1
|
AbuBakar U, Low ZX, Aris MZM, Lani R, Abidin SAZ, Abdullah-Zawawi MR, Hassandarvish P, Karsani SA, Khairat JE. Antiviral potential of diosmin against influenza A virus. Sci Rep 2025; 15:17192. [PMID: 40382364 PMCID: PMC12085588 DOI: 10.1038/s41598-025-00744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Influenza poses a global health threat. With drug-resistant strains emerging, there is an urgent need for effective antiviral drugs. This study explores antiviral potential of flavonoids against influenza A virus (IAV) and their mechanism of action. By utilizing in silico docking as a screening approach, diosmin, orientin, and fisetin were identified as flavonoids with the strongest interactions with viral proteins. Out of them, diosmin was found to effectively inhibit IAV replication in vitro, particularly at the attachment and post-entry stages, with significant inhibition observed at 0-h post-infection (hpi) and 2 hpi, while also demonstrated prophylactic activity, peaking at - 2 hpi. Following that, diosmin significantly increases the expression of antiviral genes, which may relate to the discovery of its prophylactic activity. Proteomics analysis showed that diosmin treatment during the post-entry stage of IAV replication reduced viral protein levels, confirming its antiviral activity at this point. Additionally, diosmin also modulated host proteins related to innate immunity, inducing type I interferon and anti-inflammatory responses during the infection. These findings provide preliminary evidence of diosmin's antiviral and prophylactic activity against IAV, paving the way for further research on its mechanism of action.
Collapse
Affiliation(s)
- Umarqayum AbuBakar
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Zhao Xuan Low
- Tropical Infectious Diseases Research and Education Center, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Rafidah Lani
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Muhammad-Redha Abdullah-Zawawi
- UKM Medical Molecular Biology Institute (UMBI), Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Center, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Center for Natural Products and Drugs Research, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Schloer S, Hennesen J, Rueschpler L, Zamzamy M, Flomm F, Ip WH, Pirosu A, Dobner T, Altfeld M. The host cell factor DDX3 mediates sex dimorphism in the IFNα response of plasmacytoid dendritic cells upon TLR activation. Pharmacol Res 2025; 216:107764. [PMID: 40354846 DOI: 10.1016/j.phrs.2025.107764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
During the course of viral infections, IFN-I producing pDCs are fundamental in establishing antiviral defense. However, little is known about the molecular mechanisms by which biological sex contributes to differences in IFN-I production by pDCs. Here, we aimed to identify X-chromosome-encoded proteins as a source of sex differences in IFN-I responses by pDCs. We identified the host-cell factor DDX3 as a key mediator for the sex dimorphism in the IFNα response. DDX3 was significantly higher expressed in female pDCs and was translocated together with IRF7 to the nucleus to orchestrate IFN-I transcription. DDX3 as driver of sex differences in the initial and chronic IFN-I response might serve as a novel target to limit IFN-I-mediated hyperactivation of immune cells.
Collapse
Affiliation(s)
- Sebastian Schloer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany.
| | - Jana Hennesen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Lena Rueschpler
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Mohamed Zamzamy
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Felix Flomm
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Wing Hang Ip
- Research Department Viral Transformation, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Andrea Pirosu
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Thomas Dobner
- Research Department Viral Transformation, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Marcus Altfeld
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany.
| |
Collapse
|
3
|
Busnadiego I, Lork M, Fernbach S, Schiefer S, Tsolakos N, Hale BG. An atlas of protein phosphorylation dynamics during interferon signaling. Proc Natl Acad Sci U S A 2025; 122:e2412990122. [PMID: 40138345 PMCID: PMC12002234 DOI: 10.1073/pnas.2412990122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Interferons (IFNs, types I-III) have pleiotropic functions in promoting antiviral and antitumor responses, as well as in modulating inflammation. Dissecting the signaling mechanisms elicited by different IFNs is therefore critical to understand their phenotypes. Here, we use mass spectrometry to investigate the early temporal dynamics of cellular protein phosphorylation in a human lung epithelial cell-line as it responds to stimulation with IFNα2, IFNβ, IFNω, IFNγ, or IFNλ1, representing all IFN types. We report an atlas of over 700 common or unique phosphorylation events reprogrammed by these different IFNs, revealing both previously known and uncharacterized modifications. While the proteins differentially phosphorylated following IFN stimulation have diverse roles, there is an enrichment of factors involved in chromatin remodeling, transcription, and RNA splicing. Functional screening and mechanistic studies identify that several proteins modified in response to IFNs contribute to host antiviral responses, either directly or by supporting IFN-stimulated gene or protein production. Among these, phosphorylation of PLEKHG3 at serine-1081 creates a phospho-regulated binding motif for the docking of 14-3-3 proteins, and together these factors contribute to coordinating efficient IFN-stimulated gene expression independent of early Janus kinase/signal transducer and activator of transcription signaling. Our findings map the global phosphorylation landscapes regulated by IFN types I, II, and III, and provide a key resource to explore their functional consequences.
Collapse
Affiliation(s)
- Idoia Busnadiego
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Marie Lork
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Sonja Fernbach
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Samira Schiefer
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Nikos Tsolakos
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| |
Collapse
|
4
|
Cao Y, Chin AWH, Gu H, Li M, Gu Y, Lau SPN, Hui KPY, Chan MCW, Poon LLM. An interferon-stimulated long non-coding RNA USP30-AS1 as an immune modulator in influenza A virus infection. PLoS Pathog 2025; 21:e1012854. [PMID: 39777915 PMCID: PMC11750089 DOI: 10.1371/journal.ppat.1012854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 01/21/2025] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are essential components of innate immunity, maintaining the functionality of immune systems that control virus infection. However, how lncRNAs engage immune responses during influenza A virus (IAV) infection remains unclear. Here, we show that lncRNA USP30-AS1 is up-regulated by infection of multiple different IAV subtypes and is required for tuning inflammatory and antiviral response in IAV infection. Genetically inactivation of USP30-AS1 enhances viral protein synthesis and viral growth. USP30-AS1 is an interferon-stimulated gene, and the induction of USP30-AS1 can be achieved by JAK-STAT mediated signaling activation. The immune regulation of USP30-AS1 is independent of its proximal protein-coding gene USP30. In IAV infection, deletion of USP30-AS1 unleashes high systemic inflammatory responses involving a broad range of pro-inflammatory factors, suggesting USP30-AS1 as a critical modulator of immune responses in IAV infection. Furthermore, we established a database providing well-annotated host gene expression profiles IAV infection or immune stimulation.
Collapse
Affiliation(s)
- Yi Cao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alex W. H. Chin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Haogao Gu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mengting Li
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuner Gu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sylvia P. N. Lau
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kenrie P. Y. Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Michael C. W. Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Leo L. M. Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
- HKU-Pasteur Research Pole, The University of Hong Kong, Hong Kong SAR, China
- HKJC Global Health Institute, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Çalışkan DM, Kumar S, Hinse S, Schughart K, Wiewrodt R, Fischer S, Krueger V, Wiebe K, Barth P, Mellmann A, Ludwig S, Brunotte L. Molecular characterisation of influenza B virus from the 2017/18 season in primary models of the human lung reveals improved adaptation to the lower respiratory tract. Emerg Microbes Infect 2024; 13:2402868. [PMID: 39248230 PMCID: PMC11421153 DOI: 10.1080/22221751.2024.2402868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The 2017/18 influenza season was characterized by unusual high numbers of severe infections and hospitalizations. Instead of influenza A viruses, this season was dominated by infections with influenza B viruses of the Yamagata lineage. While this IBV/Yam dominance was associated with a vaccine mismatch, a contribution of virus intrinsic features to the clinical severity of the infections was speculated. Here, we performed a molecular and phenotypic characterization of three IBV isolates from patients with severe flu symptoms in 2018 and compared it to an IBV/Yam isolate from 2016 using experimental models of increasing complexity, including human lung explants, lung organoids, and alveolar macrophages. Viral genome sequencing revealed the presence of clade but also isolate specific mutations in all viral genes, except NP, M1, and NEP. Comparative replication kinetics in different cell lines provided further evidence for improved replication fitness, tolerance towards higher temperatures, and the development of immune evasion mechanisms by the 2018 IBV isolates. Most importantly, immunohistochemistry of infected human lung explants revealed an impressively altered cell tropism, extending from AT2 to AT1 cells and macrophages. Finally, transcriptomics of infected human lung explants demonstrated significantly reduced amounts of type I and type III IFNs by the 2018 IBV isolate, supporting the existence of additional immune evasion mechanisms. Our results show that the severeness of the 2017/18 Flu season was not only the result of a vaccine mismatch but was also facilitated by improved adaptation of the circulating IBV strains to the environment of the human lower respiratory tract.
Collapse
Affiliation(s)
- Duygu Merve Çalışkan
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
| | - Sriram Kumar
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
| | - Saskia Hinse
- Institute of Virology, University of Münster, Münster, Germany
| | - Klaus Schughart
- Institute of Virology, University of Münster, Münster, Germany
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rainer Wiewrodt
- Department of Medicine A, Haematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
- Department of Respiratory Medicine and Thoracic Oncology, Foundation Mathias Spital, Rheine and Ibbenbueren, Germany
| | - Stefan Fischer
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
- Department of Respiratory Medicine and Thoracic Oncology, Foundation Mathias Spital, Rheine and Ibbenbueren, Germany
| | - Vera Krueger
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
- Department of Respiratory Medicine and Thoracic Oncology, Foundation Mathias Spital, Rheine and Ibbenbueren, Germany
| | - Karsten Wiebe
- Department of Thoracic Surgery, University Hospital Münster, Muenster, Germany
| | - Peter Barth
- Gerhard-Domagk-Institute of Pathology, University of Münster, Muenster, Germany
| | | | - Stephan Ludwig
- Institute of Virology, University of Münster, Münster, Germany
- EvoPAD Research Training Group 2220, University of Münster, Münster, Germany
| | - Linda Brunotte
- Institute of Virology, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Zhao Q, Liu H, Tang L, Wang F, Tolufashe G, Chang J, Guo JT. Mechanism of interferon alpha therapy for chronic hepatitis B and potential approaches to improve its therapeutic efficacy. Antiviral Res 2024; 221:105782. [PMID: 38110058 DOI: 10.1016/j.antiviral.2023.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Hepatitis B virus (HBV) chronically infects 296 million people worldwide and causes more than 820,000 deaths annually due to cirrhosis and hepatocellular carcinoma. Current standard-of-care medications for chronic hepatitis B (CHB) include nucleos(t)ide analogue (NA) viral DNA polymerase inhibitors and pegylated interferon alpha (PEG-IFN-α). NAs can efficiently suppress viral replication and improve liver pathology, but not eliminate or inactivate HBV covalently closed circular DNA (cccDNA). CCC DNA is the most stable HBV replication intermediate that exists as a minichromosome in the nucleus of infected hepatocyte to transcribe viral RNA and support viral protein translation and genome replication. Consequentially, a finite duration of NA therapy rarely achieves a sustained off-treatment suppression of viral replication and life-long NA treatment is most likely required. On the contrary, PEG-IFN-α has the benefit of finite treatment duration and achieves HBsAg seroclearance, the indication of durable immune control of HBV replication and functional cure of CHB, in approximately 5% of treated patients. However, the low antiviral efficacy and poor tolerability limit its use. Understanding how IFN-α suppresses HBV replication and regulates antiviral immune responses will help rational optimization of IFN therapy and development of novel immune modulators to improve the rate of functional cure. This review article highlights mechanistic insight on IFN control of HBV infection and recent progress in development of novel IFN regimens, small molecule IFN mimetics and combination therapy of PEG-IFN-α with new direct-acting antivirals and therapeutic vaccines to facilitate the functional cure of CHB.
Collapse
Affiliation(s)
- Qiong Zhao
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Hui Liu
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Liudi Tang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | | | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, United States.
| |
Collapse
|
7
|
Pujantell M, Skenteris NT, Claussen JM, Grünhagel B, Thiele RJ, Altfeld M. Sex-dependent differences in type I IFN-induced natural killer cell activation. Front Immunol 2023; 14:1277967. [PMID: 38162640 PMCID: PMC10757368 DOI: 10.3389/fimmu.2023.1277967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Natural killer (NK) cells are important antiviral effector cells and also involved in tumor clearance. NK cells express IFNAR, rendering them responsive to Type I IFNs. To evaluate Type I IFN-mediated modulation of NK cell functions, individual Type I IFNs subtypes were assessed for their ability to activate NK cells. Different Type I IFN subtypes displayed a broad range in the capacity to induce and modulate NK cell activation and degranulation, measured by CD69 and CD107a expression in response to leukemia cell line K562. When including biological sex as a variable in the analysis, transwell co-cultures of NK cells with either male- or female-derived PBMCs or pDCs stimulated with the TLR7/8 agonist CL097 showed that NK cells were more activated by CL097-stimulated cells derived from females. These sex-specific differences were linked to higher CL097-induced IFNα production by pDCs derived from females, indicating an extrinsic sex-specific effect of Type I IFNs on NK cell function. Interestingly, in addition to the extrinsic effect, we also observed NK cell-intrinsic sex differences, as female NK cells displayed higher activation levels after IFNα-stimulation and after co-culture with CL097-stimulated pDCs, suggesting higher activation of IFNα-signaling transduction in female NK cells. Taken together, the results from these studies identify both extrinsic and intrinsic sex-specific differences in Type I IFN-dependent NK cell functions, contributing to a better understanding of sex-specific differences in innate immunity.
Collapse
Affiliation(s)
- Maria Pujantell
- Institute of Immunology, University Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | | | - Benjamin Grünhagel
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Rebecca-Jo Thiele
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
- Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
8
|
Yadav S, Varma A, Muralidharan AO, Bhowmick S, Mondal S, Mallick AI. The immune-adjunctive potential of recombinant LAB vector expressing murine IFNλ3 (MuIFNλ3) against Type A Influenza Virus (IAV) infection. Gut Pathog 2023; 15:53. [PMID: 37904242 PMCID: PMC10617148 DOI: 10.1186/s13099-023-00578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The conventional means of controlling the recurring pandemics of Type A Influenza Virus (IAV) infections remain challenging primarily because of its high mutability and increasing drug resistance. As an alternative to control IAV infections, the prophylactic use of cytokines to drive immune activation of multiple antiviral host factors has been progressively recognized. Among them, Type III Interferons (IFNs) exhibit a pivotal role in inducing potent antiviral host responses by upregulating the expression of several antiviral genes, including the Interferon-Stimulated Genes (ISGs) that specifically target the virus replication machinery. To harness the immuno-adjunctive potential, we examined whether pre-treatment of IFNλ3, a Type III IFN, can activate antiviral host responses against IAV infections. METHODS In the present study, we bioengineered a food-grade lactic acid-producing bacteria (LAB), Lactococcus lactis (L. lactis), to express and secrete functional murine IFNλ3 (MuIFNλ3) protein in the extracellular milieu. To test the immune-protective potential of MuIFNλ3 secreted by recombinant L. lactis (rL. lactis), we used murine B16F10 cells as an in vitro model while mice (BALB/c) were used for in vivo studies. RESULTS Our study demonstrated that priming with MuIFNλ3 secreted by rL. lactis could upregulate the expression of several antiviral genes, including Interferon Regulatory Factors (IRFs) and ISGs, without exacerbated pulmonary or intestinal inflammatory responses. Moreover, we also showed that pre-treatment of B16F10 cells with MuIFNλ3 can confer marked immune protection against mice-adapted influenza virus, A/PR/8/1934 (H1N1) infection. CONCLUSION Since the primary target for IAV infections is the upper respiratory and gastrointestinal tract, immune activation without affecting the tissue homeostasis suggests the immune-adjunctive potential of IFNλ3 against IAV infections.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Aparna Varma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Aparna Odayil Muralidharan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Sucharita Bhowmick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
9
|
Huang CG, Wu YC, Hsieh MJ, Lin YJ, Hsieh TH, Huang PW, Yang SL, Tsao KC, Shih SR, Lee LA. Impact of patient characteristics on innate immune responses and inflammasome activation in ex vivo human lung tissues infected with influenza A virus. Front Cell Infect Microbiol 2023; 13:1269329. [PMID: 37900310 PMCID: PMC10611511 DOI: 10.3389/fcimb.2023.1269329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background Influenza A virus (IAV) infection poses a persistent global health challenge, necessitating a nuanced grasp of host immune responses for optimal interventions. While the interplay between aging, immunosenescence, and IAV is recognized as key in severe lower respiratory tract infections, the role of specific patient attributes in shaping innate immune reactions and inflammasome activity during IAV infection remains under-investigated. In this study, we utilized an ex vivo infection model of human lung tissues with H3N2 IAV to discern relationships among patient demographics, IAV nucleoprotein (NP) expression, toll-like receptor (TLR) profiles, PD-1/PD-L1 markers, and cytokine production. Methods Our cohort consisted of thirty adult patients who underwent video-assisted thoracoscopic surgery during 2018-2019. Post-surgical lung tissues were exposed to H3N2 IAV for ex vivo infections, and the ensuing immune responses were profiled using flow cytometry. Results We observed pronounced IAV activity within lung cells, as indicated by marked NP upregulation in both epithelial cells (P = 0.022) and macrophages (P = 0.003) in the IAV-exposed group relative to controls. Notably, interleukin-2 levels correlated with variations in TLR1 expression on epithelial cells and PD-L1 markers on macrophages. Age emerged as a modulating factor, dampening innate immune reactions, as evidenced by reduced interleukin-2 and interferon-γ concentrations (both adjusted P < 0.05). Intriguingly, a subset of participants with pronounced tumor necrosis factor-alpha post-mock infection (Cluster 1) showed attenuated cytokine responses in contrast to their counterparts in Cluster 2 and Cluster 3 (all adjusted P < 0.05). Individuals in Cluster 2, characterized by a low post-mock infection NP expression in macrophages, exhibited reduced variations in both NP and TLR1-3 expressions on these cells and a decreased variation in interleukin-2 secretion in comparison to their Cluster 3 counterparts, who were identified by their elevated NP macrophage expression (all adjusted P < 0.05). Conclusion Our work elucidates the multifaceted interplay of patient factors, innate immunity, and inflammasome responses in lung tissues subjected to ex vivo H3N2 IAV exposure, reflecting real-world lower respiratory tract infections. While these findings provide a foundation for tailored therapeutic strategies, supplementary studies are requisite for thorough validation and refinement.
Collapse
Affiliation(s)
- Chung-Guei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Cheng Wu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Ju Hsieh
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Jhu Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Tzu-Hsuan Hsieh
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Po-Wei Huang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Shu-Li Yang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Li-Ang Lee
- Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Otorhinolaryngology - Head and Neck Surgery, Chang Gung Memorial Hospital, Linkou Main Branch, Taoyuan, Taiwan
| |
Collapse
|
10
|
Song B, Wei W, Liu X, Huang Y, Zhu S, Yi L, Eerdunfu, Ding H, Zhao M, Chen J. Recombinant Porcine Interferon-α Decreases Pseudorabies Virus Infection. Vaccines (Basel) 2023; 11:1587. [PMID: 37896991 PMCID: PMC10610829 DOI: 10.3390/vaccines11101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Interferon (IFN) is a cell-secreted cytokine possessing biological activities including antiviral functioning, immune regulation, and others. Interferon-alpha (IFN-α) mainly derives from plasmacytoid dendritic cells, which activate natural killer cells and regulate immune responses. IFN-α responds to the primary antiviral mechanism in the innate immune system, which can effectively cure acute infectious diseases. Pseudorabies (PR) is an acute infectious disease caused by pseudorabies virus (PRV). The clinical symptoms of PRV are as follows: reproductive dysfunction among pregnant sows and high mortality rates among piglets. These pose a severe threat to the swine industry. Related studies show that IFN-α has broad applications in preventing and treating viral diseases. Therefore, a PRV mouse model using artificial infection was established in this study to explore the pathogenic effect of IFN-α on PRV. We designed a sequence with IFN-α4 (M28623, Genbank) and cloned it on the lentiviral vector. CHO-K1 cells were infected and identified using WB and RT-PCR; a CHO-K1 cell line with a stable expression of the recombinant protein PoIFN-α was successfully constructed. H&E staining and virus titer detection were used to investigate the recombinant protein PoIFN-α's effect on PR in BALB/c mice. The results show that the PoIFN-α has a preventive and therapeutic impact on PR. In conclusion, the recombinant protein can alleviate symptoms and reduce the replication of PRV in vivo.
Collapse
Affiliation(s)
- Bowen Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Wenkang Wei
- Agro-Biological Gene Research Center, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Xueyi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Yaoyao Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Shuaiqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Eerdunfu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
- Agro-Biological Gene Research Center, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (B.S.); (X.L.); (Y.H.); (S.Z.); (L.Y.); (H.D.); (M.Z.)
| |
Collapse
|
11
|
Verma G, Dhawan M, Saied AA, Kaur G, Kumar R, Emran TB. Immunomodulatory approaches in managing lung inflammation in COVID-19: A double-edge sword. Immun Inflamm Dis 2023; 11:e1020. [PMID: 37773723 PMCID: PMC10521379 DOI: 10.1002/iid3.1020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/19/2023] [Accepted: 09/09/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION The novel coronavirus infectious disease 2019 (COVID-19) which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a gigantic problem. The lung is the major target organ of SARS-CoV-2 and some of its variants like Delta and Omicron variant adapted in such a way that these variants can significantly damage this vital organ of the body. These variants raised a few eyebrows as the outbreaks have been seen in the vaccinated population. Patients develop severe respiratory illnesses which eventually prove fatal unless treated early. MAIN BODY Studies have shown that SARS-CoV-2 causes the release of pro-inflammatory cytokines such as interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α which are mediators of lung inflammation, lung damage, fever, and fibrosis. Additionally, various chemokines have been found to play an important role in the disease progression. A plethora of pro-inflammatory cytokines "cytokine storm" has been observed in severe cases of SARS-CoV-2 infection leading to acute respiratory distress syndrome (ARDS) and pneumonia that may prove fatal. To counteract cytokine storm-inducing lung inflammation, several promising immunomodulatory approaches are being investigated in numerous clinical trials. However, the benefits of using these strategies should outweigh the risks involved as the use of certain immunosuppressive approaches might lead the host susceptible to secondary bacterial infections. CONCLUSION The present review discusses promising immunomodulatory approaches to manage lung inflammation in COVID-19 cases which may serve as potential therapeutic options in the future and may prove lifesaving.
Collapse
Affiliation(s)
- Geetika Verma
- Department of Experimental Medicine and BiotechnologyPost Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Manish Dhawan
- Department of MicrobiologyPunjab Agricultural UniversityLudhianaIndia
- Trafford CollegeAltrinchamUK
| | | | - Geetika Kaur
- Department of Opthalmology, Visual and Anatomical SciencesWayne State University School of MedicineDetroitMichiganUSA
| | - Reetesh Kumar
- Department of Agricultural Sciences, Institute of Applied Sciences and HumanitiesGLA UniversityMathuraIndia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health SciencesDaffodil International UniversityDhakaBangladesh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer CenterBrown UniversityProvidenceRhode IslandUnited States
| |
Collapse
|
12
|
Moreau TRJ, Bondet V, Rodero MP, Duffy D. Heterogeneity and functions of the 13 IFN-α subtypes - lucky for some? Eur J Immunol 2023; 53:e2250307. [PMID: 37367434 DOI: 10.1002/eji.202250307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Type I IFNs are critical for host responses to viral infection and are also implicated in the pathogenesis of multiple autoimmune diseases. Multiple subtypes exist within the type I IFN family, in particular 13 distinct IFN-α genes, which signal through the same heterodimer receptor that is ubiquitously expressed by mammalian cells. Both evolutionary genetic studies and functional antiviral assays strongly suggest differential functions and activity between the 13 IFN-α subtypes, yet we still lack a clear understanding of these different roles. This review summarizes the evidence from studies describing differential functions of IFN-α subtypes and highlights potential reasons for discrepancies between the reports. We examine both acute and chronic viral infection, as well as autoimmunity, and integrate a more recent awareness of the importance of anti-IFN-α autoantibodies in shaping the type I IFN responses in these different conditions.
Collapse
Affiliation(s)
- Thomas R J Moreau
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Mathieu P Rodero
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
13
|
Kleinehr J, Schöfbänker M, Daniel K, Günl F, Mohamed FF, Janowski J, Brunotte L, Boergeling Y, Liebmann M, Behrens M, Gerdemann A, Klotz L, Esselen M, Humpf HU, Ludwig S, Hrincius ER. Glycolytic interference blocks influenza A virus propagation by impairing viral polymerase-driven synthesis of genomic vRNA. PLoS Pathog 2023; 19:e1010986. [PMID: 37440521 DOI: 10.1371/journal.ppat.1010986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/10/2023] [Indexed: 07/15/2023] Open
Abstract
Influenza A virus (IAV), like any other virus, provokes considerable modifications of its host cell's metabolism. This includes a substantial increase in the uptake as well as the metabolization of glucose. Although it is known for quite some time that suppression of glucose metabolism restricts virus replication, the exact molecular impact on the viral life cycle remained enigmatic so far. Using 2-deoxy-d-glucose (2-DG) we examined how well inhibition of glycolysis is tolerated by host cells and which step of the IAV life cycle is affected. We observed that effects induced by 2-DG are reversible and that cells can cope with relatively high concentrations of the inhibitor by compensating the loss of glycolytic activity by upregulating other metabolic pathways. Moreover, mass spectrometry data provided information on various metabolic modifications induced by either the virus or agents interfering with glycolysis. In the presence of 2-DG viral titers were significantly reduced in a dose-dependent manner. The supplementation of direct or indirect glycolysis metabolites led to a partial or almost complete reversion of the inhibitory effect of 2-DG on viral growth and demonstrated that indeed the inhibition of glycolysis and not of N-linked glycosylation was responsible for the observed phenotype. Importantly, we could show via conventional and strand-specific qPCR that the treatment with 2-DG led to a prolonged phase of viral mRNA synthesis while the accumulation of genomic vRNA was strongly reduced. At the same time, minigenome assays showed no signs of a general reduction of replicative capacity of the viral polymerase. Therefore, our data suggest that the significant reduction in IAV replication by glycolytic interference occurs mainly due to an impairment of the dynamic regulation of the viral polymerase which conveys the transition of the enzyme's function from transcription to replication.
Collapse
Affiliation(s)
- Jens Kleinehr
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Michael Schöfbänker
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Katharina Daniel
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Franziska Günl
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Fakry Fahmy Mohamed
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Josua Janowski
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Linda Brunotte
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Yvonne Boergeling
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Andrea Gerdemann
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Eike R Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| |
Collapse
|
14
|
Schloer S, Treuherz D, Faist A, Witt MD, Wunderlich K, Wiewrodt R, Wiebe K, Barth P, Wälzlein JH, Kummer S, Balkema-Buschmann A, Ludwig S, Brunotte L, Rescher U. 3D ex vivo tissue platforms to investigate the early phases of influenza A virus- and SARS-CoV-2-induced respiratory diseases. Emerg Microbes Infect 2022; 11:2160-2175. [PMID: 36000328 PMCID: PMC9518268 DOI: 10.1080/22221751.2022.2117101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pandemic outbreaks of viruses such as influenza virus or SARS-CoV-2 are associated with high morbidity and mortality and thus pose a massive threat to global health and economics. Physiologically relevant models are needed to study the viral life cycle, describe the pathophysiological consequences of viral infection, and explore possible drug targets and treatment options. While simple cell culture-based models do not reflect the tissue environment and systemic responses, animal models are linked with huge direct and indirect costs and ethical questions. Ex vivo platforms based on tissue explants have been introduced as suitable platforms to bridge the gap between cell culture and animal models. We established a murine lung tissue explant platform for two respiratory viruses, influenza A virus (IAV) and SARS-CoV-2. We observed efficient viral replication, associated with the release of inflammatory cytokines and the induction of an antiviral interferon response, comparable to ex vivo infection in human lung explants. Endolysosomal entry could be confirmed as a potential host target for pharmacological intervention, and the potential repurposing potentials of fluoxetine and interferons for host-directed therapy previously seen in vitro could be recapitulated in the ex vivo model.
Collapse
Affiliation(s)
- Sebastian Schloer
- Institute-Associated Research Group "Regulatory Mechanisms of Inflammation", Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany.,Leibniz Institute of Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Daniel Treuherz
- Institute-Associated Research Group "Regulatory Mechanisms of Inflammation", Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - Aileen Faist
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Marlous de Witt
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Katharina Wunderlich
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Rainer Wiewrodt
- Department of Medicine A, Hematology, Oncology and Respiratory Medicine, University Hospital Münster, Münster, Germany
| | - Karsten Wiebe
- Department of Thoracic Surgery, University Hospital Münster, Münster, Germany
| | - Peter Barth
- Gerhard-Domagk-Institute of Pathology, Westfälische Wilhelms-University, Münster, Germany
| | - Joo-Hee Wälzlein
- Center for Biological Threats and Special Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Susann Kummer
- Center for Biological Threats and Special Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institute, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald, Germany
| | - Stephan Ludwig
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Linda Brunotte
- Institute of Virology, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Ursula Rescher
- Institute-Associated Research Group "Regulatory Mechanisms of Inflammation", Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, and "Cells in Motion" Interfaculty Center, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
15
|
Guo K, Barrett BS, Morrison JH, Mickens KL, Vladar EK, Hasenkrug KJ, Poeschla EM, Santiago ML. Interferon resistance of emerging SARS-CoV-2 variants. Proc Natl Acad Sci U S A 2022; 119:e2203760119. [PMID: 35867811 PMCID: PMC9371743 DOI: 10.1073/pnas.2203760119] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/26/2022] [Indexed: 01/08/2023] Open
Abstract
The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis, and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and five major variants of concern that include the B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1.617.2 (delta), and B.1.1.529 (omicron) lineages. Our data reveal that relative to ancestral isolates, SARS-CoV-2 variants of concern exhibited increased interferon resistance, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased transmissibility and/or lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.
Collapse
Affiliation(s)
- Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Bradley S. Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - James H. Morrison
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kaylee L. Mickens
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eszter K. Vladar
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kim J. Hasenkrug
- Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Eric M. Poeschla
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
16
|
Faist A, Janowski J, Kumar S, Hinse S, Çalışkan DM, Lange J, Ludwig S, Brunotte L. Virus Infection and Systemic Inflammation: Lessons Learnt from COVID-19 and Beyond. Cells 2022; 11:2198. [PMID: 35883640 PMCID: PMC9316821 DOI: 10.3390/cells11142198] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
Respiratory infections with newly emerging zoonotic viruses such as SARS-CoV-2, the etiological agent of COVID-19, often lead to the perturbation of the human innate and adaptive immune responses causing severe disease with high mortality. The responsible mechanisms are commonly virus-specific and often include either over-activated or delayed local interferon responses, which facilitate efficient viral replication in the primary target organ, systemic viral spread, and rapid onset of organ-specific and harmful inflammatory responses. Despite the distinct replication strategies, human infections with SARS-CoV-2 and highly pathogenic avian influenza viruses demonstrate remarkable similarities and differences regarding the mechanisms of immune induction, disease dynamics, as well as the long-term sequelae, which will be discussed in this review. In addition, we will highlight some important lessons about the effectiveness of antiviral and immunomodulatory therapeutic strategies that this pandemic has taught us.
Collapse
Affiliation(s)
- Aileen Faist
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- CiM-IMPRS, International Max Planck Research School—Molecular Biomedicine, Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany
| | - Josua Janowski
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- SP BioSciences Graduate Program, University of Muenster, 48149 Muenster, Germany
| | - Sriram Kumar
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- EvoPAD Research Training Group 2220, University of Muenster, 48149 Muenster, Germany
| | - Saskia Hinse
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
| | - Duygu Merve Çalışkan
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- EvoPAD Research Training Group 2220, University of Muenster, 48149 Muenster, Germany
| | - Julius Lange
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
| | - Stephan Ludwig
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- CiM-IMPRS, International Max Planck Research School—Molecular Biomedicine, Westfaelische Wilhelms-University Muenster, 48149 Muenster, Germany
- EvoPAD Research Training Group 2220, University of Muenster, 48149 Muenster, Germany
- Interdisciplinary Center for Clinical Research, University of Muenster, 48149 Muenster, Germany
| | - Linda Brunotte
- Institute of Virology, University of Muenster, 48149 Muenster, Germany; (A.F.); (J.J.); (S.K.); (S.H.); (D.M.Ç.); (J.L.); (S.L.)
- Interdisciplinary Center for Clinical Research, University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
17
|
Temporal Dynamics of the Ruminant Type I IFN-Induced Antiviral State against Homologous Parainfluenza Virus 3 Challenge In Vitro. Viruses 2022; 14:v14051025. [PMID: 35632770 PMCID: PMC9146716 DOI: 10.3390/v14051025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Viruses have evolved diverse strategies to evade the antiviral response of interferons (IFNs). Exogenous IFNs were applied to eliminate the counteracting effect and possess antiviral properties. Caprine parainfluenza virus 3 (CPIV3) and bovine parainfluenza virus type 3 (BPIV3) are important pathogens associated with respiratory diseases in goat and cattle, respectively. To explore the feasibility of type I IFNs for control of CPIV3 and BPIV3 infection, the activated effects of IFN-stimulated genes (ISGs) and the immunomodulation responses of goat IFN-α were detected by transcriptomic analysis. Then, the antiviral efficacy of goat IFN-α and IFN-τ against CPIV3 and BPIV3 infection in MDBK cells was evaluated using different treatment routes at different infection times. The results showed that CPIV3 infection inhibited the production of type I IFNs, whereas exogenous goat IFN-α induced various ISGs, the IFN-τ encoding gene, and a negligible inflammatory response. Consequently, goat IFN-α prophylaxis but not treatment was found to effectively modulate CPIV3 and BPIV3 infection; the protective effect lasted for 1 week, and the antiviral activity was maintained at a concentration of 0.1 μg/mL. Furthermore, the antiviral activity of goat IFN-τ in response to CPIV3 and BPIV3 infection is comparable to that of goat IFN-α. These results corroborate that goat IFN-α and IFN-τ exhibit prophylactic activities in response to ruminant respiratory viral infection in vitro, and should be further investigated for a potential use in vivo.
Collapse
|
18
|
Karlebach G, Aronow B, Baylin SB, Butler D, Foox J, Levy S, Meydan C, Mozsary C, Saravia-Butler AM, Taylor DM, Wurtele E, Mason CE, Beheshti A, Robinson PN. Betacoronavirus-specific alternate splicing. Genomics 2022; 114:110270. [PMID: 35074468 PMCID: PMC8782732 DOI: 10.1016/j.ygeno.2022.110270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/15/2021] [Accepted: 01/16/2022] [Indexed: 11/04/2022]
Abstract
Viruses can subvert a number of cellular processes including splicing in order to block innate antiviral responses, and many viruses interact with cellular splicing machinery. SARS-CoV-2 infection was shown to suppress global mRNA splicing, and at least 10 SARS-CoV-2 proteins bind specifically to one or more human RNAs. Here, we investigate 17 published experimental and clinical datasets related to SARS-CoV-2 infection, datasets from the betacoronaviruses SARS-CoV and MERS, as well as Streptococcus pneumonia, HCV, Zika virus, Dengue virus, influenza H3N2, and RSV. We show that genes showing differential alternative splicing in SARS-CoV-2 have a similar functional profile to those of SARS-CoV and MERS and affect a diverse set of genes and biological functions, including many closely related to virus biology. Additionally, the differentially spliced transcripts of cells infected by coronaviruses were more likely to undergo intron-retention, contain a pseudouridine modification, and have a smaller number of exons as compared with differentially spliced transcripts in the control groups. Viral load in clinical COVID-19 samples was correlated with isoform distribution of differentially spliced genes. A significantly higher number of ribosomal genes are affected by differential alternative splicing and gene expression in betacoronavirus samples, and the betacoronavirus differentially spliced genes are depleted for binding sites of RNA-binding proteins. Our results demonstrate characteristic patterns of differential splicing in cells infected by SARS-CoV-2, SARS-CoV, and MERS. The alternative splicing changes observed in betacoronaviruses infection potentially modify a broad range of cellular functions, via changes in the functions of the products of a diverse set of genes involved in different biological processes.
Collapse
|
19
|
Sohail A, Iqbal AA, Sahini N, Chen F, Tantawy M, Waqas SF, Winterhoff M, Ebensen T, Schultz K, Geffers R, Schughart K, Preusse M, Shehata M, Bähre H, Pils MC, Guzman CA, Mostafa A, Pleschka S, Falk C, Michelucci A, Pessler F. Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection. PLoS Pathog 2022; 18:e1010219. [PMID: 35025971 PMCID: PMC8846506 DOI: 10.1371/journal.ppat.1010219] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/15/2022] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection. Interferon responses are part of the primary host defenses against infections. However, excessive inflammation is often a major factor in severe disease or even death in respiratory infections such as influenza, as it can lead to acute respiratory distress syndrome and sepsis-like multiorgan involvement. We applied itaconate and chemically modified versions of it (which enter cells more efficiently and can be applied at lower doses) to influenza A virus-infected human cells and lung tissue and found that these compounds markedly repress interferon responses and some pro-inflammatory processes without increasing viral replication. In fact, 4-octyl itaconate greatly decreased viral RNA replication in peripheral blood, and itaconate and 4-octyl itaconate reduced production of infectious virus in a human lung cell line. By analyzing gene expression patterns of single mononuclear cells in peripheral blood, we found that the virus infects predominantly monocytes and that these cells are the only source of ACOD1, the enzyme that synthesizes itaconate in humans. In a mouse model of influenza A virus infection, dimethyl-itaconate prevented lung inflammation and improved survival. Thus, our results suggest that novel medications based on itaconate promise to be effective treatments for influenza because they reduce deleterious inflammation and potentially also limit viral spread in the patient.
Collapse
Affiliation(s)
- Aaqib Sohail
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Azeem A. Iqbal
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Nishika Sahini
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Fangfang Chen
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Mohamed Tantawy
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Center, Dokki, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Center, Dokki, Giza, Egypt
| | - Syed F.H. Waqas
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Moritz Winterhoff
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Thomas Ebensen
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kristin Schultz
- Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Matthias Preusse
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mahmoud Shehata
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Marina C. Pils
- Mouse Pathology Platform, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A. Guzman
- Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ahmed Mostafa
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Stephan Pleschka
- Institute for Medical Virology, Justus-Liebig-University, Giessen, Germany
- German Center for Infection Research (DZIF) partner site Giessen, Germany
| | - Christine Falk
- Department of Transplantation Immunology, Hannover Medical School, Hannover, Germany
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Frank Pessler
- Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Centre for Individualised Infection Medicine, Hannover, Germany
- * E-mail: , frank.pesslerwincore.de
| |
Collapse
|
20
|
Varghese PM, Mukherjee S, Al-Mohanna FA, Saleh SM, Almajhdi FN, Beirag N, Alkahtani SH, Rajkumari R, Nal Rogier B, Sim RB, Idicula-Thomas S, Madan T, Murugaiah V, Kishore U. Human Properdin Released By Infiltrating Neutrophils Can Modulate Influenza A Virus Infection. Front Immunol 2021; 12:747654. [PMID: 34956182 PMCID: PMC8695448 DOI: 10.3389/fimmu.2021.747654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The complement system is designed to recognise and eliminate invading pathogens via activation of classical, alternative and lectin pathways. Human properdin stabilises the alternative pathway C3 convertase, resulting in an amplification loop that leads to the formation of C5 convertase, thereby acting as a positive regulator of the alternative pathway. It has been noted that human properdin on its own can operate as a pattern recognition receptor and exert immune functions outside its involvement in complement activation. Properdin can bind directly to microbial targets via DNA, sulfatides and glycosaminoglycans, apoptotic cells, nanoparticles, and well-known viral virulence factors. This study was aimed at investigating the complement-independent role of properdin against Influenza A virus infection. As one of the first immune cells to arrive at the site of IAV infection, we show here that IAV challenged neutrophils released properdin in a time-dependent manner. Properdin was found to directly interact with haemagglutinin, neuraminidase and matrix 1 protein Influenza A virus proteins in ELISA and western blot. Furthermore, modelling studies revealed that properdin could bind HA and NA of the H1N1 subtype with higher affinity compared to that of H3N2 due to the presence of an HA cleavage site in H1N1. In an infection assay using A549 cells, properdin suppressed viral replication in pH1N1 subtype while promoting replication of H3N2 subtype, as revealed by qPCR analysis of M1 transcripts. Properdin treatment triggered an anti-inflammatory response in H1N1-challenged A549 cells and a pro-inflammatory response in H3N2-infected cells, as evident from differential mRNA expression of TNF-α, NF-κB, IFN-α, IFN-β, IL-6, IL-12 and RANTES. Properdin treatment also reduced luciferase reporter activity in MDCK cells transduced with H1N1 pseudotyped lentiviral particles; however, it was increased in the case of pseudotyped H3N2 particles. Collectively, we conclude that infiltrating neutrophils at the site of IAV infection can release properdin, which then acts as an entry inhibitor for pandemic H1N1 subtype while suppressing viral replication and inducing an anti-inflammatory response. H3N2 subtype can escape this immune restriction due to altered haemagglutinin and neuraminindase, leading to enhanced viral entry, replication and pro-inflammatory response. Thus, depending on the subtype, properdin can either limit or aggravate IAV infection in the host.
Collapse
Affiliation(s)
- Praveen M Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Shuvechha Mukherjee
- Biomedical Informatics Centre, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Souad M Saleh
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Saad H Alkahtani
- Department of Zoology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Reena Rajkumari
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Beatrice Nal Rogier
- INSERM U1104 Centre d'immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Robert B Sim
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Taruna Madan
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Valarmathy Murugaiah
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
21
|
Ianevski A, Yao R, Zusinaite E, Lello LS, Wang S, Jo E, Yang J, Ravlo E, Wang W, Lysvand H, Løseth K, Oksenych V, Tenson T, Windisch MP, Poranen MM, Nieminen AI, Nordbø SA, Fenstad MH, Grødeland G, Aukrust P, Trøseid M, Kantele A, Lastauskienė E, Vitkauskienė A, Legrand N, Merits A, Bjørås M, Kainov DE. Synergistic Interferon-Alpha-Based Combinations for Treatment of SARS-CoV-2 and Other Viral Infections. Viruses 2021; 13:2489. [PMID: 34960758 PMCID: PMC8705725 DOI: 10.3390/v13122489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. METHODS Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. RESULTS While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα-remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. CONCLUSIONS Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Rouan Yao
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Eva Zusinaite
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Laura Sandra Lello
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Sainan Wang
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Eunji Jo
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si 463-400, Gyeonggi-do, Korea; (E.J.); (J.Y.); (M.P.W.)
| | - Jaewon Yang
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si 463-400, Gyeonggi-do, Korea; (E.J.); (J.Y.); (M.P.W.)
| | - Erlend Ravlo
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Wei Wang
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Hilde Lysvand
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Kirsti Løseth
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Marc P. Windisch
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si 463-400, Gyeonggi-do, Korea; (E.J.); (J.Y.); (M.P.W.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland;
| | - Svein Arne Nordbø
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
- Department of Medical Microbiology, St. Olavs Hospital, 7006 Trondheim, Norway
| | - Mona Høysæter Fenstad
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
- Department of Immunology and Transfusion Medicine, St. Olavs Hospital, 7006 Trondheim, Norway
| | - Gunnveig Grødeland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (G.G.); (P.A.); (M.T.)
- Institute of Clinical Medicine (KlinMed), University of Oslo, 0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (G.G.); (P.A.); (M.T.)
- Institute of Clinical Medicine (KlinMed), University of Oslo, 0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; (G.G.); (P.A.); (M.T.)
- Institute of Clinical Medicine (KlinMed), University of Oslo, 0318 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Anu Kantele
- Inflammation Center, Infectious Diseases, Helsinki University Hospital, 00029 Helsinki, Finland;
| | | | - Astra Vitkauskienė
- Department of Laboratory Medicine, Lithuanian University of Health Science, 44307 Kaunas, Lithuania;
| | - Nicolas Legrand
- Oncodesign, 25 Avenue du Québec, 91140 Villebon Sur Yvette, France;
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway; (A.I.); (R.Y.); (E.R.); (W.W.); (H.L.); (K.L.); (V.O.); (S.A.N.); (M.H.F.); (M.B.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia; (E.Z.); (L.S.L.); (S.W.); (T.T.); (A.M.)
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
22
|
Guo K, Barrett BS, Mickens KL, Vladar EK, Morrison JH, Hasenkrug KJ, Poeschla EM, Santiago ML. Interferon Resistance of Emerging SARS-CoV-2 Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.20.436257. [PMID: 33758840 PMCID: PMC7986999 DOI: 10.1101/2021.03.20.436257] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and four major variants of concern. Our data reveal increased interferon resistance in emerging SARS-CoV-2 variants, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.
Collapse
Affiliation(s)
- Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Bradley S. Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Kaylee L. Mickens
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Ezster K. Vladar
- Division of Pulmonary Sciences and Critical Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - James H. Morrison
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Kim J. Hasenkrug
- Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Eric M. Poeschla
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Mario L. Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| |
Collapse
|
23
|
Sundaresh B, Xu S, Noonan B, Mansour MK, Leong JM, van Opijnen T. Host-informed therapies for the treatment of pneumococcal pneumonia. Trends Mol Med 2021; 27:971-989. [PMID: 34376327 DOI: 10.1016/j.molmed.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022]
Abstract
Over the past two decades, traditional antimicrobial strategies have lost efficacy due to a rapid rise in antibiotic resistance and limited success in developing new antibiotics. Rather than relying on therapeutics solely targeting the bacterial pathogen, therapies are emerging that simultaneously focus on host responses. Here, we describe the most promising 'host-informed therapies' (HITs) in two categories: those that aid patients with fully functional immune systems, and those that aid patients with perturbed immune processes. Using Streptococcus pneumoniae, the leading cause of bacterial pneumonia, as a case study, we show HITs as an attractive option for supplementing infection management. However, to broaden their applicability and design new strategies, targeted research and clinical trials will be essential.
Collapse
Affiliation(s)
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Brian Noonan
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, MA, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
24
|
Fumagalli MR, Zapperi S, La Porta CAM. Role of body temperature variations in bat immune response to viral infections. J R Soc Interface 2021; 18:20210211. [PMID: 34314652 DOI: 10.1098/rsif.2021.0211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The ability of bats to coexist with viruses without being harmed is an interesting issue that is still under investigation. Here we use a mathematical model to show that the pattern of body temperature variations observed in bats between day and night is responsible for their ability to keep viruses in check. From the dynamical systems point of view, our model displays an intriguing quasi-periodic behaviour that might be relevant in making the system robust by avoiding viral escape due to perturbations in the body temperature cycle.
Collapse
Affiliation(s)
- Maria Rita Fumagalli
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Biophysics Institute, Via De Marini 6, 16149 Genova, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133 Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, ICMATE, Via R. Cozzi 53, 20125 Milano, Italy
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133 Milano, Italy.,CNR - Consiglio Nazionale delle Ricerche, Biophysics Institute, Via De Marini 6, 16149 Genova, Italy
| |
Collapse
|
25
|
Abstract
Type I interferons (IFNs) are a family of cytokines that represent a first line of defense against virus infections. The 12 different IFN-α subtypes share a receptor on target cells and trigger similar signaling cascades. Several studies have collectively shown that this apparent redundancy conceals qualitatively different responses induced by individual subtypes, which display different efficacies of inhibition of HIV replication. Some studies, however, provided evidence that the disparities are quantitative rather than qualitative. Since RNA expression analyses show a large but incomplete overlap of the genes induced, they may support both models. To explore if the IFN-α subtypes induce functionally relevant different anti-HIV activities, we have compared the efficacies of inhibition of all 12 subtypes on HIV spread and on specific steps of the viral replication cycle, including viral entry, reverse transcription, protein synthesis, and virus release. Finding different hierarchies of inhibition would validate the induction of qualitatively different responses. We found that while most subtypes similarly inhibit virus entry, they display distinctive potencies on other early steps of HIV replication. In addition, only some subtypes were able to target effectively the late steps. The extent of induction of known anti-HIV factors helps to explain some, but not all differences observed, confirming the participation of additional IFN-induced anti-HIV effectors. Our findings support the notion that different IFN-α subtypes can induce the expression of qualitatively different antiviral activities. IMPORTANCE The initial response against viruses relies in large part on type I interferons, which include 12 subtypes of IFN-α. These cytokines bind to a common receptor on the cell surface and trigger the expression of incompletely overlapping sets of genes. Whether the anti-HIV responses induced by IFN-α subtypes differ in the extent of expression or in the nature of the genes involved remains debated. Also, RNA expression profiles led to opposite conclusions, depending on the importance attributed to the induction of common or distinctive genes. To explore if relevant anti-HIV activities can be differently induced by the IFN-α subtypes, we compared their relative efficacies on specific steps of the replication cycle. We show that the hierarchy of IFN potencies depends on the step analyzed, supporting qualitatively different responses. This work will also prompt the search for novel IFN-induced anti-HIV factors acting on specific steps of the replication cycle.
Collapse
|
26
|
Karlebach G, Aronow B, Baylin SB, Butler D, Foox J, Levy S, Meydan C, Mozsary C, Saravia-Butler AM, Taylor DM, Wurtele E, Mason CE, Beheshti A, Robinson PN. Betacoronavirus-specific alternate splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34230929 PMCID: PMC8259905 DOI: 10.1101/2021.07.02.450920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses can subvert a number of cellular processes in order to block innate antiviral responses, and many viruses interact with cellular splicing machinery. SARS-CoV-2 infection was shown to suppress global mRNA splicing, and at least 10 SARS-CoV-2 proteins bind specifically to one or more human RNAs. Here, we investigate 17 published experimental and clinical datasets related to SARS-CoV-2 infection as well as datasets from the betacoronaviruses SARS-CoV and MERS as well as Streptococcus pneumonia, HCV, Zika virus, Dengue virus, influenza H3N2, and RSV. We show that genes showing differential alternative splicing in SARS-CoV-2 have a similar functional profile to those of SARS-CoV and MERS and affect a diverse set of genes and biological functions, including many closely related to virus biology. Additionally, the differentially spliced transcripts of cells infected by coronaviruses were more likely to undergo intron-retention, contain a pseudouridine modification and a smaller number of exons than differentially spliced transcripts in the control groups. Viral load in clinical COVID-19 samples was correlated with isoform distribution of differentially spliced genes. A significantly higher number of ribosomal genes are affected by DAS and DGE in betacoronavirus samples, and the betacoronavirus differentially spliced genes are depleted for binding sites of RNA-binding proteins. Our results demonstrate characteristic patterns of differential splicing in cells infected by SARS-CoV-2, SARS-CoV, and MERS, potentially modifying a broad range of cellular functions and affecting a diverse set of genes and biological functions.
Collapse
|
27
|
Marti JLG, Wells A, Brufsky AM. Dysregulation of the mevalonate pathway during SARS-CoV-2 infection: An in silico study. J Med Virol 2021; 93:2396-2405. [PMID: 33331649 PMCID: PMC9553089 DOI: 10.1002/jmv.26743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 triggers a dysregulated innate immune system activation. As the mevalonate pathway (MVP) prevents the activation of inflammasomes and cytokine release and regulates endosomal transport, compromised signaling could be associated with the pathobiology of COVID-19. Prior transcriptomic studies of host cells in response to SARS-CoV-2 infection have not reported to date the effects of SARS-CoV-2 on the MVP. In this study, we accessed public data sets to report in silico investigations into gene expression. In addition, we proposed candidate genes that are thought to have a direct association with the pathogenesis of COVID-19, and which may be dependent on signals derived from the MVP. Our results revealed dysregulation of genes involved in the MVP. These results were not found when investigating the gene expression data from host cells infected with H3N2 influenza virus, H1N1 influenza virus, or respiratory syncytial virus. Our manually curated gene set showed significant gene expression variability in A549 cells infected with SARS-CoV-2, as per Blanco-Melo et al. data set (GSE147507). In light of the present findings, SARS-CoV-2 could hijack the MVP, leading to hyperinflammatory responses. Prompt reconstitution of this pathway with available agents should be considered in future studies.
Collapse
Affiliation(s)
- Juan Luis Gomez Marti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Health System, Pittsburgh, Pennsylvania, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Health System, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Adam M. Brufsky
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Molatlhegi RP, Ngcobo S, Liebenberg LJP, Ngcapu S, Mabhula A, Leslie A, Mchunu N, Zondi MM, Adamson JH, Govender K, Samsunder N, Karim SSA, Karim QA, Passmore JAS, Sivro A, McKinnon LR. Genital and systemic immune effects of the injectable, contraceptive norethisterone enanthate (NET-EN), in South African women. Am J Reprod Immunol 2021; 86:e13411. [PMID: 33641222 DOI: 10.1111/aji.13411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
PROBLEM Injectable hormonal contraceptives (IHC) have been associated with altered mucosal and systemic milieu which might increase HIV risk, but most studies have focused on DMPA and not NET-EN, despite the growing popularity and lower HIV risk associated with the latter in observational studies. METHOD OF STUDY We used high-performance liquid chromatography in combination with tandem triple quadrupole mass spectrometry (HPLC-LC-MS/MS) to measure steroid hormones in plasma samples of CAPRISA004 study participants. Concentrations of 48 cytokines were measured in the cervicovaginal lavage (CVL) and plasma, and their expression was compared between participants with detectable NET-EN (n = 201) versus non-detectable IHC (n = 90). Each log10 cytokine concentration was tested as an outcome in linear-mixed models, with NET-EN detection as the main explanatory variable. Multivariable models were adjusted for potential confounders. RESULTS In bivariate analysis, detectable NET-EN was associated with reduced cervicovaginal M-CSF (P = 0.008), GM-CSF (P = 0.025) and G-CSF (P = 0.039), and elevated levels MIF (P = 0.008), IL-18 (P = 0.011), RANTES (P = 0.005) and IL-1Rα (P < 0.001). Lower G-CSF (P = 0.011) and elevated IL-1Rα (P = 0.008) remained significant in adjusted models. Multivariable analyses of plasma samples obtained from NET-EN-detectable women showed a significant increase in IP-10 (P = 0.026) and reductions in TNF-β (P = 0.037), RANTES (P = 0.009), and M-CSF (P < 0.001). While similar growth factor reduction in CVL was noted for both DMPA and NET-EN, similar trends were not observed for endogenous progesterone. CONCLUSIONS Detectable NET-EN was associated with reduced growth factors in the plasma and genital tract; particularly G-CSF and M-CSF. Our results suggest that while NET-EN is not inflammatory, it may have important immunological effects.
Collapse
Affiliation(s)
- Refilwe P Molatlhegi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Samkelisiwe Ngcobo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Lenine J P Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Amanda Mabhula
- African Health Research Institute (AHRI), Durban, South Africa
| | - Alasdair Leslie
- African Health Research Institute (AHRI), Durban, South Africa
| | - Nobuhle Mchunu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,Biostatistics Unit, South African Medical Research Council (SAMRC), Durban, South Africa.,School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Mthobisi M Zondi
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - John H Adamson
- African Health Research Institute (AHRI), Durban, South Africa
| | - Katya Govender
- African Health Research Institute (AHRI), Durban, South Africa
| | - Natasha Samsunder
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,Department of Epidemiology, Columbia University, New York City, New York, USA
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,Department of Epidemiology, Columbia University, New York City, New York, USA
| | - Jo-Ann S Passmore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
29
|
Wittling MC, Cahalan SR, Levenson EA, Rabin RL. Shared and Unique Features of Human Interferon-Beta and Interferon-Alpha Subtypes. Front Immunol 2021; 11:605673. [PMID: 33542718 PMCID: PMC7850986 DOI: 10.3389/fimmu.2020.605673] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Type I interferons (IFN-I) were first discovered as an antiviral factor by Isaacs and Lindenmann in 1957, but they are now known to also modulate innate and adaptive immunity and suppress proliferation of cancer cells. While much has been revealed about IFN-I, it remains a mystery as to why there are 16 different IFN-I gene products, including IFNβ, IFNω, and 12 subtypes of IFNα. Here, we discuss shared and unique aspects of these IFN-I in the context of their evolution, expression patterns, and signaling through their shared heterodimeric receptor. We propose that rather than investigating responses to individual IFN-I, these contexts can serve as an alternative approach toward investigating roles for IFNα subtypes. Finally, we review uses of IFNα and IFNβ as therapeutic agents to suppress chronic viral infections or to treat multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | - Ronald L. Rabin
- Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
30
|
Boff L, Schreiber A, da Rocha Matos A, Del Sarto J, Brunotte L, Munkert J, Melo Ottoni F, Silva Ramos G, Kreis W, Castro Braga F, José Alves R, Maia de Pádua R, Maria Oliveira Simões C, Ludwig S. Semisynthetic Cardenolides Acting as Antiviral Inhibitors of Influenza A Virus Replication by Preventing Polymerase Complex Formation. Molecules 2020; 25:molecules25204853. [PMID: 33096707 PMCID: PMC7587960 DOI: 10.3390/molecules25204853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023] Open
Abstract
Influenza virus infections represent a major public health issue by causing annual epidemics and occasional pandemics that affect thousands of people worldwide. Vaccination is the main prophylaxis to prevent these epidemics/pandemics, although the effectiveness of licensed vaccines is rather limited due to the constant mutations of influenza virus antigenic characteristics. The available anti-influenza drugs are still restricted and there is an increasing viral resistance to these compounds, thus highlighting the need for research and development of new antiviral drugs. In this work, two semisynthetic derivatives of digitoxigenin, namely C10 (3β-((N-(2-hydroxyethyl)aminoacetyl)amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), showed anti-influenza A virus activity by affecting the expression of viral proteins at the early and late stages of replication cycle, and altering the transcription and synthesis of new viral proteins, thereby inhibiting the formation of new virions. Such antiviral action occurred due to the interference in the assembly of viral polymerase, resulting in an impaired polymerase activity and, therefore, reducing viral replication. Confirming the in vitro results, a clinically relevant ex vivo model of influenza virus infection of human tumor-free lung tissues corroborated the potential of these compounds, especially C10, to completely abrogate influenza A virus replication at the highest concentration tested (2.0 µM). Taken together, these promising results demonstrated that C10 and C11 can be considered as potential new anti-influenza drug candidates.
Collapse
Affiliation(s)
- Laurita Boff
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - André Schreiber
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| | - Aline da Rocha Matos
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Respiratory Viruses and Measles Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 22775-051, Brazil
| | - Juliana Del Sarto
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Linda Brunotte
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| | - Jennifer Munkert
- Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University, 91054 Erlangen-Nuremberg, Germany; (J.M.); (W.K.)
| | - Flaviano Melo Ottoni
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Gabriela Silva Ramos
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Wolfgang Kreis
- Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University, 91054 Erlangen-Nuremberg, Germany; (J.M.); (W.K.)
| | - Fernão Castro Braga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Ricardo José Alves
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Cláudia Maria Oliveira Simões
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
- Correspondence:
| | - Stephan Ludwig
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| |
Collapse
|
31
|
Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, Feldman J, Muus C, Wadsworth MH, Kazer SW, Hughes TK, Doran B, Gatter GJ, Vukovic M, Taliaferro F, Mead BE, Guo Z, Wang JP, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucre JMS, Taylor CJ, Lin B, Waghray A, Mitsialis V, Dwyer DF, Buchheit KM, Boyce JA, Barrett NA, Laidlaw TM, Carroll SL, Colonna L, Tkachev V, Peterson CW, Yu A, Zheng HB, Gideon HP, Winchell CG, Lin PL, Bingle CD, Snapper SB, Kropski JA, Theis FJ, Schiller HB, Zaragosi LE, Barbry P, Leslie A, Kiem HP, Flynn JL, Fortune SM, Berger B, Finberg RW, Kean LS, Garber M, Schmidt AG, Lingwood D, Shalek AK, Ordovas-Montanes J. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 2020; 181:1016-1035.e19. [PMID: 32413319 PMCID: PMC7252096 DOI: 10.1016/j.cell.2020.04.035] [Citation(s) in RCA: 1788] [Impact Index Per Article: 357.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.
Collapse
Affiliation(s)
- Carly G K Ziegler
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Samuel J Allon
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah K Nyquist
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ian M Mbano
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Vincent N Miao
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Constantine N Tzouanas
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuming Cao
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ashraf S Yousif
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Julia Bals
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Muus
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Marc H Wadsworth
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel W Kazer
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Travis K Hughes
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin Doran
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA
| | - G James Gatter
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marko Vukovic
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Faith Taliaferro
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA
| | - Benjamin E Mead
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhiru Guo
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jennifer P Wang
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Delphine Gras
- Aix-Marseille University, INSERM, INRA, C2VN, Marseille, France
| | - Magali Plaisant
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France
| | - Meshal Ansari
- Comprehensive Pneumology Center & Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany; German Center for Lung Research, Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Ilias Angelidis
- Comprehensive Pneumology Center & Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany; German Center for Lung Research, Munich, Germany
| | - Heiko Adler
- German Center for Lung Research, Munich, Germany; Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Munich, Germany
| | - Jennifer M S Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chase J Taylor
- Divison of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Avinash Waghray
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vanessa Mitsialis
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kathleen M Buchheit
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nora A Barrett
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Christopher W Peterson
- Stem Cell & Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alison Yu
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA 98145, USA
| | - Hengqi Betty Zheng
- University of Washington, Seattle, WA 98195, USA; Division of Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, WA 98145, USA
| | - Hannah P Gideon
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Caylin G Winchell
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Philana Ling Lin
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Colin D Bingle
- Department of Infection, Immunity & Cardiovascular Disease, The Medical School and The Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan A Kropski
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37240, USA; Department of Veterans Affairs Medical Center, Nashville, TN 37212, USA
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center & Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany; German Center for Lung Research, Munich, Germany
| | | | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Infection & Immunity, University College London, London, UK
| | - Hans-Peter Kiem
- Stem Cell & Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - JoAnne L Flynn
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sarah M Fortune
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bonnie Berger
- Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert W Finberg
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Manuel Garber
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alex K Shalek
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA 02115, USA; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Program in Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Jose Ordovas-Montanes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|