1
|
Martinkova L, Zatloukalova P, Kucerikova M, Friedlova N, Tylichova Z, Zavadil-Kokas F, Hupp TR, Coates PJ, Vojtesek B. Inverse correlation between TP53 gene status and PD-L1 protein levels in a melanoma cell model depends on an IRF1/SOX10 regulatory axis. Cell Mol Biol Lett 2024; 29:117. [PMID: 39237877 PMCID: PMC11378555 DOI: 10.1186/s11658-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND PD-L1 expression on cancer cells is an important mechanism of tumor immune escape, and immunotherapy targeting the PD-L1/PD1 interaction is a common treatment option for patients with melanoma. However, many patients do not respond to treatment and novel predictors of response are emerging. One suggested modifier of PD-L1 is the p53 pathway, although the relationship of p53 pathway function and activation is poorly understood. METHODS The study was performed on human melanoma cell lines with various p53 status. We investigated PD-L1 and proteins involved in IFNγ signaling by immunoblotting and mRNA expression, as well as membrane expression of PD-L1 by flow cytometry. We evaluated differences in the ability of NK cells to recognize and kill target tumor cells on the basis of p53 status. We also investigated the influence of proteasomal degradation and protein half-life, IFNγ signaling and p53 activation on biological outcomes, and performed bioinformatic analysis using available data for melanoma cell lines and melanoma patients. RESULTS We demonstrate that p53 status changes the level of membrane and total PD-L1 protein through IRF1 regulation and show that p53 loss influences the recently discovered SOX10/IRF1 regulatory axis. Bioinformatic analysis identified a dependency of SOX10 on p53 status in melanoma, and a co-regulation of immune signaling by both transcription factors. However, IRF1/PD-L1 regulation by p53 activation revealed complicated regulatory mechanisms that alter IRF1 mRNA but not protein levels. IFNγ activation revealed no dramatic differences based on TP53 status, although dual p53 activation and IFNγ treatment confirmed a complex regulatory loop between p53 and the IRF1/PD-L1 axis. CONCLUSIONS We show that p53 loss influences the level of PD-L1 through IRF1 and SOX10 in an isogenic melanoma cell model, and that p53 loss affects NK-cell cytotoxicity toward tumor cells. Moreover, activation of p53 by MDM2 inhibition has a complex effect on IRF1/PD-L1 activation. These findings indicate that evaluation of p53 status in patients with melanoma will be important for predicting the response to PD-L1 monotherapy and/or dual treatments where p53 pathways participate in the overall response.
Collapse
Affiliation(s)
- Lucia Martinkova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic.
| | | | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Nela Friedlova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Zuzana Tylichova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
| | | | - Ted Robert Hupp
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, EH4 2XR, UK
| | | | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Jiang P, Jing S, Sheng G, Jia F. The basic biology of NK cells and its application in tumor immunotherapy. Front Immunol 2024; 15:1420205. [PMID: 39221244 PMCID: PMC11361984 DOI: 10.3389/fimmu.2024.1420205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Natural Killer (NK) cells play a crucial role as effector cells within the tumor immune microenvironment, capable of identifying and eliminating tumor cells through the expression of diverse activating and inhibitory receptors that recognize tumor-related ligands. Therefore, harnessing NK cells for therapeutic purposes represents a significant adjunct to T cell-based tumor immunotherapy strategies. Presently, NK cell-based tumor immunotherapy strategies encompass various approaches, including adoptive NK cell therapy, cytokine therapy, antibody-based NK cell therapy (enhancing ADCC mediated by NK cells, NK cell engagers, immune checkpoint blockade therapy) and the utilization of nanoparticles and small molecules to modulate NK cell anti-tumor functionality. This article presents a comprehensive overview of the latest advances in NK cell-based anti-tumor immunotherapy, with the aim of offering insights and methodologies for the clinical treatment of cancer patients.
Collapse
Affiliation(s)
- Pan Jiang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Infectious Diseases, Jingzhou First People’s Hospital, Jingzhou, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fajing Jia
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
3
|
Rojas-Diaz JM, Solorzano-Ibarra F, Garcia-Barrientos NT, Klimov-Kravtchenko K, Guitron-Aviña MS, Cruz-Ramos JA, Ortiz-Lazareno PC, Urciaga-Gutierrez PI, Bueno-Topete MR, Garcia-Chagollan M, Haramati J, del Toro-Arreola S. Uncovering the Expression Pattern of the Costimulatory Receptors ICOS, 4-1BB, and OX-40 in Exhausted Peripheral and Tumor-Infiltrating Natural Killer Cells from Patients with Cervical Cancer. Int J Mol Sci 2024; 25:8775. [PMID: 39201462 PMCID: PMC11354483 DOI: 10.3390/ijms25168775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Cervical cancer (CC) poses a significant health burden, particularly in low- and middle-income countries. NK cells play a crucial role against CC; however, they can become exhausted and lose their cytotoxic capacity. This work explores the expression of costimulatory receptors (ICOS, 4-1BB, OX-40) in exhausted NK cells from CC patients. Peripheral blood and tumor biopsies were collected, and flow cytometry was used to evaluate the expression of costimulatory receptors in exhausted NK cells. There is an increase of peripheral exhausted NK cells (PD-1+TIGIT+) in CC patients; this subpopulation has a selectively increased expression of the costimulatory receptors ICOS and 4-1BB. An exhausted population is also highly increased in tumor-infiltrating NK cells, and it shows a dramatically increased expression of the costimulatory receptors ICOS (>15×) and 4-1BB (>10×) compared to peripheral NK cells. The exhausted cells, both in the periphery and in the tumor infiltrating lymphocytes (TILs), are also more likely than non-exhausted NK cell populations (PD-1-TIGIT-) to express these costimulatory receptors; increases ranging from 2.0× ICOS, 2.4× 4-1BB, and 2.6× OX-40 in CD56dim PBMCs to 1.5× ICOS, 5× 4-1BB, and 10× OX-40 in TILs were found. Our study demonstrates for the first time the increased expression of the costimulatory receptors ICOS, 4-1BB, and OX-40 in peripheral CD56dim, CD56bright, and tumor-infiltrating NK cells in CC. Targeting these receptors for stimulation could reverse exhaustion and be a promising immunotherapy strategy.
Collapse
Affiliation(s)
- Jose Manuel Rojas-Diaz
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Fabiola Solorzano-Ibarra
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Nadia Tatiana Garcia-Barrientos
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Ksenia Klimov-Kravtchenko
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Marcela Sofia Guitron-Aviña
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico
- Laboratorio de Inmunología Traslacional, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez # 2100, Zapopan 45200, Jalisco, Mexico
| | - Jose Alfonso Cruz-Ramos
- Coordinación de Investigación, Subdirección de Desarrollo Institucional, Instituto Jalisciense de Cancerología, Guadalajara 44200, Jalisco, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- Centro de Investigación Biomédica de Occidente, División de Inmunología, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico
| | - Pedro Ivan Urciaga-Gutierrez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Miriam Ruth Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Mariel Garcia-Chagollan
- Instituto de Investigación en Ciencias Biomédicas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunología Traslacional, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez # 2100, Zapopan 45200, Jalisco, Mexico
| | - Susana del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, Guadalajara 44340, Jalisco, Mexico
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
4
|
Landolina N, Ricci B, Veneziani I, Alicata C, Mariotti FR, Pelosi A, Quatrini L, Mortari EP, Carsetti R, Vacca P, Tumino N, Azzarone B, Moretta L, Maggi E. TLR2/4 are novel activating receptors for SARS-CoV-2 spike protein on NK cells. Front Immunol 2024; 15:1368946. [PMID: 38881905 PMCID: PMC11176535 DOI: 10.3389/fimmu.2024.1368946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background In early infected or severe coronavirus disease 2019 (COVID-19) patients, circulating NK cells are consistently reduced, despite being highly activated or exhausted. The aim of this paper was to establish whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (SP) may directly trigger NK cells and through which receptor(s). Methods SP-stimulated human NK cells have been evaluated for the expression of activation markers, cytokine release, and cytotoxic activity, as well as for gene expression profiles and NF-kB phosphorylation, and they have been silenced with specific small interfering RNAs. Results SPs from the Wuhan strain and other variants of concern (VOCs) directly bind and stimulate purified NK cells by increasing activation marker expression, cytokine release, and cytolytic activity, prevalently in the CD56brightNK cell subset. VOC-SPs differ in their ability to activate NK cells, G614, and Delta-Plus strains providing the strongest activity in the majority of donors. While VOC-SPs do not trigger ACE2, which is not expressed on NK cells, or other activating receptors, they directly and variably bind to both Toll-like receptor 2 (TLR2) and TLR4. Moreover, SP-driven NK cell functions are inhibited upon masking such receptors or silencing the relative genes. Lastly, VOC-SPs upregulate CD56dimNK cell functions in COVID-19 recovered, but not in non-infected, individuals. Conclusions TLR2 and TLR4 are novel activating receptors for SP in NK cells, suggesting a new role of these cells in orchestrating the pathophysiology of SARS-CoV-2 infection. The pathogenic relevance of this finding is highlighted by the fact that free SP providing NK cell activation is frequently detected in a SARS-CoV-2 inflamed environment and in plasma of infected and long-COVID-19 subjects.
Collapse
Affiliation(s)
- Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Biancamaria Ricci
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Irene Veneziani
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Linda Quatrini
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- B cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- B cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicola Tumino
- Innate Lymphoid Cells Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Wang M, Krueger JB, Gilkey AK, Stelljes EM, Kluesner MG, Pomeroy EJ, Skeate JG, Slipek NJ, Lahr WS, Vázquez PNC, Zhao Y, Eaton EJ, Laoharawee K, Webber BR, Moriarity BS. Precision Enhancement of CAR-NK Cells through Non-Viral Engineering and Highly Multiplexed Base Editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.582637. [PMID: 38496503 PMCID: PMC10942345 DOI: 10.1101/2024.03.05.582637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Natural killer (NK) cells' unique ability to kill transformed cells expressing stress ligands or lacking major histocompatibility complexes (MHC) has prompted their development for immunotherapy. However, NK cells have demonstrated only moderate responses against cancer in clinical trials and likely require advanced genome engineering to reach their full potential as a cancer therapeutic. Multiplex genome editing with CRISPR/Cas9 base editors (BE) has been used to enhance T cell function and has already entered clinical trials but has not been reported in human NK cells. Here, we report the first application of BE in primary NK cells to achieve both loss-of-function and gain-of-function mutations. We observed highly efficient single and multiplex base editing, resulting in significantly enhanced NK cell function. Next, we combined multiplex BE with non-viral TcBuster transposon-based integration to generate IL-15 armored CD19 CAR-NK cells with significantly improved functionality in a highly suppressive model of Burkitt's lymphoma both in vitro and in vivo. The use of concomitant non-viral transposon engineering with multiplex base editing thus represents a highly versatile and efficient platform to generate CAR-NK products for cell-based immunotherapy and affords the flexibility to tailor multiple gene edits to maximize the effectiveness of the therapy for the cancer type being treated.
Collapse
Affiliation(s)
- Minjing Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Joshua B Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Alexandria K Gilkey
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Erin M Stelljes
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell G Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Molecular and Cellular Biology Graduate Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Patricia N Claudio Vázquez
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Yueting Zhao
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ella J Eaton
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Deng M, Zeng Y, Liu Y, Wang X, Chen N, Zhang M, Jiang M, Zhao H, Du J. Increased PD-1 + NK Cell Subset in the Older Population. Int J Gen Med 2024; 17:651-661. [PMID: 38435114 PMCID: PMC10907132 DOI: 10.2147/ijgm.s452476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Background The aging of the immune system is associated with various diseases. It is worth exploring the changes of the immune system in aging. Previous studies have shown that aged T cells have enhanced expression of co-inhibitory molecules. However, it remains unclear whether aged NK cells exhibit similar characteristics to aged T cells. The objective of our research was to clarify this aspect. Patients and Methods This study included 98 adults aged 24-90 years (50 males and 48 females). We detected the subset of peripheral blood NK cells and the expression of various receptors on NK cells among donors of different age groups by flow cytometry. Immune subsets were initially defined by forward and side-scatter characteristics and then staining with the appropriate marker. Results The absolute number and subset distribution of NK cells were not associated with age. However, CD57 expression and CD69 expression were correlated with age. Furthermore, we found that PD-1 was up-regulated on NK cells in older people, associated with aging, while no such change was observed in other co-inhibitory molecules, including 2B4, CTLA-4, TIM-3, BTLA, CD70, CD39, CD160, and TIGIT. PD-1+ NK cells expressed high levels of CD57 and CD69, indicating PD-1+ NK cells displayed a phenotype of over-activation and aging. Discussion This study indicated that PD-1+ NK cells were one of the characteristics of NK cells in older people. Conclusion This study indicated that PD-1+ NK cells were one of the characteristics of NK cells in older people. Those findings provided new ideas to explore the underlying drivers of NK aging.
Collapse
Affiliation(s)
- Meiju Deng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Clinical Center for HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yongqin Zeng
- Clinical Center for HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Department of Nephrology, The Affiliated Hospital Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Ying Liu
- Clinical Center for HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Xiaolei Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Clinical Center for HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Na Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Clinical Center for HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, 100015, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, 100015, People’s Republic of China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, 100015, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, 100015, People’s Republic of China
| | - Hongxin Zhao
- Clinical Center for HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, 100015, People’s Republic of China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, 100015, People’s Republic of China
| |
Collapse
|
7
|
Landolina N, Mariotti FR, Pelosi A, D’Oria V, Ingegnere T, Alicata C, Vacca P, Moretta L, Maggi E. The anti-inflammatory cytokine IL-37 improves the NK cell-mediated anti-tumor response. Oncoimmunology 2023; 13:2297504. [PMID: 38170019 PMCID: PMC10761114 DOI: 10.1080/2162402x.2023.2297504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
IL-37 is a member of the IL-1 superfamily exerting anti-inflammatory functions in a number of diseases. Extracellular IL-37 triggers the inhibitory receptor IL-1R8 that is known to regulate different NK cell pathways and functional activities including their anti-tumor effect. However, the effect of IL-37 on human NK cell functions is still to be unveiled. This study aimed to investigate the functional effect of IL-37 in human NK cells activated with IL-15. We found that IL-37 enhanced both NK cell cytotoxic activity against different tumor cell lines and cytokines production. These effects were associated with increased phosphorylation of ERK and NF-Kb. The improved NK cell activity was also strictly related to a time-dependent GSK3β-mediated degradation of IL-1R8. The enhanced activation profile of IL-37 treated NK cells possibly due to IL-1R8 degradation was confirmed by the results with IL-1R8-silenced NK cells. Lastly, in line with these data, through the analysis of the TNM plot database of a large group of patients, IL-37 mRNA expression was found to be significantly lower in colon and skin cancers than in normal tissues. Colon adenocarcinoma and neuroblastoma patients with higher IL-37 mRNA levels had significantly higher overall survival, suggesting that the presence of IL-37 might be considered an independent positive prognostic factor for this tumor. Our results provide novel information on the mechanisms regulating IL-1R8 function in human NK cells, highlighting the IL-37-IL-1R8 axis as a potential new target to improve the anti-tumor immune response.
Collapse
Affiliation(s)
- Nadine Landolina
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valentina D’Oria
- Research Laboratories, Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Tiziano Ingegnere
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Alicata
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Osegueda A, Polo ML, Baquero L, Urioste A, Ghiglione Y, Paz S, Poblete G, Gonzalez Polo V, Turk G, Quiroga MF, Laufer N. Markers of Natural Killer Cell Exhaustion in HIV/HCV Coinfection and Their Dynamics After HCV Clearance Mediated by Direct-Acting Antivirals. Open Forum Infect Dis 2023; 10:ofad591. [PMID: 38107019 PMCID: PMC10723816 DOI: 10.1093/ofid/ofad591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Background Liver fibrosis is a leading cause of morbimortality in people with HIV/hepatitis C virus (HCV). Natural killer (NK) cells are linked with amelioration of liver fibrosis; however, NK cells from individuals coinfected with HIV/HCV with cirrhosis display impaired functionality and high PD-1 expression. Here, we aimed to study PD-1, TIGIT, and Tim3 as potential exhaustion markers in NK cells from persons coinfected with HIV/HCV with mild and advanced liver fibrosis. We also evaluated the role of PD-1 expression on NK cells after HCV clearance by direct-acting antivirals (DAAs). Methods Peripheral blood mononuclear cells were isolated from individuals coinfected with HIV/HCV (N = 54; METAVIR F0/F1, n = 27; F4, evaluated by transient elastography, n = 27). In 26 participants, samples were collected before, at the end of, and 12 months after successful DAA treatment. The frequency, immunophenotype (PD-1, TIGIT, and Tim3 expression), and degranulation capacity (CD107a assay) of NK cells were determined by flow cytometry. Results Unlike PD-1, Tim3 and TIGIT were comparably expressed between persons with mild and advanced fibrosis. Degranulation capacity was diminished in NK/TIGIT+ cells in both fibrosis stages, while NK/PD-1+ cells showed a lower CD107a expression in cirrhotic cases. Twelve months after DAA treatment, those with advanced fibrosis showed an improved NK cell frequency and reduced NK/PD-1+ cell frequency but no changes in CD107a expression. In individuals with mild fibrosis, neither PD-1 nor NK cell frequency was modified, although the percentage of NK/CD107a+ cells was improved at 12 months posttreatment. Conclusions Although DAA improved exhaustion and frequency of NK cells in cirrhotic cases, functionality was reverted only in mild liver fibrosis, remarking the importance of an early DAA treatment.
Collapse
Affiliation(s)
- Ariel Osegueda
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina. Buenos Aires, Argentina
| | - Maria Laura Polo
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina. Buenos Aires, Argentina
| | - Lucia Baquero
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
| | - Alejandra Urioste
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina. Buenos Aires, Argentina
| | - Yanina Ghiglione
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina. Buenos Aires, Argentina
| | - Silvia Paz
- Hospital Francisco Javier Muñiz, Buenos Aires, Argentina
| | | | - Virginia Gonzalez Polo
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina. Buenos Aires, Argentina
| | - Gabriela Turk
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
| | - Maria Florencia Quiroga
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
| | - Natalia Laufer
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina
| |
Collapse
|
9
|
Mariotti FR, Ingegnere T, Landolina N, Vacca P, Munari E, Moretta L. Analysis of the mechanisms regulating soluble PD-1 production and function in human NK cells. Front Immunol 2023; 14:1229341. [PMID: 37638041 PMCID: PMC10449250 DOI: 10.3389/fimmu.2023.1229341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
NK cells represent important effectors that play a major role in innate defences against pathogens and display potent cytolytic activity against tumor cells. An array of surface receptors finely regulate their function and inhibitory checkpoints, such as PD-1, can dampen the immune response inducing an immunosuppressive state. Indeed, PD-1 expression in human NK cells correlated with impaired effector function and tumor immune evasion. Importantly, blockade of the PD-1/PD-L1 axis has been shown to reverse NK cell exhaustion and increase their cytotoxicity. Recently, soluble counterparts of checkpoint receptors, such as soluble PD-1 (sPD-1), are rising high interest due to their biological activity and ability to modulate immune responses. It has been widely demonstrated that sPD-1 can modulate T cell effector functions and tumor growth. Tumor-infiltrating T cells are considered the main source of circulating sPD-1. In addition, recently, also stimulated macrophages have been demonstrated to release sPD-1. However, no data are present on the role of sPD-1 in the context of other innate immune cell subsets and therefore this study is aimed to unveil the effect of sPD-1 on human NK cell function. We produced the recombinant sPD-1 protein and demonstrated that it binds PD-L1 and that its presence results in increased NK cell cytotoxicity. Notably, we also identified a pathway regulating endogenous sPD-1 synthesis and release in human NK cells. Secreted endogenous sPD-1, retained its biological function and could modulate NK cell effector function. Overall, these data reveal a pivotal role of sPD-1 in regulating NK-mediated innate immune responses.
Collapse
Affiliation(s)
| | - Tiziano Ingegnere
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nadine Landolina
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Lymphoid Cells of Innate Immunity Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Lymphoid Cells of Innate Immunity Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Greppi M, Obino V, Goda R, Rebaudi F, Carlomagno S, Della Chiesa M, Sivori S, Ubezio G, Agostini V, Bo A, Pesce S, Marcenaro E. Identification of a novel cord blood NK cell subpopulation expressing functional programmed death receptor-1. Front Immunol 2023; 14:1183215. [PMID: 37441071 PMCID: PMC10335745 DOI: 10.3389/fimmu.2023.1183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Background Natural Killer cells (NKs) represent the innate counterpart of TCRαβ lymphocytes and are characterized by a high anti-tumor and an anti-viral cytotoxic activity. Recently, it has been demonstrated that NKs can express PD-1 as an additional inhibitory receptor. Specifically, PD-1 was identified on a subpopulation of terminally differentiated NKs from healthy adults with previous HCMV infection. So far it is unknown whether PD-1 appears during NK-cell development and whether this process is directly or indirectly related to HCMV infection. Methods In this study, we analyzed the expression and function of PD-1 on Cord Blood derived NKs (CB-NKs) on a large cohort of newborns through multiparametric cytofluorimetric analysis. Results We identified PD-1 on CB-NKs in more than of half the newborns analyzed. PD-1 was present on CD56dim NKs, and particularly abundant on CD56neg NKs, but only rarely present on CD56bright NKs. Importantly, unlike in adult healthy donors, in CB-NKs PD-1 is co-expressed not only with KIR, but also with NKG2A. PD-1 expression was independent of HCMV mother seropositivity and occurs in the absence of HCMV infection/reactivation during pregnancy. Notably, PD-1 expressed on CB-NKs was functional and mediated negative signals when triggered. Conclusion To our understanding, this study is the first to report PD-1 expression on CB derived NKs and its features in perinatal conditions. These data may prove important in selecting the most suitable CB derived NK cell population for the development of different immunotherapeutic treatments.
Collapse
Affiliation(s)
- Marco Greppi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Valentina Obino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Rayan Goda
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Federico Rebaudi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | | | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | - Alessandra Bo
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Pesce
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
11
|
Di Matteo S, Munari E, Fiore PF, Santopolo S, Sampaoli C, Pelosi A, Chouaib S, Tumino N, Vacca P, Mariotti FR, Ebert S, Machwirth M, Haas D, Pezzullo M, Pietra G, Grottoli M, Buart S, Mortier E, Maggi E, Moretta L, Caruana I, Azzarone B. The roles of different forms of IL-15 in human melanoma progression. Front Immunol 2023; 14:1183668. [PMID: 37334356 PMCID: PMC10272795 DOI: 10.3389/fimmu.2023.1183668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Background Melanoma is a lethal skin cancer, and the risk of developing it is increased by exposure to ultraviolet (UV) radiation. The production of cytokines such as interleukin-15 (IL-15), induced by the exposure of skin cells to UV rays, could also promote melanoma development. The aim of this study is to investigate the possible role of Interleukin-15/Interleukin-15 Receptor α (IL-15/IL-15Rα) complexes in melanoma development. Methods The expression of IL-15/IL-15Rα complexes by melanoma cells was evaluated both ex vivo and in vitro by tissue microarray, PCR, and flow cytometry. The presence of the soluble complex (sIL-15/IL-15Rα) in the plasma of metastatic melanoma patients was detected using an ELISA assay. Subsequently, we investigated the impact of natural killer (NK) cell activation after rIL-2 starvation followed by exposure to the sIL-15/IL-15Rα complex. Finally, by analyzing public datasets, we studied the correlation between IL-15 and IL-15Rα expressions and melanoma stage, NK and T-cell markers, and overall survival (OS). Results Analysis of a melanoma tissue microarray shows a significant increase in the number of IL-15+ tumor cells from the benign nevi to metastatic melanoma stages. Metastatic melanoma cell lines express a phorbol-12-myristate-13-acetate (PMA)-cleavable membrane-bound IL-15 (mbIL-15), whereas cultures from primary melanomas express a PMA-resistant isoform. Further analysis revealed that 26% of metastatic patients present with consistently high plasmatic levels of sIL-15/IL-15Rα. When the recombinant soluble human IL-15/IL-15Rα complex is added to briefly starved rIL-2-expanded NK cells, these cells exhibit strongly reduced proliferation and levels of cytotoxic activity against K-562 and NALM-18 target cells. The analysis of public gene expression datasets revealed that high IL-15 and IL-15Rα intra-tumoral production correlates with the high levels of expression of CD5+ and NKp46+ (T and NK markers) and significantly correlates with a better OS in stages II and III, but not in stage IV. Conclusions Membrane-bound and secreted IL-15/IL-15Rα complexes are continuously present during progression in melanoma. It is notable that, although IL-15/IL-15Rα initially promoted the production of cytotoxic T and NK cells, at stage IV promotion of the development of anergic and dysfunctional cytotoxic NK cells was observed. In a subgroup of melanoma metastatic patients, the continuous secretion of high amounts of the soluble complex could represent a novel NK cell immune escape mechanism.
Collapse
Affiliation(s)
- Sabina Di Matteo
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Piera Filomena Fiore
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Santopolo
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Camilla Sampaoli
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Salem Chouaib
- Institut national de la santé et de la recherche médicale Unitè Mixte Rechercce (INSERM UMR) 1186, Integrative Tumor Immunology and Cancer Immunotherapy, Gustave Roussy, École Pratique des Hautes Études (EPHE), Faculty De Médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Nicola Tumino
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Francesca Romana Mariotti
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Stefan Ebert
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Markus Machwirth
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Dorothee Haas
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Marco Pezzullo
- Core Facility, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine (DiMES), University of Genoa, Genoa, Italy
- Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Melania Grottoli
- Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stephanie Buart
- Institut national de la santé et de la recherche médicale Unitè Mixte Rechercce (INSERM UMR) 1186, Integrative Tumor Immunology and Cancer Immunotherapy, Gustave Roussy, École Pratique des Hautes Études (EPHE), Faculty De Médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Erwan Mortier
- Nantes Université, Centre national de la recherche scientifique (CNRS), Inserm, CRCI2NA, Nantes, France
- LabEx IGO, Immunotherapy, Graft, Oncology, Nantes, France
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Würzburg, Würzburg, Germany
| | - Bruno Azzarone
- Tumor Immunology Unit, Bambino Gesù Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
12
|
Dehghani T, Shahrjerdi A, Kahrizi MS, Soleimani E, Ravandeh S, Merza MS, Rahnama N, Ebrahimzadeh F, Bakhshesh M. Targeting programmed cell death protein 1 (PD-1) for treatment of non-small-cell lung carcinoma (NSCLC); the recent advances. Pathol Res Pract 2023; 246:154470. [PMID: 37150133 DOI: 10.1016/j.prp.2023.154470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
The immune system uses various immune checkpoint axes to adjust responses, support homeostasis, and deter self-reactivity and autoimmunity. Nevertheless, non-small-cell lung carcinoma (NSCLC) can use protective mechanisms to facilitate immune evasion, which leads to potentiated cancer survival and proliferation. In this light, many blocking anti-bodies have been developed to negatively regulate checkpoint molecules, in particular, programmed cell death protein 1 (PD-1) / PD-ligand 1 (L1), and bypass these immune suppressive mechanisms. Meanwhile, anti-PD-1 anti-bodies such as nivolumab, pembrolizumab, cemiplimab, and sintilimab have shown excellent competence in successfully inspiring immune responses versus NSCLC. Accordingly, the United States Food and Drug Administration (FDA) has recently approved nivolumab (alone or in combination with ipilimumab) and pembrolizumab (alone or in combination with chemotherapy) as first-line treatment for advanced NSCLC patients. However, PD-1 blockade monotherapy remains inefficient in more than 60% of NSCLC patients, and many patients don't respond or acquire resistance to this modality. Also, toxicities related to anti-PD-1 anti-body have been progressively identified in clinical trials and oncology practice. Herein, we will outline the clinical benefits of PD-1 blockade therapy alone or in combination with other treatments (e.g., chemotherapy, radiotherapy, anti-angiogenic therapy) in NSCLC patients. Moreover, we will take a glimpse into the recently identified predictive biomarkers to determine patients most likely to suffer serious adverse events to decrease untoward toxicity risk and diminish treatment costs.
Collapse
Affiliation(s)
- Tannaz Dehghani
- Department of Internal Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Alireza Shahrjerdi
- National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O. Box: 14965/161, Tehran, Iran
| | | | - Elnaz Soleimani
- Departmant of Genetic, Babol University of Medical Science, Babol, Iran
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal university College, Babylon 51001, Iraq
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Morteza Bakhshesh
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
13
|
Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol 2023; 14:1148111. [PMID: 37056774 PMCID: PMC10086248 DOI: 10.3389/fimmu.2023.1148111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.
Collapse
Affiliation(s)
- Lucile Dumolard
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhone-Alpes, Grenoble, France
| | - Patrice N. Marche
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
- *Correspondence: Zuzana Macek Jilkova,
| |
Collapse
|
14
|
Provinciali N, Greppi M, Pesce S, Rutigliani M, Briata IM, Buttiron Webber T, Fava M, DeCensi A, Marcenaro E. Case report: Variable response to immunotherapy in ovarian cancer: Our experience within the current state of the art. Front Immunol 2022; 13:1094017. [PMID: 36601114 PMCID: PMC9806340 DOI: 10.3389/fimmu.2022.1094017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Despite recent advances in ovarian cancer (OC) treatment, including the introduction of bevacizumab and PARP-inhibitors, OC remains a lethal disease. Other therapeutic options are being explored, such as immunotherapy (IT), which has been proved effective in many solid tumors. Findings about tumor-infiltrating cytotoxic and regulatory T cells, together with the expression of PD-1 on immune cells and of PD-L1 on tumor cells, gave the rationale for an attempt to the use of IT also in OC. We treated two patients with avelumab, an anti-PD-L1 monoclonal antibody, after the first line of chemotherapy: Patient A underwent 19 cycles of maintenance therapy with avelumab with a disease-free interval of 12 months, whereas patient B showed a slight progression of disease after only eight cycles. A higher PD-L1 expression in tumor cells of patient A was detected. She also underwent a genomic assessment that described the presence of a high Tumor Mutational Burden (TMB) and a status of Loss of Heterozygosity (LoH). This different response to the same treatment puts in evidence that some genomic and immune features might be investigated.
Collapse
Affiliation(s)
- Nicoletta Provinciali
- Division of Medical Oncology, Ente Ospedaliero (E.O.), Ospedali Galliera, Genoa, Italy
| | - Marco Greppi
- Dipartimento di Medicina Sperimentale (DIMES), Università degli Studi di Genova, Genova, Italy
| | - Silvia Pesce
- Dipartimento di Medicina Sperimentale (DIMES), Università degli Studi di Genova, Genova, Italy,*Correspondence: Emanuela Marcenaro, ; Silvia Pesce,
| | | | - Irene Maria Briata
- Division of Medical Oncology, Ente Ospedaliero (E.O.), Ospedali Galliera, Genoa, Italy
| | - Tania Buttiron Webber
- Division of Medical Oncology, Ente Ospedaliero (E.O.), Ospedali Galliera, Genoa, Italy
| | - Marianna Fava
- Division of Medical Oncology, Ente Ospedaliero (E.O.), Ospedali Galliera, Genoa, Italy
| | - Andrea DeCensi
- Division of Medical Oncology, Ente Ospedaliero (E.O.), Ospedali Galliera, Genoa, Italy,Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale (DIMES), Università degli Studi di Genova, Genova, Italy,IRCCS Ospedale Policlinico San Martino, Genova, Italy,*Correspondence: Emanuela Marcenaro, ; Silvia Pesce,
| |
Collapse
|
15
|
Bahmanyar M, Vakil MK, Al-Awsi GRL, Kouhpayeh SA, Mansoori Y, Mansoori B, Moravej A, Mazarzaei A, Ghasemian A. Anticancer traits of chimeric antigen receptors (CARs)-Natural Killer (NK) cells as novel approaches for melanoma treatment. BMC Cancer 2022; 22:1220. [PMID: 36434591 PMCID: PMC9701052 DOI: 10.1186/s12885-022-10320-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Owing to non-responsiveness of a high number of patients to the common melanoma therapies, seeking novel approaches seem as an unmet requirement. Chimeric antigen receptor (CAR) T cells were initially employed against recurrent or refractory B cell malignancies. However, advanced stages or pretreated patients have insufficient T cells (lymphopenia) amount for collection and clinical application. Additionally, this process is time-consuming and logistically cumbersome. Another limitation of this approach is toxicity and cytokine release syndrome (CRS) progress and neurotoxicity syndrome (NS). Natural killer (NK) cells are a versatile component of the innate immunity and have several advantages over T cells in the application for therapies such as availability, unique biological features, safety profile, cost effectiveness and higher tissue residence. Additionally, CAR NK cells do not develop Graft-versus-host disease (GvHD) and are independent of host HLA genotype. Notably, the NK cells number and activity is affected in the tumor microenvironment (TME), paving the way for developing novel approaches by enhancing their maturation and functionality. The CAR NK cells short lifespan is a double edge sword declining toxicity and reducing their persistence. Bispecific and Trispecific Killer Cell Engagers (BiKE and Trike, respectively) are emerging and promising immunotherapies for efficient antibody dependent cell cytotoxicity (ADCC). CAR NK cells have some limitations in terms of expanding and transducing NK cells from donors to achieve clinical response. Clinical trials are in scarcity regarding the CAR NK cell-based cancer therapies. The CAR NK cells short life span following irradiation before infusion limits their efficiency inhibiting their in vivo expansion. The CAR NK cells efficacy enhancement in terms of lifespan TME preparation and stability is a goal for melanoma treatment. Combination therapies using CAR NK cells and chemotherapy can also overcome therapy limitations.
Collapse
Affiliation(s)
- Maryam Bahmanyar
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Kazem Vakil
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seyed Amin Kouhpayeh
- grid.411135.30000 0004 0415 3047Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnam Mansoori
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Moravej
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdulbaset Mazarzaei
- grid.512728.b0000 0004 5907 6819Department of Immunology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Abdolmajid Ghasemian
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
16
|
Laba S, Mallett G, Amarnath S. The depths of PD-1 function within the tumor microenvironment beyond CD8 + T cells. Semin Cancer Biol 2022; 86:1045-1055. [PMID: 34048897 DOI: 10.1016/j.semcancer.2021.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell death-1 (PD-1; CD279) is a cell surface receptor that is expressed in both innate and adaptive immune cells. The role of PD-1 in adaptive immune cells, specifically in CD8+ T cells, has been thoroughly investigated but its significance in other immune cells is yet to be well established. This review will address the role of PD-1 based therapies in enhancing non-CD8+ T cell immune responses within cancer. Specifically, the expression and function of PD-1 in non-CD8+ immune cell compartments such as CD4+ T helper cell subsets, myeloid cells and innate lymphoid cells (ILCs) will be discussed. By understanding the immune cell specific function of PD-1 within tissue resident innate and adaptive immune cells, it will be possible to stratify patients for PD-1 based therapies for both immunogeneic and non-immunogeneic neoplastic disorders. With this knowledge from fundamental and translational studies, PD-1 based therapies can be utilized to enhance T cell independent immune responses in cancers.
Collapse
Affiliation(s)
- Stephanie Laba
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| | - Grace Mallett
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Shoba Amarnath
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
17
|
Yenyuwadee S, Aliazis K, Wang Q, Christofides A, Shah R, Patsoukis N, Boussiotis VA. Immune cellular components and signaling pathways in the tumor microenvironment. Semin Cancer Biol 2022; 86:187-201. [PMID: 35985559 PMCID: PMC10735089 DOI: 10.1016/j.semcancer.2022.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022]
Abstract
During the past decade there has been a revolution in cancer therapeutics by the emergence of antibody-based and cell-based immunotherapies that modulate immune responses against tumors. These new therapies have extended and improved the therapeutic efficacy of chemo-radiotherapy and have offered treatment options to patients who are no longer responding to these classic anti-cancer treatments. Unfortunately, tumor eradication and long-lasting responses are observed in a small fraction of patients, whereas the majority of patients respond only transiently. These outcomes indicate that the maximum potential of immunotherapy has not been reached due to incomplete knowledge of the cellular and molecular mechanisms that guide the development of successful anti-tumor immunity and its failure. In this review, we discuss recent discoveries about the immune cellular composition of the tumor microenvironment (TME) and the role of key signaling mechanisms that compromise the function of immune cells leading to cancer immune escape.
Collapse
Affiliation(s)
- Sasitorn Yenyuwadee
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School; Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Konstantinos Aliazis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Qi Wang
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Anthos Christofides
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA 02215, USA.
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA 02215, USA.
| |
Collapse
|
18
|
Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov 2022; 21:559-577. [PMID: 35314852 PMCID: PMC10019065 DOI: 10.1038/s41573-022-00413-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells have crucial roles in the innate immunosurveillance of cancer and viral infections. They are 'first responders' that can spontaneously recognize abnormal cells in the body, rapidly eliminate them through focused cytotoxicity mechanisms and potently produce pro-inflammatory cytokines and chemokines that recruit and activate other immune cells to initiate an adaptive response. From the initial discovery of the diverse cell surface receptors on NK cells to the characterization of regulatory events that control their function, our understanding of the basic biology of NK cells has improved dramatically in the past three decades. This advanced knowledge has revealed increased mechanistic complexity, which has opened the doors to the development of a plethora of exciting new therapeutics that can effectively manipulate and target NK cell functional responses, particularly in cancer patients. Here, we summarize the basic mechanisms that regulate NK cell biology, review a wide variety of drugs, cytokines and antibodies currently being developed and used to stimulate NK cell responses, and outline evolving NK cell adoptive transfer approaches to treat cancer.
Collapse
|
19
|
Pesini C, Hidalgo S, Arias MA, Santiago L, Calvo C, Ocariz-Díez M, Isla D, Lanuza PM, Agustín MJ, Galvez EM, Ramírez-Labrada A, Pardo J. PD-1 is expressed in cytotoxic granules of NK cells and rapidly mobilized to the cell membrane following recognition of tumor cells. Oncoimmunology 2022; 11:2096359. [PMID: 35813574 PMCID: PMC9262365 DOI: 10.1080/2162402x.2022.2096359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The contribution of the T cell-related inhibitory checkpoint PD-1 to the regulation of NK cell activity is still not clear with contradictory results concerning its expression and role in the modulation of NK cell cytotoxicity. We provide novel key findings on the mechanism involved in the regulation of PD-1 expression on NK cell membrane and its functional consequences for the elimination of cancer cells. In contrast to freshly isolated NK cells from cancer patients, those from healthy donors did not express PD-1 on the cell membrane. However, when healthy NK cells were incubated with tumor target cells, membrane PD-1 expression increased, concurrent with the CD107a surface mobilization. This finding suggested that PD-1 was translocated to the cell membrane during NK cell degranulation after contact with target cells. Indeed, cytosolic PD-1 was expressed in freshly-isolated-NK cells and partly co-localized with CD107a and GzmB, confirming that membrane PD-1 corresponded to a pool of preformed PD-1. Moreover, NK cells that had mobilized PD-1 to the cell membrane presented a significantly reduced anti-tumor activity on PD-L1-expressing-tumor cells in vitro and in vivo, which was partly reversed by using anti-PD-1 blocking antibodies. Our results indicate that NK cells from healthy individuals express cytotoxic granule-associated PD-1, which is rapidly mobilized to the cell membrane after interaction with tumor target cells. This novel finding helps to understand how PD-1 expression is regulated on NK cell membrane and the functional consequences of this expression during the elimination of tumor cells, which will help to design more efficient NK cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Sandra Hidalgo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
| | - Maykel A. Arias
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Madrid, Spain
| | - Llipsy Santiago
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Madrid, Spain
| | - Carlota Calvo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Medical Oncopediatry Department, Aragón Health Research Institute (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Maitane Ocariz-Díez
- Medical Oncology Department, Aragón Health Research Institute (IIS Aragón), Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
| | - Dolores Isla
- Medical Oncology Department, Aragón Health Research Institute (IIS Aragón), Hospital Clinico Universitario Lozano Blesa, Zaragoza, Spain
| | - Pilar M. Lanuza
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - M José Agustín
- Pharmacy Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Eva M Galvez
- CSIC, Instituto de Carboquimica (ICB), Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Biomedical Research Center of Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Julián Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatrics and Public Health, ARAID Foundation/University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
20
|
Pathania AS, Prathipati P, Murakonda SP, Murakonda AB, Srivastava A, Avadhesh A, Byrareddy SN, Coulter DW, Gupta SC, Challagundla KB. Immune checkpoint molecules in neuroblastoma: A clinical perspective. Semin Cancer Biol 2022; 86:247-258. [PMID: 35787940 DOI: 10.1016/j.semcancer.2022.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 10/31/2022]
Abstract
High-risk neuroblastoma (NB) is challenging to treat with 5-year long-term survival in patients remaining below 50% and low chances of survival after tumor relapse or recurrence. Different strategies are being tested or under evaluation to destroy resistant tumors and improve survival outcomes in NB patients. Immunotherapy, which uses certain parts of a person's immune system to recognize or kill tumor cells, effectively improves patient outcomes in several types of cancer, including NB. One of the immunotherapy strategies is to block immune checkpoint signaling in tumors to increase tumor immunogenicity and anti-tumor immunity. Immune checkpoint proteins put brakes on immune cell functions to regulate immune activation, but this activity is exploited in tumors to evade immune surveillance and attack. Immune checkpoint proteins play an essential role in NB biology and immune escape mechanisms, which makes these tumors immunologically cold. Therapeutic strategies to block immune checkpoint signaling have shown promising outcomes in NB but only in a subset of patients. However, combining immune checkpoint blockade with other therapies, including conjugated antibody-based immunotherapy, radioimmunotherapy, tumor vaccines, or cellular therapies like modified T or natural killer (NK) cells, has shown encouraging results in enhancing anti-tumor immunity in the preclinical setting. An analysis of publicly available dataset using computational tools has unraveled the complexity of multiple cancer including NB. This review comprehensively summarizes the current information on immune checkpoint molecules, their biology, role in immune suppression and tumor development, and novel therapeutic approaches combining immune checkpoint inhibitors with other therapies to combat high-risk NB.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Swati P Murakonda
- Sri Rajiv Gandhi College of Dental Sciences & Hospital, Bengaluru, Karnataka 560032, India
| | - Ajay B Murakonda
- Sree Sai Dental College & Research Institute, Srikakulam, Andhra Pradesh 532001, India
| | - Ankit Srivastava
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Avadhesh Avadhesh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, India.
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
21
|
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235:108114. [DOI: 10.1016/j.pharmthera.2022.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
|
22
|
del Rio ML, Perez-Simon JA, Rodriguez-Barbosa JI. Differential Engraftment of Parental A20 PD-L1 WT and PD-L1 KO Leukemia Cells in Semiallogeneic Recipients in the Context of PD-L1/PD-1 Interaction and NK Cell-Mediated Hybrid Resistance. Front Immunol 2022; 13:887348. [PMID: 35795681 PMCID: PMC9251058 DOI: 10.3389/fimmu.2022.887348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
The contribution of natural killer (NK) cells to tumor rejection in the context of programmed death-ligand 1/programmed death 1 (PD-L1/PD-1) blockade is a matter of intense debate. To elucidate the role of PD-L1 expression on tumor cells and the functional consequences of engaging PD-1 receptor on cytotoxic cells, PD-L1 expression was genetically inactivated and WT or PD-L1-deficient parental tumor cells were adoptively transferred intravenously into F1 recipients. The engraftment of PD-L1-deficient A20 tumor cells in the spleen and liver of F1 recipients was impaired compared with A20 PD-L1 WT tumor counterparts. To elucidate the mechanism responsible for this differential tumor engraftment and determine the relevance of the role of the PD-L1/PD-1 pathway in the interplay of tumor cells/NK cells, a short-term competitive tumor implantation assay in the peritoneal cavity of semiallogeneic F1 recipients was designed. The results presented herein showed that NK cells killed target tumor cells with similar efficiency regardless of PD-L1 expression, whereas PD-L1 expression on A20 tumor cells conferred significant tumor protection against rejection by CD8 T cells confirming the role of the co-inhibitory receptor PD-1 in the modulation of their cytotoxic activity. In summary, PD-L1 expression on A20 leukemia tumor cells modulates CD8 T-cell-mediated responses to tumor-specific antigens but does not contribute to inhibit NK cell-mediated hybrid resistance, which correlates with the inability to detect PD-1 expression on NK cells neither under steady-state conditions nor under inflammatory conditions.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
- CIBERONC Consortium, Accion Estrategica en Salud, Spain
| | - Jose-Antonio Perez-Simon
- CIBERONC Consortium, Accion Estrategica en Salud, Spain
- Department of Hematology, University Hospital Virgen del Rocio/Institute of Biomedicine [Instituto de Biomedicina de Sevilla (IBIS)/Centro Superior de Investigaciones Científicas (CSIC)/Centro de Investigación Biomédica en Red Cáncer (CIBERONC)], Seville, Spain
| | - Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology and Immunotherapy Section, Institute of Molecular Biology, University of Leon, Leon, Spain
- CIBERONC Consortium, Accion Estrategica en Salud, Spain
| |
Collapse
|
23
|
Pathania AS, Prathipati P, Olwenyi OA, Chava S, Smith OV, Gupta SC, Chaturvedi NK, Byrareddy SN, Coulter DW, Challagundla KB. miR-15a and miR-15b modulate natural killer and CD8 +T-cell activation and anti-tumor immune response by targeting PD-L1 in neuroblastoma. Mol Ther Oncolytics 2022; 25:308-329. [PMID: 35663229 PMCID: PMC9133764 DOI: 10.1016/j.omto.2022.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/27/2022] [Indexed: 11/12/2022] Open
Abstract
Neuroblastoma (NB) is an enigmatic and deadliest pediatric cancer to treat. The major obstacles to the effective immunotherapy treatments in NB are defective immune cells and the immune evasion tactics deployed by the tumor cells and the stromal microenvironment. Nervous system development during embryonic and pediatric stages is critically mediated by non-coding RNAs such as micro RNAs (miR). Hence, we explored the role of miRs in anti-tumor immune response via a range of data-driven workflows and in vitro & in vivo experiments. Using the TARGET, NB patient dataset (n=249), we applied the robust bioinformatic workflows incorporating differential expression, co-expression, survival, heatmaps, and box plots. We initially demonstrated the role of miR-15a-5p (miR-15a) and miR-15b-5p (miR-15b) as tumor suppressors, followed by their negative association with stromal cell percentages and a statistically significant negative regulation of T and natural killer (NK) cell signature genes, especially CD274 (PD-L1) in stromal-low patient subsets. The NB phase-specific expression of the miR-15a/miR-15b-PD-L1 axis was further corroborated using the PDX (n=24) dataset. We demonstrated miR-15a/miR-15b mediated degradation of PD-L1 mRNA through its interaction with the 3'-untranslated region and the RNA-induced silencing complex using sequence-specific luciferase activity and Ago2 RNA immunoprecipitation assays. In addition, we established miR-15a/miR-15b induced CD8+T and NK cell activation and cytotoxicity against NB in vitro. Moreover, injection of murine cells expressing miR-15a reduced tumor size, tumor vasculature and enhanced the activation and infiltration of CD8+T and NK cells into the tumors in vivo. We further established that blocking the surface PD-L1 using an anti-PD-L1 antibody rescued miR-15a/miR-15b induced CD8+T and NK cell-mediated anti-tumor responses. These findings demonstrate that miR-15a and miR-15b induce an anti-tumor immune response by targeting PD-L1 in NB.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Omalla A. Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Oghenetejiri V. Smith
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C. Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siddappa N. Byrareddy
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Li Y, Sharma A, Wu X, Weiher H, Skowasch D, Essler M, Schmidt-Wolf IGH. A Combination of Cytokine-Induced Killer Cells With PD-1 Blockade and ALK Inhibitor Showed Substantial Intrinsic Variability Across Non-Small Cell Lung Cancer Cell Lines. Front Oncol 2022; 12:713476. [PMID: 35646685 PMCID: PMC9130779 DOI: 10.3389/fonc.2022.713476] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Cancer heterogeneity poses a serious challenge concerning the toxicity and adverse effects of therapeutic inhibitors, especially when it comes to combinatorial therapies that involve multiple targeted inhibitors. In particular, in non-small cell lung cancer (NSCLC), a number of studies have reported synergistic effects of drug combinations in the preclinical models, while they were only partially successful in the clinical setup, suggesting those alternative clinical strategies (with genetic background and immune response) should be considered. Herein, we investigated the antitumor effect of cytokine-induced killer (CIK) cells in combination with ALK and PD-1 inhibitors in vitro on genetically variable NSCLC cell lines. Methods We co-cultured the three genetically different NSCLC cell lines NCI-H2228 (EML4-ALK), A549 (KRAS mutation), and HCC-78 (ROS1 rearrangement) with and without nivolumab (PD-1 inhibitor) and crizotinib (ALK inhibitor). Additionally, we profiled the variability of surface expression multiple immune checkpoints, the concentration of absolute dead cells, intracellular granzyme B on CIK cells using flow cytometry as well as RT-qPCR. ELISA and Western blot were performed to verify the activation of CIK cells. Results Our analysis showed that (a) nivolumab significantly weakened PD-1 surface expression on CIK cells without impacting other immune checkpoints or PD-1 mRNA expression, (b) this combination strategy showed an effective response on cell viability, IFN-γ production, and intracellular release of granzyme B in CD3+ CD56+ CIK cells, but solely in NCI-H2228, (c) the intrinsic expression of Fas ligand (FasL) as a T-cell activation marker in CIK cells was upregulated by this additive effect, and (d) nivolumab induced Foxp3 expression in CD4+CD25+ subpopulation of CIK cells significantly increased. Taken together, we could show that CIK cells in combination with crizotinib and nivolumab can enhance the anti-tumor immune response through FasL activation, leading to increased IFN-γ and granzyme B, but only in NCI-H2228 cells with EML4-ALK rearrangement. Therefore, we hypothesize that CIK therapy may be a potential alternative in NSCLC patients harboring EML4-ALK rearrangement, in addition, we support the idea that combination therapies offer significant potential when they are optimized on a patient-by-patient basis.
Collapse
Affiliation(s)
- Yutao Li
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany.,Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Xiaolong Wu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
25
|
Bai R, Cui J. Burgeoning Exploration of the Role of Natural Killer Cells in Anti-PD-1/PD-L1 Therapy. Front Immunol 2022; 13:886931. [PMID: 35634343 PMCID: PMC9133458 DOI: 10.3389/fimmu.2022.886931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Antibodies targeting programmed death receptor-1 (PD-1)/programmed death ligand-1 (PD-L1) have been considered breakthrough therapies for a variety of solid and hematological malignancies. Although cytotoxic T cells play an important antitumor role during checkpoint blockade, they still show a potential killing effect on tumor types showing loss of/low major histocompatibility complex (MHC) expression and/or low neoantigen load; this knowledge has shifted the focus of researchers toward mechanisms of action other than T cell-driven immune responses. Evidence suggests that the blockade of the PD-1/PD-L1 axis may also improve natural killer (NK)-cell function and activity through direct or indirect mechanisms, which enhances antitumor cytotoxic effects; although important, this topic has been neglected in previous studies. Recently, some studies have reported evidence of PD-1 and PD-L1 expression in human NK cells, performed exploration of the intrinsic mechanism by which PD-1/PD-L1 blockade enhances NK-cell responses, and made some progress. This article summarizes the recent advances regarding the expression of PD-1 and PD-L1 molecules on the surface of NK cells as well as the interaction between anti-PD-1/PD-L1 drugs and NK cells and associated molecular mechanisms in the tumor microenvironment.
Collapse
Affiliation(s)
| | - Jiuwei Cui
- *Correspondence: Jiuwei Cui, ; orcid.org/0000-0001-6496-7550
| |
Collapse
|
26
|
Landolina N, Mariotti FR, Ingegnere T, Alicata C, Ricci B, Pelosi A, Veneziani I, Azzarone BG, Garlanda C, Mantovani A, Moretta L, Maggi E. IL-1R8 silencing improves the anti-tumor function of freshly isolated human NK cells. J Immunother Cancer 2022; 10:jitc-2021-003858. [PMID: 35292515 PMCID: PMC8928329 DOI: 10.1136/jitc-2021-003858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 11/04/2022] Open
Abstract
The inhibitory receptor interleukin-1 receptor 8 (IL-1R8) has been recently recognized to be expressed also by human natural killer (NK) cells. This study was aimed to design and optimize IL-1R8 silencing conditions in human NK cells to precisely establish the activity of such receptor in these cells. Electroporation of freshly isolated or IL-2-cultured NK cells with small interfering RNA (siRNA), resulted in a marked, even though variable, IL-1R8-silencing. Although the expression profile revealed downregulation of most genes involved in several intracellular pathways, some genes related to proliferation, expression of some chemokine receptors, antibody-dependent cell cytotoxicity and cytotoxic activity were upregulated in IL-1R8-silenced NK cells. Furthermore, upon IL-15 activation, the majority of genes involved in NK cell function were upregulated in IL-1R8-siRNA—compared with control—siRNA-transfected NK cells. More importantly, in agreement with these findings, the reduction of IL-1R8 gene expression levels resulted in enhanced expression of NK cell activation markers, production of cytokines and chemokines, and cytotoxic activity against several NK cell targets with different susceptibility to NK-mediated lysis. Similar results were obtained following stimulation with IL-18. All together these data, deeply impacting on the main effector functions of human NK cells, can lead to a better understanding of IL-1R8-mediated regulation on these cells and to the design of new strategies for improving NK cell-mediated anti-tumor responses.
Collapse
Affiliation(s)
- Nadine Landolina
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Tiziano Ingegnere
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Claudia Alicata
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Biancamaria Ricci
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Pelosi
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Irene Veneziani
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.,IRCCS Humanitas Research Hospital, Humanitas University, Rozzano (Milan), Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy.,IRCCS Humanitas Research Hospital, Humanitas University, Rozzano (Milan), Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Lorenzo Moretta
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Enrico Maggi
- Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
27
|
Lou J, Wei L, Wang H. SCNN1A Overexpression Correlates with Poor Prognosis and Immune Infiltrates in Ovarian Cancer. Int J Gen Med 2022; 15:1743-1763. [PMID: 35221714 PMCID: PMC8865762 DOI: 10.2147/ijgm.s351976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Ovarian cancer (OV) is a common malignancy affecting women globally; recognizing useful biomarkers has been one of the key priorities. Since SCNN1A was reported to be relevant to tumor progression in a variety of cancers, but rarely in ovarian cancer, we explored the roles of SCNN1A in OV. Methods RNA sequencing data from TCGA and GEO were utilized to analyze the expression of SCNN1A and related differentially expressed genes (DEGs) in ovarian cancer. We performed GO, GSEA and immune cell infiltration analysis on SCNN1A-associated DEGs. Correlation of SCNN1A methylation levels and its mRNA expression was analyzed by cBioPortal and UCSC Xena databases. To assess the prognostic impact of SCNN1A, Kaplan–Meier plot analysis and Cox regression analysis were performed; ROC curves and nomogram were also plotted. Results Compared to normal tissues, SCNN1A was highly expressed in ovarian cancer. The methylation level of SCNN1A negatively correlated with the SCNN1A expression. Moreover, high expression of SCNN1A was correlated with poor prognosis in OV patients and associated with immune infiltrates. Conclusion High SCNN1A expression could be a promising biomarker for poor outcomes in OV and correlated with tumor immune cells infiltration. The findings might help illuminate the function of SCNN1A in tumorigenesis and lay a foundation for further research.
Collapse
Affiliation(s)
- Jiayan Lou
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Lingjia Wei
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - He Wang
- Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Correspondence: He Wang, Department of Gynecology and Oncology, Guangxi Medical University Cancer Hospital, 71 He Di Road, Nanning, Guangxi, 530021, People’s Republic of China, Tel +86 13481138393, Email
| |
Collapse
|
28
|
Vuletić A, Mirjačić Martinović K, Tišma Miletić N, Zoidakis J, Castellvi-Bel S, Čavić M. Cross-Talk Between Tumor Cells Undergoing Epithelial to Mesenchymal Transition and Natural Killer Cells in Tumor Microenvironment in Colorectal Cancer. Front Cell Dev Biol 2021; 9:750022. [PMID: 34858978 PMCID: PMC8631470 DOI: 10.3389/fcell.2021.750022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor cells undergoing epithelial to mesenchymal transition (EMT) and immune cells in tumor microenvironment (TME) reciprocally influence each other. Immune cells, by supplying TME with bioactive molecules including cytokines, chemokines, enzymes, metabolites, and by physical interactions with tumor cells via their receptors, represent an important factor that affects EMT. Chronical inflammation in TME favorizes tumor growth and invasiveness and stimulates synthesis of EMT promoting transcription factors. Natural killer (NK) cells, owing to their unique ability to exert cytotoxic function independent of major histocompatibility (MHC)-mediated antigen presentation, play a significant role in the control of metastasis in colorectal cancer (CRC). Although, the cross-talk between immune cells and tumor cells in general favors the induction of EMT and inhibition of antitumor immune responses, there are some changes in the immunogenicity of tumor cells during EMT of CRC cells that increase their susceptibility to NK cell cytotoxic lysis. However, suppressive TME downmodulates the expression of activating NK cell receptors, decreases the expression of activating and increases the expression of inhibitory NK cell ligands on tumor cells, and impairs NK cell metabolism that altogether negatively affects the overall NK cell function. Furthermore, process of EMT is often associated with increased expression of programmed cell death ligand (PD-L) and expression of immune checkpoint molecules PD-1, TIGIT, and TIM3 on functionally exhausted NK cells in TME in CRC. In this review we discuss modalities of cross-talk between tumor cells and NK cells, with regard of EMT-driven changes.
Collapse
Affiliation(s)
- Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | | | - Nevena Tišma Miletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Sergi Castellvi-Bel
- Gastroenterology Department, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomčdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Milena Čavić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
29
|
Esen F, Deniz G, Aktas EC. PD-1, CTLA-4, LAG-3, and TIGIT: The roles of immune checkpoint receptors on the regulation of human NK cell phenotype and functions. Immunol Lett 2021; 240:15-23. [PMID: 34599946 DOI: 10.1016/j.imlet.2021.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
The roles of immune checkpoint receptors were defined in many cancers and autoimmune diseases, while there is limited information on their functional roles in the NK cells of healthy individuals. Immune checkpoint receptor expression of NK cell subsets and their association with NK cell functions (cytotoxic capacity and cytokine production) in healthy population were investigated. PD-1, CTLA-4, LAG-3 and TIGIT expression of peripheral blood NK cells, cytokine levels (TNF-α, IFN-γ, IL-10) and cytotoxic functions (granzyme A, perforin, CD107a; with/without K562 target cell stimulation) were evaluated by flow cytometry. CD56dimCD16dim NK cells had the highest expression of TIGIT, while CD56dimCD16- NK cells had highest expression of PD-1, CTLA-4 and LAG-3. PD-1+ NK cells, CTLA-4+ NK cells and LAG-3+ NK cells had increased amount of IL-10 however, reduced IFN-γ and TNF-α levels. Cytotoxic granule expressions (perforin and granzyme A) were reduced in PD-1+ NK cells, CTLA-4+ NK cells and LAG-3+ NK cells. However, TIGIT expression did not alter perforin and granzyme A expressions. Degranulation capacity was reduced in three groups of NK cells (PD-1+ or LAG-3+ or TIGIT+). TIGIT+ NK cells responded strongly to target cell stimulation, while NK cells in the other groups (PD-1+ or CTLA-4+ or LAG-3+) were resistant. PD-1+ NK cells, CTLA-4+ NK cells and LAG-3+ NK cells had a regulatory phenotype, impaired cytotoxic functions, and response to target cell stimulation. In contrast, TIGIT+ NK cells had strong baseline cytotoxic activity that further increased in response to target cell stimulation.
Collapse
Affiliation(s)
- Fehim Esen
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey; Istanbul Medeniyet University Medical Faculty, Department of Ophthalmology, Istanbul, Turkey
| | - Günnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | - Esin Cetin Aktas
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey.
| |
Collapse
|
30
|
Antonsen KW, Hviid CVB, Hagensen MK, Sørensen BS, Møller HJ. Soluble PD-1 (sPD-1) is expressed in human macrophages. Cell Immunol 2021; 369:104435. [PMID: 34482260 DOI: 10.1016/j.cellimm.2021.104435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023]
Abstract
The PD-1/PD-L1 axis plays a crucial role in regulating the anti-tumour immune response. A soluble PD-1 protein (sPD-1) has previously been observed, which could block the binding of PD-L1 to PD-1. Tumour associated macrophages are abundant in tumours, and evidence suggest they express PD-1. However, whether they also express sPD-1 remains unclear. The objective of this study was to investigate expression of sPD-1 in two in vitro models of human macrophages: THP-1 cells and monocyte-derived macrophages (MDM). Cells were polarised with either LPS + IFN-γ or IL-4 + IL-13 or left unpolarised. PD-1 and sPD-1 mRNAs were measured using droplet digital PCR, sPD-1 protein by electrochemiluminescence immunoassay and PD-1 by flow cytometry. sPD-1 mRNA was induced in both THP-1 cells and MDM after polarisation with LPS + IFN-γ, while IL-4 + IL-13 induced sPD-1 mRNA in MDM only. sPD-1 protein was measurable in culture supernatants. These findings show that macrophages can be induced to express sPD-1.
Collapse
Affiliation(s)
- Kristian W Antonsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Claus V B Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Mette K Hagensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Boe S Sørensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| |
Collapse
|
31
|
Bi-specific and Tri-specific NK Cell Engagers: The New Avenue of Targeted NK Cell Immunotherapy. Mol Diagn Ther 2021; 25:577-592. [PMID: 34327614 DOI: 10.1007/s40291-021-00550-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2021] [Indexed: 02/01/2023]
Abstract
Natural killer (NK) cell-mediated cancer immunotherapy has grown significantly over the past two decades. More recently, multi-specific engagers have been developed as cancer therapeutics to effectively arm endogenous NK cells to more potently induce specific cytolytic responses against tumor targets. This review explores the bi- and tri-specific NK/tumor engagers that are emerging as a new generation of immunotherapeutics. These molecules vary in configuration, but they typically have small molecular weights and domains that engage specific tumor antigens and NK cell-activating receptors such as CD16, NKp30, NKp46, and NKG2D. They have demonstrated compelling potential in boosting NK cell cytotoxicity against specific tumor targets. This highly adaptable off-the-shelf platform, which in some formats also integrates cytokines, is poised to revolutionize targeted NK cell immunotherapy, either as a monotherapy or in combination with other effective anti-cancer therapies.
Collapse
|
32
|
Zhu H, Liu X. Advances of Tumorigenesis, Diagnosis at Early Stage, and Cellular Immunotherapy in Gastrointestinal Malignancies. Front Oncol 2021; 11:666340. [PMID: 34434889 PMCID: PMC8381364 DOI: 10.3389/fonc.2021.666340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Globally, in 2018, 4.8 million new patients have a diagnosis of gastrointestinal (GI) cancers, while 3.4 million people died of such disorders. GI malignancies are tightly relevant to 26% of the world-wide cancer incidence and occupies 35% of all cancer-associated deaths. In this article, we principally investigated molecular and cellular mechanisms of tumorigenesis in five major GI cancers occurring at esophagus, stomach, liver, pancreas, and colorectal region that illustrate high morbidity in Eastern and Western countries. Moreover, through this investigation, we not only emphasize importance of the tumor microenvironment in development and treatment of malignant tumors but also identify significance of M2PK, miRNAs, ctDNAs, circRNAs, and CTCs in early detection of GI cancers, as well as systematically evaluate contribution of personalized precision medicine including cellular immunotherapy, new antigen and vaccine therapy, and oncolytic virotherapy in treatment of GI cancers.
Collapse
Affiliation(s)
- Haipeng Zhu
- Precision and Personalized Cancer Treatment Center, Division of Cancer Diagnosis & Therapy, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China.,Stem Cell and Biotherapy Technology Research Center, Xinxiang Medical College, Xinxiang, China
| | - Xiaojun Liu
- Division of Cellular & Biomedical Science, Ciming Boao International Hospital, Boao Lecheng International Medical Tourism Pilot Zone, Qionghai, China
| |
Collapse
|
33
|
Mensali N, Dillard P, Fayzullin A, Köksal H, Gaudernack G, Kvalheim G, Inderberg EM, Wälchli S. "Built-in" PD-1 blocker to rescue NK-92 activity from PD-L1-mediated tumor escape mechanisms. FASEB J 2021; 35:e21750. [PMID: 34424568 DOI: 10.1096/fj.202100025r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
Success of adoptive cell therapy mainly depends on the ability of immune cells to persist and function optimally in the immunosuppressive tumor microenvironment. Although present at the cancer site, immune cells become exhausted and/or inhibited, due to the presence of inhibitory receptors such as PD-L1 on malignant cells. Novel genetic strategies to manipulate the PD1/PD-L1 axis comprise (i) PD-1 reversion where the receptor intracellular domain is replaced with an activating unit, (ii) the use of anti-PD-L1 CAR or (iii) the disruption of the PD-1 gene. We here present an alternative strategy to equip therapeutic cells with a truncated PD-1 (tPD-1) to abrogate PD-1/PD-L1 inhibition. We show that engagement of tPD-1 with PD-L1-positive tumor unleashes NK-92 activity in vitro. Furthermore, this binding was sufficiently strong to induce killing of targets otherwise not recognized by NK-92, thus increasing the range of targets. In vivo treatment with NK-92 tPD-1 cells led to reduced tumor growth and improved survival. Importantly, tPD-1 did not interfere with tumor recognition in PD-L1 negative conditions. Thus, tPD-1 represents a straightforward method for improving antitumor immunity and revealing new targets through PD-L1 positivity.
Collapse
Affiliation(s)
- Nadia Mensali
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Pierre Dillard
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Artem Fayzullin
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Hakan Köksal
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Gustav Gaudernack
- Department of Cancer Immunology, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Gunnar Kvalheim
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Else Marit Inderberg
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Sébastien Wälchli
- Department of Cellular Therapy, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
34
|
Buckle I, Guillerey C. Inhibitory Receptors and Immune Checkpoints Regulating Natural Killer Cell Responses to Cancer. Cancers (Basel) 2021; 13:cancers13174263. [PMID: 34503073 PMCID: PMC8428224 DOI: 10.3390/cancers13174263] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent years marked the discovery and increased understanding of the role immune checkpoints play in immunity against cancer. This has revolutionized cancer treatment, saving the lives of many patients. For numerous years the spotlight of success has been directed towards T cells; however, it is now appreciated that other cells play vital roles in this protection. In this review we focused on cytotoxic lymphocytes Natural Killer (NK) cells, which are known to be well equipped in the fight against cancer. We explored the role of well-described and newly emerging inhibitory receptors, including immune checkpoints in regulating NK cell activity against cancer. The knowledge summarized in this review should guide the development of immunotherapies targeting inhibitory receptors with the aim of restoring NK cell responses in cancer patients. Abstract The discovery of immune checkpoints provided a breakthrough for cancer therapy. Immune checkpoints are inhibitory receptors that are up-regulated on chronically stimulated lymphocytes and have been shown to hinder immune responses to cancer. Monoclonal antibodies against the checkpoint molecules PD-1 and CTLA-4 have shown early clinical success against melanoma and are now approved to treat various cancers. Since then, the list of potential candidates for immune checkpoint blockade has dramatically increased. The current paradigm stipulates that immune checkpoint blockade therapy unleashes pre-existing T cell responses. However, there is accumulating evidence that some of these immune checkpoint molecules are also expressed on Natural Killer (NK) cells. In this review, we summarize our latest knowledge about targetable NK cell inhibitory receptors. We discuss the HLA-binding receptors KIRS and NKG2A, receptors binding to nectin and nectin-like molecules including TIGIT, CD96, and CD112R, and immune checkpoints commonly associated with T cells such as PD-1, TIM-3, and LAG-3. We also discuss newly discovered pathways such as IL-1R8 and often overlooked receptors such as CD161 and Siglecs. We detail how these inhibitory receptors might regulate NK cell responses to cancer, and, where relevant, we discuss their implications for therapeutic intervention.
Collapse
|
35
|
Davis-Marcisak EF, Fitzgerald AA, Kessler MD, Danilova L, Jaffee EM, Zaidi N, Weiner LM, Fertig EJ. Transfer learning between preclinical models and human tumors identifies a conserved NK cell activation signature in anti-CTLA-4 responsive tumors. Genome Med 2021; 13:129. [PMID: 34376232 PMCID: PMC8356429 DOI: 10.1186/s13073-021-00944-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tumor response to therapy is affected by both the cell types and the cell states present in the tumor microenvironment. This is true for many cancer treatments, including immune checkpoint inhibitors (ICIs). While it is well-established that ICIs promote T cell activation, their broader impact on other intratumoral immune cells is unclear; this information is needed to identify new mechanisms of action and improve ICI efficacy. Many preclinical studies have begun using single-cell analysis to delineate therapeutic responses in individual immune cell types within tumors. One major limitation to this approach is that therapeutic mechanisms identified in preclinical models have failed to fully translate to human disease, restraining efforts to improve ICI efficacy in translational research. METHOD We previously developed a computational transfer learning approach called projectR to identify shared biology between independent high-throughput single-cell RNA-sequencing (scRNA-seq) datasets. In the present study, we test this algorithm's ability to identify conserved and clinically relevant transcriptional changes in complex tumor scRNA-seq data and expand its application to the comparison of scRNA-seq datasets with additional data types such as bulk RNA-seq and mass cytometry. RESULTS We found a conserved signature of NK cell activation in anti-CTLA-4 responsive mouse and human tumors. In human metastatic melanoma, we found that the NK cell activation signature associates with longer overall survival and is predictive of anti-CTLA-4 (ipilimumab) response. Additional molecular approaches to confirm the computational findings demonstrated that human NK cells express CTLA-4 and bind anti-CTLA-4 antibodies independent of the antibody binding receptor (FcR) and that similar to T cells, CTLA-4 expression by NK cells is modified by cytokine-mediated and target cell-mediated NK cell activation. CONCLUSIONS These data demonstrate a novel application of our transfer learning approach, which was able to identify cell state transitions conserved in preclinical models and human tumors. This approach can be adapted to explore many questions in cancer therapeutics, enhance translational research, and enable better understanding and treatment of disease.
Collapse
Affiliation(s)
- Emily F Davis-Marcisak
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Allison A Fitzgerald
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael D Kessler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ludmila Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Louis M Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Zaghi E, Calvi M, Puccio S, Spata G, Terzoli S, Peano C, Roberto A, De Paoli F, van Beek JJ, Mariotti J, De Philippis C, Sarina B, Mineri R, Bramanti S, Santoro A, Le-Trilling VTK, Trilling M, Marcenaro E, Castagna L, Di Vito C, Lugli E, Mavilio D. Single-cell profiling identifies impaired adaptive NK cells expanded after HCMV reactivation in haploidentical HSCT. JCI Insight 2021; 6:146973. [PMID: 34003794 PMCID: PMC8262468 DOI: 10.1172/jci.insight.146973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Haploidentical hematopoietic stem cell transplantation (h-HSCT) represents an efficient curative approach for patients affected by hematologic malignancies in which the reduced intensity conditioning induces a state of immunologic tolerance between donor and recipient. However, opportunistic viral infections greatly affect h-HSCT clinical outcomes. NK cells are the first lymphocytes that recover after transplant and provide a prompt defense against human cytomegalovirus (HCMV) infection/reactivation. By undertaking a longitudinal single-cell computational profiling of multiparametric flow cytometry, we show that HCMV accelerates NK cell immune reconstitution together with the expansion of CD158b1b2jpos/NKG2Aneg/NKG2Cpos/NKp30lo NK cells. The frequency of this subset correlates with HCMV viremia, further increases in recipients experiencing multiple episodes of viral reactivations, and persists for months after the infection. The transcriptional profile of FACS-sorted CD158b1b2jpos NK cells confirmed the ability of HCMV to deregulate NKG2C, NKG2A, and NKp30 gene expression, thus inducing the expansion of NK cells with adaptive traits. These NK cells are characterized by the downmodulation of several gene pathways associated with cell migration, the cell cycle, and effector-functions, as well as by a state of metabolic/cellular exhaustion. This profile reflects the functional impairments of adaptive NK cells to produce IFN-γ, a phenomenon also due to the viral-induced expression of lymphocyte-activation gene 3 (LAG-3) and programmed cell death protein 1 (PD-1) checkpoint inhibitors.
Collapse
Affiliation(s)
- Elisa Zaghi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| | | | - Gianmarco Spata
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Sara Terzoli
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, and Genomic Unit
| | | | | | | | | | | | | | - Rossana Mineri
- Molecular Biology Section, Clinical Investigation Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | | | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology.,Flow Cytometry Core, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
37
|
Rinchai D, Verzoni E, Huber V, Cova A, Squarcina P, De Cecco L, de Braud F, Ratta R, Dugo M, Lalli L, Vallacchi V, Rodolfo M, Roelands J, Castelli C, Chaussabel D, Procopio G, Bedognetti D, Rivoltini L. Integrated transcriptional-phenotypic analysis captures systemic immunomodulation following antiangiogenic therapy in renal cell carcinoma patients. Clin Transl Med 2021; 11:e434. [PMID: 34185403 PMCID: PMC8214860 DOI: 10.1002/ctm2.434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The combination of immune checkpoint blockade (ICB) with standard therapies is becoming a common approach for overcoming resistance to cancer immunotherapy in most human malignancies including metastatic renal cell carcinoma (mRCC). In this regard, insights into the immunomodulatory properties of antiangiogenic agents may help designing multidrug schedules based on specific immune synergisms. METHODS We used orthogonal transcriptomic and phenotyping platforms combined with functional analytic pipelines to elucidate the immunomodulatory effect of the antiangiogenic agent pazopanib in mRCC patients. Nine patients were studied longitudinally over a period of 6 months. We also analyzed transcriptional data from The Cancer Genome Atlas (TCGA) RCC cohort (N = 571) to assess the prognostic implications of our findings. The effect of pazopanib was assessed in vitro on NK cells and T cells. Additionally, myeloid-derived suppressor (MDSC)-like cells were generated from CD14+ monocytes transfected with mimics of miRNAs associated with MDSC function in the presence or absence of pazopanib. RESULTS Pazopanib administration caused a rapid and dramatic reshaping in terms of frequency and transcriptional activity of multiple blood immune cell subsets, with a downsizing of MDSC and regulatory T cells in favor of a strong enhancement in PD-1 expressing cytotoxic T and Natural Killer effectors. These changes were paired with an increase of the expression of transcripts reflecting activation of immune-effector functions. This immunomodulation was marked but transient, peaking at the third month of treatment. Moreover, the intratumoral expression level of a MDSC signature (MDSC INT) was strongly associated with poor prognosis in RCC patients. In vitro experiments indicate that the observed immunomodulation might be due to an inhibitory effect on MDSC-mediated suppression, rather than a direct effect on NK and T cells. CONCLUSIONS The marked but transient nature of this immunomodulation, peaking at the third month of treatment, provides the rationale for the use of antiangiogenics as a preconditioning strategy to improve the efficacy of ICB.
Collapse
Affiliation(s)
| | - Elena Verzoni
- Medical Oncology DepartmentFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Veronica Huber
- Unit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Agata Cova
- Unit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Paola Squarcina
- Unit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Loris De Cecco
- Platform of Integrated BiologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Filippo de Braud
- Medical Oncology DepartmentFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | | | - Matteo Dugo
- Platform of Integrated BiologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Luca Lalli
- Unit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Monica Rodolfo
- Unit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | | | - Chiara Castelli
- Unit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | | | - Giuseppe Procopio
- Medical Oncology DepartmentFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Davide Bedognetti
- Cancer Research DepartmentSidra MedicineDohaQatar
- Dipartimento di Medicina Interna e Specialità MedicheUniversità degli Studi di GenovaGenovaItaly
- College of Health and Life SciencesHamad Bin Khalifa UniversityDohaQatar
| | - Licia Rivoltini
- Unit of Immunotherapy of Human TumorsFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| |
Collapse
|
38
|
Immunity reloaded: Deconstruction of the PD-1 axis in B cell lymphomas. Blood Rev 2021; 50:100832. [PMID: 33896649 DOI: 10.1016/j.blre.2021.100832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Over the past decade therapies targeting the PD-1 axis with monoclonal antibodies to reinstate host immune function have revolutionized the clinical management of some cancers but have had minimal impact on others. This dichotomy is exemplified by B cell lymphomas. Whilst striking results are observed in classical Hodgkin Lymphoma (cHL) and Primary Mediastinal B Cell Lymphoma (PMBL), responses in other B cell lymphomas are infrequent. Even with cHL and PMBL, responses are not always durable and adverse effects can result in treatment discontinuation. A more nuanced approach to manipulate the PD-1 axis is required before the full benefits of PD-1 axis blockade can be realised. In this review, we provide an outline of PD-1 axis biology, including the range of cellular expression, the molecular mechanisms underlying regulation and the impacts of downstream signalling. These may permit the development of alternate strategies to PD-1 axis blockade to enhance the therapeutic efficacy in B cell lymphomas.
Collapse
|
39
|
Lee H, Da Silva IP, Palendira U, Scolyer RA, Long GV, Wilmott JS. Targeting NK Cells to Enhance Melanoma Response to Immunotherapies. Cancers (Basel) 2021; 13:cancers13061363. [PMID: 33802954 PMCID: PMC8002669 DOI: 10.3390/cancers13061363] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are a key component of an innate immune system. They are important not only in initiating, but also in augmenting adaptive immune responses. NK cell activation is mediated by a carefully orchestrated balance between the signals from inhibitory and activating NK cell receptors. NK cells are potent producers of proinflammatory cytokines and are also able to elicit strong antitumor responses through secretion of perforin and granzyme B. Tumors can develop many mechanisms to evade NK cell antitumor responses, such as upregulating ligands for inhibitory receptors, secreting anti-inflammatory cytokines and recruiting immunosuppressive cells. Enhancing NK cell responses will likely augment the effectiveness of immunotherapies, and strategies to accomplish this are currently being evaluated in clinical trials. A comprehensive understanding of NK cell biology will likely provide additional opportunities to further leverage the antitumor effects of NK cells. In this review, we therefore sought to highlight NK cell biology, tumor evasion of NK cells and clinical trials that target NK cells.
Collapse
Affiliation(s)
- Hansol Lee
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| | - Inês Pires Da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Infectious Diseases and Immunology, The Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney 2006, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Department of Medical Oncology, Royal North Shore Hospital and Mater Hospital, Sydney 2065, Australia
- Sydney Medical School, The University of Sydney, Sydney 2006, Australia
- Correspondence: ; Tel.: +61-2-9911-7336
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney 2006, Australia; (H.L.); (I.P.D.S.); (U.P.); (R.A.S.); (J.S.W.)
- Faculty of Medicine and Health Sciences, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
40
|
Olivo Pimentel V, Marcus D, van der Wiel AM, Lieuwes NG, Biemans R, Lieverse RI, Neri D, Theys J, Yaromina A, Dubois LJ, Lambin P. Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19-IL2 cures poorly immunogenic tumors when combined with radiotherapy. J Immunother Cancer 2021; 9:e001764. [PMID: 33688020 PMCID: PMC7944996 DOI: 10.1136/jitc-2020-001764] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Poorly immunogenic tumors are hardly responsive to immunotherapies such as immune checkpoint blockade (ICB) and are, therefore, a therapeutic challenge. Combination with other immunotherapies and/or immunogenic therapies, such as radiotherapy (RT), could make these tumors more immune responsive. We have previously shown that the immunocytokine L19-IL2 combined with single-dose RT resulted in 75% tumor remission and a 20% curative abscopal effect in the T cell-inflamed C51 colon carcinoma model. This treatment schedule was associated with the upregulation of inhibitory immune checkpoint (IC) molecules on tumor-infiltrating T cells, leading to only tumor growth delay in the poorly immunogenic Lewis lung carcinoma (LLC) model. METHODS We aimed to trigger curative therapeutic responses in three tumor models (LLC, C51 and CT26) by "pushing the accelerator" of tumor immunity with L19-IL2 and/or "releasing the brakes" with ICB, such as antibodies directed against cytotoxic T lymphocyte associated protein 4 (CTLA-4), programmed death 1 (PD-1) or its ligand (PD-L1), combined with single-dose RT (10 Gy or 5 Gy). Primary tumor endpoint was defined as time to reach four times the size of tumor volume at start of treatment (4T×SV). Multivariate analysis of 4T×SV was performed using the Cox proportional hazards model comparing each treatment group with controls. Causal involvement of T and natural killer (NK) cells in the anti-tumor effect was assessed by in vivo depletion of T, NK or both cell populations. Immune profiling was performed using flow cytometry on single cell suspensions from spleens, bone marrow, tumors and blood. RESULTS Combining RT, anti-PD-L1 and L19-IL2 cured 38% of LLC tumors, which was both CD8+ T and NK cell dependent. LLC tumors were resistant to RT +anti-PD-L1 likely explained by the upregulation of other IC molecules and increased T regulatory cell tumor infiltration. RT+L19-IL2 outperformed RT+ICB in C51 tumors; effects were comparable in CT26 tumors. Triple combinations were not superior to RT+L19-IL2 in both these models. CONCLUSIONS This study demonstrated that combinatorial strategies rationally designed on biological effects can turn immunotherapy-resistant tumors into immunologically responsive tumors. This hypothesis is currently being tested in the international multicentric randomized phase 2 trial: ImmunoSABR (NCT03705403).
Collapse
MESH Headings
- Animals
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/metabolism
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/therapy
- Cell Line, Tumor
- Chemoradiotherapy
- Coculture Techniques
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- Immune Checkpoint Inhibitors/pharmacology
- Immunologic Memory/drug effects
- Immunomodulating Agents/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Memory T Cells/drug effects
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Recombinant Fusion Proteins/pharmacology
- Signal Transduction
- Tumor Burden/drug effects
- Tumor Microenvironment
- Mice
Collapse
Affiliation(s)
- Veronica Olivo Pimentel
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Alexander Ma van der Wiel
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Natasja G Lieuwes
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Rianne Biemans
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Relinde Iy Lieverse
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
41
|
Bödder J, Zahan T, van Slooten R, Schreibelt G, de Vries IJM, Flórez-Grau G. Harnessing the cDC1-NK Cross-Talk in the Tumor Microenvironment to Battle Cancer. Front Immunol 2021; 11:631713. [PMID: 33679726 PMCID: PMC7933030 DOI: 10.3389/fimmu.2020.631713] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Immunotherapeutic approaches have revolutionized the treatment of several diseases such as cancer. The main goal of immunotherapy for cancer is to modulate the anti-tumor immune responses by favoring the recognition and destruction of tumor cells. Recently, a better understanding of the suppressive effect of the tumor microenvironment (TME) on immune cells, indicates that restoring the suppressive effect of the TME is crucial for an efficient immunotherapy. Natural killer (NK) cells and dendritic cells (DCs) are cell types that are currently administered to cancer patients. NK cells are used because of their ability to kill tumor cells directly via cytotoxic granzymes. DCs are employed to enhance anti-tumor T cell responses based on their ability to present antigens and induce tumor-antigen specific CD8+ T cell responses. In preclinical models, a particular DC subset, conventional type 1 DCs (cDC1s) is shown to be specialized in cross-presenting extracellular antigens to CD8+ T cells. This feature makes them a promising DC subset for cancer treatment. Within the TME, cDC1s show a bidirectional cross-talk with NK cells, resulting in a higher cDC1 recruitment, differentiation, and maturation as well as activation and stimulation of NK cells. Consequently, the presence of cDC1s and NK cells within the TME might be of utmost importance for the success of immunotherapy. In this review, we discuss the function of cDC1s and NK cells, their bidirectional cross-talk and potential strategies that could improve cancer immunotherapy.
Collapse
Affiliation(s)
- Johanna Bödder
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tasmin Zahan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rianne van Slooten
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
42
|
Tumino N, Di Pace AL, Besi F, Quatrini L, Vacca P, Moretta L. Interaction Between MDSC and NK Cells in Solid and Hematological Malignancies: Impact on HSCT. Front Immunol 2021; 12:638841. [PMID: 33679798 PMCID: PMC7928402 DOI: 10.3389/fimmu.2021.638841] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myeloid derived suppressor cells (MDSC) are heterogeneous populations that through the release of soluble factors and/or by cell-to-cell interactions suppress both innate and adaptive immune effector cells. In pathological conditions, characterized by the presence of inflammation, a partial block in the differentiation potential of myeloid precursors causes an accumulation of these immunosuppressive cell subsets both in peripheral blood and in tissues. On the contrary, NK cells represent a major player of innate immunity able to counteract tumor growth. The anti-tumor activity of NK cells is primarily related to their cytolytic potential and to the secretion of soluble factors or cytokines that may act on tumors either directly or indirectly upon the recruitment of other cell types. NK cells have been shown to play a fundamental role in haploidentical hemopoietic stem cell transplantation (HSCT), for the therapy of high-risk leukemias. A deeper analysis of MDSC functional effects demonstrated that these cells are capable, through several mechanisms, to reduce the potent GvL activity exerted by NK cells. It is conceivable that, in this transplantation setting, the MDSC-removal or -inactivation may represent a promising strategy to restore the anti-leukemia effect mediated by NK cells. Thus, a better knowledge of the cellular interactions occurring in the tumor microenvironment could promote the development of novel therapeutic strategies for the treatment of solid and hematological malignances.
Collapse
Affiliation(s)
- Nicola Tumino
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Anna Laura Di Pace
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Besi
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Linda Quatrini
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
43
|
Hanafy MS, Hufnagel S, Trementozzi AN, Sakran W, Stachowiak JC, Koleng JJ, Cui Z. PD-1 siRNA-Encapsulated Solid Lipid Nanoparticles Downregulate PD-1 Expression by Macrophages and Inhibit Tumor Growth : PD-1 siRNA-Encapsulated Solid Lipid Nanoparticles. AAPS PharmSciTech 2021; 22:60. [PMID: 33517490 DOI: 10.1208/s12249-021-01933-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
The present study was designed to test the hypothesis that programmed cell death-1 (PD-1) siRNA can downregulate PD-1 expression in macrophages in culture and in tumor tissues in mice and inhibit tumor growth in a mouse model. PD-1 siRNA was encapsulated in solid lipid nanoparticles (SLNs), and the physical properties of the resultant SLNs were characterized. The ability of the PD-1 siRNA-SLNs to downregulate PD-1 expression was confirmed in J774A.1 macrophages in culture and in tumor tissues in mice. Moreover, the antitumor activity of the PD-1 siRNA-SLNs was evaluated in a mouse model. The PD-1 siRNA-SLNs were roughly spherical, and their particle size, polydispersity index, and zeta potential were 141 ± 5 nm, 0.17 ± 0.02, and 20.7 ± 4.7 mV, respectively, with an siRNA entrapment efficiency of 98.9%. The burst release of the PD-1 siRNA from the SLNs was minimal. The PD-1 siRNA-SLNs downregulated PD-1 expression on J774A.1 macrophage cell surface as well as in macrophages in B16-F10 tumors pre-established in mice. In mice with pre-established B16-F10 tumors, the PD-1 siRNA-SLNs significantly inhibited the tumor growth, as compared with siRNA-SLNs prepared with non-functional, negative control siRNA. In conclusion, the PD-1 siRNA-SLNs inhibited tumor growth, likely related to their ability to downregulate PD-1 expression by tumor-associated macrophage (TAMs).
Collapse
|
44
|
Cho MM, Quamine AE, Olsen MR, Capitini CM. Programmed cell death protein 1 on natural killer cells: fact or fiction? J Clin Invest 2021; 130:2816-2819. [PMID: 32391808 DOI: 10.1172/jci137051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) has become one of the most investigated targets for cancer immunotherapy. Most research has centered on inhibiting PD-1 on T cells, but there is increased interest in understanding the role of PD-1 on NK cells. While the expression of PD-1 on NK cells has been controversial, with papers publishing contradictory results in multiple models, there is increased clinical interest in NK and PD-1 immunotherapy. In this issue of the JCI, Judge et al. comprehensively explore the lack of PD-1 expression on murine, canine, and human NK cells and the clinical implication of these findings.
Collapse
Affiliation(s)
| | | | | | - Christian M Capitini
- Department of Pediatrics and.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
45
|
Tumino N, Di Pace AL, Besi F, Quatrini L, Vacca P, Moretta L. Interaction Between MDSC and NK Cells in Solid and Hematological Malignancies: Impact on HSCT. Front Immunol 2021. [PMID: 33679798 DOI: 10.3389/fimmu.2021.638841.pmid:33679798;pmcid:pmc7928402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloid derived suppressor cells (MDSC) are heterogeneous populations that through the release of soluble factors and/or by cell-to-cell interactions suppress both innate and adaptive immune effector cells. In pathological conditions, characterized by the presence of inflammation, a partial block in the differentiation potential of myeloid precursors causes an accumulation of these immunosuppressive cell subsets both in peripheral blood and in tissues. On the contrary, NK cells represent a major player of innate immunity able to counteract tumor growth. The anti-tumor activity of NK cells is primarily related to their cytolytic potential and to the secretion of soluble factors or cytokines that may act on tumors either directly or indirectly upon the recruitment of other cell types. NK cells have been shown to play a fundamental role in haploidentical hemopoietic stem cell transplantation (HSCT), for the therapy of high-risk leukemias. A deeper analysis of MDSC functional effects demonstrated that these cells are capable, through several mechanisms, to reduce the potent GvL activity exerted by NK cells. It is conceivable that, in this transplantation setting, the MDSC-removal or -inactivation may represent a promising strategy to restore the anti-leukemia effect mediated by NK cells. Thus, a better knowledge of the cellular interactions occurring in the tumor microenvironment could promote the development of novel therapeutic strategies for the treatment of solid and hematological malignances.
Collapse
Affiliation(s)
- Nicola Tumino
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Anna Laura Di Pace
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Besi
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Linda Quatrini
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
46
|
Domagala J, Lachota M, Klopotowska M, Graczyk-Jarzynka A, Domagala A, Zhylko A, Soroczynska K, Winiarska M. The Tumor Microenvironment-A Metabolic Obstacle to NK Cells' Activity. Cancers (Basel) 2020; 12:cancers12123542. [PMID: 33260925 PMCID: PMC7761432 DOI: 10.3390/cancers12123542] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
NK cells have unique capabilities of recognition and destruction of tumor cells, without the requirement for prior immunization of the host. Maintaining tolerance to healthy cells makes them an attractive therapeutic tool for almost all types of cancer. Unfortunately, metabolic changes associated with malignant transformation and tumor progression lead to immunosuppression within the tumor microenvironment, which in turn limits the efficacy of various immunotherapies. In this review, we provide a brief description of the metabolic changes characteristic for the tumor microenvironment. Both tumor and tumor-associated cells produce and secrete factors that directly or indirectly prevent NK cell cytotoxicity. Here, we depict the molecular mechanisms responsible for the inhibition of immune effector cells by metabolic factors. Finally, we summarize the strategies to enhance NK cell function for the treatment of tumors.
Collapse
Affiliation(s)
- Joanna Domagala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Marta Klopotowska
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Antoni Domagala
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland;
- Department of Urology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Karolina Soroczynska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Correspondence: ; Tel.: +48-225-992-199
| |
Collapse
|
47
|
Pesce S, Trabanelli S, Di Vito C, Greppi M, Obino V, Guolo F, Minetto P, Bozzo M, Calvi M, Zaghi E, Candiani S, Lemoli RM, Jandus C, Mavilio D, Marcenaro E. Cancer Immunotherapy by Blocking Immune Checkpoints on Innate Lymphocytes. Cancers (Basel) 2020; 12:cancers12123504. [PMID: 33255582 PMCID: PMC7760325 DOI: 10.3390/cancers12123504] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoints refer to a plethora of inhibitory pathways of the immune system that play a crucial role in maintaining self-tolerance and in tuning the duration and amplitude of physiological immune responses to minimize collateral tissue damages. The breakdown of this delicate balance leads to pathological conditions, including cancer. Indeed, tumor cells can develop multiple mechanisms to escape from immune system defense, including the activation of immune checkpoint pathways. The development of monoclonal antibodies, targeting inhibitory immune checkpoints, has provided an immense breakthrough in cancer therapy. Immune checkpoint inhibitors (ICI), initially developed to reverse functional exhaustion in T cells, recently emerged as important actors in natural killer (NK)-cell-based immunotherapy. Moreover, the discovery that also helper innate lymphoid cells (ILCs) express inhibitory immune checkpoints, suggests that these molecules might be targeted on ILCs, to modulate their functions in the tumor microenvironment. Recently, other strategies to achieve immune checkpoint blockade have been developed, including miRNA exploiting systems. Herein, we provide an overview of the current knowledge on inhibitory immune checkpoints on NK cells and ILCs and we discuss how to target these innate lymphocytes by ICI in both solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Silvia Pesce
- Department of Experimental Medicine (DIMES) and Centre of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy; (S.P.); (M.G.); (V.O.)
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (S.T.); (C.J.)
- Ludwig Institute for Cancer Research, Lausanne Branch, CH-1066 Lausanne, Switzerland
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; (C.D.V.); (M.C.); (E.Z.); (D.M.)
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20122 Milan, Italy
| | - Marco Greppi
- Department of Experimental Medicine (DIMES) and Centre of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy; (S.P.); (M.G.); (V.O.)
| | - Valentina Obino
- Department of Experimental Medicine (DIMES) and Centre of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy; (S.P.); (M.G.); (V.O.)
| | - Fabio Guolo
- Clinic of Hematology, Department of Internal Medicine (DIMI), University of Genoa, 16132 Genova, Italy; (F.G.); (P.M.); (R.M.L.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Paola Minetto
- Clinic of Hematology, Department of Internal Medicine (DIMI), University of Genoa, 16132 Genova, Italy; (F.G.); (P.M.); (R.M.L.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Matteo Bozzo
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; (C.D.V.); (M.C.); (E.Z.); (D.M.)
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20122 Milan, Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; (C.D.V.); (M.C.); (E.Z.); (D.M.)
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, 16132 Genova, Italy; (M.B.); (S.C.)
| | - Roberto Massimo Lemoli
- Clinic of Hematology, Department of Internal Medicine (DIMI), University of Genoa, 16132 Genova, Italy; (F.G.); (P.M.); (R.M.L.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (S.T.); (C.J.)
- Ludwig Institute for Cancer Research, Lausanne Branch, CH-1066 Lausanne, Switzerland
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy; (C.D.V.); (M.C.); (E.Z.); (D.M.)
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20122 Milan, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES) and Centre of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy; (S.P.); (M.G.); (V.O.)
- Correspondence: ; Tel.: +39-0103357888
| |
Collapse
|
48
|
Quatrini L, Mariotti FR, Munari E, Tumino N, Vacca P, Moretta L. The Immune Checkpoint PD-1 in Natural Killer Cells: Expression, Function and Targeting in Tumour Immunotherapy. Cancers (Basel) 2020; 12:E3285. [PMID: 33172030 PMCID: PMC7694632 DOI: 10.3390/cancers12113285] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
In the last years, immunotherapy with antibodies against programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) has shown remarkable efficacy in the treatment of different types of tumours, representing a true revolution in oncology. While its efficacy has initially been attributed only to unleashing T cell responses, responsivity to PD-1/PD-L1 blockade was observed in some tumours with low Human Leukocyte Antigen (HLA) I expression and increasing evidence has revealed PD-1 surface expression and inhibitory function also in natural killer (NK) cells. Thus, the contribution of anti-PD-1/PD-L1 therapy to the recovery of NK cell anti-tumour response has recently been appreciated. Here, we summarize the studies investigating PD-1 expression and function in NK cells, together with the limitations and perspectives of immunotherapies. A better understanding of checkpoint biology is needed to design next-generation therapeutic strategies and to improve the clinical protocols of current therapies.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Francesca Romana Mariotti
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Enrico Munari
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Nicola Tumino
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; (F.R.M.); (N.T.); (P.V.); (L.M.)
| |
Collapse
|
49
|
Sivori S, Della Chiesa M, Carlomagno S, Quatrini L, Munari E, Vacca P, Tumino N, Mariotti FR, Mingari MC, Pende D, Moretta L. Inhibitory Receptors and Checkpoints in Human NK Cells, Implications for the Immunotherapy of Cancer. Front Immunol 2020; 11:2156. [PMID: 33013909 PMCID: PMC7494755 DOI: 10.3389/fimmu.2020.02156] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The highly destructive mechanisms by which the immune system faces microbial infections is under the control of a series of inhibitory receptors. While most of these receptors prevent unwanted/excessive responses of individual effector cells, others play a more general role in immunity, acting as true inhibitory checkpoints controlling both innate and adaptive immunity. Regarding human NK cells, their function is finely regulated by HLA-class I-specific inhibitory receptors which allow discrimination between HLA-I+, healthy cells and tumor or virus-infected cells displaying loss or substantial alterations of HLA-I molecules, including allelic losses that are sensed by KIRs. A number of non-HLA-specific receptors have been identified which recognize cell surface or extracellular matrix ligands and may contribute to the physiologic control of immune responses and tolerance. Among these receptors, Siglec 7 (p75/AIRM-1), LAIR-1 and IRp60, recognize ligands including sialic acids, extracellular matrix/collagen or aminophospholipids, respectively. These ligands may be expressed at the surface of tumor cells, thus inhibiting NK cell function. Expression of the PD-1 checkpoint by NK cells requires particular cytokines (IL-15, IL-12, IL-18) together with cortisol, a combination that may occur in the microenvironment of different tumors. Blocking of single or combinations of inhibitory receptors unleashes NK cells and restore their anti-tumor activity, with obvious implications for tumor immunotherapy.
Collapse
Affiliation(s)
- Simona Sivori
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Enrico Munari
- Department of Pathology, IRCCS Sacro Cuore Don Calabria, Negrar, Italy
| | - Paola Vacca
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES) and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,UOC Immunology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Pende
- UOC Immunology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| |
Collapse
|
50
|
Merino AM, Kim H, Miller JS, Cichocki F. Unraveling exhaustion in adaptive and conventional NK cells. J Leukoc Biol 2020; 108:1361-1368. [PMID: 32726880 DOI: 10.1002/jlb.4mr0620-091r] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Immune exhaustion in T cells significantly impacts their ability to control malignancies and infections, and its discovery has led to revolutionary therapies for cancer in the form of checkpoint blockade. NK cells, like T cells, are lymphocytes that recognize virally infected and malignantly transformed cells. However, it remains unclear if NK cells are similarly susceptible to exhaustion. In this review, the aims are to summarize what is currently known and to identify key areas of variability that skew the scientific literature on NK cell exhaustion. A lack of consensus on the defining features of NK cell dysfunctional states such as senescence, suppression, and exhaustion has made a comparison between studies difficult. There are also significant differences in the biology of NK cell subsets with long-lived, adaptive NK cells sharing an epigenetic signature closer to memory CD8+ T cells than to conventional NK cells. Very different checkpoint receptor expression and effector functions have been shown in adaptive versus conventional NK cells chronically exposed to activating signals. Adaptive NK cells develop in individuals with cytomegalovirus (CMV) infection and well over half of the human population worldwide is CMV seropositive by adulthood. Despite this high prevalence, most studies do not account or control for this population. This may contribute to some of the variability reported in the literature on checkpoint receptor expression on NK cells. In this review, the protective role that exhaustion plays in T cells will also be discussed and the evidence for a similar phenomenon in NK cells will be examined.
Collapse
Affiliation(s)
- Aimee M Merino
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hansol Kim
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|