1
|
Novelle MG, Naranjo-Martínez B, López-Cánovas JL, Díaz-Ruiz A. Fecal microbiota transplantation, a tool to transfer healthy longevity. Ageing Res Rev 2025; 103:102585. [PMID: 39586550 DOI: 10.1016/j.arr.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
The complex gut microbiome influences host aging and plays an important role in the manifestation of age-related diseases. Restoring a healthy gut microbiome via Fecal Microbiota Transplantation (FMT) is receiving extensive consideration to therapeutically transfer healthy longevity. Herein, we comprehensively review the benefits of gut microbial rejuvenation - via FMT - to promote healthy aging, with few studies documenting life length properties. This review explores how preconditioning donors via standard - lifestyle and pharmacological - antiaging interventions reshape gut microbiome, with the resulting benefits being also FMT-transferable. Finally, we expose the current clinical uses of FMT in the context of aging therapy and address FMT challenges - regulatory landscape, protocol standardization, and health risks - that require refinement to effectively utilize microbiome interventions in the elderly.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain.
| |
Collapse
|
2
|
Qu Q, Chen Y, Wang Y, Long S, Wang W, Yang HY, Li M, Tian X, Wei X, Liu YH, Xu S, Zhang C, Zhu M, Lam SM, Wu J, Yun C, Chen J, Xue S, Zhang B, Zheng ZZ, Piao HL, Jiang C, Guo H, Shui G, Deng X, Zhang CS, Lin SC. Lithocholic acid phenocopies anti-ageing effects of calorie restriction. Nature 2024:10.1038/s41586-024-08329-5. [PMID: 39695227 DOI: 10.1038/s41586-024-08329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Calorie restriction (CR) is a dietary intervention used to promote health and longevity1,2. CR causes various metabolic changes in both the production and the circulation of metabolites1; however, it remains unclear which altered metabolites account for the physiological benefits of CR. Here we use metabolomics to analyse metabolites that exhibit changes in abundance during CR and perform subsequent functional validation. We show that lithocholic acid (LCA) is one of the metabolites that alone can recapitulate the effects of CR in mice. These effects include activation of AMP-activated protein kinase (AMPK), enhancement of muscle regeneration and rejuvenation of grip strength and running capacity. LCA also activates AMPK and induces life-extending and health-extending effects in Caenorhabditis elegans and Drosophila melanogaster. As C. elegans and D. melanogaster are not able to synthesize LCA, these results indicate that these animals are able to transmit the signalling effects of LCA once administered. Knockout of AMPK abrogates LCA-induced phenotypes in all the three animal models. Together, we identify that administration of the CR-mediated upregulated metabolite LCA alone can confer anti-ageing benefits to metazoans in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | | | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Fujian, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Shengye Xue
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhong-Zheng Zheng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, Department of Immunology, School of Basic Medical Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodelling, Peking University, Beijing, China
| | - Hao Guo
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Guanghou Shui
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
3
|
Luo J, Liang S, Jin F. Gut microbiota and healthy longevity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2590-2602. [PMID: 39110402 DOI: 10.1007/s11427-023-2595-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 12/18/2024]
Abstract
Recent progress on the underlying biological mechanisms of healthy longevity has propelled the field from elucidating genetic modification of healthy longevity hallmarks to defining mechanisms of gut microbiota influencing it. Importantly, the role of gut microbiota in the healthy longevity of the host may provide unprecedented opportunities to decipher the plasticity of lifespan on a natural evolutionary scale and shed light on using microbiota-targeted strategies to promote healthy aging and combat age-related diseases. This review investigates how gut microbiota affects healthy longevity, focusing on the mechanisms through which gut microbiota modulates it. Specifically, we focused on the ability of gut microbiota to enhance the intestinal barrier integrity, provide protection from inflammaging, ameliorate nutrientsensing pathways, optimize mitochondrial function, and improve defense against age-related diseases, thus participating in enhancing longevity and healthspan.
Collapse
Affiliation(s)
- Jia Luo
- College of Psychology, Sichuan Normal University, Chengdu, 610066, China
| | - Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Zhang LL, Xu JY, Wei W, Hu ZQ, Zhou Y, Zheng JY, Sha Y, Zhao L, Yang J, Sun Q, Qin LQ. Dietary restriction and fasting alleviate radiation-induced intestinal injury by inhibiting cGAS/STING activation. J Nutr Biochem 2024; 133:109707. [PMID: 39053858 DOI: 10.1016/j.jnutbio.2024.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Radiation injury to the intestine is one of the most common complications in patients undergoing abdominal or pelvic cavity radiotherapy, limiting the clinical application of this treatment. Evidence shows the potential benefits of dietary restriction in improving metabolic profiles and age-related diseases. The present study investigated the effects and mechanisms of dietary restriction in radiation-induced intestinal injury. The mice were randomly divided into the control group, 10 Gy total abdominal irradiation (TAI) group, and groups pretreated with 30% caloric restriction (CR) for 7 days or 24 h fasting before TAI. After radiation, the mice were returned to ad libitum. The mice were sacrificed 3.5 days after radiation, and tissue samples were collected. CR and fasting reduced radiation-induced intestinal damage and promoted intestinal recovery by restoring the shortened colon length, improving the impaired intestinal structure and permeability, and remodeling gut microbial structure. CR and fasting also significantly reduced mitochondrial damage and DNA damage, which in turn reduced activation of the cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) pathway and the production of type I interferon and other chemokines in the jejunum. Since the cGAS/STING pathway is linked with innate immunity, we further showed that CR and fasting induced polarization to immunosuppressive M2 macrophage, decreased CD8+ cytotoxic T lymphocytes, and downregulated proinflammatory factors in the jejunum. Our findings indicated that CR and fasting alleviate radiation-induced intestinal damage by reducing cGAS/STING-mediated harmful immune responses.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Wei Wei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zhi-Qiang Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Yan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Jia-Yang Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Yu Sha
- Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jing Yang
- Department of Clinical Nutrition, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China; Office of the Hosptial, Changzhou No.7 People's Hospital, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China; Office of the Hosptial, Changzhou No.7 People's Hospital, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou, China.
| |
Collapse
|
5
|
Long J, Ren Z, Duan Y, Tao W, Li X, Li S, Li K, Huang Q, Chen J, Yang M, Li Y, Luo X, Liu D. Empagliflozin rescues lifespan and liver senescence in naturally aged mice. GeroScience 2024; 46:4969-4986. [PMID: 38922380 PMCID: PMC11336130 DOI: 10.1007/s11357-024-01250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Empagliflozin is currently known to decrease blood glucose levels, delay renal failure, and reduce the risk of cardiovascular death and all-cause mortality in patients with type 2 diabetes with cardiovascular disease. However, the effects of empagliflozin on the lifespan and health of naturally aged organisms are unclear. This study was designed to investigate the impacts and potential mechanisms of empagliflozin on lifespan and liver senescence in naturally aged mice. Our study revealed that empagliflozin improved survival and health in naturally aged mice. Empagliflozin extended the median survival of male mice by 5.9%. Meanwhile, empagliflozin improved learning memory and motor balance, decreased body weight, and downregulated the hepatic protein expression of P21, P16, α-SMA, and COL1A1. Empagliflozin modulates the structure of the intestinal flora, increasing the relative abundance of Lachnospiraceae, Ruminococcaceae, Lactobacillus, Blautia, and Muribaculaceae and decreasing the relative abundance of Erysipelotrichaceae, Turicibacter, and Dubosiella in naturally aged mice. Further exploration discovered that empagliflozin increased the concentration of SCFAs, decreased the levels of the inflammatory factors TNF-α, IL-6, and CXCL9, and regulated the PI3K/AKT/P21 and AMPK/SIRT1/NF-κB pathways, which may represent the underlying mechanisms involved in these beneficial hepatic effects. Taken together, the above results indicated that empagliflozin intervention could be considered a potential strategy for extending lifespan and slowing liver senescence in naturally aged mice.
Collapse
Affiliation(s)
- Jiangchuan Long
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ziyu Ren
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yaqian Duan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Wei Tao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Shengbing Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ke Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Qixuan Huang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Jie Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Mengliu Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yang Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xie Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Dongfang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Geriatrics and Gerontology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
6
|
Keles NA, Dogan S, Dogan A, Sudagidan M, Balci TN, Cetiner O, Kavruk M, Ozalp VC, Tuna BG. Long-term intermittent caloric restriction remodels the gut microbiota in mice genetically prone to breast cancer. Nutrition 2024; 126:112525. [PMID: 39168040 DOI: 10.1016/j.nut.2024.112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVES Gut microbiota dysbiosis is among the risk factors for breast cancer development, together with genetic background and dietary habits. However, caloric restriction has been shown to remodel the gut microbiota and slow tumor growth. Here, we investigated whether the gut microbiota mediates the preventive effects of long-term chronic or intermittent caloric restriction on breast cancer predisposition. METHODS 10-week-old transgenic breast cancer-prone mice were randomly assigned to dietary groups (ad libitum, chronic caloric restriction, and intermittent caloric restriction groups) and fed up to week 81. Stool samples were collected at weeks 10 (baseline), 17 (young), 49 (adult), and 81 (old). 16S rRNA gene sequencing was performed to identify the gut microbiota profile of the different groups. In order to investigate the breast cancer gut microbiota profile within genetically predisposed individuals regardless of diet, mammary tumor-bearing mice and mammary tumor-free but genetically prone mice were selected from the ad libitum group (n = 6). RESULTS Intermittent caloric restriction increased the microbial diversity of adult mice and modified age-related compositional changes. A total of 13 genera were differentially abundant over time. Pathogenic Mycoplasma was enriched in the re-feeding period of the old intermittent caloric restriction group compared with baseline. Furthermore, mammary tumor-free mice showed shared gut microbiota characteristics with mammary tumor-bearing mice, suggesting an early link between genetic predisposition, gut microbiota, and breast cancer development. CONCLUSIONS Our study revealed the role of gut microbes in the preventive effects of caloric restriction against breast cancer development, implying the significance of diet and microbiome interplay.
Collapse
Affiliation(s)
- Nazim Arda Keles
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Aysenur Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Mert Sudagidan
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey
| | - Tugce Nur Balci
- Department of Nutrition and Dietetics, School of Health Sciences, Atilim University, Ankara, Turkey
| | - Ozlem Cetiner
- Department of Nutrition and Dietetics, School of Health Sciences, Atilim University, Ankara, Turkey
| | - Murat Kavruk
- Department of Medical Biology, School of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Veli Cengiz Ozalp
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, Turkey
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
7
|
Huang F, Cao Y, Liang J, Tang R, Wu S, Zhang P, Chen R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024; 16:2295394. [PMID: 38170622 PMCID: PMC10766396 DOI: 10.1080/19490976.2023.2295394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian aging occurs prior to the aging of other organ systems and acts as the pacemaker of the aging process of multiple organs. As life expectancy has increased, preventing ovarian aging has become an essential goal for promoting extended reproductive function and improving bone and genitourinary conditions related to ovarian aging in women. An improved understanding of ovarian aging may ultimately provide tools for the prediction and mitigation of this process. Recent studies have suggested a connection between ovarian aging and the gut microbiota, and alterations in the composition and functional profile of the gut microbiota have profound consequences on ovarian function. The interaction between the gut microbiota and the ovaries is bidirectional. In this review, we examine current knowledge on ovary-gut microbiota crosstalk and further discuss the potential role of gut microbiota in anti-aging interventions. Microbiota-based manipulation is an appealing approach that may offer new therapeutic strategies to delay or reverse ovarian aging.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ying Cao
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Si Wu
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
8
|
Guan L, Liu R. The Role of Diet and Gut Microbiota Interactions in Metabolic Homeostasis. Adv Biol (Weinh) 2023; 7:e2300100. [PMID: 37142556 DOI: 10.1002/adbi.202300100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Indexed: 05/06/2023]
Abstract
Diet is a pivotal determinant in shaping the structure and function of resident microorganisms in the gut through different food components, nutritive proportion, and calories. The effects of diet on host metabolism and physiology can be mediated through the gut microbiota. Gut microbiota-derived metabolites have been shown to regulate glucose and lipid metabolism, energy consumption, and the immune system. On the other hand, emerging evidence indicates that baseline gut microbiota could predict the efficacy of diet intervention, highlighting gut microbiota can be harnessed as a biomarker in personalized nutrition. In this review, the alterations of gut microbiota in different dietary components and dietary patterns, and the potential mechanisms in the diet-microbiota crosstalk are summarized to understand the interactions of diet and gut microbiota on the impact of metabolic homeostasis.
Collapse
Affiliation(s)
- Lizhi Guan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the P. R. China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the P. R. China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
9
|
Wang L, Wang F, Xiong L, Song H, Ren B, Shen X. A nexus of dietary restriction and gut microbiota: Recent insights into metabolic health. Crit Rev Food Sci Nutr 2023; 64:8649-8671. [PMID: 37154021 DOI: 10.1080/10408398.2023.2202750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent times, dietary restriction (DR) has received considerable attention for its promising effects on metabolism and longevity. Previous studies on DR have mainly focused on the health benefits produced by different restriction patterns, whereas comprehensive reviews of the role of gut microbiota during DR are limited. In this review, we discuss the effects of caloric restriction, fasting, protein restriction, and amino acid restriction from a microbiome perspective. Furthermore, the underlying mechanisms by which DR affects metabolic health by regulating intestinal homeostasis are summarized. Specifically, we reviewed the impacts of different DRs on specific gut microbiota. Additionally, we put forward the limitations of the current research and suggest the development of personalized microbes-directed DR for different populations and corresponding next-generation sequencing technologies for accurate microbiological analysis. DR effectively modulates the composition of the gut microbiota and microbial metabolites. In particular, DR markedly affects the rhythmic oscillation of microbes which may be related to the circadian clock system. Moreover, increasing evidence supports that DR profoundly improves metabolic syndrome, inflammatory bowel disease, and cognitive impairment. To summarize, DR may be an effective and executable dietary manipulation strategy for maintaining metabolic health, however, further investigation is needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
10
|
Zhang L, Zhang T, Sun J, Huang Y, Liu T, Ye Z, Hu J, Zhang G, Chen H, Ye Z, He Y, Qin J. Calorie restriction ameliorates hyperglycemia, modulates the disordered gut microbiota, and mitigates metabolic endotoxemia and inflammation in type 2 diabetic rats. J Endocrinol Invest 2023; 46:699-711. [PMID: 36219316 DOI: 10.1007/s40618-022-01914-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE The effects of calorie restriction (CR) on gut microbiota and the mechanism of CR ameliorating hyperglycemia in streptozotocin (STZ)-induced T2DM model rats were explored. METHODS High-fat diet and STZ injection were applied to induce T2DM model rats. Rats were divided into the following three groups: the control-diet ad libitum group, the T2DM model group fed with ad libitum diet, and the T2DM group fed with 30% restriction diet. 16S rRNA sequencing was used to determine the bacterial communities. Lipopolysaccharide (LPS)-binding protein (LBP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were measured. RESULTS Glucose tolerance and insulin sensitivity were improved by CR, as well as the levels of fasting and random plasma glucose. Besides, CR not only modulated the overall structure of gut microbiota but also had selective enrichment in anti-inflammatory bacteria such as Lachnospiraceae_NK4A136_group, Ruminococcaceae_9, Allobaculum, Alistipes, and Oscillibacter, and decreased pro-inflammatory pathogenic bacteria such as Bacteroides, Lachnoclostridium, and Bifidobacterium. Tax4Fun indicated that CR could regulate related functional pathways such as lipopolysaccharide biosynthesis, and the plasma levels of LBP, IL-6, and TNF-α were markedly reduced by CR, suggesting the mechanism of CR ameliorating hyperglycemia may associate with the modulation of disordered gut microbiota and the reduction of metabolic endotoxemia and inflammation. CONCLUSION CR could ameliorate hyperglycemia, the mechanism of which may associate with the alteration of the overall structure of gut microbiota, restoration of disordered microbiota function, and the downregulation of metabolic endotoxemia and inflammation in diabetic rats.
Collapse
Affiliation(s)
- L Zhang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - T Zhang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - J Sun
- Peking University Shenzhen Hospital, Shenzhen, 518035, China
| | - Y Huang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - T Liu
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Z Ye
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - J Hu
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - G Zhang
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - H Chen
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Z Ye
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Y He
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - J Qin
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
11
|
Singh S, Sharma P, Sarma DK, Kumawat M, Tiwari R, Verma V, Nagpal R, Kumar M. Implication of Obesity and Gut Microbiome Dysbiosis in the Etiology of Colorectal Cancer. Cancers (Basel) 2023; 15:1913. [PMID: 36980799 PMCID: PMC10047102 DOI: 10.3390/cancers15061913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The complexity and variety of gut microbiomes within and among individuals have been extensively studied in recent years in connection to human health and diseases. Our growing understanding of the bidirectional communication between metabolic diseases and the gut microbiome has also highlighted the significance of gut microbiome dysbiosis in the genesis and development of obesity-related cancers. Therefore, it is crucial to comprehend the possible role of the gut microbiota in the crosstalk between obesity and colorectal cancer (CRC). Through the induction of gut microbial dysbiosis, gut epithelial barrier impairment, metabolomic dysregulation, chronic inflammation, or dysregulation in energy harvesting, obesity may promote the development of colorectal tumors. It is well known that strategies for cancer prevention and treatment are most effective when combined with a healthy diet, physical activity, and active lifestyle choices. Recent studies also suggest that an improved understanding of the complex linkages between the gut microbiome and various cancers as well as metabolic diseases can potentially improve cancer treatments and overall outcomes. In this context, we herein review and summarize the clinical and experimental evidence supporting the functional role of the gut microbiome in the pathogenesis and progression of CRC concerning obesity and its metabolic correlates, which may pave the way for the development of novel prognostic tools for CRC prevention. Therapeutic approaches for restoring the microbiome homeostasis in conjunction with cancer treatments are also discussed herein.
Collapse
Affiliation(s)
- Samradhi Singh
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Poonam Sharma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Devojit Kumar Sarma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Manoj Kumawat
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajnarayan Tiwari
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Vinod Verma
- Stem Cell Research Centre, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
| | - Manoj Kumar
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| |
Collapse
|
12
|
Impact of caloric restriction on the gut microbiota. Curr Opin Microbiol 2023; 73:102287. [PMID: 36868081 DOI: 10.1016/j.mib.2023.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Caloric restriction (CR) and related time-restricted diets have been popularized as means of preventing metabolic disease while improving general well-being. However, evidence as to their long-term efficacy, adverse effects, and mechanisms of activity remains incompletely understood. The gut microbiota is modulated by such dietary approaches, yet causal evidence to its possible downstream impacts on host metabolism remains elusive. Herein, we discuss the positive and adverse influences of restrictive dietary interventions on gut microbiota composition and function, and their collective impacts on host health and disease risk. We highlight known mechanisms of microbiota influences on the host, such as modulation of bioactive metabolites, while discussing challenges in achieving mechanistic dietary-microbiota insights, including interindividual variability in dietary responses as well as other methodological and conceptual challenges. In all, causally understanding the impact of CR approaches on the gut microbiota may enable to better decode their overall influences on human physiology and disease.
Collapse
|
13
|
Intermittent fasting supports the balance of the gut microbiota composition. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023; 26:51-57. [PMID: 35953616 DOI: 10.1007/s10123-022-00272-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/06/2023]
Abstract
There is a growing body of detailed research demonstrating that intermittent fasting is essentially a cleansing activity in terms of health. Especially since its applications that exceed 16 h trigger autophagy, it continues its effect on all tissue and organ systems after the regeneration movement that starts at the cellular level. Similarly, it continues to be better understood with each passing day that the gut microbiota (GM) has many positive effects on all tissue and organ systems. Although the GM is affected by many different parameters, dietary habits are reported to be the most effective factor. Therefore, it is important to investigate the effects of different preferred fasting practices on the GM, which has numerous health benefits. Pointing out this situation, this study aims to determine the effects of 18-h intermittent fasting for 5 weeks on the shaping of GM. A 12-month-old male Wistar rat was chosen as the model organism in the study. At the end of the application, the metagenome was applied to the cecum content of the intestinal tissue collected from the sacrificed animals. Intermittent fasting practice led to an increase in alpha diversity, which expresses a significant bacterial diversity, the stabilization of Firmicutes and Bacteroidetes ratios (F/B), and the reshaping of the values with the highest prevalence in all stages of the classification, especially in the family, genus, and species care. Analysis results showed that the preferred intermittent fasting program helps balance the GM composition. This study is an important example showing the strong positive link between intermittent fasting and GM.
Collapse
|
14
|
Zhong W, Wang H, Yang Y, Zhang Y, Lai H, Cheng Y, Yu H, Feng N, Huang R, Liu S, Yang S, Hao T, Zhang B, Ying H, Zhang F, Guo F, Zhai Q. High-protein diet prevents fat mass increase after dieting by counteracting Lactobacillus-enhanced lipid absorption. Nat Metab 2022; 4:1713-1731. [PMID: 36456724 DOI: 10.1038/s42255-022-00687-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/14/2022] [Indexed: 12/05/2022]
Abstract
Dietary restriction is widely used to reduce fat mass and lose weight in individuals with or without obesity; however, weight regain after dieting is still a big challenge, and the underlying mechanisms remain largely elusive. Here we show that refeeding after various types of dieting induces quick fat accumulation in mice and enhanced intestinal lipid absorption contributes to post-dieting fat mass increase. Moreover, refeeding after short-term dietary restriction is accompanied by an increase in intestinal Lactobacillus and its metabolites, which contributes to enhanced intestinal lipid absorption and post-dieting fat mass increase; however, refeeding a high-protein diet after short-term dietary restriction attenuates intestinal lipid absorption and represses fat accumulation by preventing Lactobacillus growth. Our results provide insight into the mechanisms underlying fat mass increase after dieting. We also propose that targeting intestinal Lactobacillus to inhibit intestinal lipid absorption via high-protein diet or antibiotics is likely an effective strategy to prevent obesity after dieting.
Collapse
Affiliation(s)
- Wuling Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yale Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yali Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hejin Lai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yalan Cheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huimin Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rui Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feifan Guo
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
15
|
Zhu X, Li H, Zhou L, Jiang H, Ji M, Chen J. Evaluation of the gut microbiome alterations in healthy rats after dietary exposure to different synthetic ZnO nanoparticles. Life Sci 2022; 312:121250. [PMID: 36455650 DOI: 10.1016/j.lfs.2022.121250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
AIMS Although synthetic ZnO nanoparticles (Nano-ZnO) as an alternative of ZnO compounds have been extensively used such as in livestock production, the increased consuming of Nano-ZnO has raised considerable concerns in environmental pollution and public health. Because of the low digestion of Nano-ZnO, the systematic studies on their interactions with gut microbiota remain to be clarified. MATERIALS AND METHODS Nano-ZnOs were prepared by co-precipitation (ZnO-cp) and high temperature thermal decomposition (ZnO-td) as well as the commercial type (ZnO-s). Transmission electron microscopy (TEM) was used to monitor the morphology of Nano-ZnO. CCK-8 assay was used for cytotoxicity evaluation. Total antioxidant capacity assay, total superoxide dismutase assay, and lipid peroxidation assay were used to evaluate oxidative states of rats. 16S rRNA was used to study the impact of Nano-ZnO on the rat gut microbiome. KEY FINDINGS Both ZnO-cp and ZnO-td exhibited low cytotoxicity while ZnO-s and ZnO-td exhibited prominent antibacterial activities. After a 28-day oral feeding with 1000 mg/kg Zn at dietary dosage, ZnO-s showed slight effect on causing oxidative stress in comparison with that of ZnO-cp and ZnO-td. Results of 16S rRNA sequencing analysis indicated that ZnO-td as a promising short-term nano-supplement can increase probiotics abundances like strains belonged to the genus Lactobacillus and provide the antipathogenic effect. SIGNIFICANCE The results of the gut microbiome alteration by synthetic Nano-ZnO not only provide solution to exposure monitoring of environmental hazard, but rationalize their large-scale manufacture as alternative additive in the food chain.
Collapse
Affiliation(s)
- Xinyi Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Henghui Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liuzhu Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China.
| |
Collapse
|
16
|
Hernández-Calderón P, Wiedemann L, Benítez-Páez A. The microbiota composition drives personalized nutrition: Gut microbes as predictive biomarkers for the success of weight loss diets. Front Nutr 2022; 9:1006747. [PMID: 36211501 PMCID: PMC9537590 DOI: 10.3389/fnut.2022.1006747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
The investigation of the human gut microbiome during recent years has permitted us to understand its relevance for human health at a systemic level, making it possible to establish different functional axes (e.g., the gut-brain, gut-liver, and gut-lung axes), which support the organ-like status conferred to this microecological component of our body. The human gut microbiota is extremely variable but modifiable via diet, a fact that allows targeting of microbes through defined dietary strategies to uncover cost-effective therapies to minimize the burden of non-communicable diseases such as pandemic obesity and overweight and its metabolic comorbidities. Nevertheless, randomly controlled dietary interventions regularly exhibit low to moderate degrees of success in weight control, making their implementation difficult in clinical practice. Here, we review the predictive value of the baseline gut microbiota configurations to anticipate the success of dietary interventions aimed at weight loss, mostly based on caloric restriction regimes and oral fiber supplementation. This emergent research concept fits into precision medicine by considering different diet patterns and adopting the best one, based on the individual microbiota composition, to reach significant adiposity reduction and improve metabolic status. We review the results from this fresh perspective of investigation, taking into account studies released very recently. We also discuss some future outlooks in the field and potential pitfalls to overcome with the aim of gaining knowledge in the field and achieving breakthroughs in personalized nutrition.
Collapse
|
17
|
Duan H, Li J, Yu L, Fan L. The road ahead of dietary restriction on anti-aging: focusing on personalized nutrition. Crit Rev Food Sci Nutr 2022; 64:891-908. [PMID: 35950606 DOI: 10.1080/10408398.2022.2110034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary restriction (DR), including caloric restriction (CR), intermittent fasting (IF), and restriction of specific food compositions, can delay aging, and the main mechanisms include regulation of nutrient-sensing pathways and gut microbiota. However, the effects of DR regimens on longevity remain controversial, as some studies have demonstrated that IF, rather than CR or diet composition, influences longevity, while other studies have shown that the restricted-carbohydrate or -protein diets, rather than CR, determine health and longevity. Many factors, including DR-related factors (carbohydrate or protein composition, degree and duration of DR), and individual differences (health status, sex, genotype, and age of starting DR), would be used to explain the controversial anti-aging effects of DR, thus highlighting the necessity of precise DR intervention for anti-aging. Personalized DR intervention in humans is challenging because of the lack of accurate aging molecular biomarkers and vast individual variability. Using machine learning to build a predictive model based on the data set of clinical features, gut microbiome and metabolome, may be a good method to achieve precise DR intervention. Therefore, this review analyzed the anti-aging effects of various DR regimens, summarized their mechanisms and influencing factors, and proposed a future research direction for achieving personalized DR regimens for slowing aging.
Collapse
Affiliation(s)
- Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics at, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Gao Q, Wang Y, Li J, Bai G, Liu L, Zhong R, Ma T, Pan H, Zhang H. Supplementation of multi-enzymes alone or combined with inactivated Lactobacillus benefits growth performance and gut microbiota in broilers fed wheat diets. Front Microbiol 2022; 13:927932. [PMID: 35979486 PMCID: PMC9376439 DOI: 10.3389/fmicb.2022.927932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of multi-enzymes mixture supplementation or combination with inactivated Lactobacillus on growth performance, intestinal barrier, and cecal microbiota were investigated in broilers at the age of 15-42 days fed a wheat-based diet. A total of 576 broilers (12 broilers/cage; n = 12) were used and divided into four groups and randomly allotted to four experimental diets throughout grower (15-28 days of age) and finisher (29-42 days of age) phases. Diets consisted of a corn-soybean meal-based diet (BD), a wheat-soybean meal-based diet (WD), and WD supplemented multi-enzymes (WED) or combined with inactivated Lactobacillus (WEPD). The results showed that the average daily gain (ADG) and body weight (BW) were reduced in broilers fed WD diet compared with those fed BD diet during the grower period (P < 0.05). Broilers in the WED or WEPD group had higher ADG and BW during the grower period (P < 0.05) and had a lower feed-to-gain ratio (F/G) compared to broilers in the WD group during the grower and overall periods (P < 0.05). Improved expression of intestinal barrier genes (claudin-1, ZO-1, and mucin-2) was observed in WEPD compared to the BD or WD group (P < 0.05). Compared to the BD group, the WD group decreased the abundance of Oscillospira, norank_f__Erysipelotrichaceae, and Peptococcus, which are related to anti-inflammatory function and BW gain. The WD also increased Bifidobacterium and some short-chain fatty acid (SCFA)-producing bacteria (Anaerotruncus, Blautia, and Oscillibacter), and Barnesiella, which were presumed as "harmful microbes" [false discovery rate (FDR) < 0.05]. WED and WEPD groups, respectively, improved Bilophila and Eubacterium_hallii_group compared with those in the WD group (FDR < 0.05). In addition, the Enterococcus abundance was reduced in the WEPD group compared to the WD group (FDR < 0.05). Higher acetate and total SCFA concentrations were observed (P < 0.05) among broilers who received a WD diet. Compared with the WD group, the WED or WEPD group further increased cecal propionate content (P < 0.05) and tended to improve butyrate concentration. These results suggested that supplemental multi-enzymes alone and combined with inactivated Lactobacillus could improve the growth performance based on the wheat-based diet and offer additional protective effects on the intestinal barrier function of broilers.
Collapse
Affiliation(s)
- Qingtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanchun Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jiaheng Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, Liège University, Gembloux, Belgium
| | - Guosong Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Teng Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Abstract
Sarcopenia is common in aging and in patients with heart failure (HF) who may experience worse outcomes. Patients with muscle wasting are more likely to experience falls and can have serious complications when undergoing cardiac procedures. While intensive nutritional support and exercise rehabilitation can help reverse some of these changes, they are often under-prescribed in a timely manner, and we have limited insights into who would benefit. Mechanistic links between gut microbial metabolites (GMM) have been identified and may contribute to adverse clinical outcomes in patients with cardio-renal diseases and aging. This review will examine the emerging evidence for the influence of the gut microbiome-derived metabolites and notable signaling pathways involved in both sarcopenia and HF, especially those linked to dietary intake and mitochondrial metabolism. This provides a unique opportunity to gain mechanistic and clinical insights into developing novel therapeutic strategies that target these GMM pathways or through tailored nutritional modulation to prevent progressive muscle wasting in elderly patients with heart failure.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA
| | - W H Wilson Tang
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
Dakic T, Jevdjovic T, Vujovic P, Mladenovic A. The Less We Eat, the Longer We Live: Can Caloric Restriction Help Us Become Centenarians? Int J Mol Sci 2022; 23:ijms23126546. [PMID: 35742989 PMCID: PMC9223351 DOI: 10.3390/ijms23126546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Striving for longevity is neither a recent human desire nor a novel scientific field. The first article on this topic was published in 1838, when the average human life expectancy was approximately 40 years. Although nowadays people on average live almost as twice as long, we still (and perhaps more than ever) look for new ways to extend our lifespan. During this seemingly endless journey of discovering efficient methods to prolong life, humans were enthusiastic regarding several approaches, one of which is caloric restriction (CR). Where does CR, initially considered universally beneficial for extending both lifespan and health span, stand today? Does a lifelong decrease in food consumption represent one of the secrets of centenarians’ long and healthy life? Do we still believe that if we eat less, we will live longer? This review aims to summarize the current literature on CR as a potential life-prolonging intervention in humans and discusses metabolic pathways that underlie this effect.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Aleksandra Mladenovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul.D. Stefana 142, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
21
|
Duan H, Pan J, Guo M, Li J, Yu L, Fan L. Dietary strategies with anti-aging potential: dietary patterns and supplements. Food Res Int 2022; 158:111501. [DOI: 10.1016/j.foodres.2022.111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
22
|
Huang R, Wu F, Zhou Q, Wei W, Yue J, Xiao B, Luo Z. Lactobacillus and intestinal diseases: mechanisms of action and clinical applications. Microbiol Res 2022; 260:127019. [DOI: 10.1016/j.micres.2022.127019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
|
23
|
Boscaini S, Leigh SJ, Lavelle A, García-Cabrerizo R, Lipuma T, Clarke G, Schellekens H, Cryan JF. Microbiota and body weight control: Weight watchers within? Mol Metab 2022; 57:101427. [PMID: 34973469 PMCID: PMC8829807 DOI: 10.1016/j.molmet.2021.101427] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite several decades of research, managing body weight remains an unsolved clinical problem. Health problems associated with dysregulated body weight, such as obesity and cachexia, exhibit several gut microbiota alterations. There is an increased interest in utilising the gut microbiota for body weight control, as it responds to intervention and plays an important role in energy extraction from food, as well as biotransformation of nutrients. SCOPE OF THE REVIEW This review provides an overview of the role of the gut microbiota in the physiological and metabolic alterations observed in two body weight dysregulation-related disorders, namely obesity and cachexia. Second, we assess the available evidence for different strategies, including caloric restriction, intermittent fasting, ketogenic diet, bariatric surgery, probiotics, prebiotics, synbiotics, high-fibre diet, and fermented foods - effects on body weight and gut microbiota composition. This approach was used to give insights into the possible link between body weight control and gut microbiota configuration. MAJOR CONCLUSIONS Despite extensive associations between body weight and gut microbiota composition, limited success could be achieved in the translation of microbiota-related interventions for body weight control in humans. Manipulation of the gut microbiota alone is insufficient to alter body weight and future research is needed with a combination of strategies to enhance the effects of lifestyle interventions.
Collapse
Affiliation(s)
- Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Timothy Lipuma
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
24
|
Cantoni C, Dorsett Y, Fontana L, Zhou Y, Piccio L. Effects of dietary restriction on gut microbiota and CNS autoimmunity. Clin Immunol 2022; 235:108575. [PMID: 32822833 PMCID: PMC7889763 DOI: 10.1016/j.clim.2020.108575] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/12/2020] [Accepted: 08/14/2020] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is the most common central nervous system (CNS) autoimmune disease. It is due to the interplay of genetic and environmental factors. Current opinion is that diet could play a pathogenic role in disease onset and development. Dietary restriction (DR) without malnutrition markedly improves health and increases lifespan in multiple model organisms. DR regimens that utilize continuous or intermittent food restriction can induce anti-inflammatory, immuno-modulatory and neuroendocrine adaptations promoting health. These adaptations exert neuroprotective effects in the main MS animal model, experimental autoimmune encephalomyelitis (EAE). This review summarizes the current knowledge on DR-induced changes in gut microbial composition and metabolite production and its impact on underlying functional mechanisms. Studies demonstrating the protective effects of DR regimens on EAE and people with MS are also presented. This is a rapidly developing research field with important clinical implications for personalized dietary interventions in MS prevention and treatment.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yair Dorsett
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia,Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW 2006, Australia,Department of Clinical and Experimental Sciences, Brescia University School of Medicine, Brescia, Italy
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Brain and Mind Centre, University of Sydney, Sydney, NSW 2050, Australia.,Corresponding author: Laura Piccio, MD PhD, 1) Brain and Mind Centre, University of Sydney, 94 Mallett St Camperdown, NSW, 2050, Australia, , 2) Washington University School of Medicine, Dept. of Neurology, Campus Box 8111; 660 S. Euclid Avenue, St. Louis, MO 63110; USA, Phone: (314) 747-4591; Fax: (314) 747-1345;
| |
Collapse
|
25
|
Theabrownin modulates the gut microbiome and serum metabolome in aging mice induced by D-galactose. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
26
|
Abstract
Identifying ways to deal with the challenges presented by aging is an urgent task, as we are facing an aging society. External factors such as diet, exercise and drug therapy have proven to be major elements in controlling healthy aging and prolonging life expectancy. More recently, the intestinal microbiota has also become a key factor in the anti-aging process. As the intestinal microbiota changes with aging, an imbalance in intestinal microorganisms can lead to many age-related degenerative diseases and unhealthy aging. This paper reviews recent research progress on the relationship between intestinal microorganisms and anti-aging effects, focusing on the changes and beneficial effects of intestinal microorganisms under dietary intervention, exercise and drug intervention. In addition, bacteriotherapy has been used to prevent frailty and unhealthy aging. Most of these anti-aging approaches improve the aging process and age-related diseases by regulating the homeostasis of intestinal flora and promoting a healthy intestinal environment. Intervention practices based on intestinal microorganisms show great potential in the field of anti-aging medicine.
Collapse
Affiliation(s)
- Yanjiao Du
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yue Gao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaolan Fan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Deying Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,CONTACT Mingyao Yang Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan611130, P. R. China
| |
Collapse
|
27
|
Daily JW, Park S. Sarcopenia Is a Cause and Consequence of Metabolic Dysregulation in Aging Humans: Effects of Gut Dysbiosis, Glucose Dysregulation, Diet and Lifestyle. Cells 2022; 11:cells11030338. [PMID: 35159148 PMCID: PMC8834403 DOI: 10.3390/cells11030338] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle mass plays a critical role in a healthy lifespan by helping to regulate glucose homeostasis. As seen in sarcopenia, decreased skeletal muscle mass impairs glucose homeostasis, but it may also be caused by glucose dysregulation. Gut microbiota modulates lipopolysaccharide (LPS) production, short-chain fatty acids (SCFA), and various metabolites that affect the host metabolism, including skeletal muscle tissues, and may have a role in the sarcopenia etiology. Here, we aimed to review the relationship between skeletal muscle mass, glucose homeostasis, and gut microbiota, and the effect of consuming probiotics and prebiotics on the development and pathological consequences of sarcopenia in the aging human population. This review includes discussions about the effects of glucose metabolism and gut microbiota on skeletal muscle mass and sarcopenia and the interaction of dietary intake, physical activity, and gut microbiome to influence sarcopenia through modulating the gut–muscle axis. Emerging evidence suggests that the microbiome can regulate both skeletal muscle mass and function, in part through modulating the metabolisms of short-chain fatty acids and branch-chain amino acids that might act directly on muscle in humans or indirectly through the brain and liver. Dietary factors such as fats, proteins, and indigestible carbohydrates and lifestyle interventions such as exercise, smoking, and alcohol intake can both help and hinder the putative gut–muscle axis. The evidence presented in this review suggests that loss of muscle mass and function are not an inevitable consequence of the aging process, and that dietary and lifestyle interventions may prevent or delay sarcopenia.
Collapse
Affiliation(s)
- James W. Daily
- Department of R & D, Daily Manufacturing Inc., Rockwell, 28138 NC, USA;
| | - Sunmin Park
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| |
Collapse
|
28
|
Rinninella E, Cintoni M, Raoul P, Ianiro G, Laterza L, Ponziani FR, Pulcini G, Gasbarrini A, Mele MC. Diet-Induced Alterations in Gut Microbiota Composition and Function. COMPREHENSIVE GUT MICROBIOTA 2022:354-373. [DOI: 10.1016/b978-0-12-819265-8.00035-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Ke S, Mitchell SJ, MacArthur MR, Kane AE, Sinclair DA, Venable EM, Chadaideh KS, Carmody RN, Grodstein F, Mitchell JR, Liu Y. Gut Microbiota Predicts Healthy Late-Life Aging in Male Mice. Nutrients 2021; 13:3290. [PMID: 34579167 PMCID: PMC8467910 DOI: 10.3390/nu13093290] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Calorie restriction (CR) extends lifespan and retards age-related chronic diseases in most species. There is growing evidence that the gut microbiota has a pivotal role in host health and age-related pathological conditions. Yet, it is still unclear how CR and the gut microbiota are related to healthy aging. Here, we report findings from a small longitudinal study of male C57BL/6 mice maintained on either ad libitum or mild (15%) CR diets from 21 months of age and tracked until natural death. We demonstrate that CR results in a significantly reduced rate of increase in the frailty index (FI), a well-established indicator of aging. We observed significant alterations in diversity, as well as compositional patterns of the mouse gut microbiota during the aging process. Interrogating the FI-related microbial features using machine learning techniques, we show that gut microbial signatures from 21-month-old mice can predict the healthy aging of 30-month-old mice with reasonable accuracy. This study deepens our understanding of the links between CR, gut microbiota, and frailty in the aging process of mice.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (S.K.); (F.G.)
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Sarah J. Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Health Sciences and Technology, ETH Zurich, 8005 Zurich, Switzerland;
| | - Michael R. MacArthur
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Health Sciences and Technology, ETH Zurich, 8005 Zurich, Switzerland;
| | - Alice E. Kane
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; (A.E.K.); (D.A.S.)
| | - David A. Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; (A.E.K.); (D.A.S.)
| | - Emily M. Venable
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; (E.M.V.); (K.S.C.); (R.N.C.)
| | - Katia S. Chadaideh
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; (E.M.V.); (K.S.C.); (R.N.C.)
| | - Rachel N. Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; (E.M.V.); (K.S.C.); (R.N.C.)
| | - Francine Grodstein
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (S.K.); (F.G.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - James R. Mitchell
- Department of Health Sciences and Technology, ETH Zurich, 8005 Zurich, Switzerland;
| | - Yangyu Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (S.K.); (F.G.)
| |
Collapse
|
30
|
Baker A, Khan MS, Iqbal MZ, Khan MS. Tumor-targeted Drug Delivery by Nanocomposites. Curr Drug Metab 2021; 21:599-613. [PMID: 32433002 DOI: 10.2174/1389200221666200520092333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/30/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tumor-targeted delivery by nanoparticles is a great achievement towards the use of highly effective drug at very low doses. The conventional development of tumor-targeted delivery by nanoparticles is based on enhanced permeability and retention (EPR) effect and endocytosis based on receptor-mediated are very demanding due to the biological and natural complications of tumors as well as the restrictions on the design of the accurate nanoparticle delivery systems. METHODS Different tumor environment stimuli are responsible for triggered multistage drug delivery systems (MSDDS) for tumor therapy and imaging. Physicochemical properties, such as size, hydrophobicity and potential transform by MSDDS because of the physiological blood circulation different, intracellular tumor environment. This system accomplishes tumor penetration, cellular uptake improved, discharge of drugs on accurate time, and endosomal discharge. RESULTS Maximum drug delivery by MSDDS mechanism to target therapeutic cells and also tumor tissues and sub cellular organism. Poorly soluble compounds and bioavailability issues have been faced by pharmaceutical industries, which are resolved by nanoparticle formulation. CONCLUSION In our review, we illustrate different types of triggered moods and stimuli of the tumor environment, which help in smart multistage drug delivery systems by nanoparticles, basically a multi-stimuli sensitive delivery system, and elaborate their function, effects, and diagnosis.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Mohd Salman Khan
- Clinical Biochemistry & Natural Product Research Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Muhammad Zafar Iqbal
- Department of Studies and Research in Zoology, Government First Grade College, Karwar, 581301, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| |
Collapse
|
31
|
Kökten T, Hansmannel F, Ndiaye NC, Heba AC, Quilliot D, Dreumont N, Arnone D, Peyrin-Biroulet L. Calorie Restriction as a New Treatment of Inflammatory Diseases. Adv Nutr 2021; 12:1558-1570. [PMID: 33554240 PMCID: PMC8321869 DOI: 10.1093/advances/nmaa179] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Immoderate calorie intake coupled with a sedentary lifestyle are major determinants of health issues and inflammatory diseases in modern society. The balance between energy consumption and energy expenditure is critical for longevity. Excessive energy intake and adiposity cause systemic inflammation, whereas calorie restriction (CR) without malnutrition, exerts a potent anti-inflammatory effect. The objective of this review was to provide an overview of different strategies used to reduce calorie intake, discuss physiological mechanisms by which CR might lead to improved health outcomes, and summarize the present knowledge about inflammatory diseases. We discuss emerging data of observational studies and randomized clinical trials on CR that have been shown to reduce inflammation and improve human health.
Collapse
Affiliation(s)
- Tunay Kökten
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Franck Hansmannel
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Ndeye Coumba Ndiaye
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Anne-Charlotte Heba
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Didier Quilliot
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
- Université de Lorraine, Centre Hospitalier Régional Universitaire (CHRU)-Nancy, Department of Diabetology-Endocrinology-Nutrition, Nancy, France
| | - Natacha Dreumont
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Djésia Arnone
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
| | - Laurent Peyrin-Biroulet
- Université de Lorraine, Inserm U1256 NGERE (Nutrition—Genetics and Exposure to Environmental Risks), Nancy, France
- Université de Lorraine, Centre Hospitalier Régional Universitaire (CHRU)-Nancy, Department of Gastroenterology, Nancy, France
| |
Collapse
|
32
|
Martin OA, Grant-Beurmann S, Orellana ER, Hajnal A, Fraser CM. Changes in the Gut Microbiota Following Bariatric Surgery Are Associated with Increased Alcohol Intake in a Female Rat Model. Alcohol Alcohol 2021; 56:605-613. [PMID: 34155502 DOI: 10.1093/alcalc/agab041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023] Open
Abstract
AIMS We aimed to investigate if differences in gut microbiota diversity and composition are associated with post-operative alcohol intake following bariatric surgery in a rat model. METHODS Twenty-four female rats were randomized to three treatment groups: sham surgery, vertical sleeve gastrectomy (VSG) or Roux-en-Y gastric bypass (RYGB). Stool was collected pre- and post-operatively and 16S rRNA gene amplification and sequencing was performed. Analysis focused on correlating microbial diversity, type of surgery and alcohol (EtOH) intake. RESULTS Pre-operative stools samples on regular diet showed similar taxonomic composition and Shannon diversity among the three treatment groups. There was a significant decrease in Shannon diversity and a change in taxonomic composition of the gut microbiota after rats was fed high fat diet. Post-operatively, the RYGB group showed significantly lower taxonomic diversity than the VSG and sham groups, while the VSG and sham groups diversity were not significantly different. Taxonomic composition and function prediction based on PICRUSt analysis showed the RYGB group to be distinct from the VSG and sham groups. Shannon diversity was found to be negatively associated with EtOH intake. CONCLUSIONS Changes in the taxonomic profile of the gut microbiota following bariatric surgery, particularly RYGB, are associated with increased EtOH intake and may contribute to increased alcohol use disorder risk through the gut-brain-microbiome axis.
Collapse
Affiliation(s)
- Olivia A Martin
- Institute for Genome Sciences, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA.,Department of Surgery, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA
| | - Silvia Grant-Beurmann
- Institute for Genome Sciences, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA
| | - Elise R Orellana
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, University Drive. 10733, Hershey, PA, USA
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, University Drive. 10733, Hershey, PA, USA
| | - Claire M Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, West Baltimore St. 21201, Baltimore, MD, USA
| |
Collapse
|
33
|
Dietary restrictions modulate the gut microbiota: Implications for health and disease. Nutr Res 2021; 89:10-22. [PMID: 33878569 DOI: 10.1016/j.nutres.2021.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
The health benefits of carefully restricting the energy intake in a strategic manner whilst avoiding malnutrition are widely discussed. In the recent years, the great impact of the gut microbiota on its host has been clarified more and more. Since the gut microbiota produces a number of metabolites and molecules that can affect host metabolism, modulating it with dietary restriction can influence the health and the progression of disease of its host on various levels. This review comprises 15 studies investigating the effect of different variants of fasting and caloric restriction on the gastrointestinal microbiome and its metabolites. The data suggest that changing the gut microbiota composition by dietary restriction has the potential to positively influence the progression of several diseases such as obesity, diabetes, neurological diseases or inflammatory bowel disease. Finally, the relevance of the findings for clinical practice is evaluated and approaches for future research are proposed.
Collapse
|
34
|
Narasimhan H, Ren CC, Deshpande S, Sylvia KE. Young at Gut-Turning Back the Clock with the Gut Microbiome. Microorganisms 2021; 9:microorganisms9030555. [PMID: 33800340 PMCID: PMC8001982 DOI: 10.3390/microorganisms9030555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Over the past century, we have witnessed an increase in life-expectancy due to public health measures; however, we have also seen an increase in susceptibility to chronic disease and frailty. Microbiome dysfunction may be linked to many of the conditions that increase in prevalence with age, including type 2 diabetes, cardiovascular disease, Alzheimer's disease, and cancer, suggesting the need for further research on these connections. Moreover, because both non-modifiable (e.g., age, sex, genetics) and environmental (e.g., diet, infection) factors can influence the microbiome, there are vast opportunities for the use of interventions related to the microbiome to promote lifespan and healthspan in aging populations. To understand the mechanisms mediating many of the interventions discussed in this review, we also provide an overview of the gut microbiome's relationships with the immune system, aging, and the brain. Importantly, we explore how inflammageing (low-grade chronic inflammation that often develops with age), systemic inflammation, and senescent cells may arise from and relate to the gut microbiome. Furthermore, we explore in detail the complex gut-brain axis and the evidence surrounding how gut dysbiosis may be implicated in several age-associated neurodegenerative diseases. We also examine current research on potential interventions for healthspan and lifespan as they relate to the changes taking place in the microbiome during aging; and we begin to explore how the reduction in senescent cells and senescence-associated secretory phenotype (SASP) interplay with the microbiome during the aging process and highlight avenues for further research in this area.
Collapse
Affiliation(s)
| | - Clarissa C. Ren
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | | - Kristyn E. Sylvia
- The Society for Cardiovascular Angiography and Interventions, Washington, DC 20036, USA
- Correspondence: ; Tel.: +1-774-226-6214
| |
Collapse
|
35
|
Elucidating the Relations between Gut Bacterial Composition and the Plasma and Fecal Metabolomes of Antibiotic Treated Wistar Rats. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gut microbiome is vital to the health and development of an organism, specifically in determining the host response to a chemical (drug) administration. To understand this, we investigated the effects of six antibiotic (AB) treatments (Streptomycin sulfate, Roxithromycin, Sparfloxacin, Vancomycin, Clindamycin and Lincomycin hydrochloride) and diet restriction (–20%) on the gut microbiota in 28-day oral toxicity studies on Wistar rats. The fecal microbiota was determined using 16S rDNA marker gene sequencing. AB-class specific alterations were observed in the bacterial composition, whereas restriction in diet caused no observable difference. These changes associated well with the changes in the LC–MS/MS- and GC–MS-based metabolome profiles, particularly of feces and to a lesser extent of plasma. Particularly strong and AB-specific metabolic alterations were observed for bile acids in both plasma and feces matrices. Although AB-group-specific plasma metabolome changes were observed, weaker associations between fecal and plasma metabolome suggest a profound barrier between them. Numerous correlations between the bacterial families and the fecal metabolites were established, providing a holistic overview of the gut microbial functionality. Strong correlations were observed between microbiota and bile acids, lipids and fatty acids, amino acids and related metabolites. These microbiome–metabolome correlations promote understanding of the functionality of the microbiome for its host.
Collapse
|
36
|
Wiesenborn DS, Gálvez EJC, Spinel L, Victoria B, Allen B, Schneider A, Gesing A, Al-Regaiey KA, Strowig T, Schäfer KH, Masternak MM. The Role of Ames Dwarfism and Calorie Restriction on Gut Microbiota. J Gerontol A Biol Sci Med Sci 2021; 75:e1-e8. [PMID: 31665244 DOI: 10.1093/gerona/glz236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome (GM) represents a large and very complex ecosystem of different microorganisms. There is an extensive interest in the potential role of the GM in different diseases including cancer, diabetes, cardiovascular diseases, and aging. The GM changes over the lifespan and is strongly associated with various age-related diseases. Ames dwarf (df/df) mice are characterized by an extended life- and healthspan, and although these mice are protected from many age-related diseases, their microbiome has not been studied. To determine the role of microbiota on longevity animal models, we investigated the changes in the GM of df/df and normal control (N) mice, by comparing parents before mating and littermate mice at three distinct time points during early life. Furthermore, we studied the effects of a 6-month calorie restriction (CR), the most powerful intervention extending the lifespan. Our data revealed significant changes of the GM composition during early life development, and we detected differences in the abundance of some bacteria between df/df and N mice, already in early life. Overall, the variability of the microbiota by genotype, time-point, and breeding pair showed significant differences. In addition, CR caused significant changes in microbiome according to gastrointestinal (GI) location (distal colon, ileum, and cecum), genotype, and diet. However, the overall impact of the genotype was more prominent than that of the CR. In conclusion, our findings suggest that the gut microbiota plays an important role during postnatal development in long-living df/df mice and CR dietary regimen can significantly modulate the GM.
Collapse
Affiliation(s)
- Denise S Wiesenborn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando.,Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lina Spinel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Brittany Allen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Augusto Schneider
- Department of Nutrition, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Adam Gesing
- Department of Endocrinology of Ageing, Medical University of Lodz, Poland
| | - Khalid A Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Germany
| | - Karl-Herbert Schäfer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando.,Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.,Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando.,Department of Head and Neck Surgery, The Greater Poland Cancer Center, Poznan, Poland
| |
Collapse
|
37
|
Bandera-Merchan B, Boughanem H, Crujeiras AB, Macias-Gonzalez M, Tinahones FJ. Ketotherapy as an epigenetic modifier in cancer. Rev Endocr Metab Disord 2020; 21:509-519. [PMID: 32514818 DOI: 10.1007/s11154-020-09567-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigenetic alterations in cancer play a variety of roles. Aberrant DNA methylation, as one of the epigenetic mechanisms, has been widely studied in both tumor and liquid biopsies and provide a useful bench mark for treatment response in cancer. Recently, several studies have reported an association between the type of diet and epigenetic modifications. Whereby there is a growing interest in finding the "anti-cancer diet formula", if such a thing exists. In this sense, ketogenic diets (KD) have reported potentially beneficial effects, which were able to prevent malignancies and decrease tumor growth. Some studies have even shown increased survival in cancer patients, reduced side effects of cytotoxic treatments, and intensified efficacy of cancer therapies. Although the biological mechanisms of KD are not well understood, it has been reported that KD may affect DNA methylation by modulating the expression of crucial genes involved in tumor survival and proliferation. However, there are many considerations to take into account to use ketotherapy in cancer, such as epigenetic mark, type of cancer, immunological and metabolic state or microbiota profile. In this review, we argue about ketotherapy as a potential strategy to consider as coadjuvant of cancer therapy. We will focus on mainly epigenetic mechanisms and dietary approach that could be included in the current clinical practice guidelines.
Collapse
Affiliation(s)
- Borja Bandera-Merchan
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010, Málaga, Spain
| | - Hatim Boughanem
- Biomedical Research Institute of Malaga (IBIMA). Faculty of Science, University of Malaga, 29010, Málaga, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010, Málaga, Spain.
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), 29010, Málaga, Spain
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
38
|
Cage bedding modifies metabolic and gut microbiota profiles in mouse studies applying dietary restriction. Sci Rep 2020; 10:20835. [PMID: 33257713 PMCID: PMC7705694 DOI: 10.1038/s41598-020-77831-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
Experiments involving food restriction are common practice in metabolic research. Under fasted conditions, mice supplement their diet with cage bedding. We aimed at identifying metabolic and microbiota-related parameters affected by the bedding type. We exposed mice housed with wooden, cellulose, or corncob cage beddings to ad libitum feeding, caloric restriction (CR), or over-night (ON) fasting. Additionally, two subgroups of the ON fast group were kept without any bedding or on a metal grid preventing coprophagy. Mice under CR supplemented their diet substantially with bedding; however, the amount varied depending on the kind of bedding. Bedding-related changes in body weight loss, fat loss, cecum size, stomach weight, fecal output, blood ghrelin levels as well as a response to glucose oral tolerance test were recorded. As fiber is fermented by the gut bacteria, the type of bedding affects gut bacteria and fecal metabolites composition of CR mice. CR wood and cellulose groups showed distinct cecal metabolite and microbiome profiles when compared to the CR corncob group. While all ad libitum fed animal groups share similar profiles. We show that restriction-related additional intake of bedding-derived fiber modulates multiple physiological parameters. Therefore, the previous rodent studies on CR, report the combined effect of CR and increased fiber consumption.
Collapse
|
39
|
Pistollato F, Forbes-Hernandez TY, Iglesias RC, Ruiz R, Elexpuru Zabaleta M, Dominguez I, Cianciosi D, Quiles JL, Giampieri F, Battino M. Effects of caloric restriction on immunosurveillance, microbiota and cancer cell phenotype: Possible implications for cancer treatment. Semin Cancer Biol 2020; 73:45-57. [PMID: 33271317 DOI: 10.1016/j.semcancer.2020.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Fasting, caloric restriction and foods or compounds mimicking the biological effects of caloric restriction, known as caloric restriction mimetics, have been associated with a lower risk of age-related diseases, including cardiovascular diseases, cancer and cognitive decline, and a longer lifespan. Reduced calorie intake has been shown to stimulate cancer immunosurveillance, reducing the migration of immunosuppressive regulatory T cells towards the tumor bulk. Autophagy stimulation via reduction of lysine acetylation, increased sensitivity to chemo- and immunotherapy, along with a reduction of insulin-like growth factor 1 and reactive oxygen species have been described as some of the major effects triggered by caloric restriction. Fasting and caloric restriction have also been shown to beneficially influence gut microbiota composition, modify host metabolism, reduce total cholesterol and triglyceride levels, lower diastolic blood pressure and elevate morning cortisol level, with beneficial modulatory effects on cardiopulmonary fitness, body fat and weight, fatigue and weakness, and general quality of life. Moreover, caloric restriction may reduce the carcinogenic and metastatic potential of cancer stem cells, which are generally considered responsible of tumor formation and relapse. Here, we reviewed in vitro and in vivo studies describing the effects of fasting, caloric restriction and some caloric restriction mimetics on immunosurveillance, gut microbiota, metabolism, and cancer stem cell growth, highlighting the molecular and cellular mechanisms underlying these effects. Additionally, studies on caloric restriction interventions in cancer patients or cancer risk subjects are discussed. Considering the promising effects associated with caloric restriction and caloric restriction mimetics, we think that controlled-randomized large clinical trials are warranted to evaluate the inclusion of these non-pharmacological approaches in clinical practice.
Collapse
Affiliation(s)
- Francesca Pistollato
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), Santander, Spain
| | - Tamara Yuliett Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | | | - Roberto Ruiz
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), Santander, Spain
| | | | - Irma Dominguez
- Universidad Internacional Iberoamericana (UNINI), Camphece, Mexico; Universidade Internacional do Cuanza, Cuito, Angola
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy
| | - Josè L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix", Biomedical Research Center, University of Granada, Granada, 18000, Spain
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
40
|
Nallanchakravarthula S, Amruta N, Ramamurthy C. Cancer Microbiome; Opportunities and Challenges. Endocr Metab Immune Disord Drug Targets 2020; 21:215-229. [PMID: 32819239 DOI: 10.2174/1871530320999200818134942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microbe-host association has emerged as a modulator in modern medicine. Cancer and its associated host microbes are collectively referred to as the cancer microbiome. The cancer microbiome is complex, and many aspects remain unclear including metabolic plasticity, microenvironment remodeling, cellular communications, and unique signatures within the host, all of which have a vital role in homeostasis and pathogenesis of host physiology. However, the role of the microbiome in cancer initiation, progression, and therapy is still poorly understood and remains to be explored. OBJECTIVE The objective of this review is to elucidate the role of the microbiome in cancer metabolism and the tumor microenvironment. It also focuses on the importance of therapeutic opportunities and challenges in the manipulation of the cancer microbiome. METHODS A literature search was conducted on the role of the microbiome in cancer initiation, progression, and therapy. CONCLUSION The tumor microenvironment and cancer metabolism are significant in host-microbiome interactions. The microbiome can modulate standard cancer therapies like chemotherapy and immunotherapy. Microbiome transplantation has also been demonstrated as an effective therapy against cancer. Furthermore, the modulation of the microbiome also has potential clinical outcomes in modern medicine.
Collapse
Affiliation(s)
| | - Narayanappa Amruta
- Department of Neurosurgery, Tulane University, New Orleans, Louisiana, United States
| | - Chitteti Ramamurthy
- C.G. Bhakta Institute of Biotechnology, UkaTarsadia University, Maliba campus, Bardoli Surat (Dist), Gujarat, India
| |
Collapse
|
41
|
Gut Microbiota during Dietary Restrictions: New Insights in Non-Communicable Diseases. Microorganisms 2020; 8:microorganisms8081140. [PMID: 32731505 PMCID: PMC7465033 DOI: 10.3390/microorganisms8081140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
In recent decades, there has been a growing interest in dietary restrictions for their promising effects on longevity and health span. Indeed, these strategies are supposed to delay the onset and burden of non-communicable diseases (NCDs) such as obesity, diabetes, cancer and neurological and gastrointestinal inflammatory diseases. At the same time, the gut microbiota has been shown to play a crucial role in NCDs since it is actively involved in maintaining gut homeostasis through its impact on nutrients metabolism, gut barrier, and immune system. There is evidence that dietary restrictions could slow down age-related changes in the types and numbers of gut bacteria, which may counteract gut dysbiosis. The beneficial effects on gut microbiota may positively influence host metabolism, gut barrier permeability, and brain functions, and subsequently, postpone the onset of NCDs prolonging the health span. These new insights could lead to the development of novel strategies for modulating gut microbiota with the end goal of treating/preventing NCDs. This review provides an overview of animal and human studies focusing on gut microbiota variations during different types of dietary restriction, in order to highlight the close relationship between gut microbiota balance and the host's health benefits induced by these nutritional regimens.
Collapse
|
42
|
Kim M, Benayoun BA. The microbiome: an emerging key player in aging and longevity. TRANSLATIONAL MEDICINE OF AGING 2020; 4:103-116. [PMID: 32832742 PMCID: PMC7437988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Abstract
Revolutionary advancements of high-throughput sequencing and metagenomic tools have provided new insights to microbiome function, including a bidirectional relationship between the microbiome and host aging. The intestinal tract is the largest surface in the human body that directly interacts with foreign antigens - it is covered with extremely complex and diverse community of microorganisms, known as the gut microbiome. In a healthy gut, microbial communities maintain a homeostatic metabolism and reside within the host in a state of immune tolerance. Abnormal shifts in the gut microbiome, however, have been implicated in the pathogenesis of age-related chronic diseases, including obesity, cardiovascular diseases and neurodegenerative diseases. The gut microbiome is emerging as a key factor in the aging process. In this review, we describe studies of humans and model organisms that suggest a direct causal role of the gut microbiome on host aging. Additionally, we also discuss sex-dimorphism in the gut microbiome and its possible roles in age-related sex-dimorphic phenotypes. We also provide an overview of widely used microbiome analysis methods and tools which could be used to explore the impact of microbiome remodeling on aging.
Collapse
Affiliation(s)
- Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
43
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
44
|
Yao C, Tian W, Song J, Wang J. Antihyperlipidaemic effect of microencapsulated Lactobacillus plantarum LIP-1 on hyperlipidaemic rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2007-2017. [PMID: 31849068 DOI: 10.1002/jsfa.10218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Previous studies have shown that Lactobacillus plantarum LIP-1 (hereafter LIP-1) has an obvious hypolipidemic effect, and microencapsulated probiotics can ensure the strains live through the gastrointestinal tract. Although there has been much research on both preparation and assessment methods for probiotics microcapsules, most assessments were made in vitro and few were validated in vivo. In this study, the protective effect of microencapsulation and the possible hypolipidemic mechanisms of probiotic LIP-1 were evaluated in rats. Treatments included rats fed on a normal diet, a high-fat diet, and a high-fat diet with an intragastric supplement of either non-microencapsulated LIP-1 cells (NME LIP-1) or microencapsulated LIP-1 (ME LIP-1). Lipid metabolism indicators were measured during the experiment and following euthanasia. RESULTS Microencapsulation increased survival and colonization of LIP-1 in the colon. ME LIP-1 was superior to NME LIP-1 in reducing cholesterol. The mechanisms behind the hypolipidemic effect exerted by LIP-1 are possibly due to promoting the excretion of cholesterol, improving antioxygenic potentials, enhancing recovery from the injury in the liver, cardiovascular intima and intestinal mucosa, promoting the generation of short-chain fatty acids, and improving lipid metabolism. CONCLUSIONS This study confirms that microencapsulation provides effective protection of LIP-1 in the digestive system and the role of LIP-1 in the prevention and cure of hyperlipidaemia, providing theoretical support for probiotics to enter clinical applications. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caiqing Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenjing Tian
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Jiaojiao Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Junguo Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
45
|
Vemuganti R, Arumugam TV. Molecular Mechanisms of Intermittent Fasting-induced Ischemic Tolerance. CONDITIONING MEDICINE 2020; 3:9-17. [PMID: 34278242 PMCID: PMC8281895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diet is a significant factor in determining human well-being. Excessive eating and/or diets with higher than needed amounts of carbohydrates, salt, and fat are known to cause metabolic disorders and functional changes in the body. To compensate the ill effects, many designer diets including the Mediterranean diet, the Okinawa diet, vegetarian/vegan diets, keto diet, anti-inflammatory diet, and the anti-oxidant diet have been introduced in the past 2 decades. While these diets are either enriched or devoid of one or more specific components, a better way to control diet is to limit the amount of food consumed. Caloric restriction (CR), which involves limiting the amount of food consumed rather than eliminating any specific type of food, as well as intermittent fasting (IF), which entails limiting the time during which food can be consumed on a given day, have gained popularity because of their positive effects on human health. While the molecular mechanisms of these 2 dietary regimens have not been fully deciphered, they are known to prolong the life span, control blood pressure, and blood glucose levels. Furthermore, CR and IF were both shown to decrease the incidence of heart attack and stroke, as well as their ill effects. In particular, IF is thought to promote metabolic switching by altering gene expression profiles leading to reduced inflammation and oxidative stress, while increasing plasticity and regeneration.
Collapse
Affiliation(s)
- Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton VA Hospital, Madison, WI, USA
| | | |
Collapse
|
46
|
Pinheiro-Machado E, Gurgul-Convey E, Marzec MT. Immunometabolism in type 2 diabetes mellitus: tissue-specific interactions. Arch Med Sci 2020; 19:895-911. [PMID: 37560741 PMCID: PMC10408029 DOI: 10.5114/aoms.2020.92674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/23/2019] [Indexed: 08/11/2023] Open
Abstract
The immune system is frequently described in the context of its protective function against infections and its role in the development of autoimmunity. For more than a decade, the interactions between the immune system and metabolic processes have been reported, in effect creating a new research field, termed immunometabolism. Accumulating evidence supports the hypothesis that the development of metabolic diseases may be linked to inflammation, and reflects, in some cases, the activation of immune responses. As such, immunometabolism is defined by 1) inflammation as a driver of disease development and/or 2) metabolic processes stimulating cellular differentiation of the immune components. In this review, the main factors capable of altering the immuno-metabolic communication leading to the development and establishment of obesity and diabetes are comprehensively presented. Tissue-specific immune responses suggested to impair metabolic processes are described, with an emphasis on the adipose tissue, gut, muscle, liver, and pancreas.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, Netherlands
| | - Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Michal T. Marzec
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Thumu SCR, Halami PM. In vivo safety assessment of Lactobacillus fermentum strains, evaluation of their cholesterol-lowering ability and intestinal microbial modulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:705-713. [PMID: 31599967 DOI: 10.1002/jsfa.10071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Despite the growing importance of probiotics apparent health benefits, an impediment to the use of new probiotic cultures is their safety. Hence there is a need to strictly examine the biosafety as well as health benefits of probiotics in in vivo model systems. RESULTS In this study, two lactic acid bacterial (LAB) cultures Lactobacillus fermentum NCMR 2826 and FIX proven for their in vitro probiotic properties were investigated for their in vivo safety in Wistar rats. An acute toxicity study (14 days) with a high dose of biomass (1016 colony-forming units (CFU) mL-1 ) followed by a subchronic test for 13 weeks with oral feeding of the probiotic cultures in three different doses (107 , 108 and 1010 CFU mL-1 ) on a daily basis revealed the safety of the L. fermentum cultures. The probiotic feeding had no toxic effects on survival, body weight and food consumption with any of the dosages used throughout the treatment period. No statistically significant changes in relative organ weights and serum biochemical and hematological indices were found between the control and the probiotic fed animals. In addition to the safety attributes, the L. fermentum culture fed rats showed reduced serum cholesterol levels, macrovesicular steatosis and hepatocyte ballooning compared with control animals. Further, quantification of intestinal microbiota using real-time polymerase chain reaction (PCR) analysis from animal feces indicated a significant increase and stability of Lactobacillus and Bifidobacterium counts but a decrease of Escherichia coli numbers. CONCLUSION This study of safety and beneficial features highlights the use of the two native L. fermentum isolates as potential probiotic food supplements. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Surya Chandra Rao Thumu
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Prakash M Halami
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
48
|
Kim M, Benayoun BA. The microbiome: An emerging key player in aging and longevity. TRANSLATIONAL MEDICINE OF AGING 2020. [DOI: 10.1016/j.tma.2020.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
49
|
Li Q, Zhang M, Wu T, Liu R. Potential correlation between carbohydrate-active enzyme family 48 expressed by gut microbiota and the expression of intestinal epithelial AMP-activated protein kinase β. J Food Biochem 2019; 44:e13123. [PMID: 31837163 DOI: 10.1111/jfbc.13123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/19/2019] [Accepted: 11/24/2019] [Indexed: 12/12/2022]
Abstract
The expression of the carbohydrate-active enzyme family and related genes is known to be influenced by the response of intestinal microbiota to dietary changes. However, it is uncertain whether this is caused by variation in the intestinal microecology. In this study, metabolite analysis, 16S rDNA sequencing, metagenomics, and Western blotting were employed to investigate the effects of dietary intervention on the composition of gut microbiota and microbiota-mediated changes. The results showed that compared with the low fiber-fed group, the fiber diet-fed mice displayed a shift in gut microbiota composition to contain more members of phylum Bacteroidetes, accompanied by higher proportions of Akkermansia and typical probiotic Bifidobacterium. Moreover, correlations were found between microbial genes coding for carbohydrate-binding module family 48 (CBM48) and intestinal epithelial expression levels of AMPK β. This finding provides new insight for elucidating the contribution of dietary intervention through AMPK regulation linked to the microbial carbohydrate-binding family. PRACTICAL APPLICATIONS: The relationship suggested by these data will provide theoretical and applied foundations for the development of potential intervention targeting the interaction between gut microbiota and host health, particularly the use of dietary fiber as a medically relevant food. Additionally, a better understanding of the interactions between gut microbiota and intestinal epithelial will inform the development of gut microbiota intervention as a health-promoting procedure.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Science and Technology, Tianjin, P.R. China
| | - Min Zhang
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Science and Technology, Tianjin, P.R. China.,School of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, P.R. China
| | - Tao Wu
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Science and Technology, Tianjin, P.R. China.,Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin, P.R. China
| | - Rui Liu
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
50
|
Cabrera-Mulero A, Tinahones A, Bandera B, Moreno-Indias I, Macías-González M, Tinahones FJ. Keto microbiota: A powerful contributor to host disease recovery. Rev Endocr Metab Disord 2019; 20:415-425. [PMID: 31720986 PMCID: PMC6938789 DOI: 10.1007/s11154-019-09518-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gut microbiota (GM) is a key contributor to host metabolism and physiology. Data generated on comparing diseased and healthy subjects have reported changes in the GM profile between both health states, suggesting certain bacterial composition could be involved in pathogenesis. Moreover, studies reported that reshaping of GM could contribute actively to disease recovery. Interestingly, ketogenic diets (KD) have emerged recently as new economic dietotherapeutic strategy to combat a myriad of diseases (refractory epilepsy, obesity, cancer, neurodegenerative diseases…). KD, understood in a broad sense, refers to whatever dietetic approximation, which causes physiological ketosis. Therefore, high fat-low carbs diets, fasting periods or caloric restriction constitute different strategies to produce an increase of main ketones bodies, acetoacetate and β-hydroxybutyrate, in blood. Involved biological mechanisms in ketotherapeutic effects are still to be unravelled. However, it has been pointed out that GM remodelling by KD, from now on "keto microbiota", may play a crucial role in patient response to KD treatment. In fact, germ-free animals were resistant to ketotherapeutic effects; reinforcing keto microbiota may be a powerful contributor to host disease recovery. In this review, we will comment the influence of gut microbiota on host, as well as, therapeutic potential of ketogenic diets and keto microbiota to restore health status. Current progress and limitations will be argued too. In spite of few studies have defined applicability and mechanisms of KD, in the light of results, keto microbiota might be a new useful therapeutic agent.
Collapse
Affiliation(s)
- Amanda Cabrera-Mulero
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Alberto Tinahones
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
| | - Borja Bandera
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Isabel Moreno-Indias
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Manuel Macías-González
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.
| | - Francisco J Tinahones
- Deparment of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA) and University of Malaga, Campus de Teatinos s/n, 29010, Malaga, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|