinal diseases, including diarrhea, ulcerative colitis, and intestinal adverse reactions caused by chemotherapeutic agents. Moreover, GQD has significant effects on metabolic diseases, such as nonalcoholic fatty liver and type 2 diabetes. Furthermore, GQD can be used to treat lung injury. In brief, the main constituents, the pharmacokinetic and pharmacological profiles of GQD were summarized in this review. In addition, several issues of GQD including effective constituents, interactions between the constituents, pharmacokinetics, interaction potential with drugs and pharmacological effects were discussed, and related future researches were prospected in this review.
Collapse
Affiliation(s)
- Jing-Ze Lu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Ye
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Effective Material Basis and Mechanism Analysis of Compound Banmao Capsule against Tumors Using Integrative Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6653460. [PMID: 34055017 PMCID: PMC8112962 DOI: 10.1155/2021/6653460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/05/2023]
Abstract
Purpose Compound banmao capsule (CBC), a well-known traditional Chinese medical material, is known to inhibit various tumors. However, its material basis and pharmacological mechanisms remain to be elucidated. This study aimed to investigate the effective material basis and mechanisms of action of CBC against tumors. Methods Active compounds of CBC were identified using public database and reports to build a network. The corresponding targets of active compounds were retrieved from online databases, and the antitumor targets were identified by GeneCards database. The antitumor hub targets were generated via protein-protein interaction analysis using String, and key compounds and targets from the integrative network were detected by molecular docking and ADMET. Top targets in hepatocellular carcinoma were confirmed by quantitative real-time PCR (qPCR). Finally, the multivariate biological network was built to identify the integrating mechanisms of action of CBC against tumor cells. Results A total of 128 compounds and 436 targets of CBC were identified successfully. Based on the generated multivariate biological network analysis, 25 key compounds, nine hub targets, and two pathways were further explored. Effective material bases of cantharidin, baicalein, scutellarin, sesamin, and quercetin were verified by integrative network analysis. PTGS2, ESR1, and TP53 were identified as hub targets via multivariate biological network analysis and confirmed using qPCR. Furthermore, VEGF and estrogen signaling pathways seem to play a role in the antitumor activity of CBC. Thus, breast cancer may be a potential clinical indication of CBC. Conclusion This study successfully identified the material basis of CBC and its synergistic mechanisms of action against tumor cells.
Collapse
|
21
|
Oesch F, Oesch-Bartlomowicz B, Efferth T. Toxicity as prime selection criterion among SARS-active herbal medications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153476. [PMID: 33593628 PMCID: PMC7840405 DOI: 10.1016/j.phymed.2021.153476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 05/06/2023]
Abstract
We present here a new selection criterion for prioritizing research on efficacious drugs for the fight against COVID-19: the relative toxicity versus safety of herbal medications, which were effective against SARS in the 2002/2003 epidemic. We rank these medicines according to their toxicity versus safety as basis for preferential rapid research on their potential in the treatment of COVID-19. The data demonstrate that from toxicological information nothing speaks against immediate investigation on, followed by rapid implementation of Lonicera japonica, Morus alba, Forsythia suspensa, and Codonopsis spec. for treatment of COVID-19 patients. Glycyrrhiza spec. and Panax ginseng are ranked in second priority and ephedrine-free Herba Ephedrae extract in third priority (followed by several drugs in lower preferences). Rapid research on their efficacy in the therapy - as well as safety under the specific circumstances of COVID-19 - followed by equally rapid implementation will provide substantial advantages to Public Health including immediate availability, enlargement of medicinal possibilities, in cases where other means are not successful (non-responders), not tolerated (sensitive individuals) or just not available (as is presently the case) and thus minimize sufferings and save lives. Moreover, their moderate costs and convenient oral application are especially advantageous for underprivileged populations in developing countries.
Collapse
Affiliation(s)
- Franz Oesch
- Institute of Toxicology, Johannes Gutenberg University, 55131 Mainz, Germany.
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| |
Collapse
|
22
|
Li R, Wu K, Li Y, Liang X, Lai KP, Chen J. Integrative pharmacological mechanism of vitamin C combined with glycyrrhizic acid against COVID-19: findings of bioinformatics analyses. Brief Bioinform 2021; 22:1161-1174. [PMID: 32662814 PMCID: PMC7462346 DOI: 10.1093/bib/bbaa141] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) is a fatal and fast-spreading viral infection. To date, the number of COVID-19 patients worldwide has crossed over six million with over three hundred and seventy thousand deaths (according to the data from World Health Organization; updated on 2 June 2020). Although COVID-19 can be rapidly diagnosed, efficient clinical treatment of COVID-19 remains unavailable, resulting in high fatality. Some clinical trials have identified vitamin C (VC) as a potent compound pneumonia management. In addition, glycyrrhizic acid (GA) is clinically as an anti-inflammatory medicine against pneumonia-induced inflammatory stress. We hypothesized that the combination of VC and GA is a potential option for treating COVID-19. METHODS The aim of this study was to determine pharmacological targets and molecular mechanisms of VC + GA treatment for COVID-19, using bioinformational network pharmacology. RESULTS We uncovered optimal targets, biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of VC + GA against COVID-19. Our findings suggested that combinatorial VC and GA treatment for COVID-19 was associated with elevation of immunity and suppression of inflammatory stress, including activation of the T cell receptor signaling pathway, regulation of Fc gamma R-mediated phagocytosis, ErbB signaling pathway and vascular endothelial growth factor signaling pathway. We also identified 17 core targets of VC + GA, which suggest as antimicrobial function. CONCLUSIONS For the first time, our study uncovered the pharmacological mechanism underlying combined VC and GA treatment for COVID-19. These results should benefit efforts to address the most pressing problem currently facing the world.
Collapse
Affiliation(s)
| | - Ka Wu
- Guilin Medical University
| | - Yu Li
- Guilin Medical University
| | | | | | | |
Collapse
|
23
|
Detoxification of toxic herbs in TCM prescription based on modulation of efflux transporters. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Xiang Y, Wang C, Wen J, Zhang M, Duan X, Wang L, Yan M, Li H, Fang P. Investigation of the detoxification effect of licorice on Semen Strychni-induced acute toxicity in rats using a HPLC-Q-TOF/MS-based metabolomics approach. RSC Adv 2020; 10:44398-44407. [PMID: 35517145 PMCID: PMC9058463 DOI: 10.1039/d0ra08568e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/27/2020] [Indexed: 11/21/2022] Open
Abstract
Semen Strychni, a traditional Chinese medicine (TCM), has been widely used to treat paraplegia, facial nerve palsy and myasthenia gravis. However, its clinical application is greatly limited due to its fatal toxicity. To investigate the acute toxicity of Semen Strychni and the detoxification effect of licorice, a high-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) based urinary metabolomics method was developed in this study. After intraperitoneal injection to rats with Semen Strychni extract, the serum biochemical indexes were changed significantly, the liver and kidney showed severe necrosis and edema. Then the poisoned rat model was subsequently used for metabolomics research. Through principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), we finally identified 19 endogenous differential metabolites involved in amino acid metabolism, glycerophospholipid metabolism, tricarboxylic acid (TCA) cycle, oxidative stress and energy metabolism. In addition, 4 exogenous compounds from Semen Strychni (3 prototypes and 1 metabolite) were also identified in the present study. Results showed that the alterations of 23 compounds caused by Semen Strychni were significantly reversed after licorice treatment, which indicated that restoring the endogenous metabolic disorder and accelerating the metabolism of the main toxic components might be the possible detoxification mechanisms of licorice. This study may provide an integral understanding for the acute toxicity of Semen Strychni and the detoxification effect of licorice, thereby contributing to the clinical use of Semen Strychni and licorice.
Collapse
Affiliation(s)
- Yalan Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University Changsha 410011 China +86 18890011747
- Institute of Clinical Pharmacy, Central South University Changsha 410011 China
| | - Chao Wang
- Department of Pharmacy, Qingdao Municipal Hospital Qingdao 266011 China
| | - Jing Wen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University Changsha 410011 China +86 18890011747
- Institute of Clinical Pharmacy, Central South University Changsha 410011 China
| | - Min Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University Changsha 410011 China +86 18890011747
- Institute of Clinical Pharmacy, Central South University Changsha 410011 China
| | - Xiaoyu Duan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University Changsha 410011 China +86 18890011747
- Institute of Clinical Pharmacy, Central South University Changsha 410011 China
| | - Lu Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University Changsha 410011 China +86 18890011747
- Institute of Clinical Pharmacy, Central South University Changsha 410011 China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University Changsha 410011 China +86 18890011747
- Institute of Clinical Pharmacy, Central South University Changsha 410011 China
| | - Huande Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University Changsha 410011 China +86 18890011747
- Institute of Clinical Pharmacy, Central South University Changsha 410011 China
| | - Pingfei Fang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University Changsha 410011 China +86 18890011747
- Institute of Clinical Pharmacy, Central South University Changsha 410011 China
| |
Collapse
|
25
|
Li F, Liu B, Li T, Wu Q, Xu Z, Gu Y, Li W, Wang P, Ma T, Lei H. Review of Constituents and Biological Activities of Triterpene Saponins from Glycyrrhizae Radix et Rhizoma and Its Solubilization Characteristics. Molecules 2020; 25:E3904. [PMID: 32867101 PMCID: PMC7503449 DOI: 10.3390/molecules25173904] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Glycyrrhizae Radix et Rhizoma is regarded as one of the most popular and commonly used herbal medicines and has been used in traditional Chinese medicine (TCM) prescriptions for over 2000 years. Pentacyclic triterpene saponins are common secondary metabolites in these plants, which are synthesized via the isoprenoid pathway to produce a hydrophobic triterpenoid aglycone containing a hydrophilic sugar chain. This paper systematically summarizes the chemical structures of triterpene saponins in Glycyrrhizae Radix et Rhizoma and reviews and updates their main biological activities studies. Furthermore, the solubilization characteristics, influences, and mechanisms of Glycyrrhizae Radix et Rhizoma are elaborated. Solubilization of the triterpene saponins from Glycyrrhizae Radix et Rhizoma occurs because they contain the nonpolar sapogenin and water-soluble sidechain. The possible factors affecting the solubilization of Glycyrrhizae Radix et Rhizoma are mainly other crude drugs and the pH of the decoction. Triterpene saponins represented by glycyrrhizin from Glycyrrhizae Radix et Rhizoma characteristically form micelles due to amphiphilicity, which makes solubilization possible. This overview provides guidance regarding a better understanding of GlycyrrhizaeRadix et Rhizoma and its TCM compatibility, alongside a theoretical basis for the further development and utilization of Glycyrrhizae Radix et Rhizoma.
Collapse
Affiliation(s)
- Feifei Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Bin Liu
- COFCO Nutrition and Health Research Institute, Beijing 102209, China;
| | - Tong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Qianwen Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Zhiyong Xu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Yuhao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Wen Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Tao Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
26
|
Zhang JQ, Wang R, Zhou T, Zhao Q, Zhao CC, Ma BL. Pharmacokinetic incompatibility of the Huanglian-Gancao herb pair. BMC Complement Med Ther 2020; 20:61. [PMID: 32087732 PMCID: PMC7076871 DOI: 10.1186/s12906-020-2845-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Pharmacokinetic interaction is one of the most important indices for the evaluation of the compatibility of herbal medicines. Both Gancao (Glycyrrhizae Radix et Rhizoma) and Huanglian (Coptidis Rhizoma) are commonly used traditional Chinese medicines (TCMs). In this study, the influence of Gancao on the pharmacokinetics of Huanglian was systematically studied by using berberine as a pharmacokinetic marker. Methods Extracts of the herbal pieces of Huanglian and the herb pair (Huanglian plus Gancao) were prepared with boiling water. The concentration of berberine in the samples was analyzed using liquid chromatography-mass spectrometry. The total amounts of berberine in all extract samples were compared. Comparative pharmacokinetic studies of Huanglian and the herb pair were conducted in ICR mice. In vitro berberine absorption and efflux were studied using mice gut sacs. The equilibrium solubility of berberine in the extracts was determined. The in vitro dissolution of berberine was comparatively studied using a rotating basket method. Results Gancao significantly reduced berberine exposure in the portal circulation (425.8 ng·h/mL vs. 270.4 ng·h/mL) and the liver (29,500.8 ng·h/mL vs. 15,422.4 ng·h/mL) of the mice. In addition, Gancao decreased the peak concentration (Cmax) of berberine in the portal circulation (104.3 ng·h/mL vs. 76.5 ng·h/mL) and liver (4926.1 ng·h/mL vs. 2642.8 ng·h/mL) of mice. Significant influences of Gancao on the amount of berberine extracted (32% reduction), the solubility of berberine (34.7% compared with the control group), and dissolution (88.7% vs. 66.1% at 15 min in acid buffer and 68% vs. 51.8% at 15 min in phosphate buffer) were also revealed. Comparative pharmacokinetic studies in ICR mice indicated that the formation of sediment was unfavorable in terms of berberine absorption (345.3 ng·h/mL vs. 119.8 ng·h/mL). Conclusions Gancao was able to reduce intestinal absorption and in vivo exposure of berberine in Huanglian via the formation of sediment, which caused reductions in the extracted amount, solubility, and dissolution of berberine.
Collapse
Affiliation(s)
- Ji-Quan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Wang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ting Zhou
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China
| | - Qing Zhao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China
| | - Chun-Cao Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bing-Liang Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, China.
| |
Collapse
|
27
|
Chen Z, Ye SY, Yang Y, Li ZY. A review on charred traditional Chinese herbs: carbonization to yield a haemostatic effect. PHARMACEUTICAL BIOLOGY 2019; 57:498-506. [PMID: 31401925 PMCID: PMC6713113 DOI: 10.1080/13880209.2019.1645700] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 05/23/2023]
Abstract
Context: Charcoal of Chinese drugs is a kind of special processing product in Chinese medicine and used for treatment of haemoptysis, hematemesis and haemorrhage in the clinic during ancient times. During carbonizing, significant changes occur in chemical constituents and the efficacy of haemostasis will be enhanced. But the quality control standard of 'carbonizing retains characteristics' should be followed. Objective: This review introduces the typical methods of carbonizing, which highlight current research progress on haemostatic substances of charcoal drugs so as to provide a reasonable explanation for the theory of haemostasis treated by charcoal medicine. Methods: English and Chinese literature from 2004 to 2019 was collected from databases including Web of Science, PubMed, Elsevier and CNKI (Chinese). Charcoal drug, chemical constituents, processing, haemostasis and carbon dots were used as the key words. Results: Charcoal drugs mainly play a haemostatic role and the effect can be classified into four types to stop bleeding: removing blood stasis, cooling blood, warming meridians and astringing. Changes in composition lead to changes in pharmacodynamics. Carbonizing methods and basic research on haemostasis material in charcoal drugs have also been summarized. Conclusions: This review summarizes the classification of charcoal drugs and highlights the possible material bases for the haemostatic effect of charcoal drugs in recent years, providing new insights to future research.
Collapse
Affiliation(s)
- Zhi Chen
- College of Pharmacy, Shandong University of TCM, Jinan, China
| | - Si-Yong Ye
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, China
| | - Ying Yang
- College of Pharmacy, Shandong University of TCM, Jinan, China
| | - Zhong-Yuan Li
- College of Pharmacy, Shandong University of TCM, Jinan, China
| |
Collapse
|
28
|
The Herb-Drug Pharmacokinetic Interaction of Fluoxetine and Its Metabolite Norfluoxetine with a Traditional Chinese Medicine in Rats by LC-MS/MS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2471870. [PMID: 31871472 PMCID: PMC6907063 DOI: 10.1155/2019/2471870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Background Fluoxetine (FLU) is the first-line and widely used medication for depression. The combination of Chaihu Shugan san (CSGS) and FLU is commonly used to enhance antidepressant effects and reduce side effects. Objective The primary objective of this study was to investigate the potential pharmacokinetic effect of CSGS on FLU. Materials and Methods Thirty-two healthy adult male Sprague-Dawley (SD) rats were randomly divided into four groups, the fluoxetine group and multiple dose groups A, B, and C. The rats in the different groups were orally administered with a combination of FLU and different doses of CSGS for 14 d. On the fifteenth day, serial blood samples were taken from the caudal vein before the administration and at 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10, 12, 24, 36, and 48 h after the administration. A liquid-liquid extraction method was applied to extract the analytes from serum. Then, the concentrations of FLU and its metabolite, norfluoxetine (NOF), were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The pharmacokinetic parameters were calculated by DAS 3.2.8 program and compared by statistic analysis. Results Compared with the FLU group, the FLU and NOF area under the plasma concentration-time curve (AUC) (0–∞) in multiple dose group C was significantly increased, while the NOF AUCs (0–∞) in multiple dose group A and multiple dose group B were decreased. Compared with the FLU group, the NOF clearance (CL) in multiple dose group C was decreased, while the CL in multiple dose groups A and B was increased. Discussion and Conclusion There were some differences in pharmacokinetic parameters between the FLU group and multiple dose groups, and CSGS can affect the pharmacokinetics of fluoxetine.
Collapse
|