1
|
Moutsoglou D, Ramakrishnan P, Vaughn BP. Microbiota transplant therapy in inflammatory bowel disease: advances and mechanistic insights. Gut Microbes 2025; 17:2477255. [PMID: 40062406 PMCID: PMC11901402 DOI: 10.1080/19490976.2025.2477255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Microbiota transplant therapy is an emerging therapy for inflammatory bowel disease, but factors influencing its efficacy and mechanism remain poorly understood. In this narrative review, we outline key elements affecting therapeutic outcomes, including donor factors (such as age and patient relationship), recipient factors, control selection, and elements impacting engraftment and its correlation with clinical response. We also examine potential mechanisms through inflammatory bowel disease trials, focusing on the interplay between the microbiota, host, and immune system. Finally, we briefly explore potential future directions for microbiota transplant therapy and promising emerging treatments.
Collapse
Affiliation(s)
- Daphne Moutsoglou
- Gastroenterology Section, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Byron P. Vaughn
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Qian Q, Pu Q, Li L, Wu J, Cheng G, Cheng Y, Wang X, Wang H. Polylactic acid microplastics before and after aging induced neurotoxicity in zebrafish by disrupting the microbiota-gut-brain axis. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137306. [PMID: 39864199 DOI: 10.1016/j.jhazmat.2025.137306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/31/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
Polylactic acid (PLA) is a biodegradable alternative to traditional plastics due to its excellent biocompatibility. However, PLA is challenging to fully degrade and can easily become microplastics (MPs) in surface water, a process accompanied by aging. This study found that aged PLA (APLA) MPs exhibited increased surface roughness, decreased surface potential, and more oxygen-containing functional groups compared to PLA. Acute exposure to PLA/APLA in zebrafish larvae resulted in sluggish behavior and inhibited neuronal development. Chronic exposure to PLA/APLA in adult zebrafish led to reduced exploratory behavior, poor memory, increased aggression, and neuron loss. Overall, PLA/APLA induced dose-dependent neurotoxicity, with APLA exhibiting greater toxicity than PLA, potentially due to its higher rate of uptake. Additionally, exposure to PLA/APLA led to thinning of the intestinal wall, shortening of villi, and suppression of intestinal neurotransmitter levels, accompanied by alterations in microbial abundance and gut dysbiosis. Meanwhile, supplementation with bile acid, considered as the key regulator in the gut-brain axis, significantly mitigated the neurotoxicity induced by PLA/APLA. These findings confirm that PLA/APLA MPs indeed elicit neurotoxicity via the gut-brain axis and provide scientific evidence for targeted environmental interventions to minimize the adverse ecological impacts of biodegradable MPs.
Collapse
Affiliation(s)
- Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qian Pu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lihang Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ji Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guanchen Cheng
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ying Cheng
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Erngren I, Vaivade A, Carlsson H, Al-Grety A, Åkerfeldt T, Kockum I, Hedström AK, Alfredsson L, Olsson T, Burman J, Kultima K. Bile acid metabolism in multiple sclerosis is perturbed and associated with the risk of confirmed disability worsening. BMC Med 2025; 23:212. [PMID: 40200290 PMCID: PMC11980154 DOI: 10.1186/s12916-025-04041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Bile acids (BAs) have emerged as important mediators in neuroinflammation and neurodegeneration, important features of multiple sclerosis (MS). This study aimed to examine serum BA levels in newly diagnosed people with MS (pwMS) and explore their association with disability worsening. METHODS The study included 907 pwMS and 907 matched controls from the Swedish population-based EIMS cohort, with clinical follow-up data from the Swedish MS Registry. Serum BA levels were analyzed using liquid chromatography-high-resolution mass spectrometry. Differential expression analysis was used to study differences in BAs between pwMS and controls. Cox proportional-hazard models were used to assess associations between BA concentrations and confirmed disability worsening (CDW) and the risk of reaching EDSS milestones 4.0 and 6.0. RESULTS PwMS had lower concentrations of the primary conjugated BA, glycochenodeoxycholic acid (GCDCA, log2 FC - 0.29, p = 0.009) compared to controls. In relapsing-remitting MS compared to controls, lower concentrations of primary conjugated BAs (log2 FC - 0.30, p = 8.40E - 5), secondary conjugated BAs (log2 FC - 0.18, p = 0.007), and total BAs (log2 FC - 0.22, p = 2.99E - 4) were found. Sex-specific differences were also found, with male pwMS showing more substantial BA alterations. Elevated total BA levels were associated with increased risk for CDW (HR 1.22, 95% CI 1.08-1.39), driven mainly by primary conjugated (HR 1.19, 95% CI 1.06-1.33) and secondary conjugated BAs (HR 1.21, 95% CI 1.08-1.39). CONCLUSIONS This study identified alterations in serum BA profiles in pwMS compared to controls, with strong associations between conjugated BAs and the risk of disability worsening. These findings underscore the potential role of BAs in MS pathogenesis and disability worsening, suggesting they may be promising targets for future therapeutic interventions. Further research is warranted to clarify the underlying mechanisms of these associations.
Collapse
Affiliation(s)
- Ida Erngren
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden
| | - Aina Vaivade
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden
| | - Henrik Carlsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden
| | - Asma Al-Grety
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden
| | - Torbjörn Åkerfeldt
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centrum for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Academic Specialist Center, Stockholm, 113 65, Sweden
| | - Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centrum for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Academic Specialist Center, Stockholm, 113 65, Sweden
| | - Joachim Burman
- Department of Medical Sciences, Translational Neurology, Uppsala University, Uppsala, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, entrance 61, 3rd floor, Uppsala, 75185, Sweden.
| |
Collapse
|
4
|
Gan HJ, Chen S, Yao K, Lin XY, Juhasz AL, Zhou D, Li HB. Simulated Microplastic Release from Cutting Boards and Evaluation of Intestinal Inflammation and Gut Microbiota in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:47004. [PMID: 40042913 PMCID: PMC11980920 DOI: 10.1289/ehp15472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Plastic cutting boards are commonly used in food preparation, increasing human exposure to microplastics (MPs). However, the health implications are still not well understood. OBJECTIVES The objective of this study was to assess the impacts of long-term exposure to MPs released from cutting boards on intestinal inflammation and gut microbiota. METHODS MPs were incorporated into mouse diets by cutting the food on polypropylene (PP), polyethylene (PE), and willow wooden (WB) cutting boards, and the diets were fed to mice over periods of 4 and 12 wk. Serum levels of C-reactive protein (CRP), tumor necrosis factor-α (TNF-α ), interleukin-10 (IL-10), lipopolysaccharide (LPS, an endotoxin), and carcinoembryonic antigen (CEA), along with ileum and colon levels of interleukin-1β (IL-1 β ), TNF-α , malondialdehyde (MDA), superoxide dismutase (SOD), secretory immunoglobulin A (sIgA), and myosin light chain kinase (MLCK), were measured using mouse enzyme-linked immunosorbent assay (ELISA) kits. The mRNA expression of mucin 2 and intestinal tight junction proteins in mouse ileum and colon tissues was quantified using real-time quantitative reverse transcription polymerase chain reaction. Fecal microbiota, fecal metabolomics, and liver metabolomics were characterized. RESULTS PP and PE cutting boards released MPs, with concentrations reaching 1,088 ± 95.0 and 1,211 ± 322 μ g / g in diets, respectively, and displaying mean particle sizes of 10.4 ± 0.96 vs. 27.4 ± 1.45 μ m . Mice fed diets prepared on PP cutting boards for 12 wk exhibited significantly higher serum levels of LPS, CRP, TNF-α , IL-10, and CEA, as well as higher levels of IL-1β , TNF-α , MDA, SOD, and MLCK in the ileum and colon compared with mice fed diets prepared on WB cutting boards. These mice also showed lower relative expression of Occludin and Zonula occludens-1 in the ileum and colon. In contrast, mice exposed to diets prepared on PE cutting boards for 12 wk did not show evident inflammation; however, there was a significant decrease in the relative abundance of Firmicutes and an increase in Desulfobacterota compared with those fed diets prepared on WB cutting boards, and exposure to diets prepared on PE cutting boards over 12 wk also altered mouse fecal and liver metabolites compared with those fed diets prepared on WB cutting boards. DISCUSSION The findings suggest that MPs from PP cutting boards impair intestinal barrier function and induce inflammation, whereas those from PE cutting boards affect the gut microbiota, gut metabolism, and liver metabolism in the mouse model. These findings offer crucial insights into the safe use of plastic cutting boards. https://doi.org/10.1289/EHP15472.
Collapse
Affiliation(s)
- Hai-Jun Gan
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Shan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Ke Yao
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Wang X, Zhao D, Bi D, Li L, Tian H, Yin F, Zuo T, Ianiro G, Li N, Chen Q, Qin H. Fecal microbiota transplantation: transitioning from chaos and controversial realm to scientific precision era. Sci Bull (Beijing) 2025; 70:970-985. [PMID: 39855927 DOI: 10.1016/j.scib.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025]
Abstract
With the popularization of modern lifestyles, the spectrum of intestinal diseases has become increasingly diverse, presenting significant challenges in its management. Traditional pharmaceutical interventions have struggled to keep pace with these changes, leaving many patients refractory to conventional pharmaceutical treatments. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for enterogenic diseases. Still, controversies persist regarding its active constituents, mechanism of action, scheme of treatment evaluation, indications, and contraindications. In this review, we investigated the efficacy of FMT in addressing gastrointestinal and extraintestinal conditions, drawing from follow-up data on over 8000 patients. We systematically addressed the controversies surrounding FMT's clinical application. We delved into key issues such as its technical nature, evaluation methods, microbial restoration mechanisms, and impact on the host-microbiota interactions. Additionally, we explored the potential colonization patterns of FMT-engrafted new microbiota throughout the entire intestine and elucidated the specific pathways through which the new microbiota modulates host immunity, metabolism, and genome.
Collapse
Affiliation(s)
- Xinjun Wang
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China.
| | - Di Zhao
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Dexi Bi
- Department of Pathology, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Long Li
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongliang Tian
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Fang Yin
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510655, China
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, 00168, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato, Rome, 00168, Italy
| | - Ning Li
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiyi Chen
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China.
| | - Huanlong Qin
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
6
|
Rukavina Mikusic NL, Prince PD, Choi MR, Chuffa LGA, Simão VA, Castro C, Manucha W, Quesada I. Microbiota, mitochondria, and epigenetics in health and disease: converging pathways to solve the puzzle. Pflugers Arch 2025:10.1007/s00424-025-03072-w. [PMID: 40111427 DOI: 10.1007/s00424-025-03072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Dysbiosis, which refers to an imbalance in the composition of the gut microbiome, has been associated with a range of metabolic disorders, including type 2 diabetes, obesity, and metabolic syndrome. Although the exact mechanisms connecting gut dysbiosis to these conditions are not fully understood, various lines of evidence strongly suggest a substantial role for the interaction between the gut microbiome, mitochondria, and epigenetics. Current studies suggest that the gut microbiome has the potential to affect mitochondrial function and biogenesis through the production of metabolites. A well-balanced microbiota plays a pivotal role in supporting normal mitochondrial and cellular functions by providing metabolites that are essential for mitochondrial bioenergetics and signaling pathways. Conversely, in the context of illnesses, an unbalanced microbiota can impact mitochondrial function, leading to increased aerobic glycolysis, reduced oxidative phosphorylation and fatty acid oxidation, alterations in mitochondrial membrane permeability, and heightened resistance to cellular apoptosis. Mitochondrial activity can also influence the composition and function of the gut microbiota. Because of the intricate interplay between nuclear and mitochondrial communication, the nuclear epigenome can regulate mitochondrial function, and conversely, mitochondria can produce metabolic signals that initiate epigenetic changes within the nucleus. Given the epigenetic modifications triggered by metabolic signals from mitochondria in response to stress or damage, targeting an imbalanced microbiota through interventions could offer a promising strategy to alleviate the epigenetic alterations arising from disrupted mitochondrial signaling.
Collapse
Affiliation(s)
- Natalia Lucia Rukavina Mikusic
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET) CONICET, Universidad de Buenos Aires, 1122, Buenos Aires, Argentina
- Departamento de Ciencias Biológicas, Cátedra de Anatomía E Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113, Buenos Aires, Argentina
| | - Paula Denise Prince
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET) CONICET, Universidad de Buenos Aires, 1122, Buenos Aires, Argentina
- Departamento de Ciencias Químicas, Cátedra de Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113, Buenos Aires, Argentina
| | - Marcelo Roberto Choi
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET) CONICET, Universidad de Buenos Aires, 1122, Buenos Aires, Argentina.
- Departamento de Ciencias Biológicas, Cátedra de Anatomía E Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113, Buenos Aires, Argentina.
| | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, P.O. Box 18618-689, Botucatu, São Paulo, Zip Code 510, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP - São Paulo State University, P.O. Box 18618-689, Botucatu, São Paulo, Zip Code 510, Brazil
| | - Claudia Castro
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU) CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU) CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina.
- Laboratorio de Farmacología Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | - Isabel Quesada
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU) CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
7
|
Milani C, Longhi G, Alessandri G, Fontana F, Viglioli M, Tarracchini C, Mancabelli L, Lugli GA, Petraro S, Argentini C, Anzalone R, Viappiani A, Carli E, Vacondio F, van Sinderen D, Turroni F, Mor M, Ventura M. Functional modulation of the human gut microbiome by bacteria vehicled by cheese. Appl Environ Microbiol 2025; 91:e0018025. [PMID: 40019271 PMCID: PMC11921328 DOI: 10.1128/aem.00180-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025] Open
Abstract
Since cheese is one of the most commonly and globally consumed fermented foods, scientific investigations in recent decades have focused on determining the impact of this dairy product on human health and well-being. However, the modulatory effect exerted by the autochthonous cheese microbial community on the taxonomic composition and associated functional potential of the gut microbiota of human is still far from being fully dissected or understood. Here, through the use of an in vitro human gut-simulating cultivation model in combination with multi-omics approaches, we have shown that minor rather than dominant bacterial players of the cheese microbiota are responsible for gut microbiota modulation of cheese consumers. These include taxa from the genera Enterococcus, Bacillus, Clostridium, and Hafnia. Indeed, they contribute to expand the functional potential of the intestinal microbial ecosystem by introducing genes responsible for the production of metabolites with relevant biological activity, including genes involved in the synthesis of vitamins, short-chain fatty acids, and amino acids. Furthermore, tracing of cheese microbiota-associated bacterial strains in fecal samples from cheese consumers provided evidence of horizontal transmission events, enabling the detection of particular bacterial strains transferred from cheese to humans. Moreover, transcriptomic and metabolomic analyses of a horizontally transmitted (cheese-to-consumer) bacterial strain, i.e., Hafnia paralvei T10, cultivated in a human gut environment-simulating medium, confirmed the concept that cheese-derived bacteria may expand the functional arsenal of the consumer's gut microbiota. This highlights the functional and biologically relevant contributions of food microbes acquired through cheese consumption on the human health.IMPORTANCEDiet is universally recognized as the primary factor influencing and modulating the human intestinal microbiota both taxonomically and functionally. In this context, cheese, being a fermented food with its own microbiota, serves not only as a source of nourishment for humans, but also as a source of nutrients for the consumer's gut microbiota. Additionally, it may act as a vehicle for autochthonous food-associated microorganisms which undergo transfer from cheese to the consumer, potentially influencing host gut health. The current study highlights not only that cheese microbiota-associated bacteria can be traced in the human gut microbiota, but also that they may expand the functional repertoire of the human gut microbiota, with potentially significant implications for human health.
Collapse
Affiliation(s)
- Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio Srl, Parma, Italy
| | | | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Petraro
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Elisa Carli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Mor
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
8
|
Attiq A. Early-life antibiotic exposures: Paving the pathway for dysbiosis-induced disorders. Eur J Pharmacol 2025; 991:177298. [PMID: 39864578 DOI: 10.1016/j.ejphar.2025.177298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Microbiota encompasses a diverse array of microorganisms inhabiting specific ecological niches. Gut microbiota significantly influences physiological processes, including gastrointestinal motor function, neuroendocrine signalling, and immune regulation. They play a crucial role in modulating the central nervous system and bolstering body defence mechanisms by influencing the proliferation and differentiation of innate and adaptive immune cells. Given the potential consequences of antibiotic therapy on gut microbiota equilibrium, there is a need for prudent antibiotic use to mitigate associated risks. Observational studies have linked increased antibiotic usage to various pathogenic conditions, including obesity, inflammatory bowel disease, anxiety-like effects, asthma, and pulmonary carcinogenesis. Addressing dysbiosis incidence requires proactive measures, including prophylactic use of β-lactamase drugs (SYN-004, SYN-006, and SYN-007), hydrolysing the β-lactam in the proximal GIT for maintaining intestinal flora homeostasis. Prebiotic and probiotic supplementations are crucial in restoring intestinal flora equilibrium by competing with pathogenic bacteria for nutritional resources and adhesion sites, reducing luminal pH, neutralising toxins, and producing antimicrobial agents. Faecal microbiota transplantation (FMT) shows promise in restoring gut microbiota composition. Rational antibiotic use is essential to preserve microflora and improve patient compliance with antibiotic regimens by mitigating associated side effects. Given the significant implications on gut microbiota composition, concerted intervention strategies must be pursued to rectify and reverse the occurrence of antibiotic-induced dysbiosis. Here, antibiotics-induced microbiota dysbiosis mechanisms and their systemic implications are reviewed. Moreover, proposed interventions to mitigate the impact on gut microflora are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| |
Collapse
|
9
|
Yang Z, Lin Z, You Y, Zhang M, Gao N, Wang X, Peng J, Wei H. Gut Microbiota-Derived Hyocholic Acid Enhances Type 3 Immunity and Protects Against Salmonella enterica Serovar Typhimurium in Neonatal Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412071. [PMID: 39737849 PMCID: PMC11905087 DOI: 10.1002/advs.202412071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/18/2024] [Indexed: 01/01/2025]
Abstract
This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels. Furthermore, reducing oxygen levels in the intestine increased the abundance of Limosilactobacillus reuteri, a bacterium encoding BSH, and promoted intestinal type 3 immunity. However, inhibition of BSH blocked the L. reuteri-induced development of intestinal type 3 immunity. Mechanistically, HCA promoted the development of gamma-delta T cells and type 3 innate lymphoid cells by stabilizing the mRNA expression of RAR-related orphan receptor C via the farnesoid X receptor-WT1-associated protein-N6-methyl-adenosine axis. These results reveal that gut microbiota-derived HCA plays a crucial role in promoting the development of intestinal type 3 immunity in neonates. This discovery introduces potential therapeutic avenues for strengthening intestinal immunity in early life or treating bacterial infections by targeting microbial metabolites.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Lin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaojie You
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| |
Collapse
|
10
|
Wu N, Bayatpour S, Hylemon PB, Aseem SO, Brindley PJ, Zhou H. Gut Microbiome and Bile Acid Interactions: Mechanistic Implications for Cholangiocarcinoma Development, Immune Resistance, and Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:397-408. [PMID: 39730075 PMCID: PMC11841492 DOI: 10.1016/j.ajpath.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare but highly malignant carcinoma of bile duct epithelial cells with a poor prognosis. The major risk factors of CCA carcinogenesis and progression are cholestatic liver diseases. The key feature of primary sclerosing cholangitis and primary biliary cholangitis is chronic cholestasis. It indicates a slowdown of hepatocyte secretion of biliary lipids and metabolites into bile as well as a slowdown of enterohepatic circulation (bile acid recirculation) of bile acids with dysbiosis of the gut microbiome. This leads to enterohepatic recirculation and an increase of toxic secondary bile acids. Alterations of serum and liver bile acid compositions via the disturbed enterohepatic circulation of bile acids and the disturbance of the gut microbiome then activate a series of hepatic and cancer cell signaling pathways that promote CCA carcinogenesis and progression. This review focuses on the mechanistic roles of bile acids and the gut microbiome in the pathogenesis and progression of CCA. It also evaluates the therapeutic potential of targeting the gut microbiome and bile acid-mediated signaling pathways for the therapy and prophylaxis of CCA.
Collapse
Affiliation(s)
- Nan Wu
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia
| | - Sareh Bayatpour
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Sayed O Aseem
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia; Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
11
|
Kang MH, Elnar AG, Kim GB. Review on the Function, Substrate Affinity, and Potential Application of Bile Salt Hydrolase Originated from Probiotic Strains of Lactobacillus, Bifidobacterium, and Enterococcus. Food Sci Anim Resour 2025; 45:353-374. [PMID: 40093624 PMCID: PMC11907429 DOI: 10.5851/kosfa.2025.e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 03/19/2025] Open
Abstract
Bile salt hydrolase (BSH: EC.3.5.1.24) has been used as a biomarker for probiotics for an extended period. It is mostly present in the gut environment of vertebrates. Additionally, it influences the viability of probiotics. This biomarker is considered a promising nutritional supplement due to its unique ability to effectively address elevated blood cholesterol levels, a common issue in modern society. However, the commercialization of BSH has been limited by an incomplete understanding of the intestinal microbiota and the function of BSH. Hence, in this review, we aim to reveal the current advancements in BSH research and outline the necessary areas of investigation for future studies. The review highlights key findings related to the substrate affinity of BSH in probiotic bacteria and its BSH gene phylogeny that have been researched until today, suggesting further research regarding the differences in multiple BSH genes and corresponding differences in BSH affinity.
Collapse
Affiliation(s)
- Mo Hyeon Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Arxel G. Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
12
|
Zhu TF, Guo HP, Nie L, Chen J. Oral administration of LEAP2 enhances immunity against Edwardsiella tarda through regulation of gut bacterial community and metabolite in mudskipper. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110128. [PMID: 39824300 DOI: 10.1016/j.fsi.2025.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
The liver-expressed antimicrobial peptide 2 (LEAP2) is gaining recognition for its immune regulatory functions beyond direct antimicrobial activity. In this study, we investigated the role of mudskipper (Boleophthalmus pectinirostris) LEAP2 (BpLEAP2) in enhancing the survival, gut health, and immune resilience against Edwardsiella tarda infection. Pre-oral delivery of BpLEAP2 significantly improved survival rates and mitigated infection-induced damage to the gut, as evidenced by preserved villus length and goblet cell count. Analysis of gut microbial communities using 16S rRNA sequencing revealed that pre-oral delivery of BpLEAP2 increased microbial diversity, evenness, and the abundance of beneficial genera such as Pseudoalteromonas and Shewanella, while reducing pathogenic genera like Pseudorhodobacter. Metabolomic profiling showed that BpLEAP2 altered the gut metabolite composition, significantly increasing levels of bile acids and amino acids, which are known to support gut health and immune responses. Correlation analysis demonstrated strong positive associations between BpLEAP2-induced microbial shifts and increased metabolites involved in amino acid metabolism. These findings suggest that BpLEAP2 promotes intestinal homeostasis by modulating gut microbiota composition and enhancing beneficial metabolite production, ultimately improving gut barrier integrity and conferring resistance against E. tarda infection. This study highlights the potential application of BpLEAP2 in enhancing disease resilience in aquaculture species, offering a promising strategy for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Ting-Fang Zhu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Hai-Peng Guo
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Li Nie
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
13
|
Ekwudo MN, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease: pathogenic mechanisms and therapeutic targets. FEBS J 2025; 292:1282-1315. [PMID: 38426291 PMCID: PMC11927060 DOI: 10.1111/febs.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Huntington's disease (HD) is a currently incurable neurogenerative disorder and is typically characterized by progressive movement disorder (including chorea), cognitive deficits (culminating in dementia), psychiatric abnormalities (the most common of which is depression), and peripheral symptoms (including gastrointestinal dysfunction). There are currently no approved disease-modifying therapies available for HD, with death usually occurring approximately 10-25 years after onset, but some therapies hold promising potential. HD subjects are often burdened by chronic diarrhea, constipation, esophageal and gastric inflammation, and a susceptibility to diabetes. Our understanding of the microbiota-gut-brain axis in HD is in its infancy and growing evidence from preclinical and clinical studies suggests a role of gut microbial population imbalance (gut dysbiosis) in HD pathophysiology. The gut and the brain can communicate through the enteric nervous system, immune system, vagus nerve, and microbiota-derived-metabolites including short-chain fatty acids, bile acids, and branched-chain amino acids. This review summarizes supporting evidence demonstrating the alterations in bacterial and fungal composition that may be associated with HD. We focus on mechanisms through which gut dysbiosis may compromise brain and gut health, thus triggering neuroinflammatory responses, and further highlight outcomes of attempts to modulate the gut microbiota as promising therapeutic strategies for HD. Ultimately, we discuss the dearth of data and the need for more longitudinal and translational studies in this nascent field. We suggest future directions to improve our understanding of the association between gut microbes and the pathogenesis of HD, and other 'brain and body disorders'.
Collapse
Affiliation(s)
- Millicent N Ekwudo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| |
Collapse
|
14
|
Rondinella D, Raoul PC, Valeriani E, Venturini I, Cintoni M, Severino A, Galli FS, Mora V, Mele MC, Cammarota G, Gasbarrini A, Rinninella E, Ianiro G. The Detrimental Impact of Ultra-Processed Foods on the Human Gut Microbiome and Gut Barrier. Nutrients 2025; 17:859. [PMID: 40077728 PMCID: PMC11901572 DOI: 10.3390/nu17050859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Ultra-processed foods (UPFs) have become a widely consumed food category in modern diets. However, their impact on gut health is raising increasing concerns. This review investigates how UPFs impact the gut microbiome and gut barrier, emphasizing gut dysbiosis and increased gut permeability. UPFs, characterized by a high content of synthetic additives and emulsifiers, and low fiber content, are associated with a decrease in microbial diversity, lower levels of beneficial bacteria like Akkermansia muciniphila and Faecalibacterium prausnitzii, and an increase in pro-inflammatory microorganisms. These alterations in the microbial community contribute to persistent inflammation, which is associated with various chronic disorders including metabolic syndrome, irritable bowel syndrome, type 2 diabetes, and colorectal cancer. In addition, UPFs may alter the gut-brain axis, potentially affecting cognitive function and mental health. Dietary modifications incorporating fiber, fermented foods, and probiotics can help mitigate the effects of UPFs. Furthermore, the public needs stricter regulations for banning UPFs, along with well-defined food labels. Further studies are necessary to elucidate the mechanisms connecting UPFs to gut dysbiosis and systemic illnesses, thereby informing evidence-based dietary guidelines.
Collapse
Affiliation(s)
- Debora Rondinella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Pauline Celine Raoul
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Eleonora Valeriani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Irene Venturini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Cintoni
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Sofia Galli
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Vincenzina Mora
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina Mele
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Human Nutrition Research Center, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.R.)
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
15
|
Nguyen HVM, Cabello E, Dyer D, Fender C, Garcia-Jaramillo M, Hord NG, Austad S, Richardson A, Unnikrishnan A. Age, sex, and mitochondrial-haplotype influence gut microbiome composition and metabolites in a genetically diverse rat model. Aging (Albany NY) 2025; 17:524-549. [PMID: 40015964 DOI: 10.18632/aging.206211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
We evaluated the impact of sex and mitochondrial-haplotype on the age-related changes in the fecal gut microbiome of the genetically heterogeneous rodent model, the OKC-HETB/W rat. The age-related changes in the microbiome differed markedly between male and female rats. Five microbial species changed significantly with age in male rats compared to nine microbial species in female rats. Only three of these microbes changed with age in both male and female rats. The mitochondrial-haplotype of the rats also affected how aging altered the microbiome. Interestingly, most of the microbial species that changed significantly with age were mitochondrial-haplotype and sex specific, i.e., changing in one sex and not the other. We also discovered that sex and mitochondrial-haplotype significantly affected the age-related variations in content of fecal short-chain fatty acids and plasma metabolites that influence or are regulated by the microbiome, e.g., tryptophan derived metabolites and bile acids. This study demonstrates that the host's sex plays a significant role in how the gut microbiome evolves with age, even within a genetically diverse background. Importantly, this is the first study to show that the mitochondrial-haplotype of a host impacts the age-related changes in the microbiome.
Collapse
Affiliation(s)
- Hoang Van M Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - Eleana Cabello
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - David Dyer
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - Chloe Fender
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Manuel Garcia-Jaramillo
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Norman G Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | - Steven Austad
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | - Arlan Richardson
- Department of Biochemistry and Physiology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Archana Unnikrishnan
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, OU Health, Oklahoma City, OK 73104, USA
| |
Collapse
|
16
|
Sami Mohamed B. Letter to the editor in response to "Biliary tract cancer". EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:109722. [PMID: 40112670 DOI: 10.1016/j.ejso.2025.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
|
17
|
Mafe AN, Büsselberg D. Modulation of the Neuro-Cancer Connection by Metabolites of Gut Microbiota. Biomolecules 2025; 15:270. [PMID: 40001573 PMCID: PMC11853082 DOI: 10.3390/biom15020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The gut-brain-cancer axis represents a novel and intricate connection between the gut microbiota, neurobiology, and cancer progression. Recent advances have accentuated the significant role of gut microbiota metabolites in modulating systemic processes that influence both brain health and tumorigenesis. This paper explores the emerging concept of metabolite-mediated modulation within the gut-brain-cancer connection, focusing on key metabolites such as short-chain fatty acids (SCFAs), tryptophan derivatives, secondary bile acids, and lipopolysaccharides (LPS). While the gut microbiota's impact on immune regulation, neuroinflammation, and tumor development is well established, gaps remain in grasping how specific metabolites contribute to neuro-cancer interactions. We discuss novel metabolites with potential implications for neurobiology and cancer, such as indoles and polyamines, which have yet to be extensively studied. Furthermore, we review preclinical and clinical evidence linking gut dysbiosis, altered metabolite profiles, and brain tumors, showcasing limitations and research gaps, particularly in human longitudinal studies. Case studies investigating microbiota-based interventions, including dietary changes, fecal microbiota transplantation, and probiotics, demonstrate promise but also indicate hurdles in translating these findings to clinical cancer therapies. This paper concludes with a call for standardized multi-omics approaches and bi-directional research frameworks integrating microbiome, neuroscience, and oncology to develop personalized therapeutic strategies for neuro-cancer patients.
Collapse
Affiliation(s)
- Alice N. Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria;
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area, Doha P.O. Box 22104, Qatar
| |
Collapse
|
18
|
Xian J, Huang Y, Bai J, Liao Q, Chen Q, Cheng W, Su Z, Li S, Wu Y, Li J, Zhang J. Recent Advances in the Anti-Obesity Benefits of Phytoconstituents: From Phytochemistry to Targeting Novel-Systems. Phytother Res 2025; 39:630-660. [PMID: 39629748 DOI: 10.1002/ptr.8400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 02/19/2025]
Abstract
Obesity is a metabolic disorder that has become a global health concern. The existing pharmaceutical drugs for treating obesity have some side effects. Compounds from natural sources are prospective substitutes for treating chronic diseases such as obesity, with the added advantages of being safe and cost-effective. However, due to factors such as poor solubility, low bioavailability, and instability in the physiological environment, the therapeutic efficacy of phytoconstituents is limited. Nowadays, developing nanoscaled systems has emerged as a vital strategy for enhancing the delivery and therapeutic effect of phytoconstituents. The present study discusses and categorizes phytoconstituents with anti-obesity effects and concludes the main mechanisms underlying their effects. Importantly, strategies used to develop phytoconstituent-based nano-drug delivery systems (NDDS) for obesity treatment that show improved efficacy relative to traditional administration routes are reviewed. Finally, the progress of research on phytoconstituent-based NDDS for obesity treatment is summarized to provide a reference for the development of safe and effective treatment strategies for obesity.
Collapse
Affiliation(s)
- Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Qiyan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Weijian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziye Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Nash MJ, Dobrinskikh E, Al‐Juboori SI, Janssen RC, Fernandes J, Argabright A, D'Alessandro A, Kirigiti MA, Kievit P, Aagaard KM, McCurdy CE, Gannon M, Jones KL, Li T, Friedman JE, Wesolowski SR. Maternal Western Diet Programmes Bile Acid Dysregulation and Hepatic Fibrosis in Fetal and Juvenile Macaques. Liver Int 2025; 45:e16236. [PMID: 39865409 PMCID: PMC11771692 DOI: 10.1111/liv.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND AND AIMS Maternal obesity increases the risk of the paediatric form of metabolic dysfunction-associated steatotic liver disease (MASLD), affecting up to 30% of youth, but the developmental origins remain poorly understood. METHODS Using a Japanese macaque model, we investigated the impact of maternal Western-style diet (mWSD) or chow diet followed by postweaning WSD (pwWSD) or chow diet focusing on bile acid (BA) homeostasis and hepatic fibrosis in livers from third-trimester fetuses and 3-year-old juvenile offspring. RESULTS Juveniles exposed to mWSD had increased hepatic collagen I/III content and stellate cell activation in portal regions. mWSD increased transcriptional signatures of FXR activation, while pwWSD impaired FXR pathway genes and increased liver BA content. Both mWSD and pwWSD increased serum BA concentrations. Notably, mWSD-exposed juvenile offspring had increased periportal CK19 expression and cholangiocyte gene expression supporting proliferation compared with maternal chow-exposed offspring. Fetuses exposed to mWSD had increased CK19 expression and hepatic BAs which correlated positively with periportal collagen deposition and negatively with markers of fetal oxygenation. In juvenile offspring, increased serum BAs correlated positively with hepatic oxidative stress and portal fibrosis without elevated liver enzymes. CONCLUSIONS mWSD is associated with hallmarks of paediatric MASLD including portal bile ductular reaction, portal fibrosis and dysregulated BA homeostasis. These conditions begin in utero and persist in juvenile offspring regardless of their postweaning diet. These findings implicate changes in BA metabolism that may drive developmental programming of MASLD in juvenile offspring beginning in utero.
Collapse
Affiliation(s)
- Michael J. Nash
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Evgenia Dobrinskikh
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Saif I. Al‐Juboori
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Rachel C. Janssen
- Harold Hamm Diabetes CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Jolyn Fernandes
- Department of PediatricsUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Amy Argabright
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Angelo D'Alessandro
- Department of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Melissa A. Kirigiti
- Division of Cardiometabolic HealthOregon Health Science University, Oregon National Primate Research CenterBeavertonOregonUSA
| | - Paul Kievit
- Division of Cardiometabolic HealthOregon Health Science University, Oregon National Primate Research CenterBeavertonOregonUSA
- Division of NeuroscienceOregon Health Science University, Oregon National Primate Research CenterBeavertonOregonUSA
| | - Kjersti M. Aagaard
- Department of Obstetrics and GynecologyDivision of Maternal‐Fetal Medicine, Baylor College of MedicineHoustonTexasUSA
| | | | - Maureen Gannon
- Department of Medicine, Division of Diabetes, Endocrinology, and MetabolismVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kenneth L. Jones
- Harold Hamm Diabetes CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Tiangang Li
- Harold Hamm Diabetes CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Jacob E. Friedman
- Harold Hamm Diabetes CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | | |
Collapse
|
20
|
Ma Y, Yang H, Wang X, Huang Y, Li Y, Pan G. Bile acids as signaling molecules in inflammatory bowel disease: Implications for treatment strategies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118968. [PMID: 39427739 DOI: 10.1016/j.jep.2024.118968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is a globally increasing disease. Despite continuous efforts, the clinical application of treatment drugs has not achieved satisfactory success and faces limitations such as adverse drug reactions. Numerous investigations have found that the pathogenesis of IBD is connected with disturbances in bile acid circulation and metabolism. Traditional Chinese medicine targeting bile acids (BAs) has shown significant therapeutic effects and advantages in treating inflammatory bowel disease. AIM OF THIS REVIEW IThis article reviews the role of bile acids and their receptors in IBD, as well as research progress on IBD therapeutic drugs based on bile acids. It explores bile acid metabolism and its interaction with the intestinal microbiota, summarizes clinical drugs for treating IBD including single herbal medicine, traditional herbal prescriptions, and analyzes the mechanisms of action in treating IBD. MATERIALS AND METHODS IThe electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature up to January 2024, using keywords "bile acid", "bile acid receptor", "inflammatory bowel disease", "intestinal microbiota" and "targeted drugs". RESULTS IImbalance in bile acid levels can lead to intestinal inflammation, while IBD can disrupt the balance of microbes, result in alterations in the bile acid pool's composition and amount. This change can damage of intestinal mucosa healing ability. Bile acids are vital for keeping the gut barrier function intact, regulating gene expression, managing metabolic equilibrium, and influencing the properties and roles of the gut's microbial community. Consequently, focusing on bile acids could offer a potential treatment strategy for IBD. CONCLUSION IIBD can induce intestinal homeostasis imbalance and changes in BA pool, leading to fluctuations in levels of relevant metabolic enzymes, transporters, and nuclear receptors. Therefore, by regulating the balance of BA and key signaling molecules of bile acids, we can treat IBD. Traditional Chinese medicine has great potential and promising prospects in treating IBD. We should focus on the characteristics and advantages of Chinese medicine, promote the development and clinical application of innovative Chinese medicine, and ultimately make Chinese medicine targeting bile acids the mainstream treatment for IBD.
Collapse
Affiliation(s)
- Yueyue Ma
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Haoze Yang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China.
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China.
| |
Collapse
|
21
|
Gray SM, Wood MC, Mulkeen SC, Ahmed S, Thaker SD, Chen B, Sander WR, Bibeva V, Zhang X, Yang J, Herzog JW, Zhang S, Dogan B, Simpson KW, Balfour Sartor R, Montrose DC. Dietary protein source mediates colitis pathogenesis through bacterial modulation of bile acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634824. [PMID: 39896483 PMCID: PMC11785241 DOI: 10.1101/2025.01.24.634824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Evidence-based dietary recommendations for individuals with inflammatory bowel diseases (IBD) are limited. Red meat consumption is associated with increased IBD incidence and relapse in patients, suggesting that switching to a plant-based diet may limit gut inflammation. However, the mechanisms underlying the differential effects of these diets remain poorly understood. Feeding diets containing plant- or animal-derived proteins to murine colitis models revealed that mice given a beef protein (BP) diet exhibited the most severe colitis, while mice fed pea protein (PP) developed mild inflammation. The colitis-promoting effects of BP were microbially-mediated as determined by bacterial elimination or depletion and microbiota transplant studies. In the absence of colitis, BP-feeding reduced abundance of Lactobacillus johnsonii and Turicibacter sanguinis and expanded Akkermansia muciniphila, which localized to the mucus in association with decreased mucus thickness and quality. BP-fed mice had elevated primary and conjugated fecal bile acids (BAs), and taurocholic acid administration to PP-fed mice worsened colitis. Dietary psyllium protected against BP-mediated inflammation, restored BA-modulating commensals and normalized BA ratios. Collectively, these data suggest that the protein component of red meat may be responsible, in part, for the colitis-promoting effects of this food source and provide insight into dietary factors that may influence IBD severity.
Collapse
Affiliation(s)
- Simon M. Gray
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Michael C. Wood
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Samantha C. Mulkeen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Sunjida Ahmed
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Shrey D. Thaker
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Bo Chen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - William R. Sander
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Vladimira Bibeva
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | - Xiaoyue Zhang
- Biostatistical Consulting Core, Renaissance School of Medicine, Stony Brook University
| | - Jie Yang
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY
| | - Jeremy W. Herzog
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Shiying Zhang
- Department of Clinical Sciences, Cornell University, Ithaca, NY
| | - Belgin Dogan
- Department of Clinical Sciences, Cornell University, Ithaca, NY
| | | | - R. Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina, Chapel Hill, NC
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
- National Gnotobiotic Rodent Resource Center, University of North Carolina, Chapel Hill, NC
| | - David C. Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
- Stony Brook Cancer Center, Stony Brook, NY
| |
Collapse
|
22
|
Kim CH. Functional regulation of cytotoxic T cells by gut microbial metabolites. GUT MICROBES REPORTS 2025; 2:1-16. [PMID: 40115123 PMCID: PMC11922538 DOI: 10.1080/29933935.2025.2454002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 03/23/2025]
Abstract
Metabolites from gut microbes have a wide range of functions within the host body. One important function of these metabolites is to either positively or negatively control CD8+ cytotoxic T lymphocytes (CTLs), which can kill cancer and virus-infected cells. In healthy conditions, gut microbes produce a mixture of metabolites that promote CTL activity but also suppress excessive inflammatory responses. However, gut microbial dysbiosis occurs in patients with cancer, and this leads to changes in the production of gut microbial metabolites that can suppress CTL activity, promote inflammatory responses, and/or aid cancer growth. Decreased levels of CTL-promoting metabolites such as short-chain fatty acids, indole metabolites and polyamines but increased levels of CTL-suppressing metabolites, such as certain bile acids along with oncogenic metabolites, have been observed in patients with cancer. This review summarizes the altered production of major microbial metabolites in patients with cancer and discusses the impact of these changes on anti-cancer CTL responses.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109; Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
23
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
24
|
Costantini C, Brancorsini S, Grignani F, Romani L, Bellet MM. Circadian metabolic adaptations to infections. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230473. [PMID: 39842481 PMCID: PMC11753887 DOI: 10.1098/rstb.2023.0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 01/24/2025] Open
Abstract
Circadian clocks are biological oscillators that evolved to coordinate rhythms in behaviour and physiology around the 24-hour day. In mammalian tissues, circadian rhythms and metabolism are highly intertwined. The clock machinery controls rhythmic levels of circulating hormones and metabolites, as well as rate-limiting enzymes catalysing biosynthesis or degradation of macromolecules in metabolic tissues, such control being exerted both at the transcriptional and post-transcriptional level. During infections, major metabolic adaptation occurs in mammalian hosts, at the level of both the single immune cell and the whole organism. Under these circumstances, the rhythmic metabolic needs of the host intersect with those of two other players: the pathogen and the microbiota. These three components cooperate or compete to meet their own metabolic demands across the 24 hours. Here, we review findings describing the circadian regulation of the host response to infection, the circadian metabolic adaptations occurring during host-microbiota-pathogen interactions and how such regulation can influence the immune response of the host and, ultimately, its own survival.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Francesco Grignani
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Marina Maria Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| |
Collapse
|
25
|
Latif F, Mubbashir A, Khan MS, Shaikh Z, Memon A, Alvares J, Azhar A, Jain H, Ahmed R, Kanagala SG. Trimethylamine N-oxide in cardiovascular disease: Pathophysiology and the potential role of statins. Life Sci 2025; 361:123304. [PMID: 39672256 DOI: 10.1016/j.lfs.2024.123304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/23/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Cardiovascular diseases are one of the leading causes of mortality and morbidity worldwide, with the total number of cases increasing to 523 million in 2019. Despite the advent of new drugs, cardiovascular mortality has increased at an alarming rate of 53.7 % from 12.1 million deaths in 1990. Recently, the role of gut microbiome metabolites, such as Trimethylamine N-Oxide (TMAO), in the pathogenesis of cardiovascular disease (CVD) has attracted significant attention. The gut microbiome is critical in various physiological processes including metabolism, immune function, and inflammation. Elevated TMAO levels are associated with atherosclerosis, heart failure, arrhythmia, and atrial fibrillation. TMAO accelerates atherosclerosis by promoting vascular inflammation and reducing reverse cholesterol transport, which leads to lipid accumulation and vessel narrowing. Previous research has indicated that a Mediterranean diet rich in fiber and phytochemicals can reduce TMAO levels by limiting precursors and fostering beneficial gut microbiota. Prebiotics and probiotics also decrease TMAO, while drugs such as meldonium, aspirin, and antibiotics have shown promise. However, recent studies have demonstrated major potential for the use of statins in reducing TMAO levels. Statin therapy can significantly reduce TMAO levels independent of their cholesterol-lowering effects. This reduction may involve direct interactions with the gut microbiome, changes in cholesterol metabolism, and changes in bile acid composition. This review aims to comprehensively evaluate the therapeutic potential of statins in reducing TMAO levels to improve CV outcomes.
Collapse
Affiliation(s)
- Fakhar Latif
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Ayesha Mubbashir
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Muhammad Sohaib Khan
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Zain Shaikh
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Aaima Memon
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Jenelle Alvares
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Ayesha Azhar
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan.
| | - Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India.
| | - Raheel Ahmed
- Heart Division Royal Brompton Hospital, Guy's and St Thomas' NHS Trust London, United Kingdom; National Heart and Lung Institute, Imperial College London London, United Kingdom.
| | - Sai Gautham Kanagala
- Department of Internal Medicine, Metropolitan Hospital Center, New York, NY, USA.
| |
Collapse
|
26
|
Yoshikiyo K, Shimizu H, Nagato EG, Ishizuka S, Yamamoto T. Comparative Analysis of γ-Cyclodextrin, Perilla Oil, and Their Inclusion Complexes on Liver Injury and Dyslipidemia Associated with Elevated Gastrointestinal 12-Hydroxylated Bile Acid Levels. Molecules 2025; 30:281. [PMID: 39860151 PMCID: PMC11767548 DOI: 10.3390/molecules30020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Our previous study demonstrated that γ-cyclodextrin (γ-CD)-perilla oil inclusion complexes increase plasma α-linolenic acid and eicosapentaenoic acid levels in healthy rats without adverse effects. The present study examined the effects of perilla oil, γ-CD, and their inclusion complexes on rats fed cholic acid (CA) to mimic the elevated gastrointestinal 12-hydroxylated (12OH) bile acid levels in high-fat diet-fed rats. Rats fed CA (CA group) tended to have higher AST, ALT, plasma total cholesterol (T-CHO), and triglyceride (TG) levels compared to controls fed a standard diet without CA. Rats fed CA and perilla oil (CA+LP group) showed a tendency for lower AST and plasma TG levels than those in the CA group. Rats fed CA and γ-CD (CA+CD group) had significantly higher AST, ALT, plasma T-CHO, and TG levels than the controls, indicating severe liver injury and dyslipidemia. Rats fed CA and the γ-CD-perilla oil inclusion complex (CA+IC group) had significantly lower AST and ALT levels than the CA+CD rats, with a trend towards lower plasma T-CHO and TG levels. Plasma α-linolenic acid and eicosapentaenoic acid levels were significantly higher in the CA+LP and CA+IC groups than in the controls and CA+CD groups. However, the CA+IC group tended to have lower α-linolenic acid levels and significantly lower eicosapentaenoic acid levels than the CA+LP group. This suggests an accelerated conversion of α-linolenic acid to eicosapentaenoic acid in the CA+IC group, which may contribute to the attenuation of liver injury and dyslipidemia. These findings suggest that γ-CD may exacerbate liver injury and dyslipidemia caused by elevated gastrointestinal 12OH bile acid levels, whereas γ-CD-perilla oil inclusion complexes may ameliorate these effects by altering fatty acid metabolism. Furthermore, we recommend evaluating γ-CD safety in both healthy and pathological models and carefully selecting compounds co-ingested with γ-CD.
Collapse
Affiliation(s)
- Keisuke Yoshikiyo
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
| | - Hidehisa Shimizu
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
| | - Edward G. Nagato
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Institute of Environmental Systems Science, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan
| | - Satoshi Ishizuka
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Hokkaido, Japan
| | - Tatsuyuki Yamamoto
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Shimane, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Tottori, Japan
- Raman Project Center for Medical and Biological Applications, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Shimane, Japan
| |
Collapse
|
27
|
Seneff S, Kyriakopoulos AM. Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity. Amino Acids 2025; 57:6. [PMID: 39789296 PMCID: PMC11717795 DOI: 10.1007/s00726-024-03440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity. This can be of crucial impact to either normal or cancer cells that have highly different mitochondrial redox status. Deuterium is an isotope of hydrogen with a neutron as well as a proton, making it about twice as heavy as hydrogen. We first explain the important role that the gut microbiome and the gut sulfomucin barrier play in deuterium management. We describe the synergistic effects of taurine in the gut to protect against the deleterious accumulation of deuterium in the mitochondria, which disrupts ATP synthesis by ATPase pumps. Moreover, taurine's derivatives, N-chlorotaurine (NCT) and N-bromotaurine (NBrT), produced through spontaneous reaction of taurine with hypochlorite and hypobromite, have fascinating regulatory roles to protect from oxidative stress and beyond. We describe how taurine could potentially alleviate deuterium stress, primarily through metabolic collaboration among various gut microflora to produce deuterium depleted nutrients and deuterium depleted water, and in this way protect against leaky gut barrier, inflammatory bowel disease, and colon cancer.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Anthony M Kyriakopoulos
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece
| |
Collapse
|
28
|
Monti E, Vianello C, Leoni I, Galvani G, Lippolis A, D’Amico F, Roggiani S, Stefanelli C, Turroni S, Fornari F. Gut Microbiome Modulation in Hepatocellular Carcinoma: Preventive Role in NAFLD/NASH Progression and Potential Applications in Immunotherapy-Based Strategies. Cells 2025; 14:84. [PMID: 39851512 PMCID: PMC11764391 DOI: 10.3390/cells14020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous tumor associated with several risk factors, with non-alcoholic fatty liver disease (NAFLD) emerging as an important cause of liver tumorigenesis. Due to the obesity epidemics, the occurrence of NAFLD has significantly increased with nearly 30% prevalence worldwide. HCC often arises in the background of chronic liver disease (CLD), such as nonalcoholic steatohepatitis (NASH) and cirrhosis. Gut microbiome (GM) alterations have been linked to NAFLD progression and HCC development, with several investigations reporting a crucial role for the gut-liver axis and microbial metabolites in promoting CLD. Moreover, the GM affects liver homeostasis, energy status, and the immune microenvironment, influencing the response to immunotherapy with interesting therapeutic implications. In this review, we summarize the main changes in the GM and derived metabolites (e.g., short-chain fatty acids and bile acids) occurring in HCC patients and influencing NAFLD progression, emphasizing their potential as early diagnostic biomarkers and prognostic tools. We discuss the weight loss effects of diet-based interventions and healthy lifestyles for the treatment of NAFLD patients, highlighting their impact on the restoration of the intestinal barrier and GM structure. We also describe encouraging preclinical findings on the modulation of GM to improve liver functions in CLD, boost the antitumor immune response (e.g., probiotic supplementations or anti-hypercholesterolemic drug treatment), and ultimately delay NAFLD progression to HCC. The development of safe and effective strategies that target the gut-liver axis holds promise for liver cancer prevention and treatment, especially if personalized options will be considered.
Collapse
Affiliation(s)
- Elisa Monti
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Clara Vianello
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Ilaria Leoni
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Giuseppe Galvani
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Annalisa Lippolis
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
| | - Federica D’Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.D.); (S.R.); (S.T.)
| | - Sara Roggiani
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.D.); (S.R.); (S.T.)
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.D.); (S.R.); (S.T.)
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesca Fornari
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
29
|
Pellon A, Palacios A, Abecia L, Rodríguez H, Anguita J. Friends to remember: innate immune memory regulation by the microbiota. Trends Microbiol 2025:S0966-842X(24)00318-4. [PMID: 39794207 DOI: 10.1016/j.tim.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Innate immune memory (IIM) is the process by which, upon a primary challenge, innate immune cells alter their epigenetic, transcriptional, and immunometabolic profiles, resulting in modified secondary responses. Unlike infections or other immune-system-related diseases, the role of IIM in nonpathogenic contexts is less understood. An increasing body of research has shown that normal microbiota members or their metabolic byproducts induce alternative memory phenotypes, suggesting that memory cells contribute to homeostasis in mucosal areas. In this review, we discuss the newest insights in the emerging field of IIM to the microbiota and the potential of manipulating these long-term responses to promote better mucosal health.
Collapse
Affiliation(s)
- Aize Pellon
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain.
| | - Ainhoa Palacios
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Present address: Research Unit, Basque Center for Blood Transfusion and Human Tissues, Osakidetza; Galdakao, Spain and Cell Therapy, Stem Cells and Tissues Group, BioBizkaia Health Research Institute; Barakaldo, Spain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Department of Immunology, Microbiology, and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Héctor Rodríguez
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE-BRTA, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
30
|
Portlock T, Shama T, Kakon SH, Hartjen B, Pook C, Wilson BC, Bhuttor A, Ho D, Shennon I, Engelstad AM, Di Lorenzo R, Greaves G, Rahman N, Kelsey C, Gluckman PD, O'Sullivan JM, Haque R, Forrester T, Nelson CA. Interconnected pathways link faecal microbiota plasma lipids and brain activity to childhood malnutrition related cognition. Nat Commun 2025; 16:473. [PMID: 39773949 PMCID: PMC11707170 DOI: 10.1038/s41467-024-55798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Malnutrition affects over 30 million children annually and has profound immediate and enduring repercussions. Survivors often suffer lasting neurocognitive consequences that impact academic performance and socioeconomic outcomes. Mechanistic understanding of the emergence of these consequences is poorly understood. Using multi-system SHAP interpreted random forest models and network analysis, we show that Moderate Acute Malnutrition (MAM) associates with enrichment of faecal Rothia mucilaginosa, Streptococcus salivarius and depletion of Bacteroides fragilis in a cohort of one-year-old children in Dhaka, Bangladesh. These microbiome changes form interconnected pathways that involve reduced plasma odd-chain fatty acid levels, decreased gamma and beta electroencephalogram power in temporal and frontal brain regions, and reduced vocalization. These findings support the hypothesis that prolonged colonization by oral commensal species delay gut microbiome and brain development. While causal links require empirical validation, this study provides insights to improve interventions targeting MAM-associated neurodevelopmental deficits.
Collapse
Affiliation(s)
- T Portlock
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - T Shama
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - S H Kakon
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - B Hartjen
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - C Pook
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - B C Wilson
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - A Bhuttor
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - D Ho
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - I Shennon
- The Liggins Institute, University of Auckland, Auckland, New Zealand
| | - A M Engelstad
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, USA
| | - R Di Lorenzo
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - G Greaves
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - N Rahman
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - C Kelsey
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - P D Gluckman
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - J M O'Sullivan
- The Liggins Institute, University of Auckland, Auckland, New Zealand.
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
| | - R Haque
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - T Forrester
- Faculty of Medical Sciences, University of the West Indies (UWI), Kingston, Jamaica
| | - C A Nelson
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Harvard Graduate School of Education, Cambridge, MA, USA.
| |
Collapse
|
31
|
Godzien J, Kalaska B, Rudzki L, Barbas-Bernardos C, Swieton J, Lopez-Gonzalvez A, Ostrowska L, Szulc A, Waszkiewicz N, Ciborowski M, García A, Kretowski A, Barbas C, Pawlak D. Probiotic Lactobacillus plantarum 299v supplementation in patients with major depression in a double-blind, randomized, placebo-controlled trial: A metabolomics study. J Affect Disord 2025; 368:180-190. [PMID: 39271063 DOI: 10.1016/j.jad.2024.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/19/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Understanding the multifactorial nature of major depressive disorder (MDD) is crucial for tailoring treatments. However, the complex interplay of various factors underlying the development and progression of MDD poses significant challenges. Our previous study demonstrated improvements in cognitive functions in MDD patients undergoing treatment with selective serotonin reuptake inhibitors (SSRIs) supplemented with Lactobacillus plantarum 299v (LP299v). METHODS To elucidate the biochemical mechanisms underlying cognitive functions improvements, we explored underlying metabolic changes. We employed multi-platform metabolomics, including LC-QTOF-MS and CE-TOF-MS profiling, alongside chiral LC-QqQ-MS analysis for amino acids. RESULTS Supplementation of SSRI treatment with LP299v intensified the reduction of long-chain acylcarnitines, potentially indicating improved mitochondrial function. LP299v supplementation reduced N-acyl taurines more than four times compared to the placebo, suggesting a substantial impact on restoring biochemical balance. The LP299v-supplemented group showed increased levels of oxidized glycerophosphocholine (oxPC). Additionally, LP299v supplementation led to higher levels of sphingomyelins, L-histidine, D-valine, and p-cresol. LIMITATIONS This exploratory study suggests potential metabolic pathways influenced by LP299v supplementation. However, the need for further research hinders the ability to draw definitive conclusions. CONCLUSIONS Observed metabolic changes were linked to mitochondrial dysfunction, inflammation, oxidative stress, and gut microbiota disruption. Despite the subtle nature of this alterations, our research successfully detected these differences and connected them to the metabolic disruptions associated with MDD. Our findings emphasise the intricate relationship between metabolism, gut microbiota, and mental health prompting further research into the mechanisms of action of probiotics in MDD treatment.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland.
| | - Leszek Rudzki
- Psychiatry-UK, 3b Fore Street, Camelford PL32 9PG, UK
| | - Cecilia Barbas-Bernardos
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Justyna Swieton
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Angeles Lopez-Gonzalvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Lucyna Ostrowska
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, Bialystok, Poland
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Michal Ciborowski
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Antonia García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Adam Kretowski
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
32
|
Darmanto AG, Yen TL, Jan JS, Linh TTD, Taliyan R, Yang CH, Sheu JR. Beyond metabolic messengers: Bile acids and TGR5 as pharmacotherapeutic intervention for psychiatric disorders. Pharmacol Res 2025; 211:107564. [PMID: 39733841 DOI: 10.1016/j.phrs.2024.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Psychiatric disorders pose a significant global health challenge, exacerbated by the COVID-19 pandemic and insufficiently addressed by the current treatments. This review explores the emerging role of bile acids and the TGR5 receptor in the pathophysiology of psychiatric conditions, emphasizing their signaling within the gut-brain axis. We detail the synthesis and systemic functions of bile acids, their transformation by gut microbiota, and their impact across various neuropsychiatric disorders, including major depressive disorder, general anxiety disorder, schizophrenia, autism spectrum disorder, and bipolar disorder. The review highlights how dysbiosis and altered bile acid metabolism contribute to the development and exacerbation of these neuropsychiatric disorders through mechanisms involving inflammation, oxidative stress, and neurotransmitter dysregulation. Importantly, we detail both pharmacological and non-pharmacological interventions that modulate TGR5 signaling, offering potential breakthroughs in treatment strategies. These include dietary adjustments to enhance beneficial bile acids production and the use of specific TGR5 agonists that have shown promise in preclinical and clinical settings for their regulatory effects on critical pathways such as cAMP-PKA, NRF2-mediated antioxidant responses, and neuroinflammation. By integrating findings from the dynamics of gut microbiota, bile acids metabolism, and TGR5 receptor related signaling events, this review underscores cutting-edge therapeutic approaches poised to revolutionize the management and treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Arief Gunawan Darmanto
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; School of Medicine, Universitas Ciputra, Surabaya 60219, Indonesia
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan, ROC
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC
| | - Tran Thanh Duy Linh
- Family Medicine Training Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Joen-Rong Sheu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan, ROC; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC.
| |
Collapse
|
33
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
34
|
Wang Y, Yu J, Chen B, Jin W, Wang M, Chen X, Jian M, Sun L, Piao C. Bile acids as a key target: traditional Chinese medicine for precision management of insulin resistance in type 2 diabetes mellitus through the gut microbiota-bile acids axis. Front Endocrinol (Lausanne) 2024; 15:1481270. [PMID: 39720247 PMCID: PMC11666381 DOI: 10.3389/fendo.2024.1481270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease caused by insulin resistance (IR) and insufficient insulin secretion. Its characteristic pathophysiological processes involve the interaction of multiple mechanisms. In recent years, globally, the prevalence of T2DM has shown a sharp rise due to profound changes in socio-economic structure, the persistent influence of environmental factors, and the complex role of genetic background. It is worth noting that most T2DM patients show significant IR, which further exacerbates the difficulty of disease progression and prevention. In the process of extensively exploring the pathogenesis of T2DM, the dynamic equilibrium of gut microbes and its diverse metabolic activities have increasingly emphasized its central role in the pathophysiological process of T2DM. Bile acids (BAs) metabolism, as a crucial link between gut microbes and the development of T2DM, not only precisely regulates lipid absorption and metabolism but also profoundly influences glucose homeostasis and energy balance through intricate signaling pathways, thus playing a pivotal role in IR progression in T2DM. This review aims to delve into the specific mechanism through which BAs contribute to the development of IR in T2DM, especially emphasizing how gut microbes mediate the metabolic transformation of BAs based on current traditional Chinese medicine research. Ultimately, it seeks to offer new insights into the prevention and treatment of T2DM. Diet, genetics, and the environment intricately sculpt the gut microbiota and BAs metabolism, influencing T2DM-IR. The research has illuminated the significant impact of single herbal medicine, TCM formulae, and external therapeutic methods such as electroacupuncture on the BAs pool through perturbations in gut microbiota structure. This interaction affects glucose and lipid metabolism as well as insulin sensitivity. Additionally, multiple pathways including BA-FXR-SHP, BA-FXR-FGFR15/19, BA-FXR-NLRP3, BA-TGR5-GLP-1, BAs-TGR5/FXR signaling pathways have been identified through which the BAs pool significantly alter blood glucose levels and improve IR. These findings offer novel approaches for enhancing IR and managing metabolic disorders among patients with T2DM.
Collapse
Affiliation(s)
- Yu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jing Yu
- Department of Endocrinology, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Binqin Chen
- Applicants with Equivalent Academic Qualifications for Master Degree, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meili Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengqiong Jian
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chunli Piao
- Shenzhen Hospital (Futian), Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
35
|
Olotu T, Ferrell JM. Lactobacillus sp. for the Attenuation of Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice. Microorganisms 2024; 12:2488. [PMID: 39770690 PMCID: PMC11728176 DOI: 10.3390/microorganisms12122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/05/2025] Open
Abstract
Probiotics are studied for their therapeutic potential in the treatment of several diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Part of the significant progress made in understanding the pathogenesis of steatosis has come from identifying the complex interplay between the gut microbiome and liver function. Recently, probiotics have shown beneficial effects for the treatment and prevention of steatosis and MASLD in rodent models and in clinical trials. Numerous studies have demonstrated the promising potential of lactic acid bacteria, especially the genus Lactobacillus. Lactobacillus is a prominent bile acid hydrolase bacterium that is involved in the biotransformation of bile acids. This genus' modulation of the gut microbiota also contributes to overall gut health; it controls gut microbial overgrowth, shapes the intestinal bile acid pool, and alleviates inflammation. This narrative review offers a comprehensive summary of the potential of Lactobacillus in the gut-liver axis to attenuate steatosis and MASLD. It also highlights the roles of Lactobacillus in hepatic lipid metabolism, insulin resistance, inflammation and fibrosis, and bile acid synthesis in attenuating MASLD.
Collapse
Affiliation(s)
- Titilayo Olotu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
36
|
Deschamps C, Humbert D, Chalancon S, Achard C, Apper E, Denis S, Blanquet-Diot S. Large intestinal nutritional and physicochemical parameters from different dog sizes reshape canine microbiota structure and functions in vitro. Bioengineered 2024; 15:2325713. [PMID: 38471972 PMCID: PMC10936688 DOI: 10.1080/21655979.2024.2325713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Different dog sizes are associated with variations in large intestinal physiology including gut microbiota, which plays a key role in animal health. This study aims to evaluate, using the CANIM-ARCOL (Canine Mucosal Artificial Colon), the relative importance of gut microbes versus physicochemical and nutritional parameters of the canine colonic environment in shaping microbiota structure and functions. CANIM-ARCOL was set up to reproduce nutrient availability, bile acid profiles, colonic pH, and transit time from small, medium, or large dogs according to in vivo data, while bioreactors were all inoculated with a fecal sample collected from medium size dogs (n = 2). Applying different dog size parameters resulted in a positive association between size and gas or SCFA production, as well as distinct microbiota profiles as revealed by 16S Metabarcoding. Comparisons with in vivo data from canine stools and previous in vitro results obtained when CANIM-ARCOL was inoculated with fecal samples from three dog sizes revealed that environmental colonic parameters were sufficient to drive microbiota functions. However, size-related fecal microbes were necessary to accurately reproduce in vitro the colonic ecosystem of small, medium, and large dogs. For the first time, this study provides mechanistic insights on which parameters from colonic ecosystem mainly drive canine microbiota in relation to dog size. The CANIM-ARCOL can be used as a relevant in vitro platform to unravel interactions between food or pharma compounds and canine colonic microbiota, under different dog size conditions. The potential of the model will be extended soon to diseased situations (e.g. chronic enteropathies or obesity).
Collapse
Affiliation(s)
- Charlotte Deschamps
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
- Lallemand Animal Nutrition, Blagnac Cedex, Haute-Garonne, France
| | | | - Sandrine Chalancon
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
| | - Caroline Achard
- Lallemand Animal Nutrition, Blagnac Cedex, Haute-Garonne, France
| | - Emmanuelle Apper
- Lallemand Animal Nutrition, Blagnac Cedex, Haute-Garonne, France
| | - Sylvain Denis
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, UMR 454 MEDIS UCA-INRAE, Clermont-Ferrand, Puy-de-Dôme, France
| |
Collapse
|
37
|
Ionescu E, Nagler CR. The role of intestinal bacteria in promoting tolerance to food. Curr Opin Immunol 2024; 91:102492. [PMID: 39326201 DOI: 10.1016/j.coi.2024.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The global prevalence of atopic diseases, including food allergy, is increasing and correlates with shifts in the commensal microbiota triggered by modern lifestyle factors. Current research focuses on the immunological mechanisms and microbial cues that regulate mucosal immunity and prevent allergic responses to food. We review the identification and characterization of novel antigen-presenting cell subsets that may be critical for the establishment and maintenance of tolerance to both food and intestinal bacteria. Microbially derived products, particularly from the Lachnospiraceae family of Clostridia, regulate intestinal homeostasis through a variety of mechanisms. Here, we highlight recent work on Clostridial metabolites and products that mediate protection against allergic responses to food.
Collapse
Affiliation(s)
- Edward Ionescu
- Pritzker School of Molecular Engineering, University of Chicago, USA.
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, University of Chicago, USA; Biological Sciences Division, University of Chicago, 924 E 57th Street, R402, Chicago, IL, 60637, USA
| |
Collapse
|
38
|
Matacchione G, Piacenza F, Pimpini L, Rosati Y, Marcozzi S. The role of the gut microbiota in the onset and progression of heart failure: insights into epigenetic mechanisms and aging. Clin Epigenetics 2024; 16:175. [PMID: 39614396 PMCID: PMC11607950 DOI: 10.1186/s13148-024-01786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND The gut microbiota (GM) plays a critical role in regulating human physiology, with dysbiosis linked to various diseases, including heart failure (HF). HF is a complex syndrome with a significant global health impact, as its incidence doubles with each decade of life, and its prevalence peaks in individuals over 80 years. A bidirectional interaction exists between GM and HF, where alterations in gut health can worsen the disease's progression. MAIN BODY The "gut hypothesis of HF" suggests that HF-induced changes, such as reduced intestinal perfusion and altered gut motility, negatively impact GM composition, leading to increased intestinal permeability, the release of GM-derived metabolites into the bloodstream, and systemic inflammation. This process creates a vicious cycle that further deteriorates heart function. GM-derived metabolites, including trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and secondary bile acids (BAs), can influence gene expression through epigenetic mechanisms, such as DNA methylation and histone modifications. These epigenetic changes may play a crucial role in mediating the effects of dysbiotic gut microbial metabolites, linking them to altered cardiac health and contributing to the progression of HF. This process is particularly relevant in older individuals, as the aging process itself has been associated with both dysbiosis and cumulative epigenetic alterations, intensifying the interplay between GM, epigenetic changes, and HF, and further increasing the risk of HF in the elderly. CONCLUSION Despite the growing body of evidence, the complex interplay between GM, epigenetic modifications, and HF remains poorly understood. The dynamic nature of epigenetics and GM, shaped by various factors such as age, diet, and lifestyle, presents significant challenges in elucidating the precise mechanisms underlying this complex relationship. Future research should prioritize innovative approaches to overcome these limitations. By identifying specific metabolite-induced epigenetic modifications and modulating the composition and function of GM, novel and personalized therapeutic strategies for the prevention and/or treatment of HF can be developed. Moreover, targeted research focusing specifically on older individuals is crucial for understanding the intricate connections between GM, epigenetics, and HF during aging.
Collapse
Affiliation(s)
- Giulia Matacchione
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60127, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | | | - Yuri Rosati
- Pneumologia, IRCCS INRCA, 60027, Osimo, Italy
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy.
| |
Collapse
|
39
|
Patloka O, Komprda T, Franke G. Review of the Relationships Between Human Gut Microbiome, Diet, and Obesity. Nutrients 2024; 16:3996. [PMID: 39683390 DOI: 10.3390/nu16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is a complex disease that increases the risk of other pathologies. Its prevention and long-term weight loss maintenance are problematic. Gut microbiome is considered a potential obesity modulator. The objective of the present study was to summarize recent findings regarding the relationships between obesity, gut microbiota, and diet (vegetable/animal proteins, high-fat diets, restriction of carbohydrates), with an emphasis on dietary fiber and resistant starch. The composition of the human gut microbiome and the methods of its quantification are described. Products of the gut microbiome metabolism, such as short-chain fatty acids and secondary bile acids, and their effects on the gut microbiota, intestinal barrier function and immune homeostasis are discussed in the context of obesity. The importance of dietary fiber and resistant starch is emphasized as far as effects of the host diet on the composition and function of the gut microbiome are concerned. The complex relationships between human gut microbiome and obesity are finally summarized.
Collapse
Affiliation(s)
- Ondřej Patloka
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Tomáš Komprda
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Gabriela Franke
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
40
|
Lonardo A, Ballestri S, Baffy G, Weiskirchen R. Liver fibrosis as a barometer of systemic health by gauging the risk of extrahepatic disease. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This review article proposes the theory that liver fibrosis, the abnormal accumulation of excessive extracellular matrix, is not just an indicator of liver disease but also a negative reflection of overall systemic health. Liver fibrosis poses a heavy financial burden on healthcare systems worldwide and can develop due to chronic liver disease from various causes, often due to sustained inflammation. Liver fibrosis may not generate symptoms and become apparent only when it reaches the stage of cirrhosis and is associated with clinically significant portal hypertension and leads to decompensation events or promotes the development of hepatocellular carcinoma. While chronic viral hepatitis and excessive alcohol consumption were once the primary causes of chronic liver disease featuring fibrosis, this role is now increasingly taken over by metabolic dysfunction-associated steatotic liver disease (MASLD). In MASLD, endothelial dysfunction is an essential component in pathogenesis, promoting the development of liver fibrosis, but it is also present in endothelial cells of other organs such as the heart, lungs, and kidneys. Accordingly, liver fibrosis is a significant predictor of liver-related outcomes, as well as all-cause mortality, cardiovascular risk, and extrahepatic cancer. Physicians should be aware that individuals seeking medical attention for reasons unrelated to liver health may also have advanced fibrosis. Early identification of these at-risk individuals can lead to a more comprehensive assessment and the use of various treatment options, both approved and investigational, to slow or reverse the progression of liver fibrosis.
Collapse
|
41
|
Beigi F, Salehifard Jouneghani A, Heidari-Soureshjani S, Sherwin CMT, Rahimian G. Association Between Gallstone Disease and Kidney Stone Disease: A Systematic Review and Meta-analysis. EPIDEMIOLOGY AND HEALTH SYSTEM JOURNAL 2024; 11:158-165. [DOI: 10.34172/ehsj.26270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/22/2024] [Indexed: 01/03/2025]
Abstract
Background and aims: Gallstone disease (GSD) and kidney stone disease (KSD) have increased due to lifestyle in recent decades. This systematic review and meta-analysis aimed to investigate the association between these two diseases. Methods: A comprehensive electronic database search was conducted before August 25, 2024. This systematic review and meta-analysis included observational studies. The meta-analysis employed a random-effects model to compute the overall summary estimates of the association between GSD and KSD using risk ratios with 95% confidence intervals (CIs) as the primary measure of the effect size. Heterogeneity was evaluated using chi-square tests, the I² statistic, and forest plots. Publication bias was assessed through Begg’s and Egger’s tests. A P value of less than 0.05 was considered statistically significant, and all analyses were performed using Stata 17 software. Results: The meta-analysis included 9 studies encompassing 982847 participants. The pooled analysis revealed a statistically significant association between GSD and KSD, with a risk of 1.78 (95% CI: 1.572.03, P≤0.001). Begg’s and Egger’s tests demonstrated no significant bias (Begg’s test P=0.835, Egger’s test P=0.812). Variables such as study year, sample size, mean age of participants, mean follow-up, and study quality as determined by the Newcastle-Ottawa Scale (NOS) were examined, but none could significantly impact heterogeneity (P>0.10). Conclusion: This systematic review and meta-analysis provide evidence of a significant association between GSD and KSD. Therefore, further investigation into the underlying mechanisms and potential risk factors is necessary.
Collapse
Affiliation(s)
- Faramarz Beigi
- Department of Urology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | | - Catherine MT Sherwin
- Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University, Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
42
|
Biennier S, Fontaine M, Duquenoy A, Schwintner C, Doré J, Corvaia N. Narrative Review: Advancing Dysbiosis Treatment in Onco-Hematology with Microbiome-Based Therapeutic Approach. Microorganisms 2024; 12:2256. [PMID: 39597645 PMCID: PMC11596191 DOI: 10.3390/microorganisms12112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the complex relationship between gut dysbiosis and hematological malignancies, focusing on graft-versus-host disease (GvHD) in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. We discuss how alterations in microbial diversity and composition can influence disease development, progression, and treatment outcomes in blood cancers. The mechanisms by which the gut microbiota impacts these conditions are examined, including modulation of immune responses, production of metabolites, and effects on intestinal barrier function. Recent advances in microbiome-based therapies for treating and preventing GvHD are highlighted, with emphasis on full ecosystem standardized donor-derived products. Overall, this review underscores the growing importance of microbiome research in hematology-oncology and its potential to complement existing treatments and improve outcomes for thousands of patients worldwide.
Collapse
Affiliation(s)
- Salomé Biennier
- MaaT Pharma, 69007 Lyon, France; (S.B.); (A.D.); (C.S.); (N.C.)
| | | | - Aurore Duquenoy
- MaaT Pharma, 69007 Lyon, France; (S.B.); (A.D.); (C.S.); (N.C.)
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, 78350 Jouy-en-Josas, France;
| | | |
Collapse
|
43
|
Warner DM, Mehta AH. Factors underlying the association between Streptococcus gallolyticus, subspecies gallolyticus infection and colorectal cancer: a mini review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e9. [PMID: 39703539 PMCID: PMC11658940 DOI: 10.1017/gmb.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 12/21/2024]
Abstract
Streptococcus gallolyticus, subspecies gallolyticus (Sgg) is a gram-positive bacterium associated with infective endocarditis and colorectal cancer (CRC). Sgg has features that allow the bacterium to thrive in the colorectal tumor microenvironment and further progress the development of CRC to facilitate its survival. Sgg contains 3 pili that facilitate colonic cell adhesion and translocation through phase variation. Sgg also contains bile salt hydrolase and a bacteriocin called gallocin with substantially increased activity in bile acids, which facilitates its growth in the bile acid-rich adenomatous colorectal microenvironment. Sgg also uses tumor metabolites as an energy source. Sgg also possesses tannase, which metabolizes gallotannin to be used as a carbon source and reduces the anti-apoptotic effects of tannins, driving CRC progression. Sgg also interferes with a variety of oncogenic cell signaling pathways, including the Wnt/β-catenin pathway through mechanisms that are not fully elucidated. Increased β-catenin signaling also enhances adhesion via increased expression of the extracellular matrix and increases bile acid concentrations in the lumen through downregulation of an apical bile acid transporter. Finally, Sgg induces biotransformation of toxic substrates in CRC cells, which leads to formation of toxic intermediates and DNA adducts, promoting further progression of CRC.
Collapse
Affiliation(s)
| | - Arunab Harish Mehta
- Department of Hospital Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| |
Collapse
|
44
|
Axelrod CL, Hari A, Dantas WS, Kashyap SR, Schauer PR, Kirwan JP. Metabolomic Fingerprints of Medical Therapy Versus Bariatric Surgery in Patients With Obesity and Type 2 Diabetes: The STAMPEDE Trial. Diabetes Care 2024; 47:2024-2032. [PMID: 39311919 PMCID: PMC11502526 DOI: 10.2337/dc24-0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVE Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) are effective procedures to treat and manage type 2 diabetes (T2D). However, the underlying metabolic adaptations that mediate improvements in glucose homeostasis remain largely elusive. The purpose of this study was to identify metabolic signatures associated with biochemical resolution of T2D after medical therapy (MT) or bariatric surgery. RESEARCH DESIGN AND METHODS Plasma samples from 90 patients (age 49.9 ± 7.6 years; 57.7% female) randomly assigned to MT (n = 30), RYGB (n = 30), or SG (n = 30) were retrospectively subjected to untargeted metabolomic analysis using ultra performance liquid chromatography with tandem mass spectrometry at baseline and 24 months of treatment. Phenotypic importance was determined by supervised machine learning. Associations between change in glucose homeostasis and circulating metabolites were assessed using a linear mixed effects model. RESULTS The circulating metabolome was dramatically remodeled after SG and RYGB, with largely overlapping signatures after MT. Compared with MT, SG and RYGB profoundly enhanced the concentration of metabolites associated with lipid and amino acid signaling, while limiting xenobiotic metabolites, a function of decreased medication use. Random forest analysis revealed 2-hydroxydecanoate as having selective importance to RYGB and as the most distinguishing feature between MT, SG, and RYGB. To this end, change in 2-hydroxydecanoate correlated with reductions in fasting glucose after RYGB but not SG or MT. CONCLUSIONS We identified a novel metabolomic fingerprint characterizing the longer-term adaptations to MT, RYGB, and SG. Notably, the metabolomic profiles of RYGB and SG procedures were distinct, indicating equivalent weight loss may be achieved by divergent effects on metabolism.
Collapse
Affiliation(s)
- Christopher L. Axelrod
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Adithya Hari
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Wagner S. Dantas
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | | | - Philip R. Schauer
- Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, OH
- Clinical Metabolic Surgery Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - John P. Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|
45
|
Shaikh FY, Lee S, White JR, Zhao Y, Ferri JT, Pereira G, Landon BV, Ke S, Hu C, Feliciano JL, Hales RK, Voong KR, Battafarano RJ, Yang SC, Broderick S, Ha J, Thompson E, Shin EJ, Bartlett DL, Weksler B, Pardoll DM, Anagnostou V, Lam VK, Zaidi AH, Kelly RJ, Sears CL. Fecal Microbiome Composition Correlates with Pathologic Complete Response in Patients with Operable Esophageal Cancer Treated with Combined Chemoradiotherapy and Immunotherapy. Cancers (Basel) 2024; 16:3644. [PMID: 39518082 PMCID: PMC11545537 DOI: 10.3390/cancers16213644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Preclinical and clinical data indicate that chemoradiotherapy (CRT) in combination with checkpoint inhibitors may prime an anti-tumor immunological response in esophageal cancer. However, responses to neoadjuvant therapy can vary widely and the key biomarkers to determine response remain poorly understood. The fecal microbiome is a novel and potentially modifiable biomarker of immunotherapy response, and both fecal and tumor microbes have been found to associate with outcomes in esophageal cancer. Methods: Fecal and tumor samples were collected from patients with stage II-III resectable esophageal or gastroesophageal junction carcinoma treated with neoadjuvant immune checkpoint inhibitors (ICIs) plus CRT prior to surgical resection. Microbiome profiles were analyzed by 16S rRNA amplicon sequencing and taxonomic data were integrated with fecal metabolite analysis to assess microbial function. Results: The fecal microbiome of patients with pathological complete response (PCR) grouped in distinct clusters compared to patients with residual viable tumor (RVT) by Bray-Curtis diversity metric. Integrated taxonomic and metabolomic analysis of fecal samples identified a sphingolipid and primary bile acid as enriched in the PCR, the levels of which correlated with several bacterial species: Roseburis inulinivorans, Ruminococcus callidus, and Fusicantenibacter saccharivorans. Analysis of the tumor microbiome profiles identified several bacterial genera previously associated with esophageal tumors, including Streptococcus and Veillonella. Conclusions: These results further characterize the fecal and tumor microbiome of patients with operable esophageal cancer and identify specific microbes and metabolites that may help elucidate how microbes contribute to tumor response with neoadjuvant CRT combined with ICI.
Collapse
Affiliation(s)
- Fyza Y. Shaikh
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seoho Lee
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Yujie Zhao
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Jacqueline T. Ferri
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gavin Pereira
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Blair V. Landon
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suqi Ke
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chen Hu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Josephine L. Feliciano
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Russell K. Hales
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - K. Ranh Voong
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard J. Battafarano
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen C. Yang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stephen Broderick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jinny Ha
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth Thompson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eun J. Shin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David L. Bartlett
- Allegheny Health Network Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Benny Weksler
- Allegheny Health Network Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Drew M. Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valsamo Anagnostou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vincent K. Lam
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ali H. Zaidi
- Allegheny Health Network Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15212, USA
| | - Ronan J. Kelly
- The Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Cynthia L. Sears
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute of Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
46
|
Nguyen HVM, Cabello E, Dyer D, Fender C, Garcia-Jaramillo M, Hord NG, Austad S, Richardson A, Unnikrishnan A. Age, sex, and mitochondrial-haplotype influence gut microbiome composition and metabolites in a genetically diverse rat model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620746. [PMID: 39553944 PMCID: PMC11565821 DOI: 10.1101/2024.10.28.620746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
We evaluated the impact of sex and mitochondrial-haplotype on the age-related changes in the fecal gut microbiome of the genetically heterogeneous rodent model, the OKC-HETB/W rat. Alpha-diversity, measuring richness and evenness of gut microbiome composition, did not change with age or mitochondrial-haplotype. However, beta-diversity, a measure of microbial differences among samples, was significantly modulated by age in male and female rats in both mitochondrial-haplotypes. The age-related changes in the microbiome differed markedly between male and female rats. Five microbial species changed significantly with age in male rats compared to nine microbial species in female rats. Only three of these microbes changed with age in both male and female rats. The mitochondrial-haplotype of the rats also affected how aging altered the microbiome. Interestingly, most of the microbial species that changed significantly with age were mitochondrial-haplotype and sex specific, i.e., changing in one sex and not the other. We also discovered that sex and mitochondrial-haplotype significantly affected the age-related variations in content of fecal short-chain fatty acids and plasma metabolites that influence or are regulated by the microbiome, e.g., tryptophan derived metabolites and bile acids. This study demonstrates that the host's sex plays a significant role in how the gut microbiome evolves with age, even within a genetically diverse background. Importantly, this is the first study to show that the mitochondrial-haplotype of a host impacts the age-related changes in the microbiome and supports previous studies suggesting a bidirectional interaction between the gut microbiome and host mitochondria.
Collapse
Affiliation(s)
- Hoang Van M. Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, 1200 N Stonewall Ave, Oklahoma City, OK 73117, US
| | - Eleana Cabello
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117. US
| | - David Dyer
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73117. US
| | - Chloe Fender
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, US
| | - Manuel Garcia-Jaramillo
- Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, 2750 SW Campus Way, Corvallis, OR 97331, US
| | - Norman G. Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, 122 N Monroe St, Stillwater, OK 74075, US
| | - Steven Austad
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, 902 14 Street South, Birmingham, AL 35205, US
| | - Arlan Richardson
- Department of Biochemistry and Physiology, College of Medicine, University of Oklahoma Health Sciences, 975 NE 10 Street, Oklahoma City, OK 73104, US
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, 975 NE 10 Street, Oklahoma City, OK 73104, US
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, Oklahoma, 921 NE 13 St, Oklahoma City, OK 73104, US
| | - Archana Unnikrishnan
- Oklahoma Center for GeroScience and Healthy Brain Aging, University of Oklahoma Health Sciences, 975 NE 10 Street, Oklahoma City, OK 73104, US
- Harold Hamm Diabetes Center, OU Health, Oklahoma City, Oklahoma, 1000 N Lincoln Boulevard, Oklahoma City, OK 73104, US
| |
Collapse
|
47
|
Yan S, Du R, Yao W, Zhang H, Xue Y, Teligun, Li Y, Bao H, Zhao Y, Cao S, Cao G, Li X, Bao S, Song Y. Host-microbe interaction-mediated resistance to DSS-induced inflammatory enteritis in sheep. MICROBIOME 2024; 12:208. [PMID: 39434180 PMCID: PMC11492479 DOI: 10.1186/s40168-024-01932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The disease resistance phenotype is closely related to immunomodulatory function and immune tolerance and has far-reaching implications in animal husbandry and human health. Microbes play an important role in the initiation, prevention, and treatment of diseases, but the mechanisms of host-microbiota interactions in disease-resistant phenotypes are poorly understood. In this study, we hope to uncover and explain the role of microbes in intestinal diseases and their mechanisms of action to identify new potential treatments. METHODS First, we established the colitis model of DSS in two breeds of sheep and then collected the samples for multi-omics testing including metagenes, metabolome, and transcriptome. Next, we made the fecal bacteria liquid from the four groups of sheep feces collected from H-CON, H-DSS, E-CON, and E-DSS to transplant the fecal bacteria into mice. H-CON feces were transplanted into mice named HH group and H-DSS feces were transplanted into mice named HD group and Roseburia bacteria treatment named HDR groups. E-CON feces were transplanted into mice named EH group and E-DSS feces were transplanted into mice in the ED group and Roseburia bacteria treatment named EDR groups. After successful modeling, samples were taken for multi-omics testing. Finally, colitis mice in HD group and ED group were administrated with Roseburia bacteria, and the treatment effect was evaluated by H&E, PAS, immunohistochemistry, and other experimental methods. RESULTS The difference in disease resistance of sheep to DSS-induced colitis disease is mainly due to the increase in the abundance of Roseburia bacteria and the increase of bile acid secretion in the intestinal tract of Hu sheep in addition to the accumulation of potentially harmful bacteria in the intestine when the disease occurs, which makes the disease resistance of Hu sheep stronger under the same disease conditions. However, the enrichment of harmful microorganisms in East Friesian sheep activated the TNFα signalling pathway, which aggravated the intestinal injury, and then the treatment of FMT mice by culturing Roseburia bacteria found that Roseburia bacteria had a good curative effect on colitis. CONCLUSION Our study showed that in H-DSS-treated sheep, the intestinal barrier is stabilized with an increase in the abundance of beneficial microorganisms. Our data also suggest that Roseburia bacteria have a protective effect on the intestinal barrier of Hu sheep. Accumulating evidence suggests that host-microbiota interactions are associated with IBD disease progression. Video Abstract.
Collapse
Affiliation(s)
- Shuo Yan
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Ruilin Du
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Wenna Yao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Huimin Zhang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Yue Xue
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Teligun
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Yongfa Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Hanggai Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Yulong Zhao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Shuo Cao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Guifang Cao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China.
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011517, China.
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China.
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Xilinguole Rd. 49, Yuquan District, Hohhot, 010020, China.
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| |
Collapse
|
48
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
49
|
Kang JW, Vemuganti V, Kuehn JF, Ulland TK, Rey FE, Bendlin BB. Gut microbial metabolism in Alzheimer's disease and related dementias. Neurotherapeutics 2024; 21:e00470. [PMID: 39462700 PMCID: PMC11585892 DOI: 10.1016/j.neurot.2024.e00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Multiple studies over the last decade have established that Alzheimer's disease and related dementias (ADRD) are associated with changes in the gut microbiome. These alterations in organismal composition result in changes in the abundances of functions encoded by the microbial community, including metabolic capabilities, which likely impact host disease mechanisms. Gut microbes access dietary components and other molecules made by the host and produce metabolites that can enter circulation and cross the blood-brain barrier (BBB). In recent years, several microbial metabolites have been associated with or have been shown to influence host pathways relevant to ADRD pathology. These include short chain fatty acids, secondary bile acids, tryptophan derivatives (such as kynurenine, serotonin, tryptamine, and indoles), and trimethylamine/trimethylamine N-oxide. Notably, some of these metabolites cross the BBB and can have various effects on the brain, including modulating the release of neurotransmitters and neuronal function, inducing oxidative stress and inflammation, and impacting synaptic function. Microbial metabolites can also impact the central nervous system through immune, enteroendocrine, and enteric nervous system pathways, these perturbations in turn impact the gut barrier function and peripheral immune responses, as well as the BBB integrity, neuronal homeostasis and neurogenesis, and glial cell maturation and activation. This review examines the evidence supporting the notion that ADRD is influenced by gut microbiota and its metabolites. The potential therapeutic advantages of microbial metabolites for preventing and treating ADRD are also discussed, highlighting their potential role in developing new treatments.
Collapse
Affiliation(s)
- Jea Woo Kang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Vaibhav Vemuganti
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessamine F Kuehn
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler K Ulland
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Wisconsin Alzheimer's Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
50
|
Kazemian N, Pakpour S. Understanding the impact of the gut microbiome on opioid use disorder: Pathways, mechanisms, and treatment insights. Microb Biotechnol 2024; 17:e70030. [PMID: 39388360 PMCID: PMC11466222 DOI: 10.1111/1751-7915.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
The widespread use of opioids for chronic pain management not only poses a significant public health issue but also contributes to the risk of tolerance, dependence, and addiction, leading to opioid use disorder (OUD), which affects millions globally each year. Recent research has highlighted a potential bidirectional relationship between the gut microbiome and OUD. This emerging perspective is critical, especially as the opioid epidemic intensifies, emphasizing the need to investigate how OUD may alter gut microbiome dynamics and vice versa. Understanding these interactions could reveal new insights into the mechanisms of addiction and tolerance, as well as provide novel approaches for managing and potentially mitigating OUD impacts. This comprehensive review explores the intricate bidirectional link through the gut-brain axis, focusing on how opiates influence microbial composition, functional changes, and gut mucosal integrity. By synthesizing current findings, the review aims to inspire new strategies to combat the opioid crisis and leverage microbiome-centred interventions for preventing and treating OUD.
Collapse
Affiliation(s)
- Negin Kazemian
- School of EngineeringUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - Sepideh Pakpour
- School of EngineeringUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|