1
|
Rogozin IB, Saura A, Poliakov E, Bykova A, Roche-Lima A, Pavlov YI, Yurchenko V. Properties and Mechanisms of Deletions, Insertions, and Substitutions in the Evolutionary History of SARS-CoV-2. Int J Mol Sci 2024; 25:3696. [PMID: 38612505 PMCID: PMC11011937 DOI: 10.3390/ijms25073696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
SARS-CoV-2 has accumulated many mutations since its emergence in late 2019. Nucleotide substitutions leading to amino acid replacements constitute the primary material for natural selection. Insertions, deletions, and substitutions appear to be critical for coronavirus's macro- and microevolution. Understanding the molecular mechanisms of mutations in the mutational hotspots (positions, loci with recurrent mutations, and nucleotide context) is important for disentangling roles of mutagenesis and selection. In the SARS-CoV-2 genome, deletions and insertions are frequently associated with repetitive sequences, whereas C>U substitutions are often surrounded by nucleotides resembling the APOBEC mutable motifs. We describe various approaches to mutation spectra analyses, including the context features of RNAs that are likely to be involved in the generation of recurrent mutations. We also discuss the interplay between mutations and natural selection as a complex evolutionary trend. The substantial variability and complexity of pipelines for the reconstruction of mutations and the huge number of genomic sequences are major problems for the analyses of mutations in the SARS-CoV-2 genome. As a solution, we advocate for the development of a centralized database of predicted mutations, which needs to be updated on a regular basis.
Collapse
Affiliation(s)
- Igor B. Rogozin
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Eugenia Poliakov
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anastassia Bykova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities—RCMI Program, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, Puerto Rico
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| |
Collapse
|
2
|
Conway MJ, Yang H, Revord LA, Novay MP, Lee RJ, Ward AS, Abel JD, Williams MR, Uzarski RL, Alm EW. Chronic shedding of a SARS-CoV-2 Alpha variant in wastewater. BMC Genomics 2024; 25:59. [PMID: 38218804 PMCID: PMC10787452 DOI: 10.1186/s12864-024-09977-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Central Michigan University (CMU) participated in a state-wide SARS-CoV-2 wastewater monitoring program since 2021. Wastewater samples were collected from on-campus sites and nine off-campus wastewater treatment plants servicing small metropolitan and rural communities. SARS-CoV-2 genome copies were quantified using droplet digital PCR and results were reported to the health department. RESULTS One rural, off-campus site consistently produced higher concentrations of SARS-CoV-2 genome copies. Samples from this site were sequenced and contained predominately a derivative of Alpha variant lineage B.1.1.7, detected from fall 2021 through summer 2023. Mutational analysis of reconstructed genes revealed divergence from the Alpha variant lineage sequence over time, including numerous mutations in the Spike RBD and NTD. CONCLUSIONS We discuss the possibility that a chronic SARS-CoV-2 infection accumulated adaptive mutations that promoted long-term infection. This study reveals that small wastewater treatment plants can enhance resolution of rare events and facilitate reconstruction of viral genomes due to the relative lack of contaminating sequences.
Collapse
Affiliation(s)
- Michael J Conway
- Foundational Sciences, Central Michigan University, College of Medicine, Mt. Pleasant, MI, USA.
- Institute for Great Lakes Research, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Hannah Yang
- Foundational Sciences, Central Michigan University, College of Medicine, Mt. Pleasant, MI, USA
| | - Lauren A Revord
- Foundational Sciences, Central Michigan University, College of Medicine, Mt. Pleasant, MI, USA
| | - Michael P Novay
- Foundational Sciences, Central Michigan University, College of Medicine, Mt. Pleasant, MI, USA
| | - Rachel J Lee
- Foundational Sciences, Central Michigan University, College of Medicine, Mt. Pleasant, MI, USA
| | - Avery S Ward
- Foundational Sciences, Central Michigan University, College of Medicine, Mt. Pleasant, MI, USA
| | - Jackson D Abel
- Foundational Sciences, Central Michigan University, College of Medicine, Mt. Pleasant, MI, USA
| | - Maggie R Williams
- School of Engineering & Technology, Central Michigan University, Mt. Pleasant, MI, USA
- Institute for Great Lakes Research, Central Michigan University, Mt. Pleasant, MI, USA
| | - Rebecca L Uzarski
- Department of Biology and Herbert H. and Grace A. Dow College of Health, Professions, Central Michigan University, Mt. Pleasant, MI, USA
| | - Elizabeth W Alm
- Department of Biology, Central Michigan University, Mt. Pleasant, MI, USA
- Institute for Great Lakes Research, Central Michigan University, Mt. Pleasant, MI, USA
| |
Collapse
|
3
|
Chinnadurai RK, Ponne S, Chitra L, Kumar R, Thayumanavan P, Subramanian B. Pharmacoinformatic approach to identify potential phytochemicals against SARS-CoV-2 spike receptor-binding domain in native and variants of concern. Mol Divers 2023; 27:2741-2766. [PMID: 36547813 PMCID: PMC9773690 DOI: 10.1007/s11030-022-10580-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) pathogenesis is initiated by the binding of SARS-CoV-2 spike (S) protein with the angiotensin-converting enzyme 2 receptor (ACE2R) on the host cell surface. The receptor-binding domain (RBD) of the S protein mediates the binding and is more prone to mutations resulting in the generation of different variants. Recently, molecules with the potential to inhibit the interaction of S protein with ACE2R have been of interest due to their therapeutic value. In this context, the present work was performed to identify potential RBD binders from the Indian medicinal plant's phytochemical database through virtual screening, molecular docking, and molecular dynamic simulation. Briefly, 1578 compounds filtered from 9596 phytochemicals were chosen for screening against the RBD of the native SARS-CoV-2 S protein. Based on the binding energy, the top 30 compounds were selected and re-docked individually against the native and five variants of concern (VOCs: alpha, beta, gamma, delta, and omicron) of SARS-CoV-2. Four phytochemicals, namely withanolide F, serotobenine, orobanchol, and gibberellin A51, were found to be potential RBD binders in native and all SARS-CoV-2 VOCs. Among the four, withanolide F exhibited lower binding energy (- 10.84 to - 8.56 kcal/mol) and better ligand efficiency (- 0.3 to - 0.25) against all forms of RBD and hence was subjected to a 100 ns MD simulation which confirmed its stringent binding to the RBDs in native and VOCs. The study prioritizes withanolide F as a prospective COVID-19 (Coronavirus disease) therapeutic agent based on the observations. It warrants deeper investigations into the four promising leads for understanding their precise therapeutic value.
Collapse
Affiliation(s)
- Raj Kumar Chinnadurai
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, 607402, India.
| | - Saravanaraman Ponne
- Department of Biotechnology, Pondicherry University, Pondicherry, 605014, India
| | - Loganathan Chitra
- Department of Biochemistry, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | | | - Balanehru Subramanian
- School of Biological Sciences, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, 607402, India
| |
Collapse
|
4
|
Ren R, Cai S, Fang X, Wang X, Zhang Z, Damiani M, Hudlerova C, Rosa A, Hope J, Cook NJ, Gorelkin P, Erofeev A, Novak P, Badhan A, Crone M, Freemont P, Taylor GP, Tang L, Edwards C, Shevchuk A, Cherepanov P, Luo Z, Tan W, Korchev Y, Ivanov AP, Edel JB. Multiplexed detection of viral antigen and RNA using nanopore sensing and encoded molecular probes. Nat Commun 2023; 14:7362. [PMID: 37963924 PMCID: PMC10646045 DOI: 10.1038/s41467-023-43004-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
We report on single-molecule nanopore sensing combined with position-encoded DNA molecular probes, with chemistry tuned to simultaneously identify various antigen proteins and multiple RNA gene fragments of SARS-CoV-2 with high sensitivity and selectivity. We show that this sensing strategy can directly detect spike (S) and nucleocapsid (N) proteins in unprocessed human saliva. Moreover, our approach enables the identification of RNA fragments from patient samples using nasal/throat swabs, enabling the identification of critical mutations such as D614G, G446S, or Y144del among viral variants. In particular, it can detect and discriminate between SARS-CoV-2 lineages of wild-type B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.1.539 (Omicron) within a single measurement without the need for nucleic acid sequencing. The sensing strategy of the molecular probes is easily adaptable to other viral targets and diseases and can be expanded depending on the application required.
Collapse
Affiliation(s)
- Ren Ren
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Shenglin Cai
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 82 Wood Lane, London, W12 0BZ, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Xiaona Fang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Xiaoyi Wang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Zheng Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Micol Damiani
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Charlotte Hudlerova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 82 Wood Lane, London, W12 0BZ, UK
| | - Annachiara Rosa
- The Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Wolfson Education Centre, Faculty of Medicine, Imperial College London, London, UK
| | - Joshua Hope
- The Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Nicola J Cook
- The Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Peter Gorelkin
- National University of Science and Technology "MISIS", Leninskiy Prospect 4, 119991, Moscow, Russian Federation
| | - Alexander Erofeev
- National University of Science and Technology "MISIS", Leninskiy Prospect 4, 119991, Moscow, Russian Federation
| | - Pavel Novak
- ICAPPIC Limited, The Fisheries, Mentmore Terrace, London, E8 3PN, UK
| | - Anjna Badhan
- Molecular Diagnostic Unit, Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Michael Crone
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Paul Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Graham P Taylor
- Molecular Diagnostic Unit, Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310027, Hangzhou, China
| | - Christopher Edwards
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- ICAPPIC Limited, The Fisheries, Mentmore Terrace, London, E8 3PN, UK
| | - Andrew Shevchuk
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Peter Cherepanov
- The Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Molecular Diagnostic Unit, Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Aptamer Selection Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Yuri Korchev
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Aleksandar P Ivanov
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 82 Wood Lane, London, W12 0BZ, UK.
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, 82 Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
5
|
Ali KM, Rashid PMA, Ali AM, Tofiq AM, Salih GF, Dana OI, Rostam HM. Clinical outcomes and phylogenetic analysis in reflection with three predominant clades of SARS-CoV-2 variants. Eur J Clin Invest 2023; 53:e14004. [PMID: 37036255 DOI: 10.1111/eci.14004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND The pandemic of coronavirus disease 2019 (COVID-19) has a broad spectrum of clinical manifestations. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) undergoes continuous evolution, resulting in the emergence of several variants. Each variant has a different severity and mortality rate. MATERIALS AND METHODS In this study, 1174 COVID-19 patients were studied for mortality and severity over three SARS-CoV-2 predominating variant periods in 2021 and 2022 in Sulaimani Province, Iraq. In each period, a representative, variant virus was subjected to phylogenetic and molecular and clinical analysis. RESULTS Phylogenetic analysis revealed three SARS-CoV-2 variants, belonging to: Delta B.1.617.2, Omicron BA.1.17.2, and Omicron BA.5.6. The Delta variants showed more severe symptoms and a lower PCR-Ct value than Omicron variants regardless of gender, and only 4.3% of the cases were asymptomatic. The mortality rate was lower with Omicron (.5% for BA.5.2 and 1.3% for BA.1.17.2) compared with Delta variants (2.5%). The higher mortality rate with Delta variants was in males (2.84%), while that with Omicron BA1.17.2 and BA.5.2 was in females, 1.05% and .0%, respectively. Age group (≥70) years had the highest mortality rate; however, it was (.0%) in the age group (30-49) years with Omicron variants, compared with (.96%) in Delta variants. CONCLUSIONS There has been a surge in COVID-19 infection in the city due to the predominant lineages of SARS-CoV-2, B.1.617, Omicron BA.1.17.2 and Omicron BA.5.6, respectively. A higher PCR-Ct value and severity of the Delta variant over Omicron BA.1.17.2 and/or BA.5.2 variants were significantly correlated with a higher death rate in the same order.
Collapse
Affiliation(s)
- Kameran M Ali
- Medical Laboratory Technology Department, Kalar Technical College, Sulaimani Polytechnic University, Kalar, Iraq
| | - Peshnyar M A Rashid
- Medical Laboratory Science Department, Komar University of Science and Technology, Sulaimania, Iraq
| | - Ayad M Ali
- Department of Chemistry, University of Garmian, Kalar, Iraq
| | - Ahmed M Tofiq
- Department of Biology, College of Education, University of Garmian, Head of International Academic Relations (IRO), Kalar, Iraq
| | - Gaza F Salih
- Biology Department, College of Science, University of Sulaimani, Sulaimania, Iraq
| | - Omer I Dana
- College of Veterinary Medicine, University of Sulaimani, Sulaimani, Iraq
| | | |
Collapse
|
6
|
Tamura T, Ito J, Uriu K, Zahradnik J, Kida I, Anraku Y, Nasser H, Shofa M, Oda Y, Lytras S, Nao N, Itakura Y, Deguchi S, Suzuki R, Wang L, Begum MM, Kita S, Yajima H, Sasaki J, Sasaki-Tabata K, Shimizu R, Tsuda M, Kosugi Y, Fujita S, Pan L, Sauter D, Yoshimatsu K, Suzuki S, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Yamamoto Y, Nagamoto T, Schreiber G, Maenaka K, Hashiguchi T, Ikeda T, Fukuhara T, Saito A, Tanaka S, Matsuno K, Takayama K, Sato K. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. Nat Commun 2023; 14:2800. [PMID: 37193706 PMCID: PMC10187524 DOI: 10.1038/s41467-023-38435-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jiri Zahradnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
| | - Izumi Kida
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuki Anraku
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Maya Shofa
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Spyros Lytras
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Mst Monira Begum
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kaori Sasaki-Tabata
- Department of Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Shimizu
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lin Pan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Daniel Sauter
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | | | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | | | | | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Katsumi Maenaka
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Keita Matsuno
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan.
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
7
|
Kumar A, Asghar A, Singh HN, Faiq MA, Kumar S, Narayan RK, Kumar G, Dwivedi P, Sahni C, Jha RK, Kulandhasamy M, Prasoon P, Sesham K, Kant K, Pandey SN. SARS-CoV-2 Omicron Variant Genomic Sequences and Their Epidemiological Correlates Regarding the End of the Pandemic: In Silico Analysis. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2023; 4:e42700. [PMID: 36688013 PMCID: PMC9843602 DOI: 10.2196/42700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Background Emergence of the new SARS-CoV-2 variant B.1.1.529 worried health policy makers worldwide due to a large number of mutations in its genomic sequence, especially in the spike protein region. The World Health Organization (WHO) designated this variant as a global variant of concern (VOC), which was named "Omicron." Following Omicron's emergence, a surge of new COVID-19 cases was reported globally, primarily in South Africa. Objective The aim of this study was to understand whether Omicron had an epidemiological advantage over existing variants. Methods We performed an in silico analysis of the complete genomic sequences of Omicron available on the Global Initiative on Sharing Avian Influenza Data (GISAID) database to analyze the functional impact of the mutations present in this variant on virus-host interactions in terms of viral transmissibility, virulence/lethality, and immune escape. In addition, we performed a correlation analysis of the relative proportion of the genomic sequences of specific SARS-CoV-2 variants (in the period from October 1 to November 29, 2021) with matched epidemiological data (new COVID-19 cases and deaths) from South Africa. Results Compared with the current list of global VOCs/variants of interest (VOIs), as per the WHO, Omicron bears more sequence variation, specifically in the spike protein and host receptor-binding motif (RBM). Omicron showed the closest nucleotide and protein sequence homology with the Alpha variant for the complete sequence and the RBM. The mutations were found to be primarily condensed in the spike region (n=28-48) of the virus. Further mutational analysis showed enrichment for the mutations decreasing binding affinity to angiotensin-converting enzyme 2 receptor and receptor-binding domain protein expression, and for increasing the propensity of immune escape. An inverse correlation of Omicron with the Delta variant was noted (r=-0.99, P<.001; 95% CI -0.99 to -0.97) in the sequences reported from South Africa postemergence of the new variant, subsequently showing a decrease. There was a steep rise in new COVID-19 cases in parallel with the increase in the proportion of Omicron isolates since the report of the first case (74%-100%). By contrast, the incidence of new deaths did not increase (r=-0.04, P>.05; 95% CI -0.52 to 0.58). Conclusions In silico analysis of viral genomic sequences suggests that the Omicron variant has more remarkable immune-escape ability than existing VOCs/VOIs, including Delta, but reduced virulence/lethality than other reported variants. The higher power for immune escape for Omicron was a likely reason for the resurgence in COVID-19 cases and its rapid rise as the globally dominant strain. Being more infectious but less lethal than the existing variants, Omicron could have plausibly led to widespread unnoticed new, repeated, and vaccine breakthrough infections, raising the population-level immunity barrier against the emergence of new lethal variants. The Omicron variant could have thus paved the way for the end of the pandemic.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Adil Asghar
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Himanshu N Singh
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Systems Biology Columbia University Irving Medical Center New York, NY United States
| | - Muneeb A Faiq
- Etiologically Elusive Disorders Research Network New Delhi India
- New York University Langone Health Center Robert I Grossman School of Medicine New York University New York, NY United States
| | - Sujeet Kumar
- Etiologically Elusive Disorders Research Network New Delhi India
- Center for Proteomics and Drug Discovery Amity Institute of Biotechnology Amity University, Maharashtra Mumbai India
| | - Ravi K Narayan
- Etiologically Elusive Disorders Research Network New Delhi India
- Dr BC Roy Multi-speciality Medical Research Centre Indian Institute of Technology Kharagpur India
| | - Gopichand Kumar
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Prakhar Dwivedi
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Chetan Sahni
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Anatomy Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Rakesh K Jha
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Biochemistry Maulana Azad Medical College New Delhi India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network New Delhi India
- School of Medicine University of Pittsburgh Pittsburgh, PA United States
| | - Kishore Sesham
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Anatomy All India Institute of Medical Sciences-Mangalagiri Mangalagiri India
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Microbiology All India Institute of Medical Sciences-Bathinda Bathinda India
| | - Sada N Pandey
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Zoology Banaras Hindu University Varanasi India
| |
Collapse
|
8
|
Abavisani M, Rahimian K, Kodori M, Khayami R, Mollapour Sisakht M, Mahmanzar M, Meshkat Z. In silico analysis of the substitution mutations and evolutionary trends of the SARS-CoV-2 structural proteins in Asia. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1299-1307. [PMID: 36474565 PMCID: PMC9699957 DOI: 10.22038/ijbms.2022.66649.14620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/01/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To address a highly mutable pathogen, mutations must be evaluated. SARS-CoV-2 involves changing infectivity, mortality, and treatment and vaccination susceptibility resulting from mutations. MATERIALS AND METHODS We investigated the Asian and worldwide samples of amino-acid sequences (AASs) for envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins from the announcement of the new coronavirus 2019 (COVID-19) up to January 2022. Sequence alignment to the Wuhan-2019 virus permits tracking mutations in Asian and global samples. Furthermore, we explored the evolutionary tendencies of structural protein mutations and compared the results between Asia and the globe. RESULTS The mutation analyses indicated that 5.81%, 70.63%, 26.59%, and 3.36% of Asian S, E, M, and N samples did not display any mutation. Additionally, the most relative mutations among the S, E, M, and N AASs occurred in the regions of 508 to 635 AA, 7 to 14 AA, 66 to 88 AA, and 164 to 205 AA in both Asian and total samples. D614G, T9I, I82T, and R203M were inferred as the most frequent mutations in S, E, M, and N AASs. Timeline research showed that substitution mutation in the location of 614 among Asian and total S AASs was detected from January 2020. CONCLUSION N protein was the most non-conserved protein, and the most prevalent mutations in S, E, M, and N AASs were D614G, T9I, I82T, and R203M. Screening structural protein mutations is a robust approach for developing drugs, vaccines, and more specific diagnostic tools.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Rahimian
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University
| | | | - Reza Khayami
- Non communicable Diseases Research Center, Bam University of Medical sciences, Bam, Iran
| | - Mahsa Mollapour Sisakht
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadamin Mahmanzar
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Zahra Meshkat
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,Corresponding author: Zahra Meshkat. Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38002313; +98-51-38012453;
| |
Collapse
|
9
|
Chavda VP, Patel AB, Vaghasiya DD. SARS-CoV-2 variants and vulnerability at the global level. J Med Virol 2022; 94:2986-3005. [PMID: 35277864 PMCID: PMC9088647 DOI: 10.1002/jmv.27717] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
Numerous variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have evolved. Viral variants may evolve with harmful susceptibility to the immunity established with the existing COVID-19 vaccination. These variants are more transmissible, induce relatively extreme illness, have evasive immunological features, decrease neutralization using antibodies from vaccinated persons, and are more susceptible to re-infection. The Centers for Disease Control and Prevention (CDC) has categorized SARS-CoV-2 mutations as variants of interest (VOI), variants of concern (VOC), and variants of high consequence (VOHC). At the moment, four VOC and many variants of interest have been defined and require constant observation. This review article summarizes various variants of SARS-CoV-2 surfaced with special emphasis on VOCs that are spreading across the world, as well as several viral mutational impacts and how these modifications alter the properties of the virus.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical TechnologyL.M. College of PharmacyAhmedabadGujaratIndia
| | | | | |
Collapse
|
10
|
Cheng XW, Li J, Zhang L, Hu WJ, Zong L, Xu X, Qiao JP, Zheng MJ, Jiang XW, Liang ZK, Zhou YF, Zhang N, Zhu HQ, Xu YH. Identification of SARS-CoV-2 Variants and Their Clinical Significance in Hefei, China. Front Med (Lausanne) 2022; 8:784632. [PMID: 35083244 PMCID: PMC8784789 DOI: 10.3389/fmed.2021.784632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic represents one of the most exigent threats of our lifetime to global public health and economy. As part of the pandemic, from January 10 to March 10, 2020, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) began to spread in Hefei (Anhui Province, China) with a total of 174 confirmed cases of COVID-19. During this period, we were able to gather critical information on the transmission and evolution of pathogens through genomic surveillance. Particularly, the objective of our study was to track putative variants of SARS-CoV-2 circulating in Hefei for the first time and contribute to the global effort toward elucidating the molecular epidemic profile of the virus. Patients who showed symptoms of COVID-19 were routinely tested for SARS-CoV-2 infections via RT-PCR at the First Affiliated Hospital of Anhui Medical University. Whole-genome sequencing was performed on 97 clinical samples collected from 29 confirmed COVID-19 patients. As a result, we identified a local novel single-nucleotide polymorphism site (10,380) harboring a G → T mutation (Gly → Val) in Hefei. Further phylogenetic network analysis with all the sequences of SARS-CoV-2 deposited in GenBank collected in East and Southeast Asia revealed a local subtype of S-type SARS-CoV-2 (a1) harboring a C → T synonymous mutation (Leu) at position 18,060 of ORF1b, likely representing a local SARS-CoV-2 mutation site that is obviously concentrated in Hefei and the Yangtze River Delta region. Moreover, clinical investigation on the inflammatory cytokine profile of the patients suggested that mutations at positions 18,060 (the shared variable site of subtype a1) and 28,253(harboring a C → T synonymous mutation, Phe) were associated with milder immune responses in the patients.
Collapse
Affiliation(s)
- Xiao-Wen Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zhang
- College of Life Sciences, Anhui Medical University, Hefei, China
| | - Wen-Jun Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zong
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jin-Ping Qiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mei-Juan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xi-Wen Jiang
- Da An Gene Co., Ltd., Sun Yat-sen University, Guangzhou, China.,The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, China
| | - Zhi-Kun Liang
- Clinical Laboratory Center, Guangzhou Darui Biotechnology, Co., Ltd., Guangzhou, China
| | - Yi-Fan Zhou
- Division of Life Sciences and Medicine, Department of Pathology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Ning Zhang
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hua-Qing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Yuan-Hong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Liu X, Guo L, Xu T, Lu X, Ma M, Sheng W, Wu Y, Peng H, Cao L, Zheng F, Huang S, Yang Z, Du J, Shi M, Guo D. A comprehensive evolutionary and epidemiological characterization of insertion and deletion mutations in SARS-CoV-2 genomes. Virus Evol 2022; 7:veab104. [PMID: 35039785 PMCID: PMC8754802 DOI: 10.1093/ve/veab104] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2, which causes the current pandemic of respiratory illness, is evolving continuously and generating new variants. Nevertheless, most of the sequence analyses thus far focused on nucleotide substitutions despite the fact that insertions and deletions (indels) are equally important in the evolution of SARS-CoV-2. In this study, we analyzed 1,099,664 high-quality sequences of SARS-CoV-2 genomes to re-construct the evolutionary and epidemiological histories of indels. Our analysis revealed 289 circulating indel types (237 deletion and 52 insertion types, each represented by more than ten genomic sequences), among which eighteen were recurrent indel types, each represented by more than 500 genome sequences. Although indels were identified across the entire genome, most of them were identified in nsp6, S, ORF8, and N genes, among which ORF8 indel types had the highest frequencies of frameshift. Geographical and temporal analyses of these variants revealed a few alterations of dominant indel types, each accompanied by geographic expansion to different countries and continents, which resulted in the fixation of several types of indels in the field, including the current variants of concern. Evolutionary and structural analyses revealed that indels involving S N-terminal domain regions were linked to the 3/4 variants of concern, resulting in significantly altered S protein that might contribute to the selective advantage of the corresponding variant. In sum, our study highlights the important role of insertions and deletions in the evolution and spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Xue Liu
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Liping Guo
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Tiefeng Xu
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiaoyu Lu
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Mingpeng Ma
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wenyu Sheng
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yinxia Wu
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Hong Peng
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Liu Cao
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Fuxiang Zheng
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siyao Huang
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zixiao Yang
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jie Du
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Mang Shi
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Deyin Guo
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
12
|
Stadtmüller M, Laubner A, Rost F, Winkler S, Patrasová E, Šimůnková L, Reinhardt S, Beil J, Dalpke AH, Yi B. OUP accepted manuscript. Virus Evol 2022; 8:veac010. [PMID: 35494175 PMCID: PMC9048873 DOI: 10.1093/ve/veac010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution plays a significant role in shaping the dynamics of the coronavirus disease 2019 pandemic. To monitor the evolution of SARS-CoV-2 variants, through international collaborations, we performed genomic epidemiology analyses on a weekly basis with SARS-CoV-2 samples collected from a border region between Germany, Poland, and the Czech Republic in a global background. For identified virus mutant variants, active viruses were isolated and functional evaluations were performed to test their replication fitness and neutralization sensitivity against vaccine-elicited serum neutralizing antibodies. Thereby we identified a new B.1.1.7 sub-lineage carrying additional mutations of nucleoprotein G204P and open-reading-frame-8 K68stop. Of note, this B.1.1.7 sub-lineage is the predominant B.1.1.7 variant in several European countries such as Czech Republic, Austria, and Slovakia. The earliest samples belonging to this sub-lineage were detected in November 2020 in a few countries in the European continent, but not in the UK. We have also detected its further evolution with extra spike mutations D138Y and A701V, which are signature mutations shared with the Gamma and Beta variants, respectively. Antibody neutralization assay of virus variant isolations has revealed that the variant with extra spike mutations is 3.2-fold less sensitive to vaccine-elicited antibodies as compared to the other B.1.1.7 variants tested, indicating potential for immune evasion, but it also exhibited reduced replication fitness, suggesting lower transmissibility. The wide spread of this B.1.1.7 sub-lineage was related to the pandemic waves in early 2021 in various European countries. These findings about the emergence, spread, evolution, infection, and transmission abilities of this B.1.1.7 sub-lineage add to our understanding about the pandemic development in Europe and highlight the importance of international collaboration on virus mutant surveillance.
Collapse
Affiliation(s)
| | - Alexa Laubner
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, Saxony 01307, Germany
| | - Fabian Rost
- DRESDEN concept Genome Center, Technische Universität Dresden, Fetscherstraße 105, Dresden, Saxony 01307, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, Dresden, Saxony 01307, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany and DRESDEN concept Genome Center, Technische Universität Dresden, Pfotenhauerstraße 108, Dresden, Saxony 01307, Germany
| | - Eva Patrasová
- Department of Epidemiology, Regional Public Health Authority for Ustecky Kraj, Moskevská 15, Ústí nad Labem 400 01, Czech Republic
- Third Faculty of Medicine, Charles University in Prague, Ruská 2411/87, Prague 100 00, Czech Republic
| | - Lenka Šimůnková
- Department of Epidemiology, Regional Public Health Authority for Ustecky Kraj, Moskevská 15, Ústí nad Labem 400 01, Czech Republic
| | | | - Johanna Beil
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany and DRESDEN concept Genome Center, Technische Universität Dresden, Pfotenhauerstraße 108, Dresden, Saxony 01307, Germany
| | - Alexander H Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden, Saxony 01307, Germany
| | | |
Collapse
|
13
|
Chung HY, Jian MJ, Chang CK, Lin JC, Yeh KM, Yang YS, Chen CW, Hsieh SS, Tang SH, Perng CL, Chang FY, Hung KS, Chen ES, Yang MH, Shang HS. Multicenter study evaluating one multiplex RT-PCR assay to detect SARS-CoV-2, influenza A/B, and respiratory syncytia virus using the LabTurbo AIO open platform: epidemiological features, automated sample-to-result, and high-throughput testing. Aging (Albany NY) 2021; 13:24931-24942. [PMID: 34897035 PMCID: PMC8714143 DOI: 10.18632/aging.203761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/23/2021] [Indexed: 04/20/2023]
Abstract
Since the Coronavirus 19 (COVID-19) pandemic, several SARS-CoV-2 variants of concern (SARS-CoV-2 VOC) have been reported. The B.1.1.7 variant has been associated with increased mortality and transmission risk. Furthermore, cluster and possible co-infection cases could occur in the next influenza season or COVID-19 pandemic wave, warranting efficient diagnosis and treatment decision making. Here, we aimed to detect SARS-CoV-2 and other common respiratory viruses using multiplex RT-PCR developed on the LabTurbo AIO 48 open system. We performed a multicenter study to evaluate the performance and analytical sensitivity of the LabTurbo AIO 48 system for SARS-CoV-2, influenza A/B, and respiratory syncytial virus (RSV) using 652 nasopharyngeal swab clinical samples from patients. The LabTurbo AIO 48 system demonstrated a sensitivity of 9.4 copies/per PCR for N2 of SARS-CoV-2; 24 copies/per PCR for M of influenza A and B; and 24 copies/per PCR for N of RSV. The assay presented consistent performance in the multicenter study. The multiplex RT-PCR applied on the LabTurbo AIO 48 open platform provided highly sensitive, robust, and accurate results and enabled high-throughput detection of B.1.1.7, influenza A/B, and RSV with short turnaround times. Therefore, this automated molecular diagnostic assay could enable streamlined testing if COVID-19 becomes a seasonal disease.
Collapse
Affiliation(s)
- Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ming-Jr Jian
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chih-Kai Chang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chien-Wen Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shan-Shan Hsieh
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Sheng-Hui Tang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - En-Sung Chen
- Department of Clinical Pathology, Cathay General Hospital, Taipei, Taiwan, ROC
| | - Mei-Hsiu Yang
- Department of Clinical Pathology, Cathay General Hospital, Taipei, Taiwan, ROC
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
14
|
Hatirnaz Ng O, Akyoney S, Sahin I, Soykam HO, Bayram Akcapinar G, Ozdemir O, Kancagi DD, Sir Karakus G, Yurtsever B, Kocagoz AS, Ovali E, Ozbek U. Mutational landscape of SARS-CoV-2 genome in Turkey and impact of mutations on spike protein structure. PLoS One 2021; 16:e0260438. [PMID: 34871297 PMCID: PMC8648120 DOI: 10.1371/journal.pone.0260438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) was declared a pandemic in March 2020 by the World Health Organization (WHO). As of May 25th, 2021 there were 2.059.941 SARS-COV2 genome sequences that have been submitted to the GISAID database, with numerous variations. Here, we aim to analyze the SARS-CoV-2 genome data submitted to the GISAID database from Turkey and to determine the variant and clade distributions by the end of May 2021, in accordance with their appearance timeline. We compared these findings to USA, Europe, and Asia data as well. We have also evaluated the effects of spike protein variations, detected in a group of genome sequences of 13 patients who applied to our clinic, by using 3D modeling algorithms. For this purpose, we analyzed 4607 SARS-CoV-2 genome sequences submitted by different lab centers from Turkey to the GISAID database between March 2020 and May 2021. Described mutations were also introduced in silico to the spike protein structure to analyze their isolated impacts on the protein structure. The most abundant clade was GR followed by G, GH, and GRY and we did not detect any V clade. The most common variant was B.1, followed by B.1.1, and the UK variant, B.1.1.7. Our results clearly show a concordance between the variant distributions, the number of cases, and the timelines of different variant accumulations in Turkey. The 3D simulations indicate an increase in the surface hydrophilicity of the reference spike protein and the detected mutations. There was less surface hydrophilicity increase in the Asp614Gly mutation, which exhibits a more compact conformation around the ACE-2 receptor binding domain region, rendering the structure in a “down” conformation. Our genomic findings can help to model vaccination programs and protein modeling may lead to different approaches for COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Ozden Hatirnaz Ng
- Department of Medical Biology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Istanbul, Turkey
| | - Sezer Akyoney
- Department of Medical Biology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ilayda Sahin
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Genetics, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Huseyin Okan Soykam
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Gunseli Bayram Akcapinar
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozkan Ozdemir
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Istanbul, Turkey
- Department of Genome Studies, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | | | - Bulut Yurtsever
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - Ayse Sesin Kocagoz
- Department of Infectious Diseases and Clinical Microbiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Ercument Ovali
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - Ugur Ozbek
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Istanbul, Turkey
- Department of Medical Genetics, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
15
|
Soualmia LF, Hollis KF, Mougin F, Séroussi B. Health Data, Information, and Knowledge Sharing for Addressing the COVID-19. Yearb Med Inform 2021; 30:4-7. [PMID: 34479377 PMCID: PMC8416214 DOI: 10.1055/s-0041-1726541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To introduce the 2021 International Medical Informatics Association (IMIA) Yearbook by the editors. METHODS The editorial provides an introduction and overview to the 2021 IMIA Yearbook whose special topic is "Managing Pandemics with Health Informatics - Successes and Challenges". The Special Topic, the keynote paper, and survey papers are discussed. The IMIA President's statement and the IMIA dialogue with the World Health Organization are introduced. The sections' changes in the Yearbook Editorial Committee are also described. RESULTS Health informatics, in the context of a global pandemic, led to the development of ways to collect, standardize, disseminate and reuse data worldwide: public health data but also information from social networks and scientific literature. Fact checking methods were mostly based on artificial intelligence and natural language processing. The pandemic also introduced new challenges for telehealth support in times of critical response. Next generation sequencing in bioinformatics helped in decoding the sequence of the virus and the development of messenger ribonucleic acid (mRNA) vaccines. CONCLUSIONS The Corona Virus Disease 2019 (COVID-19) pandemic shows the need for timely, reliable, open, and globally available information to support decision making and efficiently control outbreaks. Applying Findable, Accessible, Interoperable, and Reusable (FAIR) requirements for data is a key success factor while challenging ethical issues have to be considered.
Collapse
Affiliation(s)
- Lina F Soualmia
- Normandie Université, Univ. Rouen, TIBS-LITIS EA 4108, Rouen, France
- Université Sorbonne Paris Nord, INSERM UMR_S1142, LIMICS, Paris, France
| | - Kate Fultz Hollis
- Oregon Health & Science University Department of Biomedical Informatics and Clinical Epidemiology, Portland, Oregon, USA
| | - Fleur Mougin
- Univ. Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | - Brigitte Séroussi
- Université Sorbonne Paris Nord, INSERM UMR_S1142, LIMICS, Paris, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| |
Collapse
|