1
|
Rakib MRJ, Sarker A, Nahida ZT, Islam ARMT, Mia MY, Rahman MN, Ahsan SM, Idris AM, Nguyen MK, Kumar R, Malafaia G. A critical review on heavy metal contamination in aquatic food webs by edible fish species: a special case concerning Bangladesh. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1175. [PMID: 39505790 DOI: 10.1007/s10661-024-13347-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Heavy metals (HMs) are ubiquitous in terrestrial and aquatic environments due to unplanned industrial waste discharge, the release of untreated wastewater, and improper mining activities. In particular, the concentrations of HMs are found to be higher in aquatic environments. As a result, the aquatic biota was heavily affected by HM contamination. This critical review aims to understand the sources and toxicity of HMs in commercial fish species, explore their ecological exchange, and examine the related human health challenges in Bangladesh. A modified PRISMA review technique is used in this paper to analyze the current status and research limitations of HM studies in Bangladesh fish species and their toxicity within aquatic food webs. Briefly, we searched several keywords to explore the research trend of HM concentrations and toxicity in fish species. Furthermore, potential toxicity and risk assessment of HMs through the aquatic food chain in Bangladesh were explored. On the other hand, a cross-tabulation approach was used to process the toxicity findings of HMs. Previous studies indicate that fish species can possess comparatively higher HMs than river water due to ecological exchange factors, including bioaccumulation and biotransformation. This review focuses on Bangladesh, highlighting areas for improvements and the need for further study to achieve a transparent understanding of HM deposition in fish species and the sustainable management of aquatic food chain toxicity.
Collapse
Affiliation(s)
- Md Refat Jahan Rakib
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229, Bangladesh.
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeollabuk-Do, Republic of Korea
| | - Zinat Tahira Nahida
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Md Yousuf Mia
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Naimur Rahman
- Department of Geography, Hong Kong Baptist University, Kowloon, Hong Kong, China
- Lam Institute for East-West Studies, Hong Kong Baptist University, DavidCKowloon, Hong Kong , China
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh
| | - S M Ahsan
- Department of Agriculture, Bangabandhu Sheikh Muibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Linh Trung Ward, Hamlet 6Thu Duc City, Ho Chi Minh City, Vietnam
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, USA
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, Brazil.
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, Brazil.
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, Brazil.
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - , Rodovia Geraldo Silva Nascimento, Zona Rural, 2.5 Km, Urutaí, Brazil.
| |
Collapse
|
2
|
Kumar A, Bhattacharya T, Shaikh WA, Roy A. Sustainable soil management under drought stress through biochar application: Immobilizing arsenic, ameliorating soil quality, and augmenting plant growth. ENVIRONMENTAL RESEARCH 2024; 259:119531. [PMID: 38960358 DOI: 10.1016/j.envres.2024.119531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/30/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Rise in climate change-induced drought occurrences have amplified pollution of metal(loid)s, deteriorated soil quality, and deterred growth of crops. Rice straw-derived biochars (RSB) and cow manure-enriched biochars (CEB) were used in the investigation (at doses of 0%, 2.5%, 5%, and 7.5%) to ameliorate the negative impacts of drought, improve soil fertility, minimize arsenic pollution, replace agro-chemical application, and maximize crop yields. Even in soils exposed to severe droughts, 3 months of RSB and CEB amendment (at 7.5% dose) revealed decreased bulk density (13.7% and 8.9%), and increased cation exchange capacity (6.0% and 6.3%), anion exchange capacity (56.3% and 28.0%), porosity (12.3% and 7.9%), water holding capacity (37.5% and 12.5%), soil respiration (17.8% and 21.8%), and nutrient contents (especially N and P). Additionally, RSB and CEB decreased mobile (30.3% and 35.7%), bio-available (54.7% and 45.3%), and leachable (55.0% and 56.5%) fractions of arsenic. Further, pot experiments with Bengal gram and coriander plants showed enhanced growth (62-188% biomass and 90-277% length) and reduced arsenic accumulation (49-54%) in above ground parts of the plants. Therefore, biochar application was found to improve physico-chemical properties of soil, minimize arsenic contamination, and augment crop growth even in drought-stressed soils. The investigation suggests utilisation of cow manure for eco-friendly fabrication of nutrient-rich CEB, which could eventually promote sustainable agriculture and circular economy. With the increasing need for sustainable agricultural practices, the use of biochar could provide a long-term solution to enhance soil quality, mitigate the effects of climate change, and ensure food security for future generations. Future research should focus on optimizing biochar application across various soil types and climatic conditions, as well as assessing its long-term effectiveness.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India; Department of Land, Air, and Water Resources, University of California, Davis, CA, 95616, United States
| | - Tanushree Bhattacharya
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Wasim Akram Shaikh
- Department of Basic Sciences, School of Science and Technology, The Neotia University, Diamond Harbour Road, West Bengal, 743368, India
| | - Arpita Roy
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
3
|
Chebotaryova SP, Baranchikov PA, Zakharova OV, Kozlova TA, Maltsev YI, Kulikovskiy MS, Grigoriev GV, Gusev AA. CuO Nanoparticles Reduce Toxicity and Enhance Bioaccumulation of Cadmium and Lead in the Cells of the Microalgae Desmodesmus communis. Int J Mol Sci 2024; 25:9167. [PMID: 39273116 PMCID: PMC11395509 DOI: 10.3390/ijms25179167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The removal of pollutants, including heavy metals, from the aquatic environment is an urgent problem worldwide. Actively developing nanotechnology areas is becoming increasingly important for solving problems in the field of the remediation of aquatic ecosystems. In particular, methods for removing pollutants using nanoparticles (NPs) are proposed, which raises the question of the effect of a combination of NPs and heavy metals on living organisms. In this work, we investigated the role of CuO-NPs in changing the toxicity of Cd and Pb salts, as well as the bioaccumulation of these elements in a culture of the microalga Desmodesmus communis. It was found that CuO-NPs at concentrations of 10, 100, and 1000 µg L-1 had no effect on the viability of microalgae cells. On the 14th day of the experiment, Cd at a concentration of 1 mg L-1 reduced the viability index by 30% and, when combined with CuO-NPs, by 25%, i.e., CuO-NPs slightly reduced the toxic effect of Cd. At the same time, in this experiment, when CuO-NPs and Cd were used together, the level of oxidative stress increased, including on the first day in mixtures with 1 mg L-1 Cd. Under the influence of Pb, the cell viability index decreased by 70% by the end of the experiment, regardless of the metal concentration. The presence of CuO-NPs slightly reduced the toxicity of Pb in terms of viability and reactive oxygen species (ROS). At the same time, unlike Cd, Pb without NPs caused ROS production on the first day, whereas the addition of CuO-NPs completely detoxified Pb at the beginning and had a dose-dependent effect on mixtures at the end of the experiment. Also, the introduction of CuO-NPs slightly reduced the negative effect of Pb on pigment synthesis. As a molecular mechanism of the observed effects, we prioritized the provocation of oxidative stress by nanoparticles and related gene expression and biochemical reactions of algae cells. Analysis of the effect of CuO-NPs on the Cd and Pb content in microalgae cells showed increased accumulation of heavy metals. Thus, when algae were cultured in an environment with Cd and CuO-NPs, the Cd content per cell increased 4.2 times compared to the variant where cells were cultured only with Cd. In the case of Pb, the increase in its content per one cell increased 6.2 times when microalgae were cultured in an environment containing CuO-NPs. Thus, we found that CuO-NPs reduce the toxic effects of Cd and Pb, as well as significantly enhance the bioaccumulation of these toxic elements in the cells of D. communis microalgae. The results obtained can form the basis of technology for the nanobioremediation of aquatic ecosystems from heavy metals using microalgae.
Collapse
Affiliation(s)
- Svetlana P Chebotaryova
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Peter A Baranchikov
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Olga V Zakharova
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology "MISIS", 119991 Moscow, Russia
| | - Tatiana A Kozlova
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Laboratory of Ecology, Institute of Natural and Technical Systems RAS, 354024 Sochi, Russia
| | - Yevhen I Maltsev
- K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Maxim S Kulikovskiy
- K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia
| | - Gregory V Grigoriev
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
| | - Alexander A Gusev
- Scientific and Educational Center for Environmental Science and Biotechnology, Derzhavin Tambov State University, 392020 Tambov, Russia
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology "MISIS", 119991 Moscow, Russia
| |
Collapse
|
4
|
Zheng W, Hou S, Chen Y, Ge C, Ni B, Zheng X, Chen H, Zhao T, Wang A, Ren N. Removal and assessment of cadmium contamination based on the toxic responds of a soil ciliate Colpoda sp. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134762. [PMID: 38823099 DOI: 10.1016/j.jhazmat.2024.134762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Bioremediation of cadmium (Cd) pollution, a recognized low-carbon green environmental protection technology, is significantly enhanced by the discovery of Cd-tolerant microorganisms and their underlying tolerance mechanisms. This study presents Colpoda sp., a soil ciliate with widespread distribution, as a novel bioindicator and bioremediator for Cd contamination. With a 24 h-LC50 of 5.39 mg l-1 and an IC50 of 24.85 μg l-1 in Cd-contaminated water, Colpoda sp. achieves a maximum bioaccumulation factor (BAF) of 3.58 and a Cd removal rate of 32.98 ± 0.74 % within 96 h. The toxic responses of Colpoda sp. to Cd stress were assessed through cytological observation with transmission electron microscopy (TEM), oxidative stress kinase activity, and analysis of Cd-metallothionein (Cd-MTs) and the cd-mt gene via qRT-PCR. The integrated biomarker response index version 2 (IBRv2) and structural equation models (SEM) were utilized to analyze key factors and mechanisms, revealing that the up-regulation of Cd-MTs and cd-mt expression, rather than the oxidative stress system, is the primary determinant of Cd accumulation and tolerance in Colpoda sp. The ciliate's ability to maintain growth under 24.85 μg l-1 Cd stress and its capacity to absorb and accumulate Cd particles from water into cells are pivotal for bioremediation. A new mathematical formula and regression equations based on Colpoda sp.'s response parameters have been established to evaluate environmental Cd removal levels and design remediation schemes for contaminated sites. These findings provide a novel bioremediation and monitoring pathway for Cd remobilization and accumulation in soil and water, potentially revolutionizing the governance of Cd pollution.
Collapse
Affiliation(s)
- Weibin Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Sen Hou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Ying Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| | - Chang Ge
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bing Ni
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Hongbo Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Tianyi Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
5
|
Malik I, Ashraf K, Hassan F, Ali Khan AA, Sultan K, Siddiqui MH, Zaman QU. Nano-selenium and compost vitalized morpho-physio-biochemical, antioxidants and osmolytes adjustment in soybean under tannery effluent polluted soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108807. [PMID: 38905730 DOI: 10.1016/j.plaphy.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
The aim of this work was to investigate the impact of nano selenium (N-Se) and compost on the growth, photosynthesis, enzymes activity, compatible solutes and metals accumulation in soybean grown under tannery effluent polluted soil. The plants were exposed to compost application (no compost and compost addition) and foliar application of N-Se (0, 25, 50, and 75 mg L-1). The results showed the addition of compost in soil and foliar applied N-Se alleviated the toxic effect of tannery effluent polluted soil. Furthermore, foliar application of N-Se with basal compost supply significantly improved antoxidant enzymes activity in soybean grown in tannery effluent polluted soil. Addition of compost increased the root dry weight (46.43%) and shoot dry weight (33.50 %), relative water contents by (13.74 %), soluble sugars (15.99 %), stomatal conductance (gs) (83.33 %), intercellular CO2 concentration (Ci) (23.34 %), transpiration rate (E) (12.10 %) and decreased the electrolyte leakage (27.96 %) and proline contents by (20.34 %). The foliage application of N-Se at the rate of 75 mg L-1 showed the most promising results in control and compost amended tannery effluent polluted soil. The determined health risk index (HRI) values were recorded less than 1 for both adults and children under the application of compost and N-Se. In summary, the combined use of N-Se at 75 mg L⁻1 and basal supply of compost is an effective strategy for enhancing soybean productivity while minimizing the potential risks of metal accumulation in soybean grains grown in tannery effluent polluted soil.
Collapse
Affiliation(s)
- Iqra Malik
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Kamran Ashraf
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Faiza Hassan
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Aamir Amanat Ali Khan
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Khawar Sultan
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan.
| |
Collapse
|
6
|
Bhat AA, Moglad E, Bansal P, Kaur H, Deorari M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Ali H. Pollutants to pathogens: The role of heavy metals in modulating TGF-β signaling and lung cancer risk. Pathol Res Pract 2024; 256:155260. [PMID: 38493726 DOI: 10.1016/j.prp.2024.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-β signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-β regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-β signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-β receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-β pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-β signalling.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| |
Collapse
|
7
|
Okhue E, Kadiri HE, Ichipi-Ifukor PC, Ben-Azu B, Asagba SO, Achuba FI, Oyem JC. Prenatal double-hit with aluminium and cadmium mediate testicular atrophy and hypothalamic hypoplasia: the role of oxido-nitrergic stress and endocrine perturbations. Biometals 2024; 37:477-494. [PMID: 38190032 DOI: 10.1007/s10534-023-00563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024]
Abstract
There is limited experimental evidence on the biochemical consequences of aluminium (Al) and cadmium (Cd) co-exposures during pregnancy and postnatal life.This study investigated the impacts of perinatal Al chloride (AlCl3) and Cd chloride (CdCl2) co-exposures on neuroendocrine functions in mice offspring during postnatal life. The study comprised of four pregnant experimental groups. Group 1 received AlCl3 (10 mg/kg), group 2 were administered CdCl2 (1.5 mg/kg), while group 3 received both AlCl3 (10 mg/kg) and CdCl2 (1.5 mg/kg) (AlCl3+CdCl2), and group 4 received saline (10 mL/kg) only and served as control group. All experimental animals were chemically exposed once daily from gestation days 7-20. Upon delivery, male pups were regrouped based on maternal chemical exposure on postnatal day 21 (PND 21) and allowed to grow to adulthood until PND 78, after which they were sacrificed for assessment of neuroendocrine markers and histological investigations. There was no statistical significance (p > 0.05) on follicle stimulating hormone, testosterone, estrogen and progesterone, thyroid stimulating hormone, thyroxine (T4) in all treatment groups relative to controls|. However, AlCl3 and AlCl3-CdCl2 significantly (p < 0.05) reduced triiodothyronine (T3) levels, with a profound increase in T3:T4 ratio by AlCl3, and AlCl3+CdCl2 compared to control. Furthermore, pups from pregnant mice treated with CdCl2 and AlCl3+CdCl2 demonstrated increased testicular malondialdehyde concentration with increased catalase activity relative to controls, suggesting oxidative imbalance. In addition, AlCl3, CdCl2, and AlCl3+CdCl2 exposures induced testicular and hypothalamic architectural disruption compared to controls, with marked architectural derangement in the AlCl3+CdCl2 group. Our findings suggest that prenatal co-exposures to Alcl3 and CdCl2 induce testicular and hypothalamic alterations in offspring via a testicular oxidative stress and thyrotoxicosis-dependent mechanisms.
Collapse
Affiliation(s)
- Emmanuel Okhue
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Helen Ejiro Kadiri
- Department of Biochemistry, Faculty of Science, Delta State University, Abraka, Nigeria
| | | | - Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | | | | | - John Chukwuma Oyem
- Department of Anatomy, Faculty of Basic Medical Sciences, Novena University, Ogume, Nigeria
| |
Collapse
|
8
|
Staszak K, Regel-Rosocka M. Removing Heavy Metals: Cutting-Edge Strategies and Advancements in Biosorption Technology. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1155. [PMID: 38473626 DOI: 10.3390/ma17051155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
This article explores recent advancements and innovative strategies in biosorption technology, with a particular focus on the removal of heavy metals, such as Cu(II), Pb(II), Cr(III), Cr(VI), Zn(II), and Ni(II), and a metalloid, As(V), from various sources. Detailed information on biosorbents, including their composition, structure, and performance metrics in heavy metal sorption, is presented. Specific attention is given to the numerical values of the adsorption capacities for each metal, showcasing the efficacy of biosorbents in removing Cu (up to 96.4%), Pb (up to 95%), Cr (up to 99.9%), Zn (up to 99%), Ni (up to 93.8%), and As (up to 92.9%) from wastewater and industrial effluents. In addition, the issue of biosorbent deactivation and failure over time is highlighted as it is crucial for the successful implementation of adsorption in practical applications. Such phenomena as blockage by other cations or chemical decomposition are reported, and chemical, thermal, and microwave treatments are indicated as effective regeneration techniques. Ongoing research should focus on the development of more resilient biosorbent materials, optimizing regeneration techniques, and exploring innovative approaches to improve the long-term performance and sustainability of biosorption technologies. The analysis showed that biosorption emerges as a promising strategy for alleviating pollutants in wastewater and industrial effluents, offering a sustainable and environmentally friendly approach to addressing water pollution challenges.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| | - Magdalena Regel-Rosocka
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
9
|
Sun H, Yao J, Ma B, Knudsen TS, Yuan C. Siderite's green revolution: From tailings to an eco-friendly material for the green economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169922. [PMID: 38199373 DOI: 10.1016/j.scitotenv.2024.169922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Siderite, extensively mined as a natural iron mineral, is often discarded as tailings due to the low grade of the ore and due to the high cost of current sorting technologies. Yet, this mineral has demonstrated significant potential in several pivotal areas of the environmental remediation. Siderite not only possesses exceptional adsorption, catalytic, and microbial carrier capabilities but also offers an eco-friendly and cost-effective solution for the environmental pollution management. This article consolidates research advancements and achievements over the past few decades concerning siderite's role in pollution control, delving deeply into its various remediation pathways. Initially, the paper contrasts the performance differences between natural and synthetic siderite, followed by a comprehensive overview of siderite's adsorption mechanisms for various inorganic pollutants. Furthermore, this paper analyzes the unique physicochemical attributes of siderite as both, a reductant and the catalyst, with a special emphasis on its use in the preparation of SCR catalysts and in the catalytic advanced oxidation processes for organic pollutants' degradation. This paper also enumerates and discusses the myriad advantages of siderite as a microbial carrier, thereby enhancing our understanding of biogeochemical cycles and pollutant transformations. In essence, this review systematically elucidates the mechanisms and intrinsic physicochemical properties of siderite in pollution control, paving the way for novel strategies to augment siderite's environmental remediation performance.
Collapse
Affiliation(s)
- Haoxiang Sun
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Tatjana Solevic Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11 000, Belgrade, Serbia
| | - Chenyi Yuan
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| |
Collapse
|
10
|
Jagadeesan Y, Meenakshisundaram S, Pichaimuthu S, Balaiah A. A scientific version of understanding "Why did the chickens cross the road"? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. ENVIRONMENTAL RESEARCH 2024; 244:117907. [PMID: 38109965 DOI: 10.1016/j.envres.2023.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.
Collapse
Affiliation(s)
- Yogeswaran Jagadeesan
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Shanmugapriya Meenakshisundaram
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Suthakaran Pichaimuthu
- Genprotic Biopharma Private Limited, SPIC Bioprocess Laboratory, Anna University, Taramani Campus, Taramani, Chennai, Tamilnadu, 600113, India.
| | - Anandaraj Balaiah
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| |
Collapse
|
11
|
Li Z, Niu R, Yu J, Yu L, Cao D. Removal of cadmium from aqueous solution by magnetic biochar: adsorption characteristics and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6543-6557. [PMID: 38153572 DOI: 10.1007/s11356-023-31664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Experiments were conducted to investigate the potential of the efficient resource utilization of waste cow manure and corn straw in an agricultural ecosystem. In this study, a magnetic cow manure and straw biochar were synthesized by a co-precipitation method, and cadmium (Cd(II)) was removed by adsorption in aqueous solution. Several physicochemical characterization techniques were applied, including SEM, BET, Zeta, FTIR, Raman, XPS, and VSM. The effects of pH value, magnetic biochar content, adsorption kinetics, and isothermal adsorption on the adsorption of Cd(II) were investigated. The physicochemical characterizations revealed that the physical and chemical properties of the magnetic biochar were substantially changed compared to the unmodified biochar. The results showed that the surface of the biochar became rough, the number of oxygen (O)-containing functional groups increased, and the specific surface area increased. The results of the adsorption experiments showed that the adsorption capacity was affected by pH, magnetic biochar addition, Cd(II) concentration, and adsorption time. The adsorption kinetics and isothermal adsorption experiments showed that the Cd(II) adsorption processes of the cow manure and corn straw magnetic biochars were consistent with the Freundlich model and pseudo-second-order kinetic model. The results also showed that the Cd(II) adsorption effect of cow manure magnetic biochar was found to be more effective than that of corn straw magnetic biochar. The optimal conditions for Cd(II) adsorption were 800 ℃ for cow manure magnetic biochar, with a pH value of 5 and 0.14 g biochar addition, and 600 ℃ for straw magnetic biochar with a pH value of 8 and 0.12 g biochar addition. In conclusion, the cow manure magnetic biochar was an effective adsorbent for the absorption of Cd(II) in wastewater.
Collapse
Affiliation(s)
- Zhiwen Li
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Ruiyan Niu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jiaheng Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liyun Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Di Cao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
12
|
Sharma M, Agarwal S, Agarwal Malik R, Kumar G, Pal DB, Mandal M, Sarkar A, Bantun F, Haque S, Singh P, Srivastava N, Gupta VK. Recent advances in microbial engineering approaches for wastewater treatment: a review. Bioengineered 2023; 14:2184518. [PMID: 37498651 PMCID: PMC10376923 DOI: 10.1080/21655979.2023.2184518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 07/28/2023] Open
Abstract
In the present era of global climate change, the scarcity of potable water is increasing both due to natural and anthropogenic causes. Water is the elixir of life, and its usage has risen significantly due to escalating economic activities, widespread urbanization, and industrialization. The increasing water scarcity and rising contamination have compelled, scientists and researchers, to adopt feasible and sustainable wastewater treatment methods in meeting the growing demand for freshwater. Presently, various waste treatment technologies are adopted across the globe, such as physical, chemical, and biological treatment processes. There is a need to replace these technologies with sustainable and green technology that encourages the use of microorganisms since they have proven to be more effective in water treatment processes. The present review article is focused on demonstrating how effectively various microbes can be used in wastewater treatment to achieve environmental sustainability and economic feasibility. The microbial consortium used for water treatment offers many advantages over pure culture. There is an urgent need to develop hybrid treatment technology for the effective remediation of various organic and inorganic pollutants from wastewater.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Zoology, University of Jammu, Jammu and Kashmir, India
| | - Sangita Agarwal
- Department of Applied Science, RCC Institute of Information Technology Kolkata, West Bengal, India
| | - Richa Agarwal Malik
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| | - Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, West Bengal, India
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Pardeep Singh
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | | |
Collapse
|
13
|
Alvarado-Campo KL, Quintero M, Cuadrado-Cano B, Montoya-Giraldo M, Otero-Tejada EL, Blandón L, Sánchez O, Zuleta-Correa A, Gómez-León J. Heavy Metal Tolerance of Microorganisms Isolated from Coastal Marine Sediments and Their Lead Removal Potential. Microorganisms 2023; 11:2708. [PMID: 38004719 PMCID: PMC10673411 DOI: 10.3390/microorganisms11112708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
In this study, 338 microorganisms, comprising 271 bacteria and 67 fungi, were isolated from sediment samples collected from underexplored Pacific and Caribbean regions of Colombia. Screening trials were conducted on selected strains (n = 276) to assess their tolerance to cadmium (Cd2+), lead (Pb2+), and zinc (Zn2+), leading to the identification of six bacteria capable of withstanding 750 mg·L-1 of each heavy metal ion. Three promising microorganisms, identified as Enterobacter sp. INV PRT213, Pseudomonas sp. INV PRT215, and Stenotrophomonas sp. INV PRT216 were selected for lead removal experiments using LB broth medium supplemented with 400 mg·L-1 Pb2+. Among these, Pseudomonas sp. INV PRT215 exhibited significant potential, removing 49% of initial Pb2+ after 240 min of exposure (16.7 g wet biomass·L-1, pH 5, 30 °C). Infrared spectra of Pb-exposed biomass showed changes in functional groups, including carbonyl groups of amides, carboxylate, phosphate, hydroxyl, and amine groups, compared to the not-exposed control. These changes suggested interactions between the metal and functional groups in the biomass. The findings of this study highlight the potential of microorganisms derived from coastal marine environments as promising candidates for future applications in bioremediation of polluted environments contaminated with heavy metals.
Collapse
Affiliation(s)
- Katleen L. Alvarado-Campo
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (K.L.A.-C.); (M.Q.); (E.L.O.-T.); (L.B.); (J.G.-L.)
| | - Marynes Quintero
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (K.L.A.-C.); (M.Q.); (E.L.O.-T.); (L.B.); (J.G.-L.)
| | - Bernarda Cuadrado-Cano
- Master’s Program in Microbiology, College of Medicine, Universidad de Cartagena, Cartagena de Indias 130014, Bolívar, Colombia;
| | - Manuela Montoya-Giraldo
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (K.L.A.-C.); (M.Q.); (E.L.O.-T.); (L.B.); (J.G.-L.)
| | - Elver Luis Otero-Tejada
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (K.L.A.-C.); (M.Q.); (E.L.O.-T.); (L.B.); (J.G.-L.)
| | - Lina Blandón
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (K.L.A.-C.); (M.Q.); (E.L.O.-T.); (L.B.); (J.G.-L.)
| | - Olga Sánchez
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Ana Zuleta-Correa
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (K.L.A.-C.); (M.Q.); (E.L.O.-T.); (L.B.); (J.G.-L.)
| | - Javier Gómez-León
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (K.L.A.-C.); (M.Q.); (E.L.O.-T.); (L.B.); (J.G.-L.)
| |
Collapse
|
14
|
Tasleem M, El-Sayed AAAA, Hussein WM, Alrehaily A. Pseudomonas putida Metallothionein: Structural Analysis and Implications of Sustainable Heavy Metal Detoxification in Madinah. TOXICS 2023; 11:864. [PMID: 37888714 PMCID: PMC10611128 DOI: 10.3390/toxics11100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Heavy metals, specifically cadmium (Cd) and lead (Pb), contaminating water bodies of Madinah (Saudi Arabia), is a significant environmental concern that necessitates prompt action. Madinah is exposed to toxic metals from multiple sources, such as tobacco, fresh and canned foods, and industrial activities. This influx of toxic metals presents potential hazards to both human health and the surrounding environment. The aim of this study is to explore the viability of utilizing metallothionein from Pseudomonas putida (P. putida) as a method of bioremediation to mitigate the deleterious effects of pollution attributable to Pb and Cd. The use of various computational approaches, such as physicochemical assessments, structural modeling, molecular docking, and protein-protein interaction investigations, has enabled us to successfully identify the exceptional metal-binding properties that metallothionein displays in P. putida. The identification of specific amino acid residues, namely GLU30 and GLN21, is crucial in understanding their pivotal role in facilitating the coordination of lead and cadmium. In addition, post-translational modifications present opportunities for augmenting the capacity to bind metals, thereby creating possibilities for focused engineering. The intricate web of interactions among proteins serves to emphasize the protein's participation in essential cellular mechanisms, thereby emphasizing its potential contributions to detoxification pathways. The present study establishes a strong basis for forthcoming experimental inquiries, offering potential novel approaches in bioremediation to tackle the issue of heavy metal contamination. Metallothionein from P. putida presents a highly encouraging potential as a viable remedy for environmental remediation, as it is capable of proficiently alleviating the detrimental consequences related to heavy metal pollution.
Collapse
Affiliation(s)
- Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | - Wesam M. Hussein
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Abdulwahed Alrehaily
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| |
Collapse
|
15
|
Gautam K, Sharma P, Dwivedi S, Singh A, Gaur VK, Varjani S, Srivastava JK, Pandey A, Chang JS, Ngo HH. A review on control and abatement of soil pollution by heavy metals: Emphasis on artificial intelligence in recovery of contaminated soil. ENVIRONMENTAL RESEARCH 2023; 225:115592. [PMID: 36863654 DOI: 10.1016/j.envres.2023.115592] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
"Save Soil Save Earth" is not just a catchphrase; it is a necessity to protect soil ecosystem from the unwanted and unregulated level of xenobiotic contamination. Numerous challenges such as type, lifespan, nature of pollutants and high cost of treatment has been associated with the treatment or remediation of contaminated soil, whether it be either on-site or off-site. Due to the food chain, the health of non-target soil species as well as human health were impacted by soil contaminants, both organic and inorganic. In this review, the use of microbial omics approaches and artificial intelligence or machine learning has been comprehensively explored with recent advancements in order to identify the sources, characterize, quantify, and mitigate soil pollutants from the environment for increased sustainability. This will generate novel insights into methods for soil remediation that will reduce the time and expense of soil treatment.
Collapse
Affiliation(s)
- Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Shreya Dwivedi
- Institute for Industrial Research & Toxicology, Ghaziabad, Lucknow, India
| | - Amarnath Singh
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India; School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India.
| | | | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental, Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
16
|
Mistry G, Popat K, Patel J, Panchal K, Ngo HH, Bilal M, Varjani S. New outlook on hazardous pollutants in the wastewater environment: Occurrence, risk assessment and elimination by electrodeionization technologies. ENVIRONMENTAL RESEARCH 2023; 219:115112. [PMID: 36574803 DOI: 10.1016/j.envres.2022.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Over the decades, water contamination has increased substantially and has become a severe global issue. Degradation of natural resources is taking place at an alarming rate as a result of the use of chemicals like dyes, heavy metals, fertilizers, pesticides, and many more, necessitating the development of long-term pollution remediation methods/technologies. As a new development in the field of environmental engineering, electrodeionization incorporates both traditional ion exchange and electrodialysis. This communication provides an overview of hazardous contaminants such as dyes, heavy metals, fertilizers, and pesticides, as well as their converted forms, which are present in water. It highlights the risks of water pollutants to public health and the environment. Various electrochemical methods with a focus on electrodeionization for the treatment of wastewater and removal of hazardous contaminants are outlined in this review. Additionally, this review discusses the challenges and the future outlook for the development in this field of research.
Collapse
Affiliation(s)
- Gargi Mistry
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India; Institute of Advanced Research, Knowledge Corridor, Gandhinagar, 382007, Gujarat, India
| | - Kartik Popat
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India; Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, 382007, Gujarat, India
| | - Jimit Patel
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India; Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, 382007, Gujarat, India
| | - Kashish Panchal
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India; Institute of Advanced Research, Knowledge Corridor, Gandhinagar, 382007, Gujarat, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India.
| |
Collapse
|
17
|
Immobilized Enzyme-based Novel Biosensing System for Recognition of Toxic Elements in the Aqueous Environment. Top Catal 2023. [DOI: 10.1007/s11244-023-01786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Varjani S. Prospective review on bioelectrochemical systems for wastewater treatment: Achievements, hindrances and role in sustainable environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156691. [PMID: 35714749 DOI: 10.1016/j.scitotenv.2022.156691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BESs) are a relatively new arena for producing bioelectricity, desalinating sea water, and treating industrial effluents by removing organic matter. Microbial electrochemical technologies (METs) are promising for obtaining value-added products during simultaneous remediation of pollutants from wastewater. The search for more affordable desalination technology has led to the development of microbial desalination cells (MDCs). MDC combines the operation of microbial fuel cells (MFC) with electrodialysis for water desalination and energy generation. It has received notable interest of researchers in desalination and wastewater treatment because of low energy requirement and eco-friendly nature. Firstly, this article provides a brief overview of MDC technology. Secondly, factors affecting functioning of MDC and its applications have been accentuated. Additionally, challenges and future outlook on the development of this technology have been delineated. State-of-the-art information provided in this review would expand the scope of interdisciplinary and translational research.
Collapse
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India.
| |
Collapse
|
19
|
Phour M, Sindhu SS. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. PLANTA 2022; 256:85. [PMID: 36125564 DOI: 10.1007/s00425-022-03997-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production. Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant-bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.
Collapse
Affiliation(s)
- Manisha Phour
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|
20
|
Deciphering the blackbox of omics approaches and artificial intelligence in food waste transformation and mitigation. Int J Food Microbiol 2022; 372:109691. [DOI: 10.1016/j.ijfoodmicro.2022.109691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 01/29/2023]
|
21
|
Ecological Characterization and Bio-Mitigation Potential of Heavy Metal Contamination in Metallurgically Affected Soil. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heavy metals (HMs) remain persistent in soil for a long time and thus present a long-term threat of environmental pollution. In this study, the concentrations of some HMs (As, Cu, Zn, Pb, and Mo) in soil, potentially affected by the ex-operation of a metallurgical plant—specifically, a copper smelter in Alaverdi Town, northeastern Armenia—were measured, based on which, the HM contamination and its ecological, biological, and health effects were assessed. Concentrations of HMs (Cu, Zn, and Pb) were also measured in different plant (leaves) and invertebrate species that occur in the soil over the metallurgical factory site in order to assess the potential for the bioremoval of HMs from the soil. The results showed that the ex-operation of the metallurgical facility created such contamination in the soil that it caused a noticeable loss of invertebrate biomass in the soil and posed ecological, non-carcinogenic (for children), and carcinogenic health hazards. The investigated plant and invertebrate species were characterized by different capacities for the accumulation of HMs from the soil, based on which the plant species Fraxinus excelsior, Acer platanoides, Robinia pseudoacacia, and Aesculus hippocastanum and the invertebrate species Deroceras caucasicum, Limax flavus, and Eisenia rosea are recommended to be used for the selective removal of HMs (Cu, Zn, and Pb) from the soil.
Collapse
|
22
|
Gaur VK, Gautam K, Sharma P, Gupta S, Pandey A, You S, Varjani S. Carbon-based catalyst for environmental bioremediation and sustainability: Updates and perspectives on techno-economics and life cycle assessment. ENVIRONMENTAL RESEARCH 2022; 209:112793. [PMID: 35090873 DOI: 10.1016/j.envres.2022.112793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Global rise in the generation of waste has caused an enormous environmental concern and waste management problem. The untreated carbon rich waste serves as a breeding ground for pathogens and thus strategies for production of carbon rich biochar from waste by employing different thermochemical routes namely hydrothermal carbonization, hydrothermal liquefaction and pyrolysis has been of interest by researchers globally. Biochar has been globally produced due to its diverse applications from environmental bioremediation to energy storage. Also, several factors affect the production of biochar including feedstock/biomass type, moisture content, heating rate, and temperature. Recently the application of biochar has increased tremendously owing to the cost effectiveness and eco-friendly nature. Thus this communication summarized and highlights the preferred feedstock for optimized biochar yield along with the factor influencing the production. This review provides a close view on biochar activation approaches and synthesis techniques. The application of biochar in environmental remediation, composting, as a catalyst, and in energy storage has been reviewed. These informative findings were supported with an overview of lifecycle and techno-economical assessments in the production of these carbon based catalysts. Integrated closed loop approaches towards biochar generation with lesser/zero landfill waste for safeguarding the environment has also been discussed. Lastly the research gaps were identified and the future perspectives have been elucidated.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow, 226 001, Uttar Pradesh, India
| | - Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, 226 001, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | | | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, 226 001, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; India Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, Uttarakhand, India
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| |
Collapse
|
23
|
Khan M, Kamran M, Kadi RH, Hassan MM, Elhakem A, Sakit ALHaithloul HA, Soliman MH, Mumtaz MZ, Ashraf M, Shamim S. Harnessing the Potential of Bacillus altitudinis MT422188 for Copper Bioremediation. Front Microbiol 2022; 13:878000. [PMID: 35663894 PMCID: PMC9161743 DOI: 10.3389/fmicb.2022.878000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/05/2022] [Indexed: 12/08/2022] Open
Abstract
The contamination of heavy metals is a cause of environmental concern across the globe, as their increasing levels can pose a significant risk to our natural ecosystems and public health. The present study was aimed to evaluate the ability of a copper (Cu)-resistant bacterium, characterized as Bacillus altitudinis MT422188, to remove Cu from contaminated industrial wastewater. Optimum growth was observed at 37°C, pH 7, and 1 mm phosphate, respectively. Effective concentration 50 (EC50), minimum inhibitory concentration (MIC), and cross-heavy metal resistance pattern were observed at 5.56 mm, 20 mm, and Ni > Zn > Cr > Pb > Ag > Hg, respectively. Biosorption of Cu by live and dead bacterial cells in its presence and inhibitors 1 and 2 (DNP and DCCD) was suggestive of an ATP-independent efflux system. B. altitudinis MT422188 was also able to remove 73 mg/l and 82 mg/l of Cu at 4th and 8th day intervals from wastewater, respectively. The presence of Cu resulted in increased GR (0.004 ± 0.002 Ug−1FW), SOD (0.160 ± 0.005 Ug−1FW), and POX (0.061 ± 0.004 Ug−1FW) activity. Positive motility (swimming, swarming, twitching) and chemotactic behavior demonstrated Cu as a chemoattractant for the cells. Metallothionein (MT) expression in the presence of Cu was also observed by SDS-PAGE. Adsorption isotherm and pseudo-kinetic-order studies suggested Cu biosorption to follow Freundlich isotherm as well as second-order kinetic model, respectively. Thermodynamic parameters such as Gibbs free energy (∆G°), change in enthalpy (∆H° = 10.431 kJ/mol), and entropy (∆S° = 0.0006 kJ/mol/K) depicted the biosorption process to a feasible, endothermic reaction. Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy-Dispersive X-Ray Spectroscopy (EDX) analyses revealed the physiochemical and morphological changes in the bacterial cell after biosorption, indicating interaction of Cu ions with its functional groups. Therefore, these features suggest the potentially effective role of B. altitudinis MT422188 in Cu bioremediation.
Collapse
Affiliation(s)
- Maryam Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Roqayah H. Kadi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- *Correspondence: Mohamed M. Hassan,
| | - Abeer Elhakem
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Saudi Arabia
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Saba Shamim,
| |
Collapse
|
24
|
Sharma P, Gaur VK, Gupta S, Varjani S, Pandey A, Gnansounou E, You S, Ngo HH, Wong JWC. Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152357. [PMID: 34921885 DOI: 10.1016/j.scitotenv.2021.152357] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/30/2021] [Accepted: 12/08/2021] [Indexed: 05/27/2023]
Abstract
Majority of industries, in order to meet the technological development and consumer demands generate waste. The untreated waste spreads out toxic and harmful substances in the environment which serves as a breeding ground for pathogenic microorganisms thus causing severe health hazards. The three industrial sectors namely food, agriculture, and oil industry are among the primary organic waste producers that affect urban health and economic growth. Conventional treatment generates a significant amount of greenhouse gases which further contributes to global warming. Thus, the use of microbes for utilization of this waste, liberating CO2 offers an indispensable tool. The simultaneous production of value-added products such as bioplastics, biofuels, and biosurfactants increases the economics of the process and contributes to environmental sustainability. This review comprehensively summarized the composition of organic waste generated from the food, agriculture, and oil industry. The linkages between global health hazards of industrial waste and environmental implications have been uncovered. Stare-of-the-art information on their subsequent utilization as a substrate to produce value-added products through bio-routes has been elaborated. The research gaps, economical perspective(s), and future research directions have been identified and discussed to strengthen environmental sustainability.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India; Centre for Energy and Environmental Sustainability, Lucknow, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong
| |
Collapse
|
25
|
Gayathiri E, Prakash P, Selvam K, Awasthi MK, Gobinath R, Karri RR, Ragunathan MG, Jayanthi J, Mani V, Poudineh MA, Chang SW, Ravindran B. Plant microbe based remediation approaches in dye removal: A review. Bioengineered 2022; 13:7798-7828. [PMID: 35294324 PMCID: PMC9208495 DOI: 10.1080/21655979.2022.2049100] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Increased industrialization demand using synthetic dyes in the newspaper, cosmetics, textiles, food, and leather industries. As a consequence, harmful chemicals from dye industries are released into water reservoirs with numerous structural components of synthetic dyes, which are hazardous to the ecosystem, plants and humans. The discharge of synthetic dye into various aquatic environments has a detrimental effect on the balance and integrity of ecological systems. Moreover, numerous inorganic dyes exhibit tolerance to degradation and repair by natural and conventional processes. So, the present condition requires the development of efficient and effective waste management systems that do not exacerbate environmental stress or endanger other living forms. Numerous biological systems, including microbes and plants, have been studied for their ability to metabolize dyestuffs. To minimize environmental impact, bioremediation uses endophytic bacteria, which are plant beneficial bacteria that dwell within plants and may improve plant development in both normal and stressful environments. Moreover, Phytoremediation is suitable for treating dye contaminants produced from a wide range of sources. This review article proves a comprehensive evaluation of the most frequently utilized plant and microbes as dye removal technologies from dye-containing industrial effluents. Furthermore, this study examines current existing technologies and proposes a more efficient, cost-effective method for dye removal and decolorization on a big scale. This study also aims to focus on advanced degradation techniques combined with biological approaches, well regarded as extremely effective treatments for recalcitrant wastewater, with the greatest industrial potential.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai - 600 042, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem636011, India
| | - Kuppusamy Selvam
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem636011, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi712100, PRChina
| | | | - Rama Rao Karri
- Faculty of Engineering, University Teknologi, Brunei, Asia
| | | | - Jayaprakash Jayanthi
- Department of Advanced Zoology and Biotechnology, Guru Nanak College, Chennai, India
| | - Vimalraj Mani
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju54874, Korea
| | | | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon16227, Republic of Korea
| |
Collapse
|
26
|
Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 2021; 12:9531-9549. [PMID: 34709977 PMCID: PMC8810035 DOI: 10.1080/21655979.2021.1996748] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Mmu, Deemed University, Ambala,India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | | | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|