1
|
Xu C, Aqib AI, Fatima M, Muneer S, Zaheer T, Peng S, Ibrahim EH, Li K. Deciphering the Potential of Probiotics in Vaccines. Vaccines (Basel) 2024; 12:711. [PMID: 39066349 PMCID: PMC11281421 DOI: 10.3390/vaccines12070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The demand for vaccines, particularly those prepared from non-conventional sources, is rising due to the emergence of drug resistance around the globe. Probiotic-based vaccines are a wise example of such vaccines which represent new horizons in the field of vaccinology in providing an enhanced and diversified immune response. The justification for incorporating probiotics into vaccines lies in the fact that that they hold the capacity to regulate immune function directly or indirectly by influencing the gastrointestinal microbiota and related pathways. Several animal-model-based studies have also highlighted the efficacy of these vaccines. The aim of this review is to collect and summarize the trends in the recent scientific literature regarding the role of probiotics in vaccines and vaccinology, along with their impact on target populations.
Collapse
Affiliation(s)
- Chang Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan;
| | - Sadia Muneer
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Essam H. Ibrahim
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
3
|
Pourkarim MR. Navigating Evolving Challenges in Blood Safety. Viruses 2024; 16:123. [PMID: 38257823 PMCID: PMC10821029 DOI: 10.3390/v16010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Blood safety remains a paramount public health concern, and health authorities maintain a high level of vigilance to prevent transfusion-transmitted infections (TTIs) [...].
Collapse
Affiliation(s)
- Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion, Tehran 14665-1157, Iran
| |
Collapse
|
4
|
McCuaig B, Goto Y. Immunostimulating Commensal Bacteria and Their Potential Use as Therapeutics. Int J Mol Sci 2023; 24:15644. [PMID: 37958628 PMCID: PMC10647581 DOI: 10.3390/ijms242115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The gut microbiome is intimately intertwined with the host immune system, having effects on the systemic immune system. Dysbiosis of the gut microbiome has been linked not only to gastrointestinal disorders but also conditions of the skin, lungs, and brain. Commensal bacteria can affect the immune status of the host through a stimulation of the innate immune system, training of the adaptive immune system, and competitive exclusion of pathogens. Commensal bacteria improve immune response through the production of immunomodulating compounds such as microbe-associated molecular patterns (MAMPs), short-chain fatty acids (SCFAs), and secondary bile acids. The microbiome, especially when in dysbiosis, is plastic and can be manipulated through the introduction of beneficial bacteria or the adjustment of nutrients to stimulate the expansion of beneficial taxa. The complex nature of the gastrointestinal tract (GIT) ecosystem complicates the use of these methods, as similar treatments have various results in individuals with different residential microbiomes and differential health statuses. A more complete understanding of the interaction between commensal species, host genetics, and the host immune system is needed for effective microbiome interventions to be developed and implemented in a clinical setting.
Collapse
Affiliation(s)
- Bonita McCuaig
- Project for Host-Microbial Interactions in Symbiosis and Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Yoshiyuki Goto
- Project for Host-Microbial Interactions in Symbiosis and Pathogenesis, Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
- Division of Pandemic and Post-Disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8673, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba 260-8673, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
5
|
Spacova I, Patusco R, Lebeer S, Jensen MG. Influence of biotic interventions on the immune response to vaccines in young and older adults. Clin Nutr 2023; 42:216-226. [PMID: 36657219 DOI: 10.1016/j.clnu.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Vaccination is the most effective way to confer potent and long-term protection from infectious diseases. However, poorer responses to immunization are common in young adults with sub-optimal immune health and the elderly because of immunosenescence and increased comorbidities. Recent mechanistic studies have highlighted that the microbiota and its compounds modulate many molecular pathways that can influence the host immune system. Consequently, altering the microbiota composition or activity with immunonutrition, specifically with biotic interventions (probiotics, prebiotics, synbiotics, or postbiotics), may enhance the immune response and vaccine efficacy. This review aims to examine the available data for these biotic strategies to provide clinicians, researchers, and vaccine developers with a mechanistically driven synthesis of how biotic interventions could modulate the immune responses to vaccination. The article describes some postulated mechanistic pathways involved in immunological responses to vaccines and immunomodulation with biotic interventions. Randomized clinical trials were also reviewed to evaluate the impact of specific biotic interventions on vaccination outcomes in different age groups. Few strains and formulations significantly increased antigen-specific antibody titers in individual of all ages. However, studies have also pointed to a substantial heterogeneity that can be attributed to the difference in biotic intervention, strain, dose, viability, type of vaccine antigen, study location, as well as duration, and timing of administration. Future investigations should focus on establishing optimal strains, doses, and timing of administration with respect to vaccination, especially in the elderly and children, where vaccine effectiveness and duration of immunization matter.
Collapse
Affiliation(s)
- Irina Spacova
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Belgium.
| | - Rachael Patusco
- Haleon (formerly GSK Consumer Healthcare Pvt Ltd), United States
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience Engineering, University of Antwerp, Belgium
| | | |
Collapse
|
6
|
Huynh M, Crane MJ, Jamieson AM. The lung, the niche, and the microbe: Exploring the lung microbiome in cancer and immunity. Front Immunol 2023; 13:1094110. [PMID: 36733391 PMCID: PMC9888758 DOI: 10.3389/fimmu.2022.1094110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The lung is a complex and unique organ system whose biology is strongly influenced by environmental exposure, oxygen abundance, connection to extrapulmonary systems via a dense capillary network, and an array of immune cells that reside in the tissue at steady state. The lung also harbors a low biomass community of commensal microorganisms that are dynamic during both health and disease with the capacity to modulate regulatory immune responses during diseases such as cancer. Lung cancer is the third most common cancer worldwide with the highest mortality rate amongst cancers due to the difficulty of an early diagnosis. This review discusses the current body of work addressing the interactions between the lung microbiota and the immune system, and how these two components of the pulmonary system are linked to lung cancer development and outcomes. Bringing in lessons from broader studies examining the effects of the gut microbiota on cancer outcomes, we highlight many challenges and gaps in this nascent field.
Collapse
Affiliation(s)
| | | | - Amanda M. Jamieson
- Department of Molecular Microbiology & Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
7
|
Lucassen A, Hankel J, Finkler-Schade C, Osbelt L, Strowig T, Visscher C, Schuberth HJ. Feeding a Saccharomyces cerevisiae Fermentation Product (Olimond BB) Does Not Alter the Fecal Microbiota of Thoroughbred Racehorses. Animals (Basel) 2022; 12:ani12121496. [PMID: 35739833 PMCID: PMC9219515 DOI: 10.3390/ani12121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Saccharomyces cerevisiae fermentation products (SCFP) are feed supplements and are widely used in animal nutrition to promote health. The biological effects of SCFP are based on prebiotic mechanisms that directly influence the microbial community of the gut microbiome or postbiotic factors that directly interact with host cells. To show whether the immunomodulatory effects of SCFP feeding are due to an altered composition of gut microbiota, we analyzed the fecal microbiota of racehorses. Horses were fed either the SCFP (Olimond BB) or a placebo product for six weeks, and fecal samples were collected for 16S rRNA gene sequencing. During this period, SCFP feeding only subtly affected the fecal microbiota in bacterial composition and diversity. SCFP and placebo horses differed significantly in the fecal bacterial diversity directly after intramuscular influenza vaccination. Altogether, the findings argue against a strong prebiotic effect of SCFP in racehorses. In contrast, the modulation of vaccine- and host-induced alterations of the microbiome suggests that the main effects of SCFP are due to contained or induced postbiotic components. Abstract Feed supplements such as Saccharomyces cerevisiae fermentation products (SCFP) alter immune responses in horses. The purpose of this study was to analyze whether a prebiotic activity of the SCFP alters the gut microbiome in horses. Racehorses were fed either SCFP (Olimond BB, OLI, n = 6) or placebo pellets (PLA, n = 5) for 43 days. Fecal microbiota analysis was performed using 16S rRNA gene sequencing. The numbers and function of circulating immune cell subpopulations were analyzed by flow cytometry. SCFP supplementation resulted in non-consistent differences in fecal microbiota between the PLA and OLI during the feeding period. Rather, the individual animal had the highest impact on fecal microbiota composition. OLI and PLA horses displayed the same changes in numbers of blood leukocyte subpopulations over time. One day after a booster vaccination against equine influenza during the feeding period, the alpha diversity of fecal microbiota of PLA horses was significantly higher compared to OLI horses. This suggests that SCFP feeding altered the vaccination-induced spectrum of released mediators, potentially affecting gut microbiota. The overall non-consistent findings argue against a strong prebiotic effect of Olimond BB on the microbiota in racehorses. Fecal microbiota differences between the groups were also noticed outside the feeding period and, hence, are most likely not caused by the SCFP additive.
Collapse
Affiliation(s)
- Alexandra Lucassen
- Institute of Immunology, University of Veterinary Medicine Foundation, 30559 Hannover, Germany;
| | - Julia Hankel
- Institute of Animal Nutrition, University of Veterinary Medicine Foundation, 30559 Hannover, Germany; (J.H.); (C.V.)
| | | | - Lisa Osbelt
- Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (L.O.); (T.S.)
- Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Till Strowig
- Helmholtz Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (L.O.); (T.S.)
- Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Christian Visscher
- Institute of Animal Nutrition, University of Veterinary Medicine Foundation, 30559 Hannover, Germany; (J.H.); (C.V.)
| | - Hans-Joachim Schuberth
- Institute of Immunology, University of Veterinary Medicine Foundation, 30559 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-953-7921
| |
Collapse
|
8
|
Abstract
The microorganisms associated with an organism, the microbiome, have a strong and wide impact in their host biology. In particular, the microbiome modulates both the host defense responses and immunity, thus influencing the fate of infections by pathogens. Indeed, this immune modulation and/or interaction with pathogenic viruses can be essential to define the outcome of viral infections. Understanding the interplay between the microbiome and pathogenic viruses opens future venues to fight viral infections and enhance the efficacy of antiviral therapies. An increasing number of researchers are focusing on microbiome-virus interactions, studying diverse combinations of microbial communities, hosts, and pathogenic viruses. Here, we aim to review these studies, providing an integrative overview of the microbiome impact on viral infection across different pathosystems.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Valencia, Spain
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Valencia, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
9
|
Nothaft H, Perez-Muñoz ME, Yang T, Murugan AVM, Miller M, Kolarich D, Plastow GS, Walter J, Szymanski CM. Improving Chicken Responses to Glycoconjugate Vaccination Against Campylobacter jejuni. Front Microbiol 2021; 12:734526. [PMID: 34867850 PMCID: PMC8637857 DOI: 10.3389/fmicb.2021.734526] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni is a common cause of diarrheal disease worldwide. Human infection typically occurs through the ingestion of contaminated poultry products. We previously demonstrated that an attenuated Escherichia coli live vaccine strain expressing the C. jejuni N-glycan on its surface reduced the Campylobacter load in more than 50% of vaccinated leghorn and broiler birds to undetectable levels (responder birds), whereas the remainder of the animals was still colonized (non-responders). To understand the underlying mechanism, we conducted three vaccination and challenge studies using 135 broiler birds and found a similar responder/non-responder effect. Subsequent genome-wide association studies (GWAS), analyses of bird sex and levels of vaccine-induced IgY responses did not correlate with the responder versus non-responder phenotype. In contrast, antibodies isolated from responder birds displayed a higher Campylobacter-opsonophagocytic activity when compared to antisera from non-responder birds. No differences in the N-glycome of the sera could be detected, although minor changes in IgY glycosylation warrant further investigation. As reported before, the composition of the microbiota, particularly levels of OTU classified as Clostridium spp., Ruminococcaceae and Lachnospiraceae are associated with the response. Transplantation of the cecal microbiota of responder birds into new birds in combination with vaccination resulted in further increases in vaccine-induced antigen-specific IgY responses when compared to birds that did not receive microbiota transplants. Our work suggests that the IgY effector function and microbiota contribute to the efficacy of the E. coli live vaccine, information that could form the basis for the development of improved vaccines targeted at the elimination of C. jejuni from poultry.
Collapse
Affiliation(s)
- Harald Nothaft
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tianfu Yang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Abarna V M Murugan
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, Southport, QLD, Australia
| | - Graham S Plastow
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Livestock Gentec, Edmonton, AB, Canada
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Christine M Szymanski
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Kunda-Ng'andu EM, Simuyandi M, Kapulu M, Chirwa-Chobe M, Mwanyungwi-Chinganya H, Mwale S, Chilengi R, Sharma A. Engagement of ethics and regulatory authorities on human infection studies: Proceedings of an engagement workshop in Zambia. Wellcome Open Res 2021; 6:31. [PMID: 33824912 PMCID: PMC7993625 DOI: 10.12688/wellcomeopenres.16432.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Human infection studies (HIS) have generally been used as a tool in the pathway for vaccine development in high income settings. Over the last decade, this model has been implemented in LMICs with the aim of accelerating development of next generation vaccines that would perform better in these settings. However, in most LMICs, the ethics and regulatory framework for the conduct of these studies are not in place. In Zambia, these studies are yet to be conducted and thus we conducted a stakeholder engagement workshop in October 2019. We engaged with bioethicists, regulatory authority officials, and scientists from within Zambia and other African countries to anticipate and address foreseeable ethical and regulatory issues when conducting HIS in Zambia for the first time. The workshop largely focused on sensitizing the stakeholders on the benefits of these studies with the following main points for consideration on the implementation of these studies in Zambia: need for in-country legal framework and guidelines; need for adequate informed consent based on comprehensive understanding of the concept of HIS and study requirements; and requirements for heightened vigilance to assure participant safety including good ethical and clinical practice with regulatory, ethical, data safety, and community oversight. Additionally, the workshop emphasized the need for rigorous health screening prior to enrolment; suitable infrastructure for containment; and personnel to provide appropriate treatment including emergency resuscitation and evacuation if indicated. Specific recommendations included compensation for burden of participation; access to care and provision for study related injury (e.g. no-fault insurance); and withdrawal and exit procedures to preserve individual and community safety. Finally, the meeting concluded that researchers should actively engage key gate keepers including civic leaders such as parliamentarians, universities, researchers, potential participants and laypersons to avoid circulation of misinformation.
Collapse
Affiliation(s)
| | - Michelo Simuyandi
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| | - Melissa Kapulu
- Biosciences, KEMRI-Wellcome trust research Programme, Kilifi, Kenya.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Masuzyo Chirwa-Chobe
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| | - Hope Mwanyungwi-Chinganya
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| | - Stanley Mwale
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| | - Roma Chilengi
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| | - Anjali Sharma
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| |
Collapse
|
11
|
Wen S, Wu Z, Zhong S, Li M, Shu Y. Factors influencing the immunogenicity of influenza vaccines. Hum Vaccin Immunother 2021; 17:2706-2718. [PMID: 33705263 DOI: 10.1080/21645515.2021.1875761] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Annual vaccination is the best prevention of influenza. However, the immunogenicity of influenza vaccines varies among different populations. It is important to fully identify the factors that may affect the immunogenicity of the vaccines to provide best protection for vaccine recipients. This paper reviews the factors that may influence the immunogenicity of influenza vaccines from the aspects of vaccine factors, adjuvants, individual factors, repeated vaccination, and genetic factors. The confirmed or hypothesized molecular mechanisms of these factors have also been briefly summarized.
Collapse
Affiliation(s)
- Simin Wen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Zhengyu Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Shuyi Zhong
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Mao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
12
|
Saha D, Ota MOC, Pereira P, Buchy P, Badur S. Rotavirus vaccines performance: dynamic interdependence of host, pathogen and environment. Expert Rev Vaccines 2021; 20:945-957. [PMID: 34224290 DOI: 10.1080/14760584.2021.1951247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION As of January 2021, rotavirus vaccination programs have been implemented in 109 countries and their use has resulted in a positive impact on rotavirus-related diarrheal hospitalizations and mortality in children below 5 years of age. Despite these successes, several countries in Africa and Asia where disease burden is high have not yet implemented rotavirus vaccination at all or at a scale sufficient enough to demonstrate impact. This could be, among other reasons, due to poor vaccine coverage and the modest levels of efficacy and effectiveness of the vaccines in these resource-limited settings. AREAS COVERED We review various factors related to the human host (malnutrition, maternally derived antibodies and breastfeeding, genetic factors, blood group, and co-administration with oral polio vaccine), rotavirus pathogen (force of infection, strain diversity and coinfections), and the environment (related to the human microbiome) which reflect complex and interconnected processes leading to diminished vaccine performance in resource-limited settings. EXPERT OPINION Addressing the limiting factors for vaccine efficacy is needed but likely to take a long time to be resolved. An immediate solution is to increase the immunization coverage to higher values generating an overall effect of adequate proportion of protected population to reduce the prevalence of rotavirus disease.
Collapse
|
13
|
Borey M, Blanc F, Lemonnier G, Leplat JJ, Jardet D, Rossignol MN, Ravon L, Billon Y, Bernard M, Estellé J, Rogel-Gaillard C. Links between fecal microbiota and the response to vaccination against influenza A virus in pigs. NPJ Vaccines 2021; 6:92. [PMID: 34294732 PMCID: PMC8298503 DOI: 10.1038/s41541-021-00351-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
This study describes the associations between fecal microbiota and vaccine response variability in pigs, using 98 piglets vaccinated against the influenza A virus at 28 days of age (D28) with a booster at D49. Immune response to the vaccine is measured at D49, D56, D63, and D146 by serum levels of IAV-specific IgG and assays of hemagglutination inhibition (HAI). Analysis of the pre-vaccination microbiota characterized by 16S rRNA gene sequencing of fecal DNA reveals a higher vaccine response in piglets with a richer microbiota, and shows that 23 operational taxonomic units (OTUs) are differentially abundant between high and low IAV-specific IgG producers at D63. A stronger immune response is linked with OTUs assigned to the genus Prevotella and family Muribaculaceae, and a weaker response is linked with OTUs assigned to the genera Helicobacter and Escherichia-Shigella. A set of 81 OTUs accurately predicts IAV-specific IgG and HAI titer levels at all time points, highlighting early and late associations between pre-vaccination fecal microbiota composition and immune response to the vaccine.
Collapse
Affiliation(s)
- Marion Borey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Gaëtan Lemonnier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Deborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | | | - Maria Bernard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | |
Collapse
|
14
|
Reens AL, Cabral DJ, Liang X, Norton JE, Therien AG, Hazuda DJ, Swaminathan G. Immunomodulation by the Commensal Microbiome During Immune-Targeted Interventions: Focus on Cancer Immune Checkpoint Inhibitor Therapy and Vaccination. Front Immunol 2021; 12:643255. [PMID: 34054810 PMCID: PMC8155485 DOI: 10.3389/fimmu.2021.643255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence in clinical and preclinical studies indicates that success of immunotherapies can be impacted by the state of the microbiome. Understanding the role of the microbiome during immune-targeted interventions could help us understand heterogeneity of treatment success, predict outcomes, and develop additional strategies to improve efficacy. In this review, we discuss key studies that reveal reciprocal interactions between the microbiome, the immune system, and the outcome of immune interventions. We focus on cancer immune checkpoint inhibitor treatment and vaccination as two crucial therapeutic areas with strong potential for immunomodulation by the microbiota. By juxtaposing studies across both therapeutic areas, we highlight three factors prominently involved in microbial immunomodulation: short-chain fatty acids, microbe-associate molecular patterns (MAMPs), and inflammatory cytokines. Continued interrogation of these models and pathways may reveal critical mechanistic synergies between the microbiome and the immune system, resulting in novel approaches designed to influence the efficacy of immune-targeted interventions.
Collapse
Affiliation(s)
- Abigail L. Reens
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Damien J. Cabral
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Xue Liang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - James E. Norton
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Alex G. Therien
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| | - Daria J. Hazuda
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
- Infectious Disease and Vaccine Research, Merck & Co., Inc., West Point, PA, United States
| | - Gokul Swaminathan
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, United States
| |
Collapse
|
15
|
Novak S, Yakobson B, Sorek S, Morgan L, Tal S, Nivy R, King R, Jaebker L, Eckery DC, Raz T. Short Term Safety, Immunogenicity, and Reproductive Effects of Combined Vaccination With Anti-GnRH (Gonacon) and Rabies Vaccines in Female Feral Cats. Front Vet Sci 2021; 8:650291. [PMID: 34041290 PMCID: PMC8141635 DOI: 10.3389/fvets.2021.650291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022] Open
Abstract
Overpopulation of free-roaming cats is a major problem leading to negative impacts on animal health and welfare, public nuisance, transmission of zoonotic diseases, and well-documented harm to wildlife. Surgical sterilization had failed to provide a practical solution to free-roaming cats' overpopulation under field conditions; therefore, efficient and safe non-surgical immunocontraception methods are aspired. Rabies is a deadly virus that may infect people and animals. However, the safety and efficacy of combined vaccination with anti-GnRH and rabies vaccines in feral cats, which often suffer from disrupted health conditions and experienced high stress level, has never been studied. Therefore, our objective was to examine the short-term safety and efficacy of anti-GnRH vaccine (Gonacon), in combination with rabies vaccine in female feral cats. Mature feral female cats were captured and divided into the following groups: (I) GonaconX1-Rabies: queens vaccinated with both Gonacon and rabies (n = 5); (II) GonaconX2-Rabies: queens vaccinated twice with Gonacon (3 weeks apart) and with Rabies (n = 4); (III) OVx-Rabies: queens ovariohysterectomized and vaccinated with rabies (n = 4); (IV) Intact-Rabies: queens vaccinated against rabies and remained intact (n = 3). Comprehensive veterinary examinations and blood tests were performed every 2 weeks for 14 weeks. Data were analyzed by Repeated-Measures-ANOVA or Fisher-Exact-Test. There were neither systemic nor local adverse reactions at the vaccination sites. Blood count (PCV, TS, RBC, HGB, HCT, WBC) and chemistry (Total protein, Total globulin, Albumin, Urea, Creatinine, Creatine kinase, Bilirubin, GGT, ALT, AST) analyses revealed no differences among groups. There were no differences in serum rabies antibodies titers among groups, and queens kept a protective titer (>0.5 IU/mL) starting at 2–4 weeks after vaccination. Anti-GnRH antibodies were detected in all Gonacon-vaccinated queens, excluding one queen (GonaconX2-Rabies group). Anti-müllerian hormone serum concentrations reduced significantly after ovariohysterectomy, as well as gradually following vaccination with Gonacon, but it remained high in intact queens. Evaluation of vaginal cytology and ovarian histology suggested that reproductive cyclicity was suppressed in Gonacon-vaccinated queens. Our results support the conclusion that in the short term, the combined vaccination with Gonacon and rabies is safe and effective in female feral cats. However, further long-term studies are warranted to test this immunologic regimen in feral cats.
Collapse
Affiliation(s)
- Shiri Novak
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Boris Yakobson
- Kimron Veterinary Institute, Ministry of Agriculture, Rishon Lezion, Israel
| | - Shir Sorek
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Liat Morgan
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Smadar Tal
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ran Nivy
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roni King
- Israel Nature and Parks Authority, Jerusalem, Israel
| | - Lauren Jaebker
- National Wildlife Research Center, United States Department of Agriculture Animal and Plant Health Inspection Service Wildlife Services, Fort Collins, CO, United States
| | - Douglas C Eckery
- National Wildlife Research Center, United States Department of Agriculture Animal and Plant Health Inspection Service Wildlife Services, Fort Collins, CO, United States
| | - Tal Raz
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
16
|
Kunda-Ng'andu EM, Simuyandi M, Kapulu M, Chirwa-Chobe M, Mwanyungwi-Chinganya H, Mwale S, Chilengi R, Sharma A. Engagement of ethics and regulatory authorities on human infection studies: Proceedings of an engagement workshop in Zambia. Wellcome Open Res 2021; 6:31. [PMID: 33824912 DOI: 10.12688/wellcomeopenres.16432.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 11/20/2022] Open
Abstract
Human infection studies (HIS) have generally been used as a tool in the pathway for vaccine development in high income settings. Over the last decade, this model has been implemented in LMICs with the aim of accelerating development of next generation vaccines that would perform better in these settings. However, in most LMICs, the ethics and regulatory framework for the conduct of these studies are not in place. In Zambia, these studies are yet to be conducted and thus we conducted a stakeholder engagement workshop in October 2019. We engaged with bioethicists, regulatory authority, and scientists from within Zambia and other African countries to anticipate and address foreseeable ethical and regulatory issues when conducting HIS in Zambia for the first time. The workshop largely focused on sensitizing the stakeholders on the benefits of these studies with the following main points for consideration on the implementation of these studies in Zambia: need for in-country legal framework and guidelines; need for adequate informed consent based on comprehensive understanding of the concept of HIS and study requirements; and requirements for heightened vigilance to assure participant safety including good ethical and clinical practice with regulatory, ethical, data safety, and community oversight. Additionally, the workshop emphasized the need for rigorous health screening prior to enrolment; suitable infrastructure for containment; and personnel to provide appropriate treatment including emergency resuscitation and evacuation if indicated. Specific recommendations included compensation for burden of participation; access to care and provision for study related injury (e.g. no-fault insurance); and withdrawal and exit procedures to preserve individual and community safety. Finally, the meeting concluded that researchers should actively engage key gate keepers including civic leaders such as parliamentarians, universities, researchers, potential participants and laypersons to avoid circulation of misinformation.
Collapse
Affiliation(s)
| | - Michelo Simuyandi
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| | - Melissa Kapulu
- Biosciences, KEMRI-Wellcome trust research Programme, Kilifi, Kenya.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Masuzyo Chirwa-Chobe
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| | - Hope Mwanyungwi-Chinganya
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| | - Stanley Mwale
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| | - Roma Chilengi
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| | - Anjali Sharma
- Research Department, The centre for Infectious Disease Research in Zambia, Lusaka, Zambia, 10101, Zambia
| |
Collapse
|
17
|
Challenges for the Newborn Immune Response to Respiratory Virus Infection and Vaccination. Vaccines (Basel) 2020; 8:vaccines8040558. [PMID: 32987691 PMCID: PMC7712002 DOI: 10.3390/vaccines8040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The initial months of life reflect an extremely challenging time for newborns as a naïve immune system is bombarded with a large array of pathogens, commensals, and other foreign entities. In many instances, the immune response of young infants is dampened or altered, resulting in increased susceptibility and disease following infection. This is the result of both qualitative and quantitative changes in the response of multiple cell types across the immune system. Here we provide a review of the challenges associated with the newborn response to respiratory viral pathogens as well as the hurdles and advances for vaccine-mediated protection.
Collapse
|
18
|
Gupta P, Singh MP, Goyal K. Diversity of Vaginal Microbiome in Pregnancy: Deciphering the Obscurity. Front Public Health 2020; 8:326. [PMID: 32793540 PMCID: PMC7393601 DOI: 10.3389/fpubh.2020.00326] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human microbiota plays an indispensable role in physiology, nutrition and most significantly, in imparting immunity. The role of microbiota has remained cryptic for years, until recently meticulous studies revealed the interaction and dynamics of these microbial communities. This diversified state is governed by hormonal, behavioral and physio-chemical changes in the genital tract. Many inclusive studies have revealed "Lactobacillus" to be the most dominant member of vaginal flora in most of the healthy, reproductive age group and pregnant females. A total of five community state types have been described, out of which four are dominated by Lactobacillus while the fifth one by facultative or strict anaerobic species. A variation between species stability and gestational age has also been revealed. Studies have divulged a significant higher stability of vaginal microbiota in early stages of pregnancy and the same increased subsequently. Inter-species and racial variation has shown women belonging to White, Asian, and Caucasian race to harbor more of the anaerobic flora. The vaginal microbiome in pregnancy play a significant role in preterm and spontaneous labor. This Lactobacillus-rich microbiome falls tremendously, becoming more diverse in post-partum period. Apart from these known bacterial communities in human vagina, other microbial communities have also been traced. The major fragment is constituted by vaginal viral virome and very little information exists in relation to vaginal mycobiome. Studies have revealed the abundance of ds DNA viruses in vaginal microbiome, followed by ssDNA, and few unidentified viruses. The eukaryotic viruses detected were very few, with Herpesvirales, and Papillomaviridae being the only pathogenic ones. This flora is transmitted to infants either via maternal gut, vagina or breast milk. Recent studies have given an insight for vaginal microbiome, dissociating the old concept of "healthy" and "diseased." However, more extensive studies are required to study evolution of virome and mycobiome in relation to their association with bacterial communities; to establish and decode full array of vaginal virome under the influence of genotypic and environmental factors, using novel bioinformatic, multi-omic, statistical model, and CRISPR/Cas approaches.
Collapse
|
19
|
Gray GE, Huang Y, Grunenberg N, Laher F, Roux S, Andersen-Nissen E, De Rosa SC, Flach B, Randhawa AK, Jensen R, Swann EM, Bekker LG, Innes C, Lazarus E, Morris L, Mkhize NN, Ferrari G, Montefiori DC, Shen X, Sawant S, Yates N, Hural J, Isaacs A, Phogat S, DiazGranados CA, Lee C, Sinangil F, Michael NL, Robb ML, Kublin JG, Gilbert PB, McElrath MJ, Tomaras GD, Corey L. Immune correlates of the Thai RV144 HIV vaccine regimen in South Africa. Sci Transl Med 2019; 11:eaax1880. [PMID: 31534016 PMCID: PMC7199879 DOI: 10.1126/scitranslmed.aax1880] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
One of the most successful HIV vaccines to date, the RV144 vaccine tested in Thailand, demonstrated correlates of protection including cross-clade V1V2 immunoglobulin G (IgG) breadth, Env-specific CD4+ T cell polyfunctionality, and antibody-dependent cellular cytotoxicity (ADCC) in vaccinees with low IgA binding. The HIV Vaccine Trials Network (HVTN) 097 trial evaluated this vaccine regimen in South Africa, where clade C HIV-1 predominates. We compared cellular and humoral responses at peak and durability immunogenicity time points in HVTN 097 and RV144 vaccinee samples, and evaluated vaccine-matched and cross-clade immune responses. At peak immunogenicity, HVTN 097 vaccinees exhibited significantly higher cellular and humoral immune responses than RV144 vaccinees. CD4+ T cell responses were more frequent in HVTN 097 irrespective of age and sex, and CD4+ T cell Env-specific functionality scores were higher in HVTN 097. Env-specific CD40L+ CD4+ T cells were more common in HVTN 097, with individuals having this pattern of expression demonstrating higher median antibody responses to HIV-1 Env. IgG and IgG3 binding antibody rates and response magnitude to gp120 vaccine- and V1V2 vaccine-matched antigens were higher or comparable in HVTN 097 than in RV144 ADCC, and ADCP functional antibody responses were elicited in HVTN 097. Env-specific IgG and CD4+ Env responses declined significantly over time in both trials. Overall, cross-clade immune responses associated with protection were better than expected in South Africa, suggesting wider applicability of this regimen.
Collapse
Affiliation(s)
- Glenda E Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 1864, South Africa.
- South African Medical Research Council, Cape Town 7505, South Africa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Fatima Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 1864, South Africa
| | - Surita Roux
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town 8001, South Africa
| | - Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town 8001, South Africa
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Britta Flach
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town 8001, South Africa
| | - April K Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ryan Jensen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Edith M Swann
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town 8001, South Africa
| | - Craig Innes
- The Aurum Institute, Klerksdorp 2570, South Africa
| | - Erica Lazarus
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 1864, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, Johannesburg 2192, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham, Johannesburg 2192, South Africa
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheetal Sawant
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicole Yates
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - John Hural
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Abby Isaacs
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Carter Lee
- Global Solutions for Infectious Diseases, South San Francisco, CA 94080, USA
| | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, CA 94080, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
20
|
Vlasova AN, Takanashi S, Miyazaki A, Rajashekara G, Saif LJ. How the gut microbiome regulates host immune responses to viral vaccines. Curr Opin Virol 2019; 37:16-25. [PMID: 31163292 PMCID: PMC6863389 DOI: 10.1016/j.coviro.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
The co-evolution of the microbiota and immune system has forged a mutually beneficial relationship. This relationship allows the host to maintain the balance between active immunity to pathogens and vaccines and tolerance to self-antigens and food antigens. In children living in low-income and middle-income countries, undernourishment and repetitive gastrointestinal infections are associated with the failure of oral vaccines. Intestinal dysbiosis associated with these environmental influences, as well as some host-related factors, compromises immune responses and negatively impacts vaccine efficacy. To understand how immune responses to viral vaccines can be optimally modulated, mechanistic studies of the relationship between the microbiome, host genetics, viral infections and the development and function of the immune system are needed. We discuss the potential role of the microbiome in modulating vaccine responses in the context of a growing understanding of the relationship between the gastrointestinal microbiota, host related factors (including histo-blood group antigens) and resident immune cell populations.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Sayaka Takanashi
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA; Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayako Miyazaki
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Gireesh Rajashekara
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
21
|
Ciabattini A, Olivieri R, Lazzeri E, Medaglini D. Role of the Microbiota in the Modulation of Vaccine Immune Responses. Front Microbiol 2019; 10:1305. [PMID: 31333592 PMCID: PMC6616116 DOI: 10.3389/fmicb.2019.01305] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
The human immune system and the microbiota co-evolve, and their balanced relationship is based on crosstalk between the two systems through the course of life. This tight association and the overall composition and richness of the microbiota play an important role in the modulation of host immunity and may impact the immune response to vaccination. The availability of innovative technologies, such as next-generation sequencing (NGS) and correlated bioinformatics tools, allows a deeper investigation of the crosstalk between the microbiota and human immune responses. This review discusses the current knowledge on the influence of the microbiota on the immune response to vaccination and novel tools to deeply analyze the impact of the microbiome on vaccine responses.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Raffaela Olivieri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
22
|
Raqib R, Sarker P, Zaman K, Alam NH, Wierzba TF, Maier N, Talukder K, Baqui AH, Suvarnapunya AE, Qadri F, Walker RI, Fix A, Venkatesan MM. A phase I trial of WRSS1, a Shigella sonnei live oral vaccine in Bangladeshi adults and children. Hum Vaccin Immunother 2019; 15:1326-1337. [PMID: 30794051 DOI: 10.1080/21645515.2019.1575165] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Shigella sonnei live vaccine candidate, WRSS1, which was previously evaluated in US, Israeli and Thai volunteers, was administered orally to Bangladeshi adults and children to assess its safety, clinical tolerability and immunogenicity. In a randomized, placebo-controlled, dose-escalation, age-descending study, 39 adults (18-39 years) and 64 children (5-9 years) were enrolled. Each adult cohort (n = 13) received one dose of 3x104, or three doses of 3 × 105 or 3 × 106 colony forming unit (CFU) of WRSS1 (n = 10) or placebo (n = 3). Each child cohort (n = 16) received one dose of 3x103, or three doses of 3x104, 3x105, or 3 × 106 CFU WRSS1 (n = 12) or placebo (n = 4). WRSS1 elicited mostly mild and transient reactogenicity events in adults and children. In the 3 × 106 dose group, 50% of the adults shed the vaccine; no shedding was seen in children. At the highest dose, 100% of adults and 40% of children responded with a ≥ 4-fold increase of S. sonnei LPS-specific IgA antibody in lymphocyte supernatant (ALS). At the same dose, 63% of adults and 70% of children seroconverted with IgA to LPS, while in placebo, 33% of adults and 18% of children seroconverted. Both the vaccinees and placebos responded with fecal IgA to LPS, indicating persistent exposure to Shigella infections. In conclusion, WRSS1 was found safe up to 106 CFU dose and immunogenic in adults and children in Bangladesh. These data indicate that live, oral Shigella vaccine candidates, including WRSS1 can potentially be evaluated in toddlers and infants (<2 years of age), who comprise the target population in an endemic environment.
Collapse
Affiliation(s)
- Rubhana Raqib
- a Infectious Diseases Division , icddr,b , Dhaka , Bangladesh
| | - Protim Sarker
- a Infectious Diseases Division , icddr,b , Dhaka , Bangladesh
| | - K Zaman
- a Infectious Diseases Division , icddr,b , Dhaka , Bangladesh
| | - Nur Haque Alam
- b Nutrition and Clinical Services Division , icddr,b , Dhaka , Bangladesh
| | - Thomas F Wierzba
- c Center for Vaccine Innovation and Access , PATH , Washington , DC , USA
| | - Nicole Maier
- c Center for Vaccine Innovation and Access , PATH , Washington , DC , USA
| | - Kaisar Talukder
- d Laboratory Sciences and Services Division , icddr,b , Dhaka , Bangladesh
| | - Abdullah Hel Baqui
- e Johns Hopkins Bloomberg School of Public Health , Johns Hopkins University , Baltimore , MD , USA
| | - Akamol E Suvarnapunya
- f Bacterial Diseases Branch , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Firdausi Qadri
- a Infectious Diseases Division , icddr,b , Dhaka , Bangladesh
| | - Richard I Walker
- c Center for Vaccine Innovation and Access , PATH , Washington , DC , USA
| | - Alan Fix
- c Center for Vaccine Innovation and Access , PATH , Washington , DC , USA
| | - Malabi M Venkatesan
- f Bacterial Diseases Branch , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| |
Collapse
|
23
|
Hill AB, Beitelshees M, Nayerhoda R, Pfeifer BA, Jones CH. Engineering a Next-Generation Glycoconjugate-Like Streptococcus pneumoniae Vaccine. ACS Infect Dis 2018; 4:1553-1563. [PMID: 30180541 PMCID: PMC9930592 DOI: 10.1021/acsinfecdis.8b00100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We detail the development of a next-generation Streptococcus pneumoniae liposomal encapsulation of polysaccharides (LEPS) vaccine, with design characteristics geared toward best-in-class efficacy. The first generation LEPS vaccine, which contained 20 encapsulated pneumococcal capsular polysaccharides (CPSs) and two surface-displayed virulence-associated proteins (GlpO and PncO), enabling prophylactic potency against 70+ serotypes of Streptococcus pneumoniae (the causative agent of pneumococcal disease), was rationally redesigned for advanced clinical readiness and best-in-class coverage. In doing so, the virulent-specific GlpO protein antigen was removed from the final formulation due to off-target immunogenicity toward bacterial species within the human microbiome, while directed protection was maintained by increasing the dose of PncO from 17 to 68 μg. LEPS formulation parameters also readily facilitated an increase in CPS valency (to a total of 24) and systematic variation in protein-liposome attachment mechanisms in anticipation of clinical translation. An additional safety assessment study demonstrated that LEPS does not exhibit appreciable toxicological effects even when administered at ten times the effective dose. In summary, this new design offers the broadest, safest, and most-complete protection while maintaining desirable glycoconjugate-like features, positioning the LEPS vaccine platform for clinical success and a global health impact.
Collapse
Affiliation(s)
- Andrew B. Hill
- Abcombi Biosciences Inc., 1576 Sweet Home Road, Amherst, New York 14228, United States,Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Marie Beitelshees
- Abcombi Biosciences Inc., 1576 Sweet Home Road, Amherst, New York 14228, United States,Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Roozbeh Nayerhoda
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States,Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States,Corresponding Authors: .,
| | - Charles H. Jones
- Abcombi Biosciences Inc., 1576 Sweet Home Road, Amherst, New York 14228, United States,Corresponding Authors: .,
| |
Collapse
|
24
|
Role of nutrition, infection, and the microbiota in the efficacy of oral vaccines. Clin Sci (Lond) 2018; 132:1169-1177. [PMID: 29925624 DOI: 10.1042/cs20171106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022]
Abstract
Oral vaccines (OVs), provide protection against pathogens that infect mucosal surfaces and their potency relies on their capacity to elicit T- and B-cell responses directed to these surfaces. Oral vaccination efficacy has been found to vary considerably with differences in geographical locations and socioeconomic status. Specifically, in children living in resource-poor countries, undernourishment and chronic gastrointestinal (GI) infection are associated with the failure of OVs, which is a tragic outcome for the children who would benefit most from mucosal-based protection from infection. Both undernutrition and GI infection have been shown to profoundly affect the microbiota, inducing 'dysbiosis' characterized by narrowed bacterial diversity and increased frequency of bacterial clades associated with the induction of inflammation. Recent studies have demonstrated that the microbiota exerts a profound effect on the development of mucosal immune responses. Therefore, it seems likely that OV failure in resource-poor regions is affected by alterations to the immune response driven by dysbiotic changes to the microbiota. Here, we review the contribution of the microbiota to OV efficacy in the context of diet and GI infection.
Collapse
|
25
|
Lynn DJ, Pulendran B. The potential of the microbiota to influence vaccine responses. J Leukoc Biol 2017; 103:225-231. [PMID: 28864446 DOI: 10.1189/jlb.5mr0617-216r] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 12/25/2022] Open
Abstract
After clean water, vaccines are the primary public health intervention providing protection against serious infectious diseases. Antigen-specific antibody-mediated responses play a critical role in the protection conferred by vaccination; however these responses are highly variable among individuals. In addition, vaccine immunogenicity is frequently impaired in developing world populations, for reasons that are poorly understood. Although the factors that are associated with interindividual variation in vaccine responses are likely manifold, emerging evidence from mouse models and studies in human populations now suggests that the gut microbiome plays a key role in shaping systemic immune responses to both orally and parenterally administered vaccines. Herein, we review the evidence to date that the microbiota can influence vaccine responses and discuss the potential mechanisms through which these effects may be mediated. In addition, we highlight the gaps in this evidence and suggest future directions for research.
Collapse
Affiliation(s)
- David J Lynn
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia.,School of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|