1
|
Kim SM, Heo WY, Oh H, Joo EY, Shon YM, Hong SB, Lee SY, Seo DW. Therapeutic Drug Monitoring of 6 New-Generation Antiseizure Medications Using a Mass Spectrometry Method: Analysis of 2-Year Experience in a Large Cohort of Korean Epilepsy Patients. Arch Pathol Lab Med 2025; 149:67-74. [PMID: 38576184 DOI: 10.5858/arpa.2023-0386-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 04/06/2024]
Abstract
CONTEXT.— New-generation antiseizure medications (ASMs) are increasingly prescribed, and therapeutic drug monitoring (TDM) has been proposed to improve clinical outcome. However, clinical TDM data on new-generation ASMs are scarce. OBJECTIVE.— To develop and validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for therapeutic drug monitoring (TDM) of 6 new-generation ASMs in serum and analyze the clinical TDM data from a large cohort of Korean patients with epilepsy. DESIGN.— Stable isotope-labeled internal standards were added to protein precipitations of serum. One microliter of sample was separated on an Agilent Poroshell EC-C18 column, and lacosamide, perampanel, gabapentin, pregabalin, vigabatrin, and rufinamide were simultaneously quantified by Agilent 6460 triple-quad mass spectrometer in multiple-reaction monitoring mode. Linearity, sensitivity, precision, accuracy, specificity, carryover, extraction recovery, and matrix effect were evaluated. TDM data of 458 samples from 363 Korean epilepsy patients were analyzed. RESULTS.— The method was linear with limit of detection less than 0.05 μg/mL in all analytes. Intraassay and interassay imprecisions were less than 5% coefficient of variation. Accuracy was within ±15% bias. Extraction recovery ranged from 85.9% to 98.8%. A total of 88% (403 of 458) were on polypharmacy, with 29% (118 of 403) using concomitant enzyme inducers. Only 38% (175 of 458) of the concentrations were therapeutic, with 53% (244 of 458) being subtherapeutic. Drug concentration and concentration-to-dose ratio were highly variable among individuals for all 6 ASMs. CONCLUSIONS.— A simple and rapid LC-MS/MS method for TDM of 6 ASMs was developed and successfully applied to clinical practice. These large-scale TDM data could help establish an effective monitoring strategy for these drugs.
Collapse
Affiliation(s)
- Sang-Mi Kim
- From the Department of Laboratory Medicine and Genetics,Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Kim, Heo, Oh, Lee)
| | - Won Young Heo
- From the Department of Laboratory Medicine and Genetics,Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Kim, Heo, Oh, Lee)
| | - Hyeonju Oh
- From the Department of Laboratory Medicine and Genetics,Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Kim, Heo, Oh, Lee)
| | - Eun Yeon Joo
- From the Department Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Joo, Shon, Hong, Seo)
| | - Young-Min Shon
- From the Department Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Joo, Shon, Hong, Seo)
| | - Seung Bong Hong
- From the Department Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Joo, Shon, Hong, Seo)
| | - Soo-Youn Lee
- From the Department of Laboratory Medicine and Genetics,Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Kim, Heo, Oh, Lee)
- From the Department Clinical Pharmacology & Therapeutics,Samsung Medical Center, Seoul, Republic of Korea (Lee)
| | - Dae-Won Seo
- From the Department Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (Joo, Shon, Hong, Seo)
- From the Department Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea (Seo)
| |
Collapse
|
2
|
Kaune A, Schumacher PM, Neininger MP, Syrbe S, Hiemisch A, Bernhard MK, Merkenschlager A, Kiess W, Bertsche A, Bertsche T. A Training for Parents Prevents Clinically Relevant Handling Errors in the Use of Long-Term Antiseizure Medication. KLINISCHE PADIATRIE 2024. [PMID: 39730128 DOI: 10.1055/a-2457-6610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
BACKGROUND Medication handling errors (ME) in long-term antiseizure medication (ASM) compromise patient safety. Training programs to prevent those errors by parents are scarce. PATIENTS The intervention concept is designed for parents of children and adolescents aged 0-18 years with at least one long-term ASM. METHOD In a controlled prospective study, we assessed ME of ASM during home visits 3-6 weeks after a patient's in- or outpatient hospital visit (outpatient neuropediatric clinic and Social-Pediatric Center (SPZ)). We investigated the effectiveness of a patient specific, risk-adapted training (intervention group, IG) compared to routine care (control group, CG). For 54 ME in ASM handling, an expert panel classified the clinical risk ranging from Score-0 (no risk) to Score-6 (maximum risk) with the lowest risk actually classified as Score-3. RESULTS We analyzed data from 83 parents in the CG and 85 in the IG who administered 140 ASM per group. The intervention reduced ME per patient from 5 (median; Q25/Q75 3/9) to 4 (2/8; p=0.018). A total number of 589 ME occurred in the CG, 432 in the IG. ME in ASM handling rated Score-6 occurred once in the CG and not in the IG. A relative-risk-reduction (RRR) of ME (with p<0.001) was observed, with a RRR of 55.0% for Score-5, 27.6% for Score-4, and 23.1% for Score-3. RRR was 56.6% for ASM preparation (p<0.001) and 22.4% for oral administration (p=0.045). CONCLUSION Compared to controls, ME with high clinical risk significantly decreased in the IG after the training. Drug safety in chronically ill children with ASM was thereby improved.
Collapse
Affiliation(s)
- Almuth Kaune
- ZAMS - Zentrum für Arzneimittelsicherheit, Universität Leipzig und Universitätsklinikum Leipzig Medizinische Fakultät, Leipzig, Germany
- Institut für Pharmazie, Abteilung für Klinische Pharmazie, Universität Leipzig Medizinische Fakultät, Leipzig, Germany
- Klinik-Apotheke, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden (AöR), Dresden, Germany
| | - Pia Madeleine Schumacher
- ZAMS - Zentrum für Arzneimittelsicherheit, Universität Leipzig und Universitätsklinikum Leipzig Medizinische Fakultät, Leipzig, Germany
- Institut für Pharmazie, Abteilung für Klinische Pharmazie, Universität Leipzig Medizinische Fakultät, Leipzig, Germany
- Geschäftsbereich Arzneimittel, ABDA - Bundesvereinigung Deutscher Apothekerverbände e.V., Berlin, Germany
| | - Martina Patrizia Neininger
- ZAMS - Zentrum für Arzneimittelsicherheit, Universität Leipzig und Universitätsklinikum Leipzig Medizinische Fakultät, Leipzig, Germany
- Institut für Pharmazie, Abteilung für Klinische Pharmazie, Universität Leipzig Medizinische Fakultät, Leipzig, Germany
- Neuropädiatrie, Arbeitsgruppe Pädiatrische Pharmazie, Universitätsmedizin Greifswald Klinik und Poliklinik für Kinder und Jugendmedizin, Greifswald, Germany
| | - Steffen Syrbe
- Abteilung für Neuropädiatrie und Sozialpädiatrie, Universitätsklinikum Leipzig Klinik und Poliklinik für Kinder- und Jugendmedizin, Leipzig, Germany
- Sektion für Pädiatrische Epileptologie, Klinik für Kinderheilkunde I, Zentrum für Kinder- und Jugendmedizin, Universität Heidelberg Medizinische Fakultät Heidelberg, Heidelberg, Germany
| | - Andreas Hiemisch
- Abteilung für Neuropädiatrie und Sozialpädiatrie, Universitätsklinikum Leipzig Klinik und Poliklinik für Kinder- und Jugendmedizin, Leipzig, Germany
| | - Matthias Karl Bernhard
- Abteilung für Neuropädiatrie und Sozialpädiatrie, Universitätsklinikum Leipzig Klinik und Poliklinik für Kinder- und Jugendmedizin, Leipzig, Germany
| | - Andreas Merkenschlager
- Abteilung für Neuropädiatrie und Sozialpädiatrie, Universitätsklinikum Leipzig Klinik und Poliklinik für Kinder- und Jugendmedizin, Leipzig, Germany
| | - Wieland Kiess
- Pädiatrisches Forschungszentrum, Universitätsklinikum Leipzig Klinik und Poliklinik für Kinder- und Jugendmedizin, Leipzig, Germany
| | - Astrid Bertsche
- Abteilung für Neuropädiatrie und Sozialpädiatrie, Universitätsklinikum Leipzig Klinik und Poliklinik für Kinder- und Jugendmedizin, Leipzig, Germany
- Neuropädiatrie, Klinik für Kinder- und Jugendmedizin Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thilo Bertsche
- ZAMS - Zentrum für Arzneimittelsicherheit, Universität Leipzig und Universitätsklinikum Leipzig Medizinische Fakultät, Leipzig, Germany
- Institut für Pharmazie, Abteilung für Klinische Pharmazie, Universität Leipzig Medizinische Fakultät, Leipzig, Germany
| |
Collapse
|
3
|
Dong P, Li K, Rowe DJ, Krauss TF, Wang Y. Protocol for Therapeutic Drug Monitoring Within the Clinical Range Using Mid-infrared Spectroscopy. Anal Chem 2024; 96:19021-19028. [PMID: 39557616 PMCID: PMC11618749 DOI: 10.1021/acs.analchem.4c03864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Therapeutic drug monitoring (TDM), which involves measuring drug levels in patients' body fluids, is an important procedure in clinical practice. However, the analysis technique currently used, i.e. liquid chromatography-tandem mass spectrometry (LC-MS/MS), is laboratory-based, so does not offer the short response time that is often required by clinicians. We suggest that techniques based on Fourier transform infrared spectroscopy (FTIR) offer a promising alternative for TDM. FTIR is rapid, highly specific and can be miniaturized for near-patient applications. The challenge, however, is that FTIR for TDM is limited by the strong mid-IR absorption of endogenous serum constituents. Here, we address this issue and introduce a versatile approach for removing the background of serum lipids, proteins and small water-soluble substances. Using phenytoin, an antiepileptic drug, as an example, we show that our approach enables FTIR to precisely quantify drug molecules in human serum at clinically relevant levels (10 μg/mL), providing an efficient analysis method for TDM. Beyond mid-IR spectroscopy, our study is applicable to other drug sensing techniques that suffer from the large background of serum samples.
Collapse
Affiliation(s)
- Pin Dong
- School
of Physics Engineering and Technology, University
of York, Heslington, York YO10 5DD, U.K.
| | - Kezheng Li
- School
of Physics Engineering and Technology, University
of York, Heslington, York YO10 5DD, U.K.
| | - David J. Rowe
- Optoelectronics
Research Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Thomas F. Krauss
- School
of Physics Engineering and Technology, University
of York, Heslington, York YO10 5DD, U.K.
| | - Yue Wang
- School
of Physics Engineering and Technology, University
of York, Heslington, York YO10 5DD, U.K.
| |
Collapse
|
4
|
Pigliasco F, Cafaro A, Barco S, Biondi M, Stella M, Mattioli F, Riva A, de Grazia U, Molteni L, Micalizzi E, Villani F, Striano P, Bandettini R, Cangemi G. A VAMS-based LC-MS/MS method for precise cenobamate quantification in epilepsy (patients). Epilepsia Open 2024; 9:2144-2153. [PMID: 39297399 PMCID: PMC11633685 DOI: 10.1002/epi4.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE Cenobamate (CNB), a recently approved antiseizure medication by the European Medicines Agency (EMA), serves as an adjunctive therapy for focal-onset seizures in adult patients unresponsive to at least two other treatments. Administered in polytherapy, CNB can potentially interact with co-administered drugs in epilepsy patients, necessitating dose adjustments and the need for effective therapeutic drug monitoring (TDM). METHODS In this study, we introduce a novel LC-MS/MS method for precise CNB quantification using Volumetric Absorptive Microsampling (VAMS), following validation according to ICH guidelines M10. VAMS samples are efficiently extracted with 200 μL of methanol, with chromatographic separation achieved using an Acquity UPLC HSS PFP column. The method's efficacy was confirmed through its application to real samples from adult CNB-treated patients. RESULTS Our results demonstrate that the method exhibits linearity within the range of 0.05-30 mg/L, with intra- and inter-run precision ranging from 1% to 8% and accuracy from 1% to 10% based on 30 μL of sample. Furthermore, CNB stability in VAMS is confirmed for up to 15 days at 25°C and -20°C. Importantly, no significant difference was observed between CNB concentrations in VAMS samples and those in plasma obtained from venous blood. SIGNIFICANCE This VAMS-based LC-MS/MS method presents a robust alternative for TDM in CNB-treated patients. Future investigations should explore CNB concentrations in capillary blood and assess their correlation with plasma levels to further enhance its clinical utility. PLAIN LANGUAGE SUMMARY Cenobamate is an antiepileptic drug and used for treatment of focal-onset seizures in adult patients (≥18 age). TDM can prevent drug interactions and minimize drug toxicity. The aim of this work is to evaluate volumetric absorptive microsampling (VAMS) from capillary blood as an alternative strategy for TDM in patients treated with the newly antiepileptic drug. Our method is suitable for TDM, and this study suggests that VAMS allows monitoring of cenobamate concentration and can offer valuable support for personalized therapy in refractory epilepsy.
Collapse
Affiliation(s)
- Federica Pigliasco
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| | - Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| | - Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| | - Margherita Biondi
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| | - Manuela Stella
- IRCCS Istituto Giannina GasliniGaslini Trial CentreGenovaItaly
- Pharmacology and Toxicology Unit, Department of Internal MedicineUniversity of GenoaGenoaItaly
| | - Francesca Mattioli
- Pharmacology and Toxicology Unit, Department of Internal MedicineUniversity of GenoaGenoaItaly
- Clinical Pharmacology UnitEnte Ospedaliero Ospedali GallieraGenoaItaly
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenoaItaly
| | - Ugo de Grazia
- SSD Laboratory Medicine – SMEL122Fondazione IRCCS Istituto Neurologico Carlo BestaMilanoItaly
- Present address:
Pharmacotoxicology UnitCentro Diagnostico Italiano C.D.I.MilanItaly
| | - Linda Molteni
- SSD Laboratory Medicine – SMEL122Fondazione IRCCS Istituto Neurologico Carlo BestaMilanoItaly
| | - Elisa Micalizzi
- Clinical Neurophysiology Unit and Epilepsy CenterIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Flavio Villani
- Clinical Neurophysiology Unit and Epilepsy CenterIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenoaItaly
- Paediatric Neurology and Muscular Disease UnitIRCCS Istituto Giannina GasliniGenoaItaly
| | - Roberto Bandettini
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of AnalysisIRCCS Istituto Giannina GasliniGenoaItaly
| |
Collapse
|
5
|
Schoretsanitis G, Strømmen M, Krabseth HM, Spigset O, Helland A. Effects of sleeve gastrectomy and Roux-en-Y gastric bypass on pharmacokinetics of lamotrigine and valproate: A cohort study. Epilepsy Res 2024; 208:107469. [PMID: 39471772 DOI: 10.1016/j.eplepsyres.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Bariatric surgeries may affect the pharmacokinetics of medications through alterations of the gastrointestinal physiology. Pharmacokinetic changes of first-line antiseizure medications such as lamotrigine and valproate following bariatric treatment have received little research attention so far. METHODS In our prospective case study we included lamotrigine- or valproate-treated patients undergoing bariatric surgery at hospitals in Central Norway. Lamotrigine and valproate concentrations were assessed using serial blood samples over a dose interval, before and one, six and twelve months following surgery. Primary outcomes included changes in area under the time-concentration curve (AUC) with secondary outcomes comprising full pharmacokinetic profiling. RESULTS Six lamotrigine-treated obese patients undergoing Roux-en-Y gastric bypass (RYGB) (n = 3) and sleeve gastrectomy (SG) (n = 3), as well as two valproate-treated patients (one undergoing RYGB and one SG) were included. Largest changes for dose-adjusted AUC values after surgery were seen in RYGB-treated patients on lamotrigine (average increases of 38 % one month and 32 % 12 months postoperatively). In the patients on valproate, AUC values were decreased by 22 % after 6 months and by 30 % after 12 months. The interindividual variation was high. Formal statistical testing was not done due to few cases. CONCLUSION Postoperative pharmacokinetic changes for lamotrigine and valproate were modest, but for lamotrigine changes may be larger in patients undergoing RYGB than in those undergoing SG. Given the substantial interindividual variation, therapeutic drug monitoring should be used to capture pharmacokinetic changes and guide dose adjustments after bariatric surgery.
Collapse
Affiliation(s)
- Georgios Schoretsanitis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, NY, USA; Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; Department of Psychiatry at the Donald and Barbara Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA.
| | - Magnus Strømmen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, PO Box 8905, Trondheim N-7491, Norway; Centre for Obesity Research, Clinic of Surgery, St. Olav University Hospital, PO Box 3250 Torgarden, Trondheim N-7006, Norway.
| | - Hege-Merete Krabseth
- Department of Clinical Pharmacology, Clinic of Laboratory Medicine, St. Olav University Hospital, PO Box 3250 Torgarden, TrondheimN-7006, Norway.
| | - Olav Spigset
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, PO Box 8905, Trondheim N-7491, Norway; Department of Clinical Pharmacology, Clinic of Laboratory Medicine, St. Olav University Hospital, PO Box 3250 Torgarden, TrondheimN-7006, Norway.
| | - Arne Helland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, PO Box 8905, Trondheim N-7491, Norway; Department of Clinical Pharmacology, Clinic of Laboratory Medicine, St. Olav University Hospital, PO Box 3250 Torgarden, TrondheimN-7006, Norway.
| |
Collapse
|
6
|
Zhang L, Wu R, Li X, Feng W, Zhao Z, Mei S. Combined carbapenem resulted in a 4.48-fold increase in valproic acid clearance: a population pharmacokinetic model in Chinese children and adults with epilepsy or after neurosurgery. Front Pharmacol 2024; 15:1423411. [PMID: 39584136 PMCID: PMC11581887 DOI: 10.3389/fphar.2024.1423411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Our study aims to explore the pharmacokinetics of valproic acid (VPA) in Chinese patients with epilepsy or after neurosurgery and establish a robust population pharmacokinetics (PPK) model. The PPK model was developed using nonlinear mixed-effects modeling, incorporating a total of 615 VPA plasma concentration data points from 443 Chinese epilepsy or after neurosurgery patients. A one-compartment model with an additive residual model was established. Forward addition and backward elimination strategies were used to assess the impact of covariates on the model parameters. Goodness-of-fit plots, bootstrap, visual predict check and normalized prediction distribution errors were used for model validation. In the final model, the apparent clearance (CL) was estimated using the following formula: CL L / h = 0.430 × BW / 60 0.787 × Cr / 50.3 - 0.253 × ALB / 39 - 0.873 × e gender × e CBP × e IND 2 × e η CL (gender = 0.121 when is female, otherwise = 0; CBP = 1.50 when combined with carbapenems, otherwise = 0; IND2 = 0.15 when combined with oxcarbazepine, carbamazepine, phenobarbital, or phenytoin, otherwise = 0). The volume of distribution (Vd) was estimated using the formula: Vd L = 8.66 × BW / 60 0.751 . Comedication with carbapenems could increase VPA clearance by 4.48 times, and comedication with oxcarbazepine could enhance VPA clearance by 116%. Besides, creatinine and albumin could affect VPA clearance. Goodness-of-fit plots, bootstrap, visual predict check and normalized prediction distribution showed acceptable data fit, stability, and predictability of the model. In our study, a PPK model was utilized to attain a more comprehensive insight into these variables, improving the accuracy and individualization of VPA therapy in Chinese patients with epilepsy or after neurosurgery.
Collapse
Affiliation(s)
- Luofei Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Ruoyun Wu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Xingmeng Li
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Weixing Feng
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Rao S, Liu M, Huang Y, Yang H, Liang J, Lu J, Niu Y, Wang B. Anchoring temporal convolutional networks for epileptic seizure prediction. J Neural Eng 2024; 21:066008. [PMID: 39467384 DOI: 10.1088/1741-2552/ad8bf3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Objective. Accurate and timely prediction of epileptic seizures is crucial for empowering patients to mitigate their impact or prevent them altogether. Current studies predominantly focus on short-term seizure predictions, which causes the prediction time to be shorter than the onset of antiepileptic, thus failing to prevent seizures. However, longer epilepsy prediction faces the problem that as the preictal period lengthens, it increasingly resembles the interictal period, complicating differentiation.Approach. To address these issues, we employ the sample entropy method for feature extraction from electroencephalography (EEG) signals. Subsequently, we introduce the anchoring temporal convolutional networks (ATCN) model for longer-term, patient-specific epilepsy prediction. ATCN utilizes dilated causal convolutional networks to learn time-dependent features from previous data, capturing temporal causal correlations within and between samples. Additionally, the model also incorporates anchoring data to enhance the performance of epilepsy prediction further. Finally, we proposed a multilayer sliding window prediction algorithm for seizure alarms.Main results. Evaluation on the Freiburg intracranial EEG dataset shows our approach achieves 100% sensitivity, a false prediction rate (FPR) of 0.09 per hour, and an average prediction time (APT) of 98.92 min. Using the CHB-MIT scalp EEG dataset, we achieve 97.44% sensitivity, a FPR of 0.12 per hour, and an APT of 93.54 min.Significance. These results demonstrate that our approach is adequate for seizure prediction over a more extended prediction range on intracranial and scalp EEG datasets. The APT of our approach exceeds the typical onset time of antiepileptic. This approach is particularly beneficial for patients who need to take medication at regular intervals, as they may only need to take their medication when our method issues an alarm. This capability has the potential to prevent seizures, which will greatly improve patients' quality of life.
Collapse
Affiliation(s)
- Songhui Rao
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Miaomiao Liu
- School of Psychology, Shenzhen University, Shenzhen 518061, People's Republic of China
| | - Yin Huang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Hongye Yang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Jiarui Liang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Jiayu Lu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yan Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| |
Collapse
|
8
|
Watermeyer F, Gaebler AJ, Neuner I, Haen E, Hiemke C, Schoretsanitis G, Paulzen M. Discovering interactions in polypharmacy: Impact of metamizole on the metabolism of quetiapine. Br J Clin Pharmacol 2024; 90:2793-2801. [PMID: 38970468 DOI: 10.1111/bcp.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024] Open
Abstract
AIMS Metamizole is quite an old drug with analgesic, antipyretic and spasmolytic properties. Recent findings have shown that it may induce several cytochrome P450 (CYP) enzymes, especially CYP3A4 and CYP2B6. The clinical relevance of these properties is uncertain. We aimed to unravel potential pharmacokinetic interactions between metamizole and the CYP3A4 substrate quetiapine. METHODS Plasma concentrations of quetiapine from a large therapeutic drug monitoring database were analysed. Two groups of 33 patients, either receiving quetiapine as a monotherapy (without CYP modulating comedications) or with concomitantly applied metamizole, were compared addressing a potential impact of metamizole on the metabolism of quetiapine being reflected in differences of plasma concentrations of quetiapine and dose-adjusted plasma concentrations. RESULTS Patients comedicated with metamizole showed >50% lower plasma concentrations of quetiapine (median 45.2 ng/mL, Q1 = 15.5; Q3 = 90.5 vs. 92.0 ng/mL, Q1 = 52.3; Q3 = 203.8, P = .003). The dose-adjusted plasma concentrations were 69% lower in the comedication group (P = .001). Subgroup analyses did not suggest a dose dependency of the metamizole effect or an influence of quetiapine formulation (immediate vs. extended release). Finally, the comedication group exhibited a significantly higher proportion of patients whose quetiapine concentrations were below the therapeutic reference range (78.8% in the metamizole group vs. 54.4% in the control group, P = .037) indicating therapeutically insufficient drug concentrations. CONCLUSION The combination of metamizole and quetiapine leads to significantly lower drug concentrations of quetiapine, probably via an induction of CYP3A4. Clinicians must consider the risk of adverse drug reactions, especially treatment failure under quetiapine when adding metamizole.
Collapse
Affiliation(s)
- Fabian Watermeyer
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
| | - Ekkehard Haen
- Department of Psychiatry and Psychotherapy, Clinical Pharmacology, University of Regensburg, Regensburg, Germany
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
- Clinical Pharmacology Institute AGATE gGmbH, Pentling, Germany
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, Zürich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York, USA
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital RWTH Aachen, Aachen, Germany
- JARA-Translational Brain Medicine, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Alexianer Hospital Aachen, Aachen, Germany
| |
Collapse
|
9
|
Martinho J, Simão AY, Barroso M, Gallardo E, Rosado T. Determination of Antiepileptics in Biological Samples-A Review. Molecules 2024; 29:4679. [PMID: 39407608 PMCID: PMC11477610 DOI: 10.3390/molecules29194679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Epilepsy remains a disease that affects many people around the world. With the development of new drugs to treat this condition, the importance of therapeutic drug monitoring continues to rise and remains a challenge for the medical community. This review article explores recent advances in the detection of antiepileptic drugs across various sample types commonly used for drug monitoring, with a focus on their applications and impact. Some of these new methods have proven to be simpler, greener, and faster, making them easier to apply in the context of therapeutic drug monitoring. Additionally, besides the classic use of blood and its derivatives, there has been significant research into the application of alternative matrices due to their ease of sample collection and capacity to reflect drug behavior in blood. These advances have contributed to increasing the efficacy of therapeutic drug monitoring while enhancing its accessibility to the population.
Collapse
Affiliation(s)
- João Martinho
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
| | - Ana Y. Simão
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
| | - Mário Barroso
- AlphaBiolabs, 14 Webster Court, Carina Park, Warrington WA5 8WD, UK;
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses—Delegação do Sul, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)-Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)-Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| |
Collapse
|
10
|
Heger K, Burns ML, Nikanorova M, Johannessen SI, Johannessen Landmark C. Pharmacokinetic Variability of Rufinamide and Stiripentol in Children With Refractory Epilepsy: A Retrospective Study of Therapeutic Drug Monitoring From the National Epilepsy Centers in Denmark and Norway. Ther Drug Monit 2024; 46:664-671. [PMID: 38758628 DOI: 10.1097/ftd.0000000000001219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Rufinamide and stiripentol, orphan drugs used in Lennox-Gastaut and Dravet syndromes, respectively, are antiseizure medications (ASMs), often administered to children; however, pharmacokinetic studies are lacking. The authors compared the pharmacokinetic variability of these drugs with respect to the dose, serum concentrations, comedication, age, and duration of treatment. METHODS Children and adolescents (<18 years) whose serum concentrations were measured were retrospectively identified from the therapeutic drug monitoring (TDM) databases at 2 national epilepsy centers in Norway and Denmark (2012-2021). RESULTS Data from 165 patients (56% boys/44% girls) treated with rufinamide and 52 patients (50% boys/50% girls) treated with stiripentol were included. For rufinamide, the median age was 10 (range 2-17) years, dose 23 (3-73) mg/d, and serum concentration 34 (3-227) µmol/L [8.1 mg/L (0.71-54.0 mg/L)]. For stiripentol, the median age was 8.5 (range 1-17) years, dose 37 (18-76) mg/d, and serum concentration 33 (4-113) µmol/L [7.7 mg/L (0.93-26.3 mg/L)]. The concomitant use of 1-9 other ASMs during the data collection was noted. Pharmacokinetic variability, calculated as the concentration/(dose/kg) ratio, ranged from 0.26 to 11.31 (µmol/L)/(mg/kg) for rufinamide and 0.17-1.52 (µmol/L)/(mg/kg) for stiripentol. The intraindividual coefficients of variation ranged widely, from 5% to 110% for rufinamide and 11%-117% for stiripentol. The treatment period was at least 5 years in 50% of patients. No statistically significant effects of age, sex, or ASM comedication were observed, possibly due to the small sample size and heterogeneous groups with variable seizure situations, comorbidities, and changes in comedication and physiology. CONCLUSIONS This study demonstrates considerable pharmacokinetic variability in and between patients for both drugs and similar use in terms of age, burden of comedication and retention rates. TDM may be useful in the clinical setting to monitor and optimize treatment in this vulnerable patient group.
Collapse
Affiliation(s)
- Katrine Heger
- Department of Pharmacy, Oslo Metropolitan University, Oslo, Norway
| | | | - Marina Nikanorova
- The National Center for Epilepsy, Member of the ERN EpiCARE, Oslo University Hospital, Oslo, Norway; and
| | - Svein I Johannessen
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
- The Danish Epilepsy Center Filadelfia, Dianalund, Denmark
| | - Cecilie Johannessen Landmark
- Department of Pharmacy, Oslo Metropolitan University, Oslo, Norway
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
- The Danish Epilepsy Center Filadelfia, Dianalund, Denmark
| |
Collapse
|
11
|
Gjerulfsen CE, Nikanorova M, Olofsson K, Johannessen Landmark C, Rubboli G, Møller RS. Fenfluramine treatment in pediatric patients with Dravet syndrome reduces seizure burden and overall healthcare costs: A retrospective and observational real-world study. Epilepsia Open 2024; 9:1891-1900. [PMID: 39140199 PMCID: PMC11450588 DOI: 10.1002/epi4.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVES Dravet syndrome is a developmental and epileptic encephalopathy characterized by early onset epilepsy with multiple seizure types often intractable to treatment. Randomized clinical trials have demonstrated how treatment with fenfluramine significantly reduces seizure frequency in patients with Dravet syndrome. The study aims to (1) describe the efficacy and tolerability of fenfluramine in a Danish cohort of patients with Dravet syndrome; and (2) evaluate whether treatment with fenfluramine reduces epilepsy-related hospital contacts administrated by pediatricians or epilepsy-trained nurses. METHODS A retrospective registry-based cohort study at the Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark, enrolled 30 pediatric patients with Dravet syndrome treated with fenfluramine between 2017 and 2023. RESULTS Thirty patients with Dravet syndrome (aged 3-21 years, 12 females) with a verified pathogenic SCN1A variant were included. They were treated with fenfluramine at a mean duration of 29 months with a mean maintenance dose of 0.5 mg/kg/day. The number of patient-years on treatment was 75 years. At last follow-up, 6 patients had discontinued treatment due to lack of efficacy or adverse effects. In the remaining 24 patients, generalized tonic-clonic seizures were reduced by ≥30% in 83%, by ≥50% in 67%, and by 100% in 25%. Additionally, 71% of the patients were reduced in concomitant anti-seizure medication, and 75% experienced a reduction (mean reduction at 52%, range 11%-94%) in epilepsy-related hospital contacts from baseline to the end of the treatment period. SIGNIFICANCE Treatment with fenfluramine effectively reduced seizure frequency and concomitant antiseizure medication in patients with Dravet syndrome. Furthermore, a decrease in epilepsy-related contacts by 80% was observed over 6 years of treatment, which may indicate cost-effective benefits. PLAIN LANGUAGE SUMMARY Patients with Dravet syndrome suffer from severe epileptic seizures that are difficult to treat with medication. Earlier, treatment with fenfluramine (an anti-seizure medication) has been documented to decrease the total number of seizures in patients with Dravet syndrome. This publication summarizes the experiences with fenfluramine in children with Dravet syndrome at the Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark. Our publication also illustrates that treatment with fenfluramine may reduce the patients' number of yearly contacts with doctors and nurses specialized in epilepsy treatment, which may indicate cost-effectiveness.
Collapse
Affiliation(s)
- Cathrine E. Gjerulfsen
- Department of Epilepsy Genetics and Personalized MedicineDanish Epilepsy Centre, Filadelfia (Member of ERN EpiCARE)DianalundDenmark
- Department of Regional Health Research, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| | | | - Kern Olofsson
- Department of Child NeurologyDanish Epilepsy CentreDianalundDenmark
| | - Cecilie Johannessen Landmark
- Department of PharmacyOslo Metropolitan University (Member of the ERN EpiCare)OsloNorway
- The National Center for EpilepsyOslo University HospitalOsloNorway
- Department of PharmacologyOslo University HospitalOsloNorway
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized MedicineDanish Epilepsy Centre, Filadelfia (Member of ERN EpiCARE)DianalundDenmark
- Institute of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized MedicineDanish Epilepsy Centre, Filadelfia (Member of ERN EpiCARE)DianalundDenmark
- Department of Regional Health Research, Faculty of Health SciencesUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
12
|
Mensah JA, Johnson K, Freeman T, Reilly CA, Rower JE, Metcalf CS, Wilcox KS. Utilizing an acute hyperthermia-induced seizure test and pharmacokinetic studies to establish optimal dosing regimens in a mouse model of Dravet syndrome. Epilepsia 2024; 65:3100-3114. [PMID: 39212337 PMCID: PMC11496002 DOI: 10.1111/epi.18104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The current standard of care for Dravet syndrome (DS) includes polytherapy after inadequate seizure control with one or more monotherapy approaches. Treatment guidelines are often based on expert opinions, and finding an optimal balance between seizure control and adverse drug effects can be challenging. This study utilizes the efficacy and pharmacokinetic assessment of a second-line treatment regimen that combines clobazam and sodium valproate with an add-on drug as a proof-of-principle approach to establish an effective therapeutic regimen in a DS mouse model. METHODS We evaluated the efficacy of add-on therapies stiripentol, cannabidiol, lorcaserin, or fenfluramine added to clobazam and sodium valproate against hyperthermia-induced seizures in Scn1aA1783V/WT mice. Clobazam, N-desmethyl clobazam (an active metabolite of clobazam), sodium valproate, stiripentol, and cannabidiol concentrations were quantified in plasma and brain using liquid chromatography-tandem mass spectrometry for the combinations deemed effective against hyperthermia-induced seizures. The concentration data were used to calculate pharmacokinetic parameters via noncompartmental analysis in Phoenix WinNonLin. RESULTS Higher doses of stiripentol or cannabidiol, in combination with clobazam and sodium valproate, were effective against hyperthermia-induced seizures in Scn1aA1783V/WT mice. In Scn1aWT/WT mice, brain clobazam and N-desmethyl clobazam concentrations were higher in the triple-drug combinations than in the clobazam monotherapy. Stiripentol and cannabidiol brain concentrations were greater in the triple-drug therapy than when given alone. SIGNIFICANCE A polypharmacy strategy may be a practical preclinical approach to identifying efficacious compounds for DS. The drug-drug interactions between compounds used in this study may explain the potentiated efficacy of some polytherapies.
Collapse
Affiliation(s)
| | | | | | - Christopher A. Reilly
- Center for Human Toxicology
- Department of Pharmacology & Toxicology, University of Utah
| | - Joseph E. Rower
- Center for Human Toxicology
- Department of Pharmacology & Toxicology, University of Utah
| | - Cameron S. Metcalf
- Contract Site of the NINDS Epilepsy Therapy Screening Program
- Department of Pharmacology & Toxicology, University of Utah
| | - Karen S. Wilcox
- Contract Site of the NINDS Epilepsy Therapy Screening Program
- Department of Pharmacology & Toxicology, University of Utah
| |
Collapse
|
13
|
Ma H, Huang S, Li F, Pang Z, Luo J, Sun D, Liu J, Chen Z, Qu J, Qu Q. Development and validation of an automatic machine learning model to predict abnormal increase of transaminase in valproic acid-treated epilepsy. Arch Toxicol 2024; 98:3049-3061. [PMID: 38879852 DOI: 10.1007/s00204-024-03803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/05/2024] [Indexed: 08/15/2024]
Abstract
Valproic acid (VPA) is a primary medication for epilepsy, yet its hepatotoxicity consistently raises concerns among individuals. This study aims to establish an automated machine learning (autoML) model for forecasting the risk of abnormal increase of transaminase levels while undergoing VPA therapy for 1995 epilepsy patients. The study employed the two-tailed T test, Chi-square test, and binary logistic regression analysis, selecting six clinical parameters, including age, stature, leukocyte count, Total Bilirubin, oral dosage of VPA, and VPA concentration. These variables were used to build a risk prediction model using "H2O" autoML platform, achieving the best performance (AUC training = 0.855, AUC test = 0.789) in the training and testing data set. The model also exhibited robust accuracy (AUC valid = 0.742) in an external validation set, underscoring its credibility in anticipating VPA-induced transaminase abnormalities. The significance of the six variables was elucidated through importance ranking, partial dependence, and the TreeSHAP algorithm. This novel model offers enhanced versatility and explicability, rendering it suitable for clinicians seeking to refine parameter adjustments and address imbalanced data sets, thereby bolstering classification precision. To summarize, the personalized prediction model for VPA-treated epilepsy, established with an autoML model, displayed commendable predictive capability, furnishing clinicians with valuable insights for fostering pharmacovigilance.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Sihui Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410125, China
| | - Fengxin Li
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
- College of Biology, Hunan University, Changsha, 410082, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Danfeng Sun
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410125, China
| | - Junsong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410125, China
| | - Zhuoming Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410125, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410013, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
14
|
Liu X, Zhao Y, Liang X, Ding Y, Hu J, Deng N, Zhao Y, Huang P, Xie W. In Vivo Evaluation of Self-assembled nano-Saikosaponin-a for Epilepsy Treatment. Mol Biotechnol 2024; 66:2230-2240. [PMID: 37608078 DOI: 10.1007/s12033-023-00851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Saikosaponin-a (SSa) exhibits antiepileptic effects. However, its poor water solubility and inability to pass through the blood-brain barrier greatly limit its clinical development and application. In this study, SSa-loaded Methoxy poly (ethylene glycol)-poly(ε-caprolactone) (MePEG-SSa-PCL) NPs were successfully prepared and characterized. Our objective was to further investigate the effect of this composite on acute seizure in mice. First, we confirmed the particle size and surface potential of the composite (51.00 ± 0.25 nm and - 33.77 ± 2.04 mV, respectively). Further, we compared the effects of various MePEG-SSa-PCL doses (low, medium, and high) with those of free SSa, valproic acid (VPA - positive control), and saline only (model group) on acute seizure using three different acute epilepsy mouse models. We observed that compared with the model group, the three MePEG-SSa-PCL treatments showed significantly lowered seizure frequency in mice belonging to the maximum electroconvulsive model group. In the pentylenetetrazol and kainic acid (KA) acute epilepsy models, MePEG-SSa-PCL increased both clonic and convulsion latency periods and shortened convulsion duration more effectively than equivalent SSa-only doses. Furthermore, hematoxylin-eosin and Nissl staining revealed considerably less neuronal damage in the hippocampal CA3 area of KA mice in the SSa, VPA, and three MePEG-SSa-PCL groups relative to mice in the model group. Hippocampal gamma-aminobutyric acid-A (GABA-A) receptor and cleaved caspase-3 expression levels in KA mice were significantly higher and lower, respectively, in the three MePEG-SSa-PCL treatment groups than in the model group. Thus, MePEG-SSa-PCL exhibited a more potent antiepileptic effect than SSa in acute mouse epilepsy models and could alleviate neuronal damage in the hippocampus following epileptic seizures, possibly via GABA-A receptor expression upregulation.
Collapse
Affiliation(s)
- Xueqi Liu
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yunyan Zhao
- Department of Critical Care Medicine, The Afflliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Xiaoshan Liang
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yuewen Ding
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jiao Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ning Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yiting Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ping Huang
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wei Xie
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Ma YH, Dong L, Wu JX, Hu SY, Meng XF, Zhao YL, Liu K, Yan DN, Sun SZ. Therapeutic drug monitoring of free perampanel concentrations in practice: A practical analytical technique based on centrifugal ultrafiltration sample separation. Heliyon 2024; 10:e35734. [PMID: 39170259 PMCID: PMC11336813 DOI: 10.1016/j.heliyon.2024.e35734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Objectives The centrifugal ultrafiltration-high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was established to determine the free perampanel (PER) concentration in children with epilepsy. Methods Free PER concentration was obtained using centrifugal ultrafiltration devices. The internal standard was PER-D5. The method was investigated for selectivity, carryover, lower limit of quantification, calibration curve, accuracy, precision, matrix effects, recovery, and stability. The Spearman's correlation coefficient was used to evaluate the correlation between the free and total PER concentrations. A nonparametric test was used to estimate the effects of PER along with other antiepileptic drugs on the total and free PER concentrations. Results The free PER concentration was positively correlated with the total PER concentration in the 57 plasma samples (r = 0.793 > 0, P < 0.001). Additionally, the free PER concentrations were significantly (P < 0.05) increased in valproic acid (VPA) co-therapy (9.87 ± 5.83) compared with non-VPA co-therapy (5.03 ± 4.57). Conclusions The proposed method is efficient, sensitive, and suitable for detecting free PER concentrations in children with epilepsy. Simultaneously, the free PER concentration response to clinical outcomes in children with epilepsy was more clinically significant, particularly when combined with VPA.
Collapse
Affiliation(s)
- Ying-Hua Ma
- Department of Pharmacy, Children's Hospital of Hebei Province, Shijiazhuang, 050031, PR China
| | - Lei Dong
- Department of Pharmacy, Children's Hospital of Hebei Province, Shijiazhuang, 050031, PR China
- College of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Jia-Xuan Wu
- College of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Shi-Yuan Hu
- College of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Xiang-Fei Meng
- College of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Yi-Le Zhao
- Department of Pharmacy, Children's Hospital of Hebei Province, Shijiazhuang, 050031, PR China
| | - Kang Liu
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, 050031, PR China
- The Key Laboratory of Pediatric Epilepsy and Neuropathy of Hebei Province, Shijiazhuang, PR China
| | - Dan-Ni Yan
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, 050031, PR China
- The Key Laboratory of Pediatric Epilepsy and Neuropathy of Hebei Province, Shijiazhuang, PR China
| | - Su-Zhen Sun
- Department of Neurology, Children's Hospital of Hebei Province, Shijiazhuang, 050031, PR China
- The Key Laboratory of Pediatric Epilepsy and Neuropathy of Hebei Province, Shijiazhuang, PR China
| |
Collapse
|
16
|
Kirkeby K, Cockerell I, Christensen J, Hoei-Hansen CE, Holst L, Fredriksen MG, Lund C, Johannessen Landmark C. Pharmacokinetic variability of everolimus and impact of concomitant antiseizure medications in patients with tuberous sclerosis complex: A retrospective study of therapeutic drug monitoring data in Denmark and Norway. Medicine (Baltimore) 2024; 103:e39244. [PMID: 39121325 PMCID: PMC11315474 DOI: 10.1097/md.0000000000039244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/19/2024] [Indexed: 08/11/2024] Open
Abstract
The mTOR-inhibitor everolimus is a precision drug with antiepileptogenic properties approved for treatment of epilepsy in persons with tuberous sclerosis complex (TSC) in combination with other antiseizure medications (ASMs). However, the pharmacokinetic variability of everolimus is scarcely described, and the available information on pharmacokinetic interactions is scarce. The purpose of this study was to investigate pharmacokinetic variability of everolimus in patients with TSC, and the impact of age, sex and comedication. In this retrospective observational study we used anonymized data from medical records of patients with TSC using everolimus in Norway and Denmark, 2012 to 2020. Long-term therapeutic drug monitoring (TDM) identified inter-patient and intra-patient variability. The study included 59 patients, (36 females (61%)), median age 22 (range 3-59 years). Polytherapy was used in 50 patients (85%). The most frequently used ASMs were lamotrigine (n = 21), valproate (n = 17), and levetiracetam (n = 13). Blood concentrations of everolimus were measured in all patients. Pharmacokinetic variability of everolimus between patients was extensive, as demonstrated by a 24-fold variability from minimum-maximum concentration/dose (C/D)-ratios. The coefficient of variation (CV) for intra-patient (n = 59) and inter-patient variability (n = 47, ≥3 measurements) was 40% and 43%, respectively. The C/D-ratio of everolimus was 50% lower in 13 patients (22%) using enzyme-inducing ASMs compared to the 30 patients who did not (0.7 vs 1.4 ng/mL mg, P < .05). Age and sex were not significantly associated with changes in C/D-ratios of everolimus. Long-term TDM identified extensive variability in concentrations over time for everolimus both within and between patients, where comedication with enzyme-inducing ASMs was an important contributing factor. The findings suggest a need for TDM in patients with TSC treated with everolimus.
Collapse
Affiliation(s)
- Kjersti Kirkeby
- Department of Pharmacy, Faculty of Health Sciences, Institute of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Ine Cockerell
- Department of Rare Disorders and Disabilities, National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital, Oslo, Norway
| | - Jakob Christensen
- Department of Neurology, Aarhus University Hospital, Affiliated Member of the European Reference Network EpiCARE, Aarhus, Denmark
| | - Christina Engel Hoei-Hansen
- Department of Pediatrics, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Holst
- Department of Neurology, Aarhus University Hospital, Affiliated Member of the European Reference Network EpiCARE, Aarhus, Denmark
| | - Mikkel G. Fredriksen
- Department of Pediatrics, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Caroline Lund
- Department of Rare Disorders and Disabilities, National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital, Oslo, Norway
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Cecilie Johannessen Landmark
- Department of Pharmacy, Faculty of Health Sciences, Institute of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
- The National Centre for Epilepsy, Member of the ERN EpiCare, Oslo University Hospital, Oslo, Norway
- Department of Pharmacology, Section for Clinical Pharmacology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Milosavljević F, Manojlović M, Matković L, Molden E, Ingelman-Sundberg M, Leucht S, Jukić MM. Pharmacogenetic Variants and Plasma Concentrations of Antiseizure Drugs: A Systematic Review and Meta-Analysis. JAMA Netw Open 2024; 7:e2425593. [PMID: 39115847 PMCID: PMC11310823 DOI: 10.1001/jamanetworkopen.2024.25593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 08/11/2024] Open
Abstract
Importance Precise estimation of a patient's drug metabolism capacity is important for antiseizure dose personalization. Objective To quantify the differences in plasma concentrations for antiseizure drugs associated with variants of genes encoding drug metabolizing enzymes. Data Sources PubMed, Clinicaltrialsregister.eu, ClinicalTrials.gov, International Clinical Trials Registry Platform, and CENTRAL databases were screened for studies from January 1, 1990, to September 30, 2023, without language restrictions. Study Selection Two reviewers performed independent study screening and assessed the following inclusion criteria: appropriate genotyping was performed, genotype-based categorization into subgroups was possible, and each subgroup contained at least 3 participants. Data Extraction and Synthesis The Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed for data extraction and subsequent quality, validity, and risk-of-bias assessments. The results from the included studies were pooled with random-effect meta-analysis. Main Outcomes and Measures Plasma concentrations of antiseizure drugs were quantified with the dose-normalized area under the concentration-time curve, the dose-normalized steady state concentration, or the concentrations after a single dose at standardized dose and sampling time. The ratio of the means was calculated by dividing the mean drug plasma concentrations of carriers and noncarriers of the pharmacogenetic variant. Results Data from 98 studies involving 12 543 adult participants treated with phenytoin, valproate, lamotrigine, or carbamazepine were analyzed. Studies were mainly conducted within East Asian (69 studies) or White or European (15 studies) cohorts. Significant increases of plasma concentrations compared with the reference subgroup were observed for phenytoin, by 46% (95% CI, 33%-61%) in CYP2C9 intermediate metabolizers, 20% (95% CI, 17%-30%) in CYP2C19 intermediate metabolizers, and 39% (95% CI, 24%-56%) in CYP2C19 poor metabolizers; for valproate, by 12% (95% CI, 4%-20%) in CYP2C9 intermediate metabolizers, 12% (95% CI, 2%-24%) in CYP2C19 intermediate metabolizers, and 20% (95% CI, 2%-41%) in CYP2C19 poor metabolizers; and for carbamazepine, by 12% (95% CI, 3%-22%) in CYP3A5 poor metabolizers. Conclusions and Relevance This systematic review and meta-analysis found that CYP2C9 and CYP2C19 genotypes encoding low enzymatic capacity were associated with a clinically relevant increase in phenytoin plasma concentrations, several pharmacogenetic variants were associated with statistically significant but only marginally clinically relevant changes in valproate and carbamazepine plasma concentrations, and numerous pharmacogenetic variants were not associated with statistically significant differences in plasma concentrations of antiseizure drugs.
Collapse
Affiliation(s)
- Filip Milosavljević
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Department of Psychiatry and Psychotherapy, School of Medicine, Technische Universität München, München, Germany
| | - Marina Manojlović
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Lena Matković
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Institute for Mental Health, Belgrade, Serbia
| | - Espen Molden
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Magnus Ingelman-Sundberg
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technische Universität München, München, Germany
| | - Marin M. Jukić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Pigliasco F, Cafaro A, Barco S, Stella M, Mattioli F, Riva A, Mancardi MM, Lattanzi S, Bandettini R, Striano P, Cangemi G. Innovative LC-MS/MS method for therapeutic drug monitoring of fenfluramine and cannabidiol in the plasma of pediatric patients with epilepsy. J Pharm Biomed Anal 2024; 245:116174. [PMID: 38703746 DOI: 10.1016/j.jpba.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
We present a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying fenfluramine (FFA), its active metabolite norfenfluramine (norFFA), and Epidyolex®, a pure cannabidiol (CBD) oral solution in plasma. Recently approved by the EMA for the adjunctive treatment of refractory seizures in patients with Dravet and Lennox-Gastaut syndromes aged above 2 years, FFA and CBD still do not have established therapeutic blood ranges, and thus need careful drug monitoring to manage potential pharmacokinetic and pharmacodynamic interactions. Our method, validated by ICH guidelines M10, utilizes a rapid extraction protocol from 100 µL of human plasma and a reversed-phase C-18 HPLC column, with deuterated internal standards. The Thermofisher Quantiva triple-quadrupole MS coupled with an Ultimate 3000 UHPLC allowed multiple reaction monitoring detection, ensuring precise analyte quantification. The assay exhibited linear responses across a broad spectrum of concentrations: ranging from 1.64 to 1000 ng/mL for both FFA and CBD, and from 0.82 to 500 ng/mL for norFFA. The method proves accurate and reproducible, free from matrix effect. Additionally, FFA stability in plasma at 4 °C and -20 °C for up to 7 days bolsters its clinical applicability. Plasma concentrations detected in patients samples, expressed as mean ± standard deviation, were 0.36 ± 0.09 ng/mL for FFA, 19.67 ± 1.22 ng/mL for norFFA. This method stands as a robust tool for therapeutic drug monitoring (TDM) of FFA and CBD, offering significant utility in assessing drug-drug interactions in co-treated patients, thus contributing to optimized patient care in complex therapeutic scenarios.
Collapse
Affiliation(s)
- Federica Pigliasco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Manuela Stella
- Gaslini Trial Centre, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Pharmacology and Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Francesca Mattioli
- Pharmacology and Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy; Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Roberto Bandettini
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
19
|
Rahimi Darehbagh R, Seyedoshohadaei SA, Ramezani R, Rezaei N. Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives. Eur J Med Res 2024; 29:386. [PMID: 39054501 PMCID: PMC11270957 DOI: 10.1186/s40001-024-01987-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Stem cell-based therapies have emerged as a promising approach for treating various neurological disorders by harnessing the regenerative potential of stem cells to restore damaged neural tissue and circuitry. This comprehensive review provides an in-depth analysis of the current state of stem cell applications in primary neurological conditions, including Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), stroke, spinal cord injury (SCI), and other related disorders. The review begins with a detailed introduction to stem cell biology, discussing the types, sources, and mechanisms of action of stem cells in neurological therapies. It then critically examines the preclinical evidence from animal models and early human trials investigating the safety, feasibility, and efficacy of different stem cell types, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). While ESCs have been studied extensively in preclinical models, clinical trials have primarily focused on adult stem cells such as MSCs and NSCs, as well as iPSCs and their derivatives. We critically assess the current state of research for each cell type, highlighting their potential applications and limitations in different neurological conditions. The review synthesizes key findings from recent, high-quality studies for each neurological condition, discussing cell manufacturing, delivery methods, and therapeutic outcomes. While the potential of stem cells to replace lost neurons and directly reconstruct neural circuits is highlighted, the review emphasizes the critical role of paracrine and immunomodulatory mechanisms in mediating the therapeutic effects of stem cells in most neurological disorders. The article also explores the challenges and limitations associated with translating stem cell therapies into clinical practice, including issues related to cell sourcing, scalability, safety, and regulatory considerations. Furthermore, it discusses future directions and opportunities for advancing stem cell-based treatments, such as gene editing, biomaterials, personalized iPSC-derived therapies, and novel delivery strategies. The review concludes by emphasizing the transformative potential of stem cell therapies in revolutionizing the treatment of neurological disorders while acknowledging the need for rigorous clinical trials, standardized protocols, and multidisciplinary collaboration to realize their full therapeutic promise.
Collapse
Affiliation(s)
- Ramyar Rahimi Darehbagh
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanoclub Elites Association, Tehran, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Universal Scientific Education and Research Network (USERN), Sanandaj, Kurdistan, Iran
| | | | - Rojin Ramezani
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Li W, Yang X, Chen Q, Wang Z, Duan Y, Chen L. Monitoring levetiracetam concentration in saliva during pregnancy is stable and feasible. CNS Neurosci Ther 2024; 30:e14827. [PMID: 38992878 PMCID: PMC11239326 DOI: 10.1111/cns.14827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
AIMS This multicenter prospective cohort study (registration no. ChiCTR2000032089) aimed to investigate the relationship between saliva and plasma levetiracetam concentrations to determine whether saliva could be used for routine monitoring of levetiracetam during pregnancy. METHODS The slot concentrations of levetiracetam in simultaneously obtained saliva and plasma samples were measured using UPLC-MS/MS. The correlations between saliva and plasma levetiracetam concentrations and the dose-normalized concentrations were compared among pregnant women in different stages and nonpregnant control participants with epilepsy. RESULTS In total, 231 patients with 407 plasma and saliva sample pairs were enrolled from 39 centers. Linear relationships between salivary and plasma levetiracetam concentrations were reported in the enrolled population (r = 0.898, p < 0.001), including pregnant (r = 0.935, p < 0.001) and nonpregnant participants (r = 0.882, p < 0.001). Plasma concentrations were moderately higher than saliva concentrations, with ratios of saliva to plasma concentrations of 0.98 for nonpregnant women, 0.98, 1, and 1.12 for pregnant women during the first trimester, the second trimester, the and third trimester, respectively. The effective range of saliva levetiracetam concentration was found to be 9.98 μg/mL (lower limit) with an area under the curve (AUC) of 0.937 (95% confidence intervals, 0.915-0.959), sensitivity of 88.9%, specificity of 86.8%, and p < 0.001, to 24.05 μg/mL (upper limit) with an AUC of 0.952 (0.914-0.99), sensitivity of 100%, specificity of 92.3%, and p = 0.007. CONCLUSION The saliva/plasma concentration ratio of levetiracetam remains constant during pregnancy and is similar to that in non-pregnant individuals. Monitoring levetiracetam concentration in saliva during pregnancy should be widely promoted.
Collapse
Affiliation(s)
- Wanling Li
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Ximeng Yang
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Qian Chen
- Center of Biostatistics, Design, Measurement and Evaluation, Department of Clinical Research ManagementWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Zhenlei Wang
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial CenterWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yifei Duan
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Lei Chen
- Department of Neurology, West China HospitalSichuan UniversityChengduSichuanChina
- Department of Clinical Research Management, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
21
|
Jin W, Wang J, Chen S, Chen Q, Li D, Zhu M, Fu X, Huang Y, Lin P. UPLC-MS/MS determination of 71 neuropsychotropic drugs in human serum. Heliyon 2024; 10:e32274. [PMID: 38975205 PMCID: PMC11226775 DOI: 10.1016/j.heliyon.2024.e32274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
In this study, a UPLC-MS/MS method was developed for the rapid detection of 71 neuropsychotropic drugs in human serum for drug concentration monitoring and toxicity screening. The analytes were separated from the biological matrix by protein precipitation using a methanol-acetonitrile solvent mixture. The chromatographic separation was performed on a Kromasil ClassicShell C18 column (2.1*50 mm, 2.5 μ m) with gradient elution using acetonitrile-0.2 % acetic acid and 10 mM ammonium acetate as the mobile phases (flow rate 0.4 mL/min, column temperature 40 °C, injection volume 5 μL). An electrospray ion source in both positive and negative ion modes with multiple ion monitoring was used. The total run time was 6 min. All compounds were quantified using the isotope internal standard method. Totally, 71 drugs were detected within their linear ranges with correlation coefficients greater than 0.990. The intra- and inter-batch precision relative standard deviations (RSDs) for the low, medium, and high concentration points were less than 15 %, with an accuracy of 90%-110 %. All compounds except Moclobemide N-oxindole are stabilised within 7 days. The relative matrix effect results for each analyte were within ±20 % of the requirements. The method is validated according to Clinical and Laboratory Standards Institute guidelines, easy to use, and has a low cost.
Collapse
Affiliation(s)
- Weifeng Jin
- Department of Medical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Jianhua Wang
- Shanghai Biotree Biomedical Technology Co, China
| | - Shuzi Chen
- Department of Medical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Qing Chen
- Department of Medical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Dan Li
- Department of Medical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Mengyuan Zhu
- Department of Medical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaomei Fu
- Department of Medical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Yingyu Huang
- Shanghai Biotree Biomedical Technology Co, China
| | - Ping Lin
- Department of Medical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
22
|
Mahmoud I, Battini V, Carnovale C, Clementi E, Kragholm K, Sessa M. New data-driven method to predict the therapeutic indication of redeemed prescriptions in secondary data sources: a case study on antiseizure medications users aged ≥65 identified in Danish registries. BMJ Open 2024; 14:e080126. [PMID: 38844392 PMCID: PMC11163620 DOI: 10.1136/bmjopen-2023-080126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES We aimed to develop a new data-driven method to predict the therapeutic indication of redeemed prescriptions in secondary data sources using antiepileptic drugs among individuals aged ≥65 identified in Danish registries. DESIGN This was an incident new-user register-based cohort study using Danish registers. SETTING The study setting was Denmark and the study period was 2005-2017. PARTICIPANTS Participants included antiepileptic drug users in Denmark aged ≥65 with a confirmed diagnosis of epilepsy. PRIMARY AND SECONDARY OUTCOME MEASURES Sensitivity served as the performance measure of the algorithm. RESULTS The study population comprised 8609 incident new users of antiepileptic drugs. The sensitivity of the algorithm in correctly predicting the therapeutic indication of antiepileptic drugs in the study population was 65.3% (95% CI 64.4 to 66.2). CONCLUSIONS The algorithm demonstrated promising properties in terms of overall sensitivity for predicting the therapeutic indication of redeemed antiepileptic drugs by older individuals with epilepsy, correctly identifying the therapeutic indication for 6 out of 10 individuals using antiepileptic drugs for epilepsy.
Collapse
Affiliation(s)
- Israa Mahmoud
- Department of Drug Design and Pharmacology, University of Copenhagen, Kobenhavn, Denmark
| | - Vera Battini
- Department of Drug Design and Pharmacology, University of Copenhagen, Kobenhavn, Denmark
- Università degli Studi di Milano, Milano, Italy
| | | | | | - Kristian Kragholm
- Unit of Epidemiology and Biostatistics, Aalborg Universitetshospital, Aalborg, Denmark
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Kobenhavn, Denmark
| |
Collapse
|
23
|
Heger K, Kjeldstadli K, Ring N, Aaberg KM, Kjeldsen SF, Burns ML, Johannessen SI, Johannessen Landmark C. Pharmacokinetic Variability of Sulthiame: The Impact of Age, Drug-Drug Interactions, and Biochemical Markers of Toxicity in Patients with Epilepsy. Ther Drug Monit 2024; 46:237-245. [PMID: 38158595 DOI: 10.1097/ftd.0000000000001146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Sulthiame is an antiseizure medication increasingly used for epilepsy. The aim of this study was to investigate the pharmacokinetic variability of sulthiame in children and adults with epilepsy with respect to age, comedication, dose, serum concentration, and biochemical markers of toxicity in a clinical setting. METHOD Retrospective quantitative data from the therapeutic drug monitoring (TDM) database at the Section for Clinical Pharmacology, the National Center for Epilepsy, Norway (2015-2021), were used. RESULTS TDM data from 326 patients (127 female/199 male) were included [mean age, 11.4 (range 2-44) years; mean weight, 41 (range 14-109) kg]. Interindividual pharmacokinetic variability in the concentration/(dose/body weight) (C/(D/kg)) ratio was 16-fold; intraindividual variability was up to 8-fold (coefficient of variation = 10%-78%). Young children (younger than 6 years) had a significantly lower C/(D/kg) ratio than older age groups ( P < 0.05). Various comedications did not significantly affect the C/(D/kg) ratio, possibly owing to the small sample size. However, CYP2C19-mediated inhibition by sulthiame was indicated because patients using clobazam and sulthiame (n = 28) had a 3.5-fold higher N-desmethylclobazam C/(D/kg) ratio than those using neutral comedication (n = 45; P < 0.001). Patients with pH values below the adjusted normal range (7.32-7.42; n = 15) had a 33% higher sulthiame concentration than those with normal pH values (n = 22; P < 0.05). Blood gas measurements, especially pH, may serve as markers of toxicity and can be used in combination with clinical data when toxicity is suspected. CONCLUSIONS This study revealed the extensive intraindividual and interindividual pharmacokinetic variability of sulthiame, with age as a contributing factor. Sulthiame has clinically relevant interactions with clobazam. The use of TDM and pH as a biochemical marker may contribute to individualized and safe sulthiame treatment.
Collapse
Affiliation(s)
- Katrine Heger
- Department of Pharmacy, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Kari Kjeldstadli
- Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Nelly Ring
- Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Kari Modalsli Aaberg
- The National Center for Epilepsy, Sandvika, Member of the ERN EpiCare, Oslo University Hospital, Oslo, Norway; and
| | - Signe Flood Kjeldsen
- Section for Clinical Pharmacology, The National Center for Epilepsy, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Margrete Larsen Burns
- Section for Clinical Pharmacology, The National Center for Epilepsy, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Svein I Johannessen
- The National Center for Epilepsy, Sandvika, Member of the ERN EpiCare, Oslo University Hospital, Oslo, Norway; and
- Section for Clinical Pharmacology, The National Center for Epilepsy, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Cecilie Johannessen Landmark
- Department of Pharmacy, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
- The National Center for Epilepsy, Sandvika, Member of the ERN EpiCare, Oslo University Hospital, Oslo, Norway; and
- Section for Clinical Pharmacology, The National Center for Epilepsy, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Asadi-Pooya AA, Johannessen Landmark C, Mirzaei Damabi N, Fazelian K. Interactions between antiseizure medications and foods and drinks: A systematic review. Epilepsia Open 2024; 9:475-485. [PMID: 38345419 DOI: 10.1002/epi4.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 04/04/2024] Open
Abstract
Antiseizure medications (ASMs) constitute the principal of treatment for patients with epilepsy, where long-term treatment is usually necessary. The purpose of this systematic review is to provide practical and useful information regarding various aspects of the interactions between ASMs and foods and drinks. MEDLINE and ScienceDirect, from the inception to July 15, 2023, were searched for related publications. In both electronic databases, the following search strategy was applied, and the following keywords were used (in title/abstract): "food OR drink" AND "antiepileptic OR antiseizure." The primary search yielded 738 studies. After implementing our inclusion and exclusion criteria, we could identify 19 studies on the issue of interest for our endeavor. Four studies were identified in the recheck process and not by the primary search. All studies provided low level of evidence. Interactions between foods and ASMs are a common phenomenon. Many factors may play a role for such an interaction to come to play; these include drug properties, administration route, and administration schedule, among others. Drugs-foods (-drinks) interactions may change the drug exposure or plasma levels of drugs (e.g., grapefruit juice increases carbamazepine concentrations and the bioavailability of cannabidiol is increased 4-5 folds with concomitant intake of fat-rich food); this may require dosage adjustments. Interactions between ASMs and foods and drinks may be important. This should be taken seriously into consideration when consulting patients and their caregivers about ASMs. Future well-designed investigations should explore the specific interactions between foods (and drinks) and ASMs to clarify whether they are clinically important. PLAIN LANGUAGE SUMMARY: Interactions between antiseizure medications and foods and drinks may be important. This should be taken into consideration in patients with epilepsy.
Collapse
Affiliation(s)
- Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Jefferson Comprehensive Epilepsy Centre, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Cecilie Johannessen Landmark
- Department of Pharmacy, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
- The National Centre for Epilepsy, Member of the ERN EPiCare, and Dept. of Pharmacology, Oslo University Hospital, Oslo, Norway
| | | | - Khatereh Fazelian
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Zhao YL, You YX, Chen YL, Zhang Y, Du Y, Tang DQ. Fabrication of a surface molecularly imprinted polymer membrane based on a single template and its application in the separation and extraction of phenytoin, phenobarbital and lamotrigine. RSC Adv 2024; 14:8353-8365. [PMID: 38469200 PMCID: PMC10926979 DOI: 10.1039/d4ra00294f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
An innovative molecularly imprinted polymer membrane (MIPM) was prepared with polyvinylidene difluoride (PVDF) as the support, phenytoin (PHT) as the single template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking reagent, azobisisobutyronitrile as the initiator, and acetonitrile-dimethylformamide (1 : 1.5, v/v) as the porogen. These materials were characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller measurements and X-ray photoelectron spectroscopy. Their adsorption performances were evaluated through a series of experiments including isothermal adsorption, kinetic adsorption, selective adsorption, adsorption-desorption, reusability, and preparation reproducibility. Additionally, the application was explored by investigating the extraction recovery of MIPMs towards PHT, phenobarbital (PHB) and lamotrigine (LTG) in different matrices including methanol, normal saline (NS), phosphate buffer solution (PBS) and plasma. The results showed that MIPMs with rough and porous surfaces were successfully constructed, which offered good preparation reproducibility, reusability and selectivity. The adsorption capacities of MIPMs towards PHT, PHB and LTG were 2.312, 2.485 and 2.303 mg g-1, respectively, while their corresponding imprinting factors were 8.538, 12.122 and 4.562, respectively. The adsorption equilibrium of MIPMs was achieved within 20 min at room temperature without stirring or ultrasonication. The extraction recoveries of MIPMs for PHT, PHB or LTG in methanol, NS and PBS were more than 80% with an RSD% value of less than 3.64. In the case of plasma, the extraction recovery of MIPMs for PHT and PHB was more than 80% with an RSD% value of less than 2.41, while that of MIPMs for LTG was more than 65% with an RSD% value of less than 0.99. All the results indicated that the preparation method for MIPMs was simple, stable, and reliable, and the prepared MIPMs possessed excellent properties to meet the extraction application of PHT, PHB and LTG in different matrices.
Collapse
Affiliation(s)
- Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University Suining 221202 China
| | - Yu-Xin You
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 Jiangsu Province China +86 516 83263313 +86 516 83263313
| | - Yu-Lang Chen
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University Suining 221202 China
| | - Ying Zhang
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University Suining 221202 China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 Jiangsu Province China +86 516 83263313 +86 516 83263313
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University Nanjing 210093 China
| | - Dao-Quan Tang
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University Suining 221202 China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University 209 Tongshan Road Xuzhou 221004 Jiangsu Province China +86 516 83263313 +86 516 83263313
| |
Collapse
|
26
|
Wei S, Li X, Wu H, Zhang Q, Wu Y, Zhao Z, Mei S, Feng W. UGT1A polymorphism rs4148324 associated with topiramate plasma concentration to dose ratio in children with epilepsy. Seizure 2024; 116:107-112. [PMID: 37858371 DOI: 10.1016/j.seizure.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
PURPOSE The objective of this study is to evaluate the association between genetic polymorphisms and the concentration to dose ratio of topiramate in children with epilepsy. METHODS A cohort of 163 pediatric patients with epilepsy receiving topiramate therapy were enrolled. The ultra-performance liquid chromatography-tandem mass spectrometry method was employed to measure the trough plasma concentration of topiramate at steady-state. These concentrations were normalized by dividing them by the ratio of total daily dose to body weight, yielding the concentration to dose ratio (CDR) of topiramate. MassArray system identified 30 single nucleotide polymorphisms associated with the pharmacokinetics and pharmacodynamics of topiramate. The CDR values were logarithmic transformed (lnCDR) for normal distribution. The association between the identified genetic polymorphisms and lnCDR was assessed using the PLINK software, employing linear regression analysis with adjustments by epilepsy types, estimated glomerular filtration rate, alanine aminotransferase, valproic acid, phenobarbital, and oxcarbazepine. RESULTS Variant rs4148324 (UGT1A1/3/4/5/6/7/8/9/10, BETA = 0.182, P = 0.010) was significantly associated with lnCDR of topiramate. Patients carrying the G allele exhibited higher normalized topiramate plasma concentrations. No other significant associations were found. CONCLUSIONS In pediatric patients receiving topiramate therapy, rs4148324 was associated with normalized topiramate plasma concentration. Further studies are warranted to validate and confirm the findings.
Collapse
Affiliation(s)
- Shifeng Wei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xingmeng Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Han Wu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Qiang Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yun Wu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Weixing Feng
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China.
| |
Collapse
|
27
|
Hentschel M, Stoffel-Wagner B, Surges R, von Wrede R, Dolscheid-Pommerich RC. Value of drug level concentrations of brivaracetam, lacosamide, and perampanel in care of people with epilepsy. Epilepsia 2024; 65:620-629. [PMID: 38158709 DOI: 10.1111/epi.17873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE The aim of this study was to determine whether clinical efficacy and reported adverse effects (AEs) of the newer antiseizure medications (ASMs) brivaracetam (BRV), lacosamide (LCM), and perampanel (PER) have been associated with plasma levels of these ASMs. We also investigated whether plasma levels outside the reference range has led to dose adjustments. METHODS Plasma levels of 300 people with epilepsy (PWE) seen at our tertiary epilepsy center were determined by liquid chromatography-tandem mass spectrometry. PWE received BRV (n = 100), LCM (n = 100), or PER (n = 100), in most cases in polytherapy. Demographic and clinical data were retrospectively analyzed and related to plasma levels. Clinical efficacy of BRV, LCM, or PER was assessed retrospectively by comparing seizure frequency at the time of current blood draw with seizure frequency at the time of first administration. AEs were also recorded and, if reported, compared retrospectively with the time of first administration. RESULTS No significant associations were found between plasma levels of BRV, LCM, or PER and seizure freedom (BRV, p = 1.000; LCM, p = .243; PER, p = .113) or responder status (BRV, p = .118; LCM, p = .478; PER, p = .069) at presentation. There was also no pattern between plasma levels and the occurrence of AEs. In the majority of cases, drug levels outside the reference ranges have not led to adjustments in the daily doses of BRV (93.5%), LCM (93.9%), or PER (89.1%). SIGNIFICANCE Plasma levels at a given time point did not allow conclusions to be drawn about seizure control or the occurrence of AEs. Our findings indicate that efficacy and tolerability cannot be predicted based on averaged data from a single plasma measurement due to high interindividual variability. Instead, individual reference values should be established when sufficient clinical data are available, in line with the 2008 International League Against Epilepsy position paper on therapeutic drug monitoring.
Collapse
Affiliation(s)
- Matthias Hentschel
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Birgit Stoffel-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Randi von Wrede
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
28
|
Bodor GS, Rands AJ. Quantitative LC-MS/MS Method for the Simultaneous Measurement of Six Antiepileptics and Pentobarbital in Human Serum. Methods Mol Biol 2024; 2737:43-54. [PMID: 38036809 DOI: 10.1007/978-1-0716-3541-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Antiepileptic drugs (AEDs) are a chemically diverse group of medications that are used to control seizures and different clinical forms of epilepsy. AEDs can be used as single agents but are commonly administered in combination, as a multi-drug regimen. AEDs have narrow therapeutic windows. Therapeutic ranges may not be properly defined, and symptoms of toxic serum concentrations may include increased frequency of seizures, as seen when AED concentrations are subtherapeutic. Pentobarbital, a barbiturate, is a potent anti-seizure medication, but it is also used in the treatment of head injury. Therapeutic drug monitoring (TDM) is required for optimal treatment of epilepsy. The method presented here is designed to measure serum concentrations of six commonly administered antiepileptic drugs (levetiracetam (Keppra), lamotrigine, lacosamide, 10-hydroxycarbazepine (oxcarbazepine metabolite), topiramate, zonisamide) and that of pentobarbital by LC-MS/MS. Liquid-liquid sample extraction is followed by reversed-phase chromatography using biphenyl HPLC column and gradient elution. Two MRM transitions are monitored for each drug, and their heavy isotope labeled internal standards. Six-point calibration curve is generated with each batch of analysis for quantitation of AEDs. The method's AMR covers the clinically relevant concentration range for each AED. The method has <10% CV throughout the AMR, is free of matrix effect commonly found in clinical samples, and is free from cross reactivity by other AEDs.
Collapse
Affiliation(s)
- Geza S Bodor
- Department of Pathology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
- UCHealth University of Colorado Hospital Clinical Laboratory, Aurora, CO, USA.
| | - Amanda J Rands
- UCHealth University of Colorado Hospital Clinical Laboratory, Aurora, CO, USA
| |
Collapse
|
29
|
Fang Z, Zhang H, Guo J, Guo J. Overview of therapeutic drug monitoring and clinical practice. Talanta 2024; 266:124996. [PMID: 37562225 DOI: 10.1016/j.talanta.2023.124996] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
With the rapid development of clinical pharmacy in China, therapeutic drug monitoring (TDM) has become an essential tool for guiding rational clinical drug use and is widely concerned. TDM is a tool that combines pharmacokinetic and pharmacodynamic knowledge to optimize personalized drug therapy, which can improve treatment outcomes, reduce drug-drug toxicity, and avoid the risk of developing drug resistance. To effectively implement TDM, accurate and sophisticated analytical methods are required. By researching the literature published in recent years, we summarize the types of commonly monitored drugs, therapeutic windows, and clinical assays and track the trends and hot spots of therapeutic drug monitoring. The purpose is to provide guidelines for clinical blood drug concentration monitoring, to implement individualized drug delivery programs better, to ensure the rational use of drugs for patients, and to provide a reference for the group to carry out related topics in the future.
Collapse
Affiliation(s)
- Zijun Fang
- University of Southwest Petroleum University, College of Mechanical and Electrical Engineering, Chengdu, China
| | - He Zhang
- University of Southwest Petroleum University, College of Mechanical and Electrical Engineering, Chengdu, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu, China.
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Yamamoto Y, Usui N, Kagawa Y, Imai K. Time-Course Changes in Lamotrigine Concentration after Addition of Valproate and the Safety and Long-Term Tolerability of Lamotrigine-Valproate Combination Therapy. Biol Pharm Bull 2024; 47:43-48. [PMID: 37952977 DOI: 10.1248/bpb.b23-00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The aim of this study was to evaluate the time-course changes in lamotrigine (LTG) concentration after addition of valproate (VPA) and the safety and tolerability of the combination therapy. We reviewed our therapeutic drug monitoring (TDM) database and found 345 patients on LTG who received add-on therapy with VPA. VPA had been added at least 12 weeks after patients finished stepwise LTG titration. Also, we retrospectively evaluated the LTG concentration after addition of VPA and the safety and long-term tolerability of LTG-VPA combination therapy. Plasma LTG concentration increased more than 1.5-fold within 15 d of addition of VPA and reached a peak at 30 d. The rate of increase in LTG concentration occurred in a VPA concentration-dependent manner. During the first 120 d after addition of VPA, adverse events were reported by 58 patients (16.8%), but no patient developed cutaneous reactions. Kaplan-Meier analysis showed estimated retention rates for LTG-VPA combination therapy of 74.5% at 5 years. At 5 years, the mean concentration of LTG was 11.1 µg/mL (43.3 µmol/L). Because addition of VPA leads to a marked increase in LTG concentration over a short period, TDM for LTG should be performed at the earliest from 14 d after starting VPA. At 120 d after starting VPA therapy, the higher LTG concentration due to addition of VPA is not associated with an increased risk of cutaneous reactions. Although LTG-VPA combination therapy increases LTG concentration, it is well tolerated and has a high long-term retention rate.
Collapse
Affiliation(s)
- Yoshiaki Yamamoto
- Department of Clinical Research, NHO, National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders
- Department of Clinical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| | - Naotaka Usui
- Department of Clinical Research, NHO, National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders
| | - Yoshiyuki Kagawa
- Department of Clinical Pharmaceutics, Graduate School of Pharmaceutical Sciences, University of Shizuoka
- Laboratory of Clinical Pharmacokinetics and Drug Safety, Shizuoka General Hospital
| | - Katsumi Imai
- Department of Clinical Research, NHO, National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders
| |
Collapse
|
31
|
Protti M, Mandrioli R, Mercolini L. Microsampling for therapeutic drug monitoring in psychiatric practice. Int Clin Psychopharmacol 2024; 39:42-46. [PMID: 37584951 DOI: 10.1097/yic.0000000000000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Affiliation(s)
- Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna
| | - Roberto Mandrioli
- Department for Life Quality Studies (QuVi), Alma Mater Studiorum - University of Bologna, Rimini, Italy
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna
| |
Collapse
|
32
|
Cockerell I, Christensen J, Hoei-Hansen CE, Holst L, Grenaa Frederiksen M, Issa-Epe AI, Nedregaard B, Solhoff R, Heimdal K, Johannessen Landmark C, Lund C, Nærland T. Effectiveness and safety of everolimus treatment in patients with tuberous sclerosis complex in real-world clinical practice. Orphanet J Rare Dis 2023; 18:377. [PMID: 38042867 PMCID: PMC10693167 DOI: 10.1186/s13023-023-02982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND The randomised double-blinded placebo-controlled EXIST-1-3 studies have showed everolimus effective with adverse effects reported as acceptable in treatment of symptoms in patients with tuberous sclerosis complex (TSC), although evidence of outcomes in clinical practice remains limited. This study aimed to investigate, in clinical practice, the effectiveness and safety of everolimus for epilepsy, renal angiomyolipoma (rAML), and subependymal giant cell astrocytoma (SEGA) in patients with TSC. RESULTS The study included 64 patients with TSC (median age: 19, range 0.9-54 years) receiving everolimus treatment (Norway: n = 35; Denmark: n = 29). Among 45 patients with epilepsy, 14 (31%) were responders experiencing ≥ 50% reduction in seizure frequency in the last 3 months of treatment compared with the last 3 months before treatment. Nineteen (42%) patients changed their anti-seizure medications (ASMs). Responders were more common among patients < 18 years (46%) than among patients ≥ 18 years (14%, p = 0.03). In 29 patients with rAML, everolimus reduced (≥ 30% decrease) and stabilized (< 20% increase, ≤ 30% decrease) longest diameter of rAML in 38% and 59%, respectively, after a mean treatment duration of 37 months. SEGA volume was reduced in three patients by 71%, 43%, and 48% after 39, 34, and 82 months. Adverse effects were reported in 61 of 64 patients (95%) after a median treatment duration of 31 months (range 0-106), with oral ulceration/stomatitis (63%) and upper respiratory tract infections (38%) being the most common. The most common laboratory abnormalities were increased cholesterol (41%), anaemia (30%), and leucopoenia (25%). Grade 3-4 adverse effects were reported in 36% of cases, and life-threatening conditions were reported in two patients. Nine patients discontinued everolimus treatment. CONCLUSIONS Seizure reduction in this study sample was consistent with results from EXIST, but might be lower than expected, given that changes in concomitant ASMs are part of clinical practice. Seizure reduction was associated with younger age. As with EXIST, everolimus reduced or stabilised rAML size in most patients. SEGA volume was reduced in all three patients. Close follow-up is needed for this group, especially for children and patients who may not be able to report adverse effects.
Collapse
Affiliation(s)
- Ine Cockerell
- Department of Rare Disorders and Disabilities, National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital, Pb 4950, 0424, Nydalen, Oslo, Norway.
| | - Jakob Christensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Affiliated Member of the European Reference Network EpiCARE, Aarhus, Denmark
| | - Christina E Hoei-Hansen
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
- Department of Paediatrics, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lotte Holst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Aart Imran Issa-Epe
- Section of Abdominal Radiology, Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Bård Nedregaard
- Section of Neuroradiology, Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Ragnar Solhoff
- Department of Neurology, Sørlandet Hospital, Arendal, Norway
| | - Ketil Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Cecilie Johannessen Landmark
- Department of Pharmacy, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
- The National Center for Epilepsy (SSE), Member of the ERN EpiCare, Oslo University Hospital, Oslo, Norway
- Section for Clinical Pharmacology, SSE, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Caroline Lund
- Department of Rare Disorders and Disabilities, National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital, Pb 4950, 0424, Nydalen, Oslo, Norway
| | - Terje Nærland
- K.G. Jebsen Center for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NevSom, Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
33
|
Badillo-Ramírez I, Janssen SAJ, Soufi G, Slipets R, Zór K, Boisen A. Label-free SERS assay combined with multivariate spectral data analysis for lamotrigine quantification in human serum. Mikrochim Acta 2023; 190:495. [PMID: 38036694 PMCID: PMC10689517 DOI: 10.1007/s00604-023-06085-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Considering the need for a more time and cost-effective method for lamotrigine (LTG) detection in clinics we developed a fast and robust label-free assay based on surface-enhanced Raman scattering (SERS) for LTG quantification from human serum. The optimization and application of the developed assay is presented showing the: (i) exploration of different methods for LTG separation from human serum; (ii) implementation of a molecular adsorption step on an ordered Au nanopillar SERS substrate; (iii) adaptation of a fast scanning of the SERS substrate, performed with a custom-built compact Raman spectrometer; and (iv) development of LTG quantification methods with univariate and multivariate spectral data analysis. Our results showed, for the first time, the SERS-based characterization of LTG and its label-free identification in human serum. We found that combining a miniaturized solid phase extraction, as sample pre-treatment with the SERS assay, and using a multivariate model is an optimal strategy for LTG quantification in human serum in a linear range from 9.5 to 75 μM, with LoD and LoQ of 3.2 μM and 9.5 μM, respectively, covering the suggested clinical therapeutic window. We also showed that the developed assay allowed for quantifying LTG from human serum in the presence of other drugs, thereby demonstrating the robustness of label-free SERS. The sensing approach and instrumentation can be further automated and integrated in devices that can advance the drug monitoring in real clinical settings.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark.
| | - Selina A J Janssen
- Molecular Biosensing for Medical Diagnostics (MBx), Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Gohar Soufi
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| | - Roman Slipets
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| | - Kinga Zór
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- BioInnovation Institute Foundation, 2200, Copenhagen N, Denmark
| |
Collapse
|
34
|
Parisi V, Gregg NM, Lundstrom BN, Alcala-Zermeno JL, Worrell G, Kerezoudis P, Grewal SS, Brinkmann BH, Middlebrooks EH, Van Gompel JJ. Temporo-Parietal Extraventricular Approach for Deep Brain Stimulation Targeting the Anterior Nucleus of the Thalamus: Institutional Experience. Neurosurgery 2023; 93:1393-1406. [PMID: 37477444 DOI: 10.1227/neu.0000000000002600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/18/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The anterior nucleus of the thalamus (ANT) is a common target for deep brain stimulation (DBS) for drug-resistant epilepsy (DRE). However, the surgical approach to the ANT remains challenging because of its unique anatomy. This study aims to summarize our experience with the posterior temporo-parietal extraventricular (TPEV) approach targeting the ANT for DBS in DRE. METHODS We performed a retrospective analysis of patients with DRE who underwent ANT-DBS using the TPEV approach between January 2011 and February 2021. Subjects with at least 6-month follow-up were eligible. The final lead position and number of active contacts targeting the anteroventral nucleus (AV) of the ANT were assessed using Lead-DBS. Mean seizure frequency reduction percentage and responder rate (≥50% decrease in seizure frequency) were determined. RESULTS Thirty-one patients (mean age: 32.9 years; 52% female patients) were included. The mean follow-up period was 27.6 months ± 13.9 (29, 16-36). The mean seizure frequency reduction percentage was 65% ± 26 (75, 50-82). Twenty-six of 31 participants (83%) were responders, P < .001. Two subjects (6%) were seizure-free for at least 6 months at the last evaluation. Antiepileptic drugs dose and/or number decreased in 17/31 subjects (55%). The success rate for placing at least 1 contact at AV was 87% (27/31 patients) bilaterally. The number of active contacts at the AV was significantly greater in the responder group, 3.1 ± 1.3 (3, 2-4) vs 1.8 ± 1.1 (2, 1-2.5); P = .041 with a positive correlation between the number of active contacts and seizure reduction percentage; r = 0.445, R 2 = 0.198, P = .012. CONCLUSION The TPEV trajectory is a safe and effective approach to target the ANT for DBS. Future studies are needed to compare the clinical outcomes and target accuracy with the standard approaches.
Collapse
Affiliation(s)
- Veronica Parisi
- Department of Neurosurgery, AORN "Antonio Cardarelli", Naples , Italy
| | - Nicholas M Gregg
- Department of Neurology, Mayo Clinic, Rochester , Minnesota , USA
| | | | - Juan Luis Alcala-Zermeno
- Department of Neurology, Mayo Clinic, Rochester , Minnesota , USA
- Department of Neurology, Thomas Jefferson University, Philadelphia , Pennsylvania, USA
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester , Minnesota , USA
| | | | - Sanjeet S Grewal
- Department of Neurosurgery, Mayo Clinic, Jacksonville , Florida , USA
| | | | | | | |
Collapse
|
35
|
Milosheska D, Roškar R. Simple HPLC-UV Method for Therapeutic Drug Monitoring of 12 Antiepileptic Drugs and Their Main Metabolites in Human Plasma. Molecules 2023; 28:7830. [PMID: 38067559 PMCID: PMC10708341 DOI: 10.3390/molecules28237830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of the present report was to develop and validate a simple, selective, and reproducible high-performance liquid chromatography method with UV detection suitable for routine therapeutic drug monitoring of the most commonly used antiepileptic drugs and some of their metabolites. Simple precipitation of plasma proteins with acetonitrile was used for sample preparation. 10,11-dihydrocarbamazepine was used as an internal standard. Chromatographic separation of the analytes was achieved by gradient elution on a Phenyl-Hexyl column at 40 °C, using methanol and potassium phosphate buffer (25 mM; pH 5.1) as a mobile phase. The method was validated according to the FDA guidelines for bioanalytical method validation. It showed to be selective, accurate, precise, and linear over the concentration ranges of 1-50 mg/L for phenobarbital, phenytoin, levetiracetam, rufinamide, zonisamide, and lacosamide; 0.5-50 mg/L for lamotrigine, primidone, carbamazepine and 10-monohydroxycarbazepine; 0.2-10 mg/L for carbamazepine metabolites: 10,11-trans-dihydroxy-10,11-dihydrocarbamazepine and carbamazepine-10,11-epoxide; 0.1-10 mg/L for oxcarbazepine; 2-100 mg/L for felbamate and 3-150 mg/L for ethosuximide. The suitability of the validated method for routine therapeutic drug monitoring was confirmed by quantification of the analytes in plasma samples from patients with epilepsy on combination antiepileptic therapy.
Collapse
Affiliation(s)
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
36
|
Yu L, Chen M, Liu J, Yu Z, Feng J, Dai H. Initial therapeutic target attainment of perampanel in pediatric patients with epilepsy. Front Pharmacol 2023; 14:1209815. [PMID: 38035012 PMCID: PMC10684762 DOI: 10.3389/fphar.2023.1209815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Perampanel is a promising option for the treatment of pediatric epilepsy, but its plasma concentration varies among patients. This retrospective study aimed to investigate the initial target attainment of perampanel plasma concentration in pediatric patients with epilepsy in China. Inpatients admitted from January 2020 to December 2021 in a tertiary hospital were retrospectively included according to pre-set criteria. Demographic characteristics of patients and dosing strategies and therapeutic drug monitoring results were collected. A total of 137 pediatric patients (84 females and 53 males, aged from 0.6 to 16.4 years) were include for analysis. The perampanel concentrations varied greatly from 60 to 1,560 mg/L among patients, but 89.8% had suitable perampanel concentrations (100-1,000 ng/mL). The concomitant use of enzyme-inductive antiepileptic drugs (AEDs) was the only identified risk factor associated with target nonattainment (OR = 5.92, 95% confidence interval 1.68-20.9). Initial perampanel target attainment in pediatric patients is satisfactory. Routine therapeutic drug monitoring to achieved the suggested concentration range for these patients may be unnecessary, except for those receiving combined enzyme inductive AEDs.
Collapse
Affiliation(s)
- Lingyan Yu
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meng Chen
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jieqiong Liu
- Department of Pharmacy, 903 Hospital of the Joint Logistic Support Force of the PLA, Hangzhou, Zhejiang, China
| | - Zhenwei Yu
- Department of Pharmacy, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianhua Feng
- Department of Pediatrics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haibin Dai
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Zhu J, Lu J, He Y, Shen X, Xia H, Li W, Zhang J, Fan X. Association of ABCB1 Polymorphisms with Efficacy and Adverse Drug Reactions of Valproic Acid in Children with Epilepsy. Pharmaceuticals (Basel) 2023; 16:1536. [PMID: 38004402 PMCID: PMC10675623 DOI: 10.3390/ph16111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Genetic polymorphisms in ATP-binding cassette subfamily B member 1 (ABCB1, also known as MDR1) have been reported to be possibly associated with the regulation of response to antiseizure medications. The aim of this study was to investigate the association of ABCB1 polymorphisms with the efficacy of and adverse drug reactions to valproic acid among Chinese children with epilepsy. A total of 170 children from southern China with epilepsy treated with valproic acid for more than one year were recruited, including 61 patients with persistent seizures and 109 patients who were seizure-free. Two single nucleotide polymorphisms of ABCB1, rs1128503 and rs3789243, were genotyped using the Sequenom MassArray system. The two single nucleotide polymorphisms of ABCB1 were found to be significantly associated with treatment outcomes of valproic acid in children with epilepsy. Carriers with the TT genotype of ABCB1 rs1128503 were more inclined to exhibit persistent seizures after treatment with valproic acid (p = 0.013). The CC genotype of rs3789243 was observed to be a potential protective factor for valproic acid-induced gastrointestinal adverse drug reactions (p = 0.018), but possibly increased the risk of valproic acid-induced cutaneous adverse drug reactions (p = 0.011). In contrast, the CT genotype of rs3789243 was associated with a lower risk of valproic acid-induced cutaneous adverse drug reactions (p = 0.011). Haplotype analysis showed that CC haplotype carriers tended to respond better to valproic acid treatment (p = 0.009). Additionally, no significant association was found between ABCB1 polymorphisms and serum concentrations of valproic acid. This study revealed that the polymorphisms and haplotypes of the ABCB1 gene might be associated with the treatment outcomes of valproic acid in Chinese children with epilepsy.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.Z.); (J.L.); (Y.H.); (X.S.); (J.Z.)
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| | - Jieluan Lu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.Z.); (J.L.); (Y.H.); (X.S.); (J.Z.)
| | - Yaodong He
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.Z.); (J.L.); (Y.H.); (X.S.); (J.Z.)
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| | - Xianhuan Shen
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.Z.); (J.L.); (Y.H.); (X.S.); (J.Z.)
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| | - Hanbing Xia
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| | - Wenzhou Li
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| | - Jianping Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.Z.); (J.L.); (Y.H.); (X.S.); (J.Z.)
| | - Xiaomei Fan
- Department of Pharmacy, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518102, China; (H.X.); (W.L.)
| |
Collapse
|
38
|
Fujita Y, Murai M, Muraki S, Suetsugu K, Tsuchiya Y, Hirota T, Matsunaga N, Ieiri I. Population Pharmacokinetic Analysis of Drug-Drug Interactions Between Perampanel and Carbamazepine Using Enzyme Induction Model in Epileptic Patients. Ther Drug Monit 2023; 45:653-659. [PMID: 36645709 DOI: 10.1097/ftd.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/02/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Perampanel (PER) is an oral antiepileptic drug and its concomitant use with carbamazepine (CBZ) leads to decreased PER concentrations. However, the magnitude of its influence may vary, depending on the dynamics of the enzyme induction properties of CBZ. This study aimed to develop a population pharmacokinetic (PPK) model considering the dynamics of enzyme induction and evaluate the effect of CBZ on PER pharmacokinetics. METHODS We retrospectively collected data on patient background, laboratory tests, and prescribed drugs from electronic medical records. We developed 2 PPK models incorporating the effect of CBZ-mediated enzyme induction to describe time-concentration profiles of PER using the following different approaches: (1) treating the concomitant use of CBZ as a categorical covariate (empirical PPK model) and (2) incorporating the time-course of changes in the amount of enzyme by CBZ-mediated induction (semimechanistic PPK model). The bias and precision of the predictions were investigated by calculating the mean error, mean absolute error, and root mean squared error. RESULTS A total of 133 PER concentrations from 64 patients were available for PPK modelling. PPK analyses showed that the co-administration of CBZ increased the clearance of PER. Goodness-of-fit plots indicated a favorable description of the observed data and low bias. The mean error, mean absolute error, and root mean square error values based on the semimechanistic model were smaller than those obtained using the empirical PPK model for predicting PER concentrations in patients with CBZ. CONCLUSIONS We developed 2 PPK models to describe PER pharmacokinetics based on different approaches, using electronic medical record data. Our PPK models support the use of PER in clinical practice.
Collapse
Affiliation(s)
- Yuito Fujita
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan; and
| | - Mariko Murai
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan; and
| | - Shota Muraki
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan; and
| | | | - Yuichi Tsuchiya
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| | - Takeshi Hirota
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan; and
| | - Ichiro Ieiri
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
39
|
Wei S, Li X, Zhang Q, Wu H, Wu Y, Zhao Z, Mei S, Feng W. Population pharmacokinetics of topiramate in Chinese children with epilepsy. Eur J Clin Pharmacol 2023; 79:1401-1415. [PMID: 37597080 DOI: 10.1007/s00228-023-03549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE Topiramate, a broad-spectrum antiepileptic drug, exhibits substantial inter-individual variability in both its pharmacokinetics and therapeutic response. The aim of this study was to investigate the influence of patient characteristics and genetic variants on topiramate clearance using population pharmacokinetic (PPK) models in a cohort of Chinese pediatric patients with epilepsy. METHOD The PPK model was constructed using a nonlinear mixed-effects modeling approach, utilizing a dataset comprising 236 plasma concentrations of topiramate obtained from 181 pediatric patients with epilepsy. A one-compartment model combined with a proportional residual model was employed to characterize the pharmacokinetics of topiramate. Covariate analysis was performed using forward addition and backward elimination to assess the influence of covariates on the model parameters. The model was thoroughly evaluated through goodness-of-fit analysis, bootstrap, visual predictive checks, and normalized prediction distribution errors. Monte Carlo simulations were utilized to devise topiramate dosing strategies. RESULT In the final PPK models of topiramate, body weight, co-administration with oxcarbazepine, and a combined genotype of GKIR1-UGT (GRIK1 rs2832407, UGT2B7 rs7439366, and UGT1A1 rs4148324) were identified as significant covariates affecting the clearance (CL). The clearance was estimated using the formulas CL (L/h) = 0.44 × (BW⁄11.7)0.82 × eOXC for the model without genetic variants and CL (L/h) = 0.49 × (BW⁄11.7)0.81 × eOXC × eGRIK1-UGT for the model incorporating genetic variants. The volume of distribution (Vd) was estimated using the formulas Vd (L) = 6.6 × (BW⁄11.7). The precision of all estimated parameters was acceptable. Furthermore, the model demonstrated good predictability, exhibiting stability and effectiveness in describing the pharmacokinetics of topiramate. CONCLUSION The clearance of topiramate in pediatric patients with epilepsy may be subject to the influence of factors such as body weight, co-administration with oxcarbazepine, and genetic polymorphism. In this study, PPK models were developed to better understand and account for these factors, thereby improving the precision and individualization of topiramate therapy in children with epilepsy.
Collapse
Affiliation(s)
- Shifeng Wei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xingmeng Li
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing, 100045, People's Republic of China
| | - Qiang Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Han Wu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yun Wu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing, 100045, People's Republic of China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China.
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing, 100070, People's Republic of China.
- Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Weixing Feng
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Xicheng District, Beijing, 100045, People's Republic of China.
| |
Collapse
|
40
|
Pedersen S, Kverneland M, Rudi K, Gervin K, Landmark CJ, Iversen PO, Selmer KK. Decreased serum concentrations of antiseizure medications in children with drug resistant epilepsy following treatment with ketogenic diet. Epilepsia Open 2023; 8:858-866. [PMID: 37057954 PMCID: PMC10472394 DOI: 10.1002/epi4.12746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 04/15/2023] Open
Abstract
OBJECTIVE To examine the potential influence of a ketogenic diet on serum concentrations of antiseizure medications (ASMs) in children with drug resistant epilepsy. METHODS We investigated the serum concentrations of ASMs in 25 children with drug resistant epilepsy, 2-13 years of age, treated with a classical ketogenic diet for 12 weeks. The patients were recruited from the National Centre for Epilepsy from August 15th, 2017, to January 24th, 2022. Changes in ASM serum concentrations were analyzed using a mixed effect model analysis. Significance level was set at P < 0.05 for all comparisons. RESULTS The participants used 12 different ASMs during the study. The mean number of ASMs was 2.4 (±SD 0.7). None of the participants changed the type or dose of the ASMs during the intervention period. The serum concentrations of clobazam (n = 9, P = 0.002), desmethylclobazam (n = 9, P = 0.010), and lamotrigine (n = 6, P = 0.016) decreased significantly during the dietary treatment. The analytes with the largest reduction in serum concentration after 12 weeks of dietary treatment were clobazam (mean change -38%) and desmethylclobazam (mean change -37%). We found no significant change in the serum concentrations of levetiracetam, topiramate, and valproic acid. SIGNIFICANCE We identified a significant decrease in the serum concentrations of clobazam, desmethylclobazam, and lamotrigine following a 12-week ketogenic diet intervention in children with drug resistant epilepsy. An unintended decrease in the serum concentrations of ASMs may render the patient prone to seizures. Measurements of ASM serum concentrations might be useful in patients on a ketogenic diet, especially in patients with lack of efficacy of the dietary treatment.
Collapse
Affiliation(s)
- Sigrid Pedersen
- National Centre for Epilepsy, Member of the ERN EpiCareOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Magnhild Kverneland
- National Centre for Epilepsy, Member of the ERN EpiCareOslo University HospitalOsloNorway
| | - Knut Rudi
- Department of ChemistryNorwegian University of Life SciencesÅsNorway
| | - Kristina Gervin
- Department of Research and InnovationOslo University HospitalOsloNorway
| | - Cecilie Johannessen Landmark
- National Centre for Epilepsy, Member of the ERN EpiCareOslo University HospitalOsloNorway
- Department of PharmacologyOslo University HospitalOsloNorway
- Department of PharmacyOslo Metropolitan UniversityOsloNorway
| | - Per Ole Iversen
- Department of NutritionUniversity of OsloOsloNorway
- Department of HematologyOslo University HospitalOsloNorway
| | - Kaja Kristine Selmer
- National Centre for Epilepsy, Member of the ERN EpiCareOslo University HospitalOsloNorway
- Department of Research and InnovationOslo University HospitalOsloNorway
| |
Collapse
|
41
|
Voulgaridou G, Paraskeva T, Ragia G, Atzemian N, Portokallidou K, Kolios G, Arvanitidis K, Manolopoulos VG. Therapeutic Drug Monitoring (TDM) Implementation in Public Hospitals in Greece in 2003 and 2021: A Comparative Analysis of TDM Evolution over the Years. Pharmaceutics 2023; 15:2181. [PMID: 37765152 PMCID: PMC10535589 DOI: 10.3390/pharmaceutics15092181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Therapeutic drug monitoring (TDM) is the clinical practice of measuring drug concentrations. TDM can be used to determine treatment efficacy and to prevent the occurrence or reduce the risk of drug-induced side effects, being, thus, a tool of personalized medicine. Drugs for which TDM is applied should have a narrow therapeutic range and exhibit both significant pharmacokinetic variability and a predefined target concentration range. The aim of our study was to assess the current status of TDM in Greek public hospitals and estimate its progress over the last 20 years. All Greek public hospitals were contacted to provide data and details on the clinical uptake of TDM in Greece for the years 2003 and 2021 through a structured questionnaire. Data from 113 out of 132 Greek hospitals were collected in 2003, whereas for 2021, we have collected data from 98 out of 122 hospitals. Among these, in 2003 and 2021, 64 and 51 hospitals, respectively, performed TDM. Antiepileptics and antibiotics were the most common drug categories monitored in both years. The total number of drug measurement assays decreased from 2003 to 2021 (153,313 ± 7794 vs. 90,065 ± 5698; p = 0.043). In direct comparisons between hospitals where TDM was performed both in 2003 and 2021 (n = 35), the mean number of measurements was found to decrease for most drugs, including carbamazepine (198.8 ± 46.6 vs. 46.6 ± 10.1, p < 0.001), phenytoin (253.6 ± 59 vs. 120 ± 34.3; p = 0.001), amikacin (147.3 ± 65.2 vs. 91.1 ± 71.4; p = 0.033), digoxin (783.2 ± 226.70 vs. 165.9 ± 28.9; p < 0.001), and theophylline (71.5 ± 28.7 vs. 11.9 ± 6.4; p = 0.004). Only for vancomycin, a significant increase in measurements was recorded (206.1 ± 96.1 vs. 789.1 ± 282.8; p = 0.012). In conclusion, our findings show that TDM clinical implementation is losing ground in Greek hospitals. Efforts and initiatives to reverse this trend are urgently needed.
Collapse
Affiliation(s)
- Gavriela Voulgaridou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - Theodora Paraskeva
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - Natalia Atzemian
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - Konstantina Portokallidou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
- Clinical Pharmacology and Pharmacogenetics Unit, Academic General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (G.V.); (T.P.); (G.R.); (N.A.); (K.P.); (G.K.); (K.A.)
- IMPReS—Individualised Medicine & Pharmacological Research Solutions Center, 68100 Alexandroupolis, Greece
- Clinical Pharmacology and Pharmacogenetics Unit, Academic General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| |
Collapse
|
42
|
Cristóbal-Luna JM, Mojica-Villegas MA, Meza-Toledo SE, García-Martínez Y, Pérez-Juárez A, Chamorro-Cevallos G. Developmental Toxicity Study of DL-4-Hydroxy-4-Phenylhexanamide (DL-HEPB) in Rats. Life (Basel) 2023; 13:1714. [PMID: 37629571 PMCID: PMC10455234 DOI: 10.3390/life13081714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Antiepileptic drugs affect embryonic development when administered during pregnancy, generating severe alterations, such as as cleft lip, spina bifida, heart abnormalities, or neuronal alterations. The compound DL-4-hydroxy-4-phenylhexanamide (DL-HEPB), a phenyl alcohol amide structurally different from known anticonvulsants, has shown good anticonvulsant effects in previous studies. However, its effects on intrauterine development are unknown. So, the purpose of this study was to determine the potential of DL-HEPB to produce alterations in conceptus. Pregnant Wistar rats were orally exposed to 0, 50, 100, and 200 mg/kg of DL-HEPB during organogenesis, and their food consumption and weight gain were measured. On gestation day 21, pregnant females were euthanized to analyze the fetuses for external, visceral, and skeletal malformations. A significant decrease in food consumption and body weight was observed in mothers, without any other manifestation of toxicity. In fetuses, no external malformations, visceral, or skeletal abnormalities, were observed under the dose of 100 mg/kg, while the dose of 200 mg/kg caused malformations in low frequency in brain and kidneys. In view of the results obtained, DL-HEPB could be a good starting point for the design of new highly effective anticonvulsant agents, with much lower developmental toxicity than that shown by commercial anticonvulsants.
Collapse
Affiliation(s)
- José Melesio Cristóbal-Luna
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Mexico City 07738, Mexico; (M.A.M.-V.); (Y.G.-M.)
| | - María Angélica Mojica-Villegas
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Mexico City 07738, Mexico; (M.A.M.-V.); (Y.G.-M.)
| | - Sergio Enrique Meza-Toledo
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tómas, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Yuliana García-Martínez
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Mexico City 07738, Mexico; (M.A.M.-V.); (Y.G.-M.)
| | - Angélica Pérez-Juárez
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Mexico City 07738, Mexico; (M.A.M.-V.); (Y.G.-M.)
| |
Collapse
|
43
|
Johannessen Landmark C, Eyal S, Burns ML, Franco V, Johannessen SI. Pharmacological aspects of antiseizure medications: From basic mechanisms to clinical considerations of drug interactions and use of therapeutic drug monitoring. Epileptic Disord 2023; 25:454-471. [PMID: 37259844 DOI: 10.1002/epd2.20069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
Antiseizure medications (ASMs) are the cornerstone of treatment for patients with epilepsy. Several new ASMs have recently been introduced to the market, making it possible to better tailor the treatment of epilepsy, as well as other indications (psychiatry and pain disorders). For this group of drugs there are numerous pharmacological challenges, and updated knowledge on their pharmacodynamic and pharmacokinetic properties is, therefore, crucial for an optimal treatment outcome. This review focuses on educational approaches to the following learning outcomes as described by the International League Against Epilepsy (ILAE): To demonstrate knowledge of pharmacokinetics and pharmacodynamics, drug interactions with ASMs and with concomitant medications, and appropriate monitoring of ASM serum levels (therapeutic drug monitoring, TDM). Basic principles in pharmacology, pharmacokinetic variability, and clinically relevant approaches to manage drug interactions are discussed. Furthermore, recent improvements in analytical technology and sampling are described. Future directions point to the combined implementation of TDM with genetic panels for proper diagnosis, pharmacogenetic tests where relevant, and the use of biochemical markers that will all contribute to personalized treatment. These approaches are clinically relevant for an optimal treatment outcome with ASMs in various patient groups.
Collapse
Affiliation(s)
- Cecilie Johannessen Landmark
- Department of Pharmacy, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
- The National Center for Epilepsy, Sandvika, Member of the ERN EpiCare, Oslo University Hospital, Oslo, Norway
- Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Sara Eyal
- Institute for Drug Research, Department of Pharmacy, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Margrete Larsen Burns
- Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Valentina Franco
- Department of Internal Medicine and Therapeutics, Clinical, and Experimental Pharmacology Unit, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Svein I Johannessen
- The National Center for Epilepsy, Sandvika, Member of the ERN EpiCare, Oslo University Hospital, Oslo, Norway
- Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
44
|
Simeoli R. Editorial: Therapeutic drug monitoring (TDM): a useful tool for pediatric pharmacology applied to routine clinical practice, Volume II. Front Pharmacol 2023; 14:1250784. [PMID: 37560471 PMCID: PMC10408308 DOI: 10.3389/fphar.2023.1250784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Raffaele Simeoli
- Division of Metabolic Diseases and Drug Biology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
45
|
Damnjanović I, Tsyplakova N, Stefanović N, Tošić T, Catić-Đorđević A, Karalis V. Joint use of population pharmacokinetics and machine learning for optimizing antiepileptic treatment in pediatric population. Ther Adv Drug Saf 2023; 14:20420986231181337. [PMID: 37359445 PMCID: PMC10288421 DOI: 10.1177/20420986231181337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Purpose Unpredictable drug efficacy and safety of combined antiepileptic therapy is a major challenge during pharmacotherapy decisions in everyday clinical practice. The aim of this study was to describe the pharmacokinetics of valproic acid (VA), lamotrigine (LTG), and levetiracetam (LEV) in a pediatric population using nonlinear mixed-effect modeling, while machine learning (ML) algorithms were applied to identify any relationships among the plasma levels of the three medications and patients' characteristics, as well as to develop a predictive model for epileptic seizures. Methods The study included 71 pediatric patients of both genders, aged 2-18 years, on combined antiepileptic therapy. Population pharmacokinetic (PopPK) models were developed separately for VA, LTG, and LEV. Based on the estimated pharmacokinetic parameters and the patients' characteristics, three ML approaches were applied (principal component analysis, factor analysis of mixed data, and random forest). PopPK models and ML models were developed, allowing for greater insight into the treatment of children on antiepileptic treatment. Results Results from the PopPK model showed that the kinetics of LEV, LTG, and VA were best described by a one compartment model with first-order absorption and elimination kinetics. Reliance on random forest model is a compelling vision that shows high prediction ability for all cases. The main factor that can affect antiepileptic activity is antiepileptic drug levels, followed by body weight, while gender is irrelevant. According to our study, children's age is positively associated with LTG levels, negatively with LEV and without the influence of VA. Conclusion The application of PopPK and ML models may be useful to improve epilepsy management in vulnerable pediatric population during the period of growth and development.
Collapse
Affiliation(s)
| | - Nastia Tsyplakova
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikola Stefanović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Tatjana Tošić
- Clinic of Pediatric Internal Medicine, Department of Pediatric Neurology, University Clinical Center of Nis, Nis, Serbia
| | | | - Vangelis Karalis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Silva R, Colom H, Bicker J, Almeida A, Silva A, Sales F, Santana I, Falcão A, Fortuna A. Population Pharmacokinetic Analysis of Perampanel in Portuguese Patients Diagnosed with Refractory Epilepsy. Pharmaceutics 2023; 15:1704. [PMID: 37376153 DOI: 10.3390/pharmaceutics15061704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Perampanel is a promising antiepileptic drug (AED) for refractory epilepsy treatment due to its innovative mechanism of action. This study aimed to develop a population pharmacokinetic (PopPK) model to be further used in initial dose optimization of perampanel in patients diagnosed with refractory epilepsy. A total of seventy-two plasma concentrations of perampanel obtained from forty-four patients were analyzed through a population pharmacokinetic approach by means of nonlinear mixed effects modeling (NONMEM). A one-compartment model with first-order elimination best described the pharmacokinetic profiles of perampanel. Interpatient variability (IPV) was entered on clearance (CL), while the residual error (RE) was modeled as proportional. The presence of enzyme-inducing AEDs (EIAEDs) and body mass index (BMI) were found as significant covariates for CL and volume of distribution (V), respectively. The mean (relative standard error) estimates for CL and V of the final model were 0.419 L/h (5.56%) and 29.50 (6.41%), respectively. IPV was 30.84% and the proportional RE was 6.44%. Internal validation demonstrated an acceptable predictive performance of the final model. A reliable population pharmacokinetic model was successfully developed, and it is the first enrolling real-life adults diagnosed with refractory epilepsy.
Collapse
Affiliation(s)
- Rui Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Helena Colom
- Farmacoteràpia, Farmacogenètica i Tecnologia Farmacèutica, IDIBELL-Institut d'Investigació Biomèdica de Bellvitge, 08907 Hospitalet de Llobregat, Spain
- Pharmacy and Pharmaceutical Technology and Physical Chemistry Department, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Anabela Almeida
- CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- CIVG-Vasco da Gama Research Center, EUVG-Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Ana Silva
- Refractory Epilepsy Reference Centre, Centro Hospitalar e Universitário de Coimbra, EPE, 3004-561 Coimbra, Portugal
| | - Francisco Sales
- Refractory Epilepsy Reference Centre, Centro Hospitalar e Universitário de Coimbra, EPE, 3004-561 Coimbra, Portugal
| | - Isabel Santana
- Refractory Epilepsy Reference Centre, Centro Hospitalar e Universitário de Coimbra, EPE, 3004-561 Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
47
|
Wang W, Battini V, Carnovale C, Noordam R, van Dijk KW, Kragholm KH, van Heemst D, Soeorg H, Sessa M. A novel approach for pharmacological substantiation of safety signals using plasma concentrations of medication and administrative/healthcare databases: a case study using Danish registries for an FDA warning on lamotrigine. Pharmacol Res 2023:106811. [PMID: 37268178 DOI: 10.1016/j.phrs.2023.106811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
PHARMACOM-EPI is a novel framework to predict plasma concentrations of drugs at the time of occurrence of clinical outcomes. In early 2021, the U.S. Food and Drug Administration (FDA) issued a warning on the antiseizure drug lamotrigine claiming that it has the potential to increase the risk of arrhythmias and related sudden cardiac death due to a pharmacological sodium channel-blocking effect. We hypothesized that the risk of arrhythmias and related death is due to toxicity. We used the PHARMACOM-EPI framework to investigate the relationship between lamotrigine's plasma concentrations and the risk of death in older patients using real-world data. Danish nationwide administrative and healthcare registers were used as data sources and individuals aged 65 years or older during the period 1996 - 2018 were included in the study. According to the PHARMACOM-EPI framework, plasma concentrations of lamotrigine were predicted at the time of death and patients were categorized into non-toxic and toxic groups based on the therapeutic range of lamotrigine (3-15mg/L). Over 1 year of treatment, the incidence rate ratio (IRR) of all-cause mortality was calculated between the propensities score matched toxic and non-toxic groups. In total, 7286 individuals were diagnosed with epilepsy and were exposed to lamotrigine, 432 of which had at least one plasma concentration measurement The pharmacometric model by Chavez et al. was used to predict lamotrigine's plasma concentrations considering the lowest absolute percentage error among identified models (14.25%, 95% CI: 11.68-16.23). The majority of lamotrigine associated deaths were cardiovascular-related and occurred among individuals with plasma concentrations in the toxic range. The IRR of mortality between the toxic group and non-toxic group was 3.37 [95% CI: 1.44-8.32] and the cumulative incidence of all-cause mortality exponentially increased in the toxic range. Application of our novel framework PHARMACOM-EPI provided strong evidence to support our hypothesis that the increased risk of all-cause and cardiovascular death was associated with a toxic plasma concentration level of lamotrigine among older lamotrigine users.
Collapse
Affiliation(s)
- Wenyi Wang
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Vera Battini
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Italy; Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Italy
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics; Leiden University Medical Center, Leiden, Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Internal Medicine, Division Endocrinology, Leiden University Medical Center, Leiden, Netherlands; Leiden Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | | | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics; Leiden University Medical Center, Leiden, Netherlands
| | - Hiie Soeorg
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Estonia.
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| |
Collapse
|
48
|
Cota VR, Cançado SAV, Moraes MFD. On temporal scale-free non-periodic stimulation and its mechanisms as an infinite improbability drive of the brain's functional connectogram. Front Neuroinform 2023; 17:1173597. [PMID: 37293579 PMCID: PMC10244597 DOI: 10.3389/fninf.2023.1173597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Rationalized development of electrical stimulation (ES) therapy is of paramount importance. Not only it will foster new techniques and technologies with increased levels of safety, efficacy, and efficiency, but it will also facilitate the translation from basic research to clinical practice. For such endeavor, design of new technologies must dialogue with state-of-the-art neuroscientific knowledge. By its turn, neuroscience is transitioning-a movement started a couple of decades earlier-into adopting a new conceptual framework for brain architecture, in which time and thus temporal patterns plays a central role in the neuronal representation of sampled data from the world. This article discusses how neuroscience has evolved to understand the importance of brain rhythms in the overall functional architecture of the nervous system and, consequently, that neuromodulation research should embrace this new conceptual framework. Based on such support, we revisit the literature on standard (fixed-frequency pulsatile stimuli) and mostly non-standard patterns of ES to put forward our own rationale on how temporally complex stimulation schemes may impact neuromodulation strategies. We then proceed to present a low frequency, on average (thus low energy), scale-free temporally randomized ES pattern for the treatment of experimental epilepsy, devised by our group and termed NPS (Non-periodic Stimulation). The approach has been shown to have robust anticonvulsant effects in different animal models of acute and chronic seizures (displaying dysfunctional hyperexcitable tissue), while also preserving neural function. In our understanding, accumulated mechanistic evidence suggests such a beneficial mechanism of action may be due to the natural-like characteristic of a scale-free temporal pattern that may robustly compete with aberrant epileptiform activity for the recruitment of neural circuits. Delivering temporally patterned or random stimuli within specific phases of the underlying oscillations (i.e., those involved in the communication within and across brain regions) could both potentiate and disrupt the formation of neuronal assemblies with random probability. The usage of infinite improbability drive here is obviously a reference to the "The Hitchhiker's Guide to the Galaxy" comedy science fiction classic, written by Douglas Adams. The parallel is that dynamically driving brain functional connectogram, through neuromodulation, in a manner that would not favor any specific neuronal assembly and/or circuit, could re-stabilize a system that is transitioning to fall under the control of a single attractor. We conclude by discussing future avenues of investigation and their potentially disruptive impact on neurotechnology, with a particular interest in NPS implications in neural plasticity, motor rehabilitation, and its potential for clinical translation.
Collapse
Affiliation(s)
- Vinícius Rosa Cota
- Rehab Technologies - INAIL Lab, Istituto Italiano di Tecnologia, Genoa, Italy
- Laboratory of Neuroengineering and Neuroscience, Department of Electrical Engineering, Federal University of São João del-Rei, São João del Rei, Brazil
| | - Sérgio Augusto Vieira Cançado
- Núcleo Avançado de Tratamento das Epilepsias (NATE), Felício Rocho Hospital, Fundação Felice Rosso, Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Department of Physiology and Biophysics, Núcleo de Neurociências, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
49
|
Shi M, Liu C, He L, Wu H, Wu Y. Therapeutic drug monitoring and the therapeutic reference range of levetiracetam for Chinese patients: Problems and issues. Seizure 2023; 109:26-33. [PMID: 37192596 DOI: 10.1016/j.seizure.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Levetiracetam (LEV) is widely used in the clinical monotherapy or multi-drug combination treatment of seizures due to its good tolerability and efficacy. Due to a lack of large-scale clinical studies, the relationship between levetiracetam concentrations, disease activity and adverse is unclear, limiting the usefulness of therapeutic drug monitoring (TDM) based LEV plasma levels. This study was intended to investigate factors influencing the pharmacokinetics of and the appropriate reference range of LEV concentration using available LEV TDM data. METHODS A rapid, accurate and sensitive high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) method was established to determine LEV plasma concentrations. In this study, the levetiracetam plasma concentration monitoring data from 352 samples (taken from 248 patients) were used to explore the relationship between levetiracetam dose, age, combined administration with other antiseizure medications in patients with epilepsy. RESULTS Age and combined administration emerged as important affecting factors for the correlation of LEV concentration and dose. The correlation between concentration and dose was better in monotherapy. Combined administration may affect LEV concentration, especially when LEV is combined with oxcarbazepine, which might decrease the LEV concentration. CONCLUSION These findings emphasize the need to monitor LEV routinely LEV, especially among children and older adults when other antiseizure comedications are prescribed in the treatment regimen. LEV TDM is a well-established tool for the management of patients with epilepsy.
Collapse
Affiliation(s)
- Min Shi
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China; Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Chenxi Liu
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Lien He
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Huizheng Wu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yin Wu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050051, China; Graduate School, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
50
|
Jiang R, Zhang D, Zhao Z, Mei S. Simultaneous determination of 24 antiepileptic drugs and their active metabolites in human plasma by UHPLC-MS/MS. J Pharm Biomed Anal 2023; 232:115437. [PMID: 37146498 DOI: 10.1016/j.jpba.2023.115437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/02/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023]
Abstract
Antiepileptic drugs (AEDs) have narrow therapeutic ranges with large individual variability. Routine therapeutic drug monitoring of AEDs was useful for dose optimization, but the common immunoassays could not meet the detection requirements of AEDs, especially for new generation AEDs. The aim of this study was to validate an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for simultaneously quantification of 24 AEDs and their active metabolites in human plasma and comparison with a chemiluminescent immunoassay (Simens ADVIA Centaur). The method validation was performed according to FDA and EMEA guidelines. A one-step protein precipitation by acetonitrile followed a five-fold dilution was performed for sample pretreatment. A 5.2 min gradient separation by methanol and 10 mM ammonium acetate was used for separation at 0.6 mL/min under 45 °C. Both positive and negative electrospray ionization were used. Isotopic internal standard was used for all analytes. The inter-day (36 days) accuracy and precision of quality control samples were - 1.07-13.69% and < 6.70% for all analytes. The stability was acceptable for all analytes under routine storing conditions. A total of 436 valproic acid, 118 carbamazepine, and 65 phenobarbital samples were determined twice by each of the UHPLC-MS/MS and immunoassay. Evaluated by Bland-Altman plot, the mean overestimation of the immunoassay compared to UHPLC-MS/MS was 16.5% for valproic acid, 5.6% for carbamazepine, and 40.3% for phenobarbital.
Collapse
Affiliation(s)
- Ruiqi Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, PR China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Dongjie Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, PR China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, PR China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan West Road, Fengtai District, Beijing 100070, PR China; Department of Clinical Pharmacology, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|