1
|
Hurvitz N, Dinur T, Revel-Vilk S, Agus S, Berg M, Zimran A, Ilan Y. A Feasibility Open-Labeled Clinical Trial Using a Second-Generation Artificial-Intelligence-Based Therapeutic Regimen in Patients with Gaucher Disease Treated with Enzyme Replacement Therapy. J Clin Med 2024; 13:3325. [PMID: 38893036 PMCID: PMC11172426 DOI: 10.3390/jcm13113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: Gaucher Disease type 1 (GD1) is a recessively inherited lysosomal storage disorder caused by a deficiency in the enzyme β-glucocerebrosidase. Enzyme replacement therapy (ERT) has become the standard of care for patients with GD. However, over 10% of patients experience an incomplete response or partial loss of response to ERT, necessitating the exploration of alternative approaches to enhance treatment outcomes. The present feasibility study aimed to determine the feasibility of using a second-generation artificial intelligence (AI) system that introduces variability into dosing regimens for ERT to improve the response to treatment and potentially overcome the partial loss of response to the enzyme. Methods: This was an open-label, prospective, single-center proof-of-concept study. Five patients with GD1 who received ERT were enrolled. The study used the Altus Care™ cellular-phone-based application, which incorporated an algorithm-based approach to offer random dosing regimens within a pre-defined range set by the physician. The app enabled personalized therapeutic regimens with variations in dosages and administration times. Results: The second-generation AI-based personalized regimen was associated with stable responses to ERT in patients with GD1. The SF-36 quality of life scores improved in one patient, and the sense of change in health improved in two; platelet levels increased in two patients, and hemoglobin remained stable. The system demonstrated a high engagement rate among patients and caregivers, showing compliance with the treatment regimen. Conclusions: This feasibility study highlights the potential of using variability-based regimens to enhance ERT effectiveness in GD and calls for further and longer trials to validate these findings.
Collapse
Affiliation(s)
- Noa Hurvitz
- Departments of Medicine and Neurology, Hadassah Medical Center, Jerusalem 9112001, Israel;
| | - Tama Dinur
- Gaucher Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (T.D.); (S.R.-V.); (A.Z.)
| | - Shoshana Revel-Vilk
- Gaucher Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (T.D.); (S.R.-V.); (A.Z.)
- Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
| | - Samuel Agus
- Oberon Sciences and Area 9 Innovation, Chestnut Hill, MA 02467, USA; (S.A.); (M.B.)
| | - Marc Berg
- Oberon Sciences and Area 9 Innovation, Chestnut Hill, MA 02467, USA; (S.A.); (M.B.)
- Stanford University, Palo Alto, CA 94305, USA
| | - Ari Zimran
- Gaucher Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (T.D.); (S.R.-V.); (A.Z.)
- Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
| | - Yaron Ilan
- Departments of Medicine and Neurology, Hadassah Medical Center, Jerusalem 9112001, Israel;
- Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel
| |
Collapse
|
2
|
Nelson NG, Burke SE, Cappelli L, Matlack LE, Smith AP, Francois N, Lombardo JF, Shah YB, Wen KY, Shafi AA, Simone NL. Temporal Considerations in Brain Metastases Radiation Therapy: The Intersection of Chronobiology and Patient Profiles. Clocks Sleep 2024; 6:200-210. [PMID: 38534802 DOI: 10.3390/clockssleep6010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The circadian system, a vital temporal regulator influencing physiological processes, has implications for cancer development and treatment response. Our study assessed circadian timing's impact on whole-brain radiotherapy outcomes in brain metastases for personalized cancer therapy insights. The aim of the study was to evaluate circadian influence on radiation treatment timing and its correlation with clinical outcomes and to identify patient populations benefiting from interventions synchronizing circadian rhythms, considering subgroup differences and potential disparities. An IRB-approved retrospective analysis of 237 patients undergoing whole-brain radiotherapy for brain metastases (2017-2021), receiving over 80% of treatments in the morning or afternoon, was performed. Survival analyses utilized Kaplan-Meier curves. This was a single-institution study involving patients receiving whole-brain radiotherapy. Demographic, disease, and socioeconomic parameters from electronic medical records were collected. Morning treatment (n = 158) showed a trend toward improved overall survival vs. afternoon (n = 79); the median survival was 158 vs. 79 days (p = 0.20, HR = 0.84, CI95% 0.84-0.91). Subgroup benefits for morning treatment in females (p = 0.04) and trends in controlled primary disease (p = 0.11) and breast cancer metastases (p = 0.08) were observed. Black patients exhibited diminished circadian influence. The present study emphasized chronobiological factors' relevance in brain metastases radiation therapy. Morning treatment correlated with improved survival, particularly in specific subgroups. Potential circadian influence disparities were identified, laying a foundation for personalized cancer therapy and interventions synchronizing circadian rhythms for enhanced treatment efficacy.
Collapse
Affiliation(s)
- Nicolas G Nelson
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sara E Burke
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Louis Cappelli
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lauren E Matlack
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alexandria P Smith
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Noelle Francois
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph F Lombardo
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yash B Shah
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kuang-Yi Wen
- Division of Population Health, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ayesha A Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Nicole L Simone
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Plett PA, Pelus LM, Orschell CM. Establishing a Murine Model of the Hematopoietic Acute Radiation Syndrome. Methods Mol Biol 2023; 2567:251-262. [PMID: 36255706 PMCID: PMC11192174 DOI: 10.1007/978-1-0716-2679-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The hematopoietic system is one of the most sensitive tissues to ionizing radiation, and radiation doses from 2 to 10 gray can result in death from bleeding and infection if left untreated. Reviewing the range of radiation doses reported in the literature that result in similar lethality highlights the need for a more consistent model that would allow a better comparison of the hematopoietic acute radiation syndrome (H-ARS) studies carried out in different laboratories. Developing a murine model of H-ARS to provide a platform suited for efficacy testing of medical countermeasures (MCM) against radiation should include a review of the Food and Drug Administration requirements outlined in the Animal Rule. The various aspects of a murine H-ARS model found to affect consistent performance will be described in this chapter including strain, sex, radiation type and dose, mouse restraint, and husbandry.
Collapse
Affiliation(s)
- P Artur Plett
- Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Louis M Pelus
- Department of Microbiology & Immunology and Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine/Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Chronoradiobiology of Breast Cancer: The Time Is Now to Link Circadian Rhythm and Radiation Biology. Int J Mol Sci 2022; 23:ijms23031331. [PMID: 35163264 PMCID: PMC8836288 DOI: 10.3390/ijms23031331] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Circadian disruption has been linked to cancer development, progression, and radiation response. Clinical evidence to date shows that circadian genetic variation and time of treatment affect radiation response and toxicity for women with breast cancer. At the molecular level, there is interplay between circadian clock regulators such as PER1, which mediates ATM and p53-mediated cell cycle gating and apoptosis. These molecular alterations may govern aggressive cancer phenotypes, outcomes, and radiation response. Exploiting the various circadian clock mechanisms may enhance the therapeutic index of radiation by decreasing toxicity, increasing disease control, and improving outcomes. We will review the body’s natural circadian rhythms and clock gene-regulation while exploring preclinical and clinical evidence that implicates chronobiological disruptions in the etiology of breast cancer. We will discuss radiobiological principles and the circadian regulation of DNA damage responses. Lastly, we will present potential rational therapeutic approaches that target circadian pathways to improve outcomes in breast cancer. Understanding the implications of optimal timing in cancer treatment and exploring ways to entrain circadian biology with light, diet, and chronobiological agents like melatonin may provide an avenue for enhancing the therapeutic index of radiotherapy.
Collapse
|
5
|
Synthesis, physical and nuclear shielding properties of novel Pb–Al alloys. PROGRESS IN NUCLEAR ENERGY 2021. [DOI: 10.1016/j.pnucene.2021.103992] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Hassan SA, Ali AAH, Sohn D, Flögel U, Jänicke RU, Korf H, von Gall C. Does timing matter in radiotherapy of hepatocellular carcinoma? An experimental study in mice. Cancer Med 2021; 10:7712-7725. [PMID: 34545699 PMCID: PMC8559477 DOI: 10.1002/cam4.4277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 01/10/2023] Open
Abstract
This study investigates whether a chronotherapeutic treatment of hepatocellular carcinoma (HCC) may improve treatment efficacy and mitigate side effects on non-tumoral liver (NTL). HCC was induced in Per2::luc mice which were irradiated at four time points of the day. Proliferation and DNA-double strand breaks were analyzed in irradiated and nonirradiated animals by detection of Ki67 and γ-H2AX. Prior to whole animal experiments, organotypic slice cultures were investigated to determine the dosage to be used in whole animal experiments. Irradiation was most effective at the proliferation peaks in HCC at ZT02 (early inactivity phase) and ZT20 (late activity phase). Irradiation effects on NTL were minimal at ZT20. As compared with NTL, nonirradiated HCC revealed disruption in daily variation and downregulation of all investigated clock genes except Per1. Irradiation affected rhythmic clock gene expression in NTL and HCC at all ZTs except at ZT20 (late activity phase). Irradiation at ZT20 had no effect on total leukocyte numbers. Our results indicate ZT20 as the optimal time point for irradiation of HCC in mice at which the ratio between efficacy of tumor treatment and toxic side effects was maximal. Translational studies are now needed to evaluate whether the late activity phase is the optimal time point for irradiation of HCC in man.
Collapse
Affiliation(s)
- Soha A. Hassan
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
- Zoology DepartmentFaculty of ScienceSuez UniversitySuezEgypt
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
- Department of Anatomy and EmbryologyFaculty of MedicineMansoura UniversityMansouraEgypt
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and RadiooncologyMedical Faculty of Heinrich‐Heine‐UniversityDüsseldorfGermany
| | - Ulrich Flögel
- Department of Molecular CardiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Reiner U. Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and RadiooncologyMedical Faculty of Heinrich‐Heine‐UniversityDüsseldorfGermany
| | - Horst‐Werner Korf
- Institute of Anatomy IMedical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical FacultyHeinrich‐Heine‐UniversityDüsseldorfGermany
| |
Collapse
|
7
|
Sapienza LG, Nasra K, Berry R, Danesh L, Little T, Abu-Isa E. Clinical effects of morning and afternoon radiotherapy on high-grade gliomas. Chronobiol Int 2021; 38:732-741. [PMID: 33557650 DOI: 10.1080/07420528.2021.1880426] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Initial clinical reports comparing the delivery of radiotherapy (RT) at distinct times of the day suggest that this strategy might affect toxicity and oncologic outcomes of radiation for multiple human tissues, but the clinical effects on high-grade gliomas (HGG) are unknown. The present study addresses the hypothesis that radiotherapy treatment time of the day (RT-TTD) influences outcome and/or toxic events in HGG. Patients treated between 2009-2018 were reviewed (n = 109). Outcomes were local control (LC), distant CNS control (DCNSC), progression-free survival (PFS), and overall survival (OS). RT-TTD was classified as morning if ≥50% of fractions were delivered before 12:00 h (n = 70) or as afternoon (n = 39) if after 12:00 h. The average age was 62.6 years (range: 14.5-86.9) and 80% were glioblastoma. The median follow-up was 10.9 months (range: 0.4-57.2). The 1y/3y LC, DCNSC, and PFS were: 61.3%/28.1%, 86.8%/65.2%, and 39.7%/10.2%, respectively. Equivalent PFS was found between morning and afternoon groups (HR 1.27; p = .3). The median OS was 16.5 months. Patients treated in the afternoon had worse survival in the univariate analysis (HR 1.72; p = .05), not confirmed after multivariate analysis (HR 0.92, p = .76). Patients with worse baseline performance status and treatment interruptions showed worse PFS and OS. The proportion of patients that developed grade 3 acute toxicity, pseudo progression, and definitive treatment interruptions were 10.1%, 9.2%, and 7.3%, respectively, and were not affected by RT-TTD. In conclusion, for patients with HGG, there was no difference in PFS and OS between patients treated in the morning or afternoon. Of note, definitive treatment interruptions adversely affected outcomes and should be avoided, especially in patients with low performance status. Based on these clinical findings, high-grade glioma cells may not be the best initial model to be irradiated in order to study the effects of chronotherapy.
Collapse
Affiliation(s)
- Lucas Gomes Sapienza
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| | - Karim Nasra
- Department of Radiology, Michigan State University College of Human Medicine/Ascension Providence Hospital, Southfield, Michigan, USA
| | - Ryan Berry
- Department of Internal Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Leana Danesh
- Department of Internal Medicine, Michigan State University College of Osteopathic Medicine, East Lansing, Michigan, USA
| | - Tania Little
- Department of Internal Medicine, Ascension Providence Hospital, Southfield, MI, USA
| | - Eyad Abu-Isa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
DiCarlo AL, Perez Horta Z, Rios CI, Satyamitra MM, Taliaferro LP, Cassatt DR. Study logistics that can impact medical countermeasure efficacy testing in mouse models of radiation injury. Int J Radiat Biol 2020; 97:S151-S167. [PMID: 32909878 PMCID: PMC7987915 DOI: 10.1080/09553002.2020.1820599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 12/02/2022]
Abstract
PURPOSE To address confounding issues that have been noted in planning and conducting studies to identify biomarkers of radiation injury, develop animal models to simulate these injuries, and test potential medical countermeasures to mitigate/treat damage caused by radiation exposure. METHODS The authors completed an intensive literature search to address several key areas that should be considered before embarking on studies to assess efficacy of medical countermeasure approaches in mouse models of radiation injury. These considerations include: (1) study variables; (2) animal selection criteria; (3) animal husbandry; (4) medical management; and (5) radiation attributes. RESULTS It is important to select mouse strains that are capable of responding to the selected radiation exposure (e.g. genetic predispositions might influence radiation sensitivity and proclivity to certain phenotypes of radiation injury), and that also react in a manner similar to humans. Gender, vendor, age, weight, and even seasonal variations are all important factors to consider. In addition, the housing and husbandry of the animals (i.e. feed, environment, handling, time of day of irradiation and animal restraint), as well as the medical management provided (e.g. use of acidified water, antibiotics, routes of administration of drugs, consideration of animal numbers, and euthanasia criteria) should all be addressed. Finally, the radiation exposure itself should be tightly controlled, by ensuring a full understanding and reporting of the radiation source, dose and dose rate, shielding and geometry of exposure, while also providing accurate dosimetry. It is important to understand how all the above factors contribute to the development of radiation dose response curves for a given animal facility with a well-defined murine model. CONCLUSIONS Many potential confounders that could impact the outcomes of studies to assess efficacy of a medical countermeasure for radiation-induced injuries are addressed, and recommendations are made to assist investigators in carrying out research that is robust, reproducible, and accurate.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Zulmarie Perez Horta
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| |
Collapse
|
9
|
Andersson CK, Elvborn M, Spetz JKE, Langen B, Forssell-Aronsson EB. Biodistribution of 131I in mice is influenced by circadian variations. Sci Rep 2020; 10:15541. [PMID: 32968085 PMCID: PMC7511401 DOI: 10.1038/s41598-020-72180-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Effects of radiation and biodistribution of radionuclides are often studied in animal models. Circadian rhythm affects many biological functions and may influence the biokinetics of radionuclides and observed responses. The aim of this study was to investigate if the time during the day of 131I injection affects the biodistribution and absorbed dose to tissues in mice. Biodistribution studies were conducted on male C57BL/6 N mice for three diurnal time-series: the animals were i.v. injected with 160 kBq 131I at 8 am, 12 pm or 4 pm. The activity concentration in organs and tissues was measured at 1 h to 7 days after administration and absorbed dose at day 7 was determined. Comparison between the three time-series showed statistically significant differences in activity concentration in all investigated tissues and organs. Administration performed at 12 pm resulted in general in higher absorbed dose to the organs than injection performed at 8 am and 4 pm. Time of day of administration affects the biodistribution of 131I in mice and consequently the absorbed dose to individual organs. These findings advocate that subsequent biodistribution studies and dosimetry calculations should consider time-point of administration as a variable that could influence the results.
Collapse
Affiliation(s)
- Charlotte K Andersson
- Department of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, SE 413 45, Gothenburg, Sweden.
| | - Mikael Elvborn
- Department of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, SE 413 45, Gothenburg, Sweden
| | - Johan K E Spetz
- Department of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, SE 413 45, Gothenburg, Sweden
| | - Britta Langen
- Department of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, SE 413 45, Gothenburg, Sweden
| | - Eva B Forssell-Aronsson
- Department of Radiation Physics, Inst of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, SE 413 45, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, SE 413 45, Gothenburg, Sweden
| |
Collapse
|
10
|
Satyamitra MM, Cassatt DR, Hollingsworth BA, Price PW, Rios CI, Taliaferro LP, Winters TA, DiCarlo AL. Metabolomics in Radiation Biodosimetry: Current Approaches and Advances. Metabolites 2020; 10:metabo10080328. [PMID: 32796693 PMCID: PMC7465152 DOI: 10.3390/metabo10080328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Triage and medical intervention strategies for unanticipated exposure during a radiation incident benefit from the early, rapid and accurate assessment of dose level. Radiation exposure results in complex and persistent molecular and cellular responses that ultimately alter the levels of many biological markers, including the metabolomic phenotype. Metabolomics is an emerging field that promises the determination of radiation exposure by the qualitative and quantitative measurements of small molecules in a biological sample. This review highlights the current role of metabolomics in assessing radiation injury, as well as considerations for the diverse range of bioanalytical and sampling technologies that are being used to detect these changes. The authors also address the influence of the physiological status of an individual, the animal models studied, the technology and analysis employed in interrogating response to the radiation insult, and variables that factor into discovery and development of robust biomarker signatures. Furthermore, available databases for these studies have been reviewed, and existing regulatory guidance for metabolomics are discussed, with the ultimate goal of providing both context for this area of radiation research and the consideration of pathways for continued development.
Collapse
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
- Correspondence: ; Tel.: +1-240-669-5432
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Paul W. Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA;
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| |
Collapse
|
11
|
Smolensky MH, Reinberg AE, Sackett-Lundeen L. Perspectives on the relevance of the circadian time structure to workplace threshold limit values and employee biological monitoring. Chronobiol Int 2017; 34:1439-1464. [PMID: 29215915 DOI: 10.1080/07420528.2017.1384740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The circadian time structure (CTS) and its disruption by rotating and nightshift schedules relative to work performance, accident risk, and health/wellbeing have long been areas of occupational medicine research. Yet, there has been little exploration of the relevance of the CTS to setting short-term, time-weighted, and ceiling threshold limit values (TLVs); conducting employee biological monitoring (BM); and establishing normative reference biological exposure indices (BEIs). Numerous publications during the past six decades document the CTS substantially affects the disposition - absorption, distribution, metabolism, and elimination - and effects of medications. Additionally, laboratory animal and human studies verify the tolerance to chemical, biological (contagious), and physical agents can differ extensively according to the circadian time of exposure. Because of slow and usually incomplete CTS adjustment by rotating and permanent nightshift workers, occupational chemical and other contaminant encounters occur during a different circadian stage than for dayshift workers. Thus, the intended protection of some TLVs when working the nightshift compared to dayshift might be insufficient, especially in high-risk settings. The CTS is germane to employee BM in that large-amplitude predictable-in-time 24h variation can occur in the concentration of urine, blood, and saliva of monitored chemical contaminants and their metabolites plus biomarkers indicative of adverse xenobiotic exposure. The concept of biological time-qualified (for rhythms) reference values, currently of interest to clinical laboratory pathology practice, is seemingly applicable to industrial medicine as circadian time and workshift-specific BEIs to improve surveillance of night workers, in particular. Furthermore, BM as serial assessments performed frequently both during and off work, exemplified by employee self-measurement of lung function using a small portable peak expiratory flow meter, can easily identify intolerance before induction of pathology.
Collapse
Affiliation(s)
- Michael H Smolensky
- a Department of Biomedical Engineering , Cockrell School of Engineering, The University of Texas at Austin , Austin , TX , USA
| | - Alain E Reinberg
- b Unité de Chronobiologie , Fondation A. de Rothschild , Paris , France
| | - Linda Sackett-Lundeen
- c American Association for Medical Chronobiology and Chronotherapeutics , Roseville , MN , USA
| |
Collapse
|
12
|
Fan W, Caiyan L, Ling Z, Jiayun Z. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas. Oncotarget 2017; 8:77809-77818. [PMID: 29100427 PMCID: PMC5652816 DOI: 10.18632/oncotarget.20835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/17/2017] [Indexed: 12/28/2022] Open
Abstract
In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.
Collapse
Affiliation(s)
- Wang Fan
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen 448000, China
| | - Li Caiyan
- The Center of Cancer Prevention, The Second People's Hospital of Jingmen, Jingmen 448000, China
| | - Zhu Ling
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen 448000, China
| | - Zhao Jiayun
- Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen 448000, China
| |
Collapse
|
13
|
Does the Time of Radiotherapy Affect Treatment Outcomes? A Review of the Literature. Clin Oncol (R Coll Radiol) 2017; 29:231-238. [DOI: 10.1016/j.clon.2016.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/27/2016] [Accepted: 11/15/2016] [Indexed: 11/21/2022]
|
14
|
Squire T, Buchanan G, Rangiah D, Davis I, Yip D, Chua YJ, Rich T, Elsaleh H. Does chronomodulated radiotherapy improve pathological response in locally advanced rectal cancer? Chronobiol Int 2017; 34:492-503. [PMID: 28353363 DOI: 10.1080/07420528.2017.1301462] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The predominant mode of radiation-induced cell death for solid tumours is mitotic catastrophe, which is in part dependent on sublethal damage repair being complete at around 6 h. Circadian variation appears to play a role in normal cellular division, and this could influence tumour response of radiation treatment depending on the time of treatment delivery. We tested the hypothesis that radiation treatment later in the day may improve tumour response and nodal downstaging in rectal cancer patients treated neoadjuvantly with radiation therapy. Recruitment was by retrospective review of 267 rectal cancer patients treated neoadjuvantly in the Department of Radiation Oncology at the Canberra Hospital between January 2010 and November 2015. One hundred and fifty-five patients met the inclusion criteria for which demographic, pathological and imaging data were collected, as well as the time of day patients received treatment with each fraction of radiotherapy. Data analysis was performed using the Statistical Package R with nonparametric methods of significance for all tests set at p < 0.05. Of the 45 female and 110 male patients, the median age was 64. Seventy-three percent had cT3 disease and there was a mean tumour distance from the anal verge of 7 cm. Time to surgical resection following radiotherapy ranged from 4 to 162 days with a median of 50 days, with a complete pathological response seen in 21% of patients. Patients exhibiting a favourable pathological response had smaller median pre- and postradiotherapy tumour size and had a greater change in tumour size following treatment (p < 0.01). Patients who received the majority of their radiotherapy fractions after 12:00 pm were more likely to show a complete or moderate pathological response (p = 0.035) and improved nodal downstaging. There were also more favourable responses amongst patients with longer time to surgical resection postradiotherapy (p < 0.004), although no relationship was seen between response and tumour distance from the anal verge. Females were less likely to exhibit several of the above responses. Neoadjuvant radiotherapy for locally advanced rectal cancer performed later in the day coupled with a longer time period to surgical resection may improve pathological tumour response rates and nodal downstaging. A prospective study in chronomodulated radiotherapy in this disease is warranted.
Collapse
Affiliation(s)
- Tim Squire
- a The Canberra Hospital , Department of Radiation Oncology , Garran , Australian Capital Territory , Australia.,d University of Notre Dame Australia, School of Medicine , Darlinghurst , New South Wales , Australia
| | - Grant Buchanan
- a The Canberra Hospital , Department of Radiation Oncology , Garran , Australian Capital Territory , Australia.,e University of Adelaide, School of Medical Sciences , Adelaide , South Australia , Australia
| | - David Rangiah
- b The Canberra Hospital , Department of Surgery , Garran , Australian Capital Territory , Australia.,f Australian National University, College of Medicine, Biology and Environment , Canberra , Australian Capital Territory , Australia
| | - Ian Davis
- b The Canberra Hospital , Department of Surgery , Garran , Australian Capital Territory , Australia.,f Australian National University, College of Medicine, Biology and Environment , Canberra , Australian Capital Territory , Australia
| | - Desmond Yip
- c The Canberra Hospital , Department of Medical Oncology , Garran , Australian Capital Territory , Australia.,f Australian National University, College of Medicine, Biology and Environment , Canberra , Australian Capital Territory , Australia
| | - Yu Jo Chua
- c The Canberra Hospital , Department of Medical Oncology , Garran , Australian Capital Territory , Australia.,f Australian National University, College of Medicine, Biology and Environment , Canberra , Australian Capital Territory , Australia
| | - Tyvin Rich
- g Hampton University Proton Therapy Institute , Hampton , Virginia , USA.,h University of Virginia School of Medicine , Department of Radiation Oncology , Charlottesville , Virginia , USA
| | - Hany Elsaleh
- a The Canberra Hospital , Department of Radiation Oncology , Garran , Australian Capital Territory , Australia.,f Australian National University, College of Medicine, Biology and Environment , Canberra , Australian Capital Territory , Australia
| |
Collapse
|
15
|
Zhanfeng N, Yanhui L, Zhou F, Shaocai H, Guangxing L, Hechun X. Circadian genes Per1 and Per2 increase radiosensitivity of glioma in vivo. Oncotarget 2016; 6:9951-8. [PMID: 25760074 PMCID: PMC4496409 DOI: 10.18632/oncotarget.3179] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/23/2015] [Indexed: 01/09/2023] Open
Abstract
Per1 and Per2 play a key role in regulating the circadian rhythm in mammals. We report here that although both genes were expressed with a circadian rhythm in glioma and normal brain tissue in rats, their expression profiles differed in the two types of tissue. In addition, high expression of Per1 and Per2 in glioma tissue was associated with increased sensitivity to x-irradiation. No such sensitizing effect was observed in normal tissue. Our results suggest that Per1 and Per2 expression may increase the efficacy of radiotherapy against glioma by promoting apoptosis.
Collapse
Affiliation(s)
- Niu Zhanfeng
- Department of Neurosurgery, The General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The Xijing Hospital of The Fourth Miltary Medical University, Xi'an, China
| | - Li Yanhui
- Graduate School of Ningxia Medical University, Yinchuan, China
| | - Fei Zhou
- Department of Neurosurgery, The Xijing Hospital of The Fourth Miltary Medical University, Xi'an, China
| | - Hao Shaocai
- Department of Neurosurgery, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Li Guangxing
- Department of Neurosurgery, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xia Hechun
- Department of Neurosurgery, The General Hospital of Ningxia Medical University, Yinchuan, China.,Incubation Base of National Key Laboratory for Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
16
|
Hsu FM, Hou WH, Huang CY, Wang CC, Tsai CL, Tsai YC, Yu HJ, Pu YS, Cheng JCH. Differences in toxicity and outcome associated with circadian variations between patients undergoing daytime and evening radiotherapy for prostate adenocarcinoma. Chronobiol Int 2016; 33:210-9. [PMID: 26818960 DOI: 10.3109/07420528.2015.1130049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This retrospective study tested the hypothesis that disease control and treatment-related toxicity in patients undergoing high-dose radiotherapy (HDRT) for prostate cancer varies in a circadian manner. Patients with localized prostate adenocarcinoma receiving HDRT (median 78 Gy) to the prostate and involved seminal vesicle(s) without elective pelvic irradiation were divided into a daytime treatment (before 5 PM) group (n = 267) and evening treatment (after 5 PM) group (n = 142). Biochemical failure (Phoenix definition), acute and late gastrointestinal (GI) and genitourinary toxicities (Common Terminology Criteria for Adverse Events version 4), biochemical failure-free survival (BFFS) and freedom from late toxicity were assessed. Analyses were performed by binary logistic regression and Cox proportional hazard regression. The median follow-up was 68 months, and 75% of patients were ≥70 years old. Evening HDRT was significantly associated with worse freedom from ≥grade 2 late GI complications (hazard ratio = 2.96; p < 0.001). The detrimental effect of evening HDRT was significant in patients older than 70 years old (p < 0.001) but not in younger patients (p = 0.63). In a subgroup of propensity score-matched cohort with T2b-T3 disease (n = 154), the 5-year BFFS was worse in the evening group than the daytime group (72% vs. 85%, hazard ratio = 1.95, p = 0.05). Our study indicates that evening HDRT may lead to more GI complications, especially in older patients, and worse BFFS in patients with T2b-T3 disease.
Collapse
Affiliation(s)
- Feng-Ming Hsu
- a Division of Radiation Oncology, Department of Oncology , National Taiwan University Hospital , Taipei , Taiwan
| | - Wei-Hsien Hou
- b Department of Radiation Oncology , City of Hope Cancer Center , Duarte , California , USA
| | - Chao-Yuan Huang
- c Department of Urology , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Chia-Chun Wang
- a Division of Radiation Oncology, Department of Oncology , National Taiwan University Hospital , Taipei , Taiwan
| | - Chiao-Ling Tsai
- a Division of Radiation Oncology, Department of Oncology , National Taiwan University Hospital , Taipei , Taiwan
| | - Yu-Chieh Tsai
- d Division of Medical Oncology, Department of Oncology , National Taiwan University Hospital , Taipei , Taiwan
| | - Hong-Jeng Yu
- c Department of Urology , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Yeong-Shiau Pu
- c Department of Urology , National Taiwan University College of Medicine , Taipei , Taiwan
| | - Jason Chia-Hsien Cheng
- a Division of Radiation Oncology, Department of Oncology , National Taiwan University Hospital , Taipei , Taiwan.,e Graduate Institute of Oncology, National Taiwan University College of Medicine , Taipei , Taiwan
| |
Collapse
|
17
|
Noh JM, Choi DH, Park H, Huh SJ, Park W, Seol SW, Jeong BK, Nam SJ, Lee JE, Kil WH. Comparison of acute skin reaction following morning versus late afternoon radiotherapy in patients with breast cancer who have undergone curative surgical resection. JOURNAL OF RADIATION RESEARCH 2014; 55:553-8. [PMID: 24385471 PMCID: PMC4014164 DOI: 10.1093/jrr/rrt141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/17/2013] [Accepted: 11/11/2013] [Indexed: 06/03/2023]
Abstract
We investigated the relationship between the time of radiotherapy (RT) and treatment outcomes in breast cancer. Patients with pathologic T1-2N0-1 breast cancer who received adjuvant RT in the morning (before 10:00 AM) or late afternoon (after 3:00 PM) were eligible for inclusion in this study. We retrospectively compared the clinicopathologic characteristics, acute skin reaction, and survival outcomes according to the time of RT. The median follow-up duration was 83 months (range, 10-131 months). From the 395 eligible patients, 190 (48.1%) and 205 (51.9%) patients were classified into the morning RT group and the afternoon RT group, respectively. The clinicopathologic characteristics were relatively well balanced between the treatment groups, except for pathologic N-stage (P = 0.0409). Grade 2 or higher acute skin reaction according to the Radiation Therapy Oncology Group criteria was observed in 39 (9.9%) patients, with a higher frequency in the afternoon RT group than the morning RT group (13.7% vs 5.8%, respectively; P = 0.0088). There was no difference in the failure patterns or survival outcomes between the treatment groups. RT in late afternoon was associated with increased Grade 2 or more skin reaction after RT for breast cancer patients, but treatment outcomes did not differ according to the time of RT. Individualized considerations for treatment should be taken into account to reduce the risk of skin reactions.
Collapse
Affiliation(s)
- Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Doo Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Hyojung Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Seung Jae Huh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Won Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Seung Won Seol
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Bae Kwon Jeong
- Department of Radiation Oncology, Gyeongsang National University Hospital, Chiram-dong, Jinju, Gyeongsangnam-do 660-702, Republic of Korea
| | - Seok Jin Nam
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Jeong Eon Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| | - Won-Ho Kil
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, #50 Irwon-dong, Gangnam-gu, Seoul 135-710, Republic of Korea
| |
Collapse
|
18
|
Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy. Toxicol Appl Pharmacol 2013; 268:141-8. [DOI: 10.1016/j.taap.2013.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
|
19
|
Abstract
The objective of the study was to perform a literature review on the health consequences of working rotating shifts and implications for structural design. A literature search was performed in June 2012 and a selection of the most relevant peer-review articles was included in the present review. Shift workers are more likely to suffer from a circadian sleep disorder characterized by sleepiness and insomnia. Shift work is associated with decreased productivity, impaired safety, diminished quality of life and adverse effects on health. Circadian disruption resulting from rotating shift work has also been associated with increased risk for metabolic syndrome, diabetes, cardiovascular disease and cancer. This article summarizes the known health effects of shift work and discusses how light can be used as a countermeasure to minimize circadian disruption at night while maintaining alertness. In the context of the lighted environment, implications for the design of newborn intensive care units are also discussed.
Collapse
Affiliation(s)
- M G Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | |
Collapse
|
20
|
Abstract
The circadian timing system controls cell cycle, apoptosis, drug bioactivation, and transport and detoxification mechanisms in healthy tissues. As a consequence, the tolerability of cancer chemotherapy varies up to several folds as a function of circadian timing of drug administration in experimental models. Best antitumor efficacy of single-agent or combination chemotherapy usually corresponds to the delivery of anticancer drugs near their respective times of best tolerability. Mathematical models reveal that such coincidence between chronotolerance and chronoefficacy is best explained by differences in the circadian and cell cycle dynamics of host and cancer cells, especially with regard circadian entrainment and cell cycle variability. In the clinic, a large improvement in tolerability was shown in international randomized trials where cancer patients received the same sinusoidal chronotherapy schedule over 24h as compared to constant-rate infusion or wrongly timed chronotherapy. However, sex, genetic background, and lifestyle were found to influence optimal chronotherapy scheduling. These findings support systems biology approaches to cancer chronotherapeutics. They involve the systematic experimental mapping and modeling of chronopharmacology pathways in synchronized cell cultures and their adjustment to mouse models of both sexes and distinct genetic background, as recently shown for irinotecan. Model-based personalized circadian drug delivery aims at jointly improving tolerability and efficacy of anticancer drugs based on the circadian timing system of individual patients, using dedicated circadian biomarker and drug delivery technologies.
Collapse
|
21
|
Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev 2012; 17:273-84. [PMID: 23137527 DOI: 10.1016/j.smrv.2012.08.003] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/31/2022]
Abstract
Shift work that includes a nighttime rotation has become an unavoidable attribute of today's 24-h society. The related disruption of the human circadian time organization leads in the short-term to an array of jet-lag-like symptoms, and in the long-run it may contribute to weight gain/obesity, metabolic syndrome/type II diabetes, and cardiovascular disease. Epidemiologic studies also suggest increased cancer risk, especially for breast cancer, in night and rotating female shift workers. If confirmed in more controlled and detailed studies, the carcinogenic effect of night and shift work will constitute additional serious medical, economic, and social problems for a substantial proportion of the working population. Here, we examine the possible multiple and interconnected cancer-promoting mechanisms as a consequence of shift work, i.e., repeated disruption of the circadian system, pineal hormone melatonin suppression by exposure to light at night, sleep-deprivation-caused impairment of the immune system, plus metabolic changes favoring obesity and generation of proinflammatory reactive oxygen species.
Collapse
|
22
|
Plett PA, Sampson CH, Chua HL, Joshi M, Booth C, Gough A, Johnson CS, Katz BP, Farese AM, Parker J, MacVittie TJ, Orschell CM. Establishing a murine model of the hematopoietic syndrome of the acute radiation syndrome. HEALTH PHYSICS 2012; 103:343-55. [PMID: 22929467 PMCID: PMC3743168 DOI: 10.1097/hp.0b013e3182667309] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The authors have developed a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS) for efficacy testing of medical countermeasures (MCM) against radiation according to the FDA Animal Rule. Ten- to 12-wk-old male and female C57BL/6 mice were exposed to the LD50/30-LD70/30 dose of total body irradiation (TBI, (137)Cs, 0.62-0.67 Gy min(-1)) in the morning hours when mice were determined to be most radiosensitive, and they were assessed for 30-d survival and mean survival time (MST). Antibiotics were delivered in drinking water on days 4-30 post-TBI at a concentration based on the amount of water that lethally-irradiated mice were found to consume. The fluoroquinolones, ciprofloxacin and levofloxacin, as well as the tetracycline doxycycline, and aminoglycoside neomycin, all significantly increased MST of decedent mice, while ciprofloxacin (p = 0.061) and doxycycline + neomycin (p = 0.005) showed at least some efficacy to increase 30-d survival. Blood sampling (30 μL/mouse every fifth day) was found to negatively impact 30-d survival. Histopathology of tissues harvested from nonmoribund mice showed expected effects of lethal irradiation, while moribund mice were largely septicemic with a preponderance of enteric organisms. Kinetics of loss and recovery of peripheral blood cells in untreated mice and those treated with two MCM, granulocyte-colony stimulating factor and Amifostine further characterized and validated this model for use in screening studies and pivotal efficacy studies of candidate MCM for licensure to treat irradiated individuals suffering from H-ARS.
Collapse
Affiliation(s)
- P. Artur Plett
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mandar Joshi
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | - Barry P. Katz
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ann M. Farese
- University of Maryland at Baltimore School of Medicine, Baltimore, MD, USA
| | - Jeffrey Parker
- University of Maryland at Baltimore School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
23
|
Xia HC, Wang F, Li YH, Li ZK, Cao SZ, Li CY, Niu ZF. The circadian gene expression of Per1 and Per2 and their influence on radiotherapeutic sensitivity of glioma in vitro. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Per2 plays a key role in regulating the circadian rhythm in mammals. However, the circadian clock gene expression of Per1 and Per2 and its influence on radiotherapeutic sensitivity of C6 glioma cells in vitro have not been explored. Aim: To investigate the rhythm expression of circadian gene Per1 and Per2, and examine the influence on radiotherapeutic sensitivity of two important clock genes in C6 glioma cells. Materials & methods: The cultured C6 glioma cells and NIH3T3 cells were stimulated by phorbol 12-myristate 13-acetate (PMA). The expression of Per1 and Per2 at the indicated times were examined with a method for the absolute quantification of cDNA using real-time PCR. The cultured cell were given x-irradiation at the indicated times and the cell-cycle, apoptosis and proliferation were examined by flow cytometry. Results: We report here that PMA treatment of C6 rat glioma cells induces circadian expression of Per2, and that during periods of high expression, cells are blocked at the G2/M transition and are more sensitive to x-irradiation. PMA treatment of NIH3T3 cells induced circadian expression of Per1 and Per2, but high Per expression did not block the cell cycle or render the cells more sensitive to irradiation. Conclusion: Our results suggest that Per2 expression may increase the efficacy of radiotherapy against glioma.
Collapse
Affiliation(s)
- He-Chun Xia
- Department of Neurosurgery, Affiliated Hospital of Ningxia Medical University, Yinchuan, China
| | - Fan Wang
- Department of Neurosurgery, The First People’s Hospital of Jingmen, Jingmen, China
| | - Yan-Hui Li
- Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Zhang-Ke Li
- Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Shuan-Zhu Cao
- Department of Neurosurgery, The Central Hospital of Cangzhou, Cangzhou, China
| | - Cai-Yan Li
- Department of Microorganism, The Second People’s Hospital of Jingmen, Jingmen, China
| | - Zhan-Feng Niu
- Department of Neurosurgery, Affiliated Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
24
|
Liu Y, Wang Y, Jiang Z, Xiao J, Wang Z. The Influence of Circadian Gene Per2 on Cell Damaged by Ultraviolet C. Biomol Ther (Seoul) 2011. [DOI: 10.4062/biomolther.2011.19.3.308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
25
|
Sani M, Sebai H, Boughattas NA, Ben-Attia M. Time-of-day dependence of neurological deficits induced by sodium nitroprusside in young mice. J Circadian Rhythms 2011; 9:5. [PMID: 21682871 PMCID: PMC3141784 DOI: 10.1186/1740-3391-9-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 06/17/2011] [Indexed: 11/30/2022] Open
Abstract
Sodium nitroprusside (SNP) is widely used in pharmacological studies as a potent vasodilator or a nitric oxide donor. SNP-induced ataxic effects were assessed in mice by the Joulou-Couvoisier test. Swiss albino mice of both genders, 2-8 weeks of age, were acclimated at least for 2 weeks to 12 h light (rest span)/12 h dark (activity span). In 2 and 4 week old mice, maxima of ataxia were found following intraperitoneal administration of a dose ranging from 3 to 3.6 mg.kg-1 SNP at ≈ 1 and 13 HALO (Hours After Light Onset). The sublethal toxicity was statistically dosing-time dependent (χ2 test: P < 0.005). No rhythm was validated in neurotoxicity by cosinor analyses. At the 8th week of post-natal development (PND), SNP-induced ataxia was greatest at ≈ 1 HALO (69% in males vs. 49% in females) and lowest at ≈ 13 HALO (21% in males vs. 11% in females) (χ2 test: P < 0.00001). Cosinor analysis also revealed no statistically significant rhythm in mice injected with 3 or 3.3 mg.kg-1. However, a significant circadian (τ = 24 h) rhythm was detected by adjusted cosinor in 3.6 mg.kg-1-treated mice (P < 0.004). In all studied groups, SNP-induced motor impairment (expressed in %) was lower during the dark than the light phase. Furthermore, there was a non-significant gender-related difference in SNP-induced neuronal toxicity with the males more sensitive than females at every studied PND. The ataxic effects were inversely proportional to the lag time from injection and to the age of animals (with P < 0.05 only between 2 and 8 week old mice). These data indicate that both the administration time and age of the animal significantly affect the neurotoxic effects of SNP.
Collapse
Affiliation(s)
- Mamane Sani
- Département de Biologie, Faculté des Sciences de Maradi, Université de Maradi, 465 Maradi, Niger.
| | | | | | | |
Collapse
|
26
|
DiCarlo AL, Maher C, Hick JL, Hanfling D, Dainiak N, Chao N, Bader JL, Coleman CN, Weinstock DM. Radiation injury after a nuclear detonation: medical consequences and the need for scarce resources allocation. Disaster Med Public Health Prep 2011; 5 Suppl 1:S32-44. [PMID: 21402810 DOI: 10.1001/dmp.2011.17] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 10-kiloton (kT) nuclear detonation within a US city could expose hundreds of thousands of people to radiation. The Scarce Resources for a Nuclear Detonation Project was undertaken to guide community planning and response in the aftermath of a nuclear detonation, when demand will greatly exceed available resources. This article reviews the pertinent literature on radiation injuries from human exposures and animal models to provide a foundation for the triage and management approaches outlined in this special issue. Whole-body doses >2 Gy can produce clinically significant acute radiation syndrome (ARS), which classically involves the hematologic, gastrointestinal, cutaneous, and cardiovascular/central nervous systems. The severity and presentation of ARS are affected by several factors, including radiation dose and dose rate, interindividual variability in radiation response, type of radiation (eg, gamma alone, gamma plus neutrons), partial-body shielding, and possibly age, sex, and certain preexisting medical conditions. The combination of radiation with trauma, burns, or both (ie, combined injury) confers a worse prognosis than the same dose of radiation alone. Supportive care measures, including fluid support, antibiotics, and possibly myeloid cytokines (eg, granulocyte colony-stimulating factor), can improve the prognosis for some irradiated casualties. Finally, expert guidance and surge capacity for casualties with ARS are available from the Radiation Emergency Medical Management Web site and the Radiation Injury Treatment Network.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation/Nuclear Countermeasures Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Histone deacetylases (HDAC) have been under intense scientific investigation for a number of years. However, only recently the unique class III HDAC, sirtuins, have gained increasing investigational momentum. Originally linked to longevity in yeast, sirtuins and more specifically, SIRT1 have been implicated in numerous biological processes having both protective and/or detrimental effects. SIRT1 appears to play a critical role in the process of carcinogenesis, especially in age-related neoplasms. Similarly, alterations in circadian rhythms as well as production of the pineal hormone melatonin have been linked to aging and cancer risk. Melatonin has been found act as a differentiating agent in some cancer cells and to lower their invasive and metastatic status. In addition, melatonin synthesis and release occurs in a circadian rhythm fashion and it has been linked to the core circadian machinery genes (Clock, Bmal1, Periods, and Cryptochromes). Melatonin has also been associated with chronotherapy, the timely administration of chemotherapy agents to optimize trends in biological cycles. Interestingly, a recent set of studies have linked SIRT1 to the circadian rhythm machinery through direct deacetylation activity as well as through the nicotinamide adenine dinucleotide (NAD(+)) salvage pathway. In this review, we provide evidence for a possible connection between sirtuins, melatonin, and the circadian rhythm circuitry and their implications in aging, chronomodulation, and cancer.
Collapse
Affiliation(s)
- Brittney Jung-Hynes
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin
| | - Russel J. Reiter
- Department of Cellular & Structural Biology, The University of Texas Health Science Center, San Antonio, Texas
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin
- The University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Address correspondence to: Nihal Ahmad, Ph.D., Department of Dermatology, University of Wisconsin, 1300 University Avenue, MSC 423, Madison, Wisconsin, 53706; Phone: (608) 263-5359; Fax: (608) 263-5223;
| |
Collapse
|
28
|
Chang L, Liu Y, Zhu B, Li Y, Hua H, Wang Y, Zhang J, Jiang Z, Wang Z. High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells. Braz J Med Biol Res 2009; 42:882-91. [DOI: 10.1590/s0100-879x2009005000022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 07/22/2009] [Indexed: 01/17/2023] Open
Affiliation(s)
| | | | - B. Zhu
- Sichuan University, China
| | - Y. Li
- Sichuan University, China
| | - H. Hua
- Sichuan University, China
| | | | | | | | | |
Collapse
|
29
|
Khedhaier A, Ben Attia M, Gadacha W, Sani M, Bouzouita K, Chouchane L, Mechkouri M, Reinberg A, Boughattas NA. Circadian Rhythms in Toxic Effects of the Serotonin Antagonist Ondansetron in Mice. Chronobiol Int 2009; 20:1103-16. [PMID: 14680146 DOI: 10.1081/cbi-120025532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of the study was to learn whether the lethal and the motor incoordination (ataxia) side effect of ondansetron (Zophren) administration is dosing-time dependent. Ondansetron is a serotonin 5-HT3 receptor antagonist used primarily to control nausea and vomiting arising from cytotoxic chemo- and radiotherapy. A total of 210 male Swiss mice 10 to 12 weeks of age were synchronized for 3 weeks by 12 h light (rest span)/12 h dark (activity span). Different doses of ondansetron were injected intraperitoneally (i.p.) at fixed times during the day to determine both the sublethal (TD50) and lethal (LD50) doses, which were, respectively, 3.7 +/- 0.6 mg/kg and 4.6 +/- 0.5 mg/kg. In the chronotoxicologic study a single dose of ondansetron (3.5 mg/kg, i.p.) was administered to different and comparable groups of animals at four different circadian stages [1, 7, 13, and 19 h after light onset (HALO)]. The lethal toxicity was statistically significantly dosing time-dependent (chi2 = 21.51, p < 0.0001). Drug dosing at 1 HALO resulted in 100% survival rate whereas drug dosing at 19 HALO was only one-half that (52%). Similarly, lowest and highest ataxia occurred when ondansetron was injected at 1 and 19 HALO, respectively (chi2 = 22.24, p < 0.0001). Effects on rectal temperature were also dosing-time related (Cosinor analysis, p < 0.0001). The characteristics of the waveform describing the temporal patterns differed between the studied variables, e.g., lethal toxicity and survival rate showing two peaks and rectal temperature showing one peak in the 24 h time series waveform pattern. Cosinor analysis also revealed a statistically significant ultradian (tau = 8 h) rhythmic component in the considered variables. Differences in curve patterns in toxicity elicited by ondansetron on a per end point basis are hypothesized to represent the phase relations between the identified 24 h and 8 h periodicities.
Collapse
Affiliation(s)
- Achraf Khedhaier
- Laboratoire d'Immuno-Oncologie Moléculaire, Faculté de Médecine, Monastir, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dridi D, Boughattas NA, Aouam K, Reinberg A, Ben Attia M. Circadian Time‐Dependent Differences in Murine Tolerance to the Antihistaminic Agent Loratadine. Chronobiol Int 2009; 22:499-514. [PMID: 16076650 DOI: 10.1081/cbi-200062369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Loratadine is a second-generation histamine H(1)-receptor antagonist used in the treatment of allergic diseases. The aim of the study was to assess whether lethal toxicity and motor incoordination (neurotoxicity) of loratadine is circadian rhythm-dependent. A total of 210 male Swiss mice, aged 10 wk, were synchronized for 3 wk to 12 h light (rest span)/12 h dark (activity span). The drug was administered per os. The choice of the sublethal (TD(50) = 82 mg/kg body weight) and the lethal (LD(50) = 4 g/kg body weight) dosage was based on preliminary studies. Each of these two doses was administered to comparable groups of animals at six different circadian time points (1, 5, 9, 13, 17, and 21 Hours After Light Onset [HALO]). The survival duration was dosing time-dependent (chi(2) = 16.96; p < 0.001). Drug dosing at 17 HALO resulted in best (67%) survival rate; whereas, dosing at 9 HALO resulted in poorest (21%) survival rate. Cosinor analyses (with a trial period tau = 24 h) validated a statistically significant circadian rhythm in survival rate (p < 0.04) with an acrophase (peak time Ø of best tolerance to loratadine) being at 17.5 HALO +/- 4.65 h. Troughs of motor incoordination were located at the administration times of 5 and 17 HALO (60% and 32% of animals affected, respectively), whereas peaks were located at 9 and 21 HALO (87% and 68% of animals affected, respectively). The 24 h mean of the motor incoordination was 61%, the mean proportion of animals affected by the treatment for the six different circadian times studies. The extent of this neurotoxic effect varied as a function of loratadine dosing time (p < 0.001). A statistically significant ultradian component rhythm (p < 0.01) with a trial period tau = 12 h was also validated. The obtained results show that the dosing time of loratadine at the mid-activity (dark) span seems to be optimal, since it corresponds to the longest (21 vs. 12 days) survival span and to least neurotoxicity.
Collapse
Affiliation(s)
- Dorra Dridi
- Laboratoire de Pharmacologie, Faculté de Médecine, Monastir, Tunisia
| | | | | | | | | |
Collapse
|
31
|
Haus E. Chronobiology in oncology. Int J Radiat Oncol Biol Phys 2009; 73:3-5. [PMID: 19100918 DOI: 10.1016/j.ijrobp.2008.08.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 11/19/2022]
|
32
|
Bjarnason GA, MacKenzie RG, Nabid A, Hodson ID, El-Sayed S, Grimard L, Brundage M, Wright J, Hay J, Ganguly P, Leong C, Wilson J, Jordan RC, Walker M, Tu D, Parulekar W. Comparison of Toxicity Associated With Early Morning Versus Late Afternoon Radiotherapy in Patients With Head-and-Neck Cancer: A Prospective Randomized Trial of the National Cancer Institute of Canada Clinical Trials Group (HN3). Int J Radiat Oncol Biol Phys 2009; 73:166-72. [DOI: 10.1016/j.ijrobp.2008.07.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/02/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
|
33
|
Tyurina YY, Tyurin VA, Epperly MW, Greenberger JS, Kagan VE. Oxidative lipidomics of gamma-irradiation-induced intestinal injury. Free Radic Biol Med 2008; 44:299-314. [PMID: 18215738 DOI: 10.1016/j.freeradbiomed.2007.08.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 12/19/2022]
Abstract
Although gamma-irradiation-induced tissue injury has been associated with lipid peroxidation, the individual phospholipid molecular targets have not been identified. We employed oxidative lipidomics to qualitatively and quantitatively characterize phospholipid peroxidation in a radiosensitive tissue, the small intestine, of mice exposed to total body irradiation (TBI) (10 and 15 Gy). Using electrospray ionization mass spectrometry we found that the major classes of intestine phospholipids-phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol-included clusters with highly oxidizable molecular species containing docosahexaenoic fatty acid. Molecular species of cardiolipin were represented by only two major less oxidizable individual molecular species-tetralinoleoylcardiolipin and trilinoleoyl-mono-oleoylcardiolipin. Selective and robust oxidation of two anionic phospholipids-cardiolipin in mitochondria and phosphatidylserine outside of mitochondria-was observed 24 h after gamma-irradiation. MS analysis detected several TBI-induced molecular species of oxidized cardiolipin: (C(18:2))(3)(C(18:2)-OOH), (C(18:2))(2)(C(18:2)-OOH)(2), (C(18:2))(1)(C(18:2)-OOH)(3), and (C(18:2)-OOH)(4). The major molecular species involved in TBI-triggered peroxidation of phosphatidylserine included C(18:0)/C(22:6)-OOH, C(18:0)/C(22:5)-OOH, and C(18:0)/C(22:4)-OOH. More abundant phospholipids-phosphatidylcholine and phosphatidylethanolamine-did not reveal any oxidative stress responses despite the presence of highly oxidizable docosahexaenoic fatty acid residues in their molecular species. A marked activation of caspases 3/7 that was detected in the intestine of gamma-irradiated mice indicates the involvement of apoptotic cell death in the TBI injury. Given that oxidized molecular species of cardiolipin and phosphatidylserine accumulate during apoptosis of different cells in vitro we speculate that cardiolipin and phosphatidylserine oxidation products may be useful as potential biomarkers of gamma-irradiation-induced intestinal apoptosis in vivo and may represent a promising target for the discovery of new radioprotectors and radiosensitizers.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | |
Collapse
|
34
|
Hoogerwerf WA, Hellmich HL, Cornélissen G, Halberg F, Shahinian VB, Bostwick J, Savidge TC, Cassone VM. Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 2007; 133:1250-60. [PMID: 17919497 DOI: 10.1053/j.gastro.2007.07.009] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 06/28/2007] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Based on observations that the gastrointestinal tract is subject to various 24-hour rhythmic processes, it is conceivable that some of these rhythms are under circadian clock gene control. We hypothesized that clock genes are present in the gastrointestinal tract and that they are part of a functional molecular clock that coordinates rhythmic physiologic functions. METHODS The effects of timed feeding and vagotomy on temporal clock gene expression (clock, bmal1, per1-3, cry1-2) in the gastrointestinal tract and suprachiasmatic nucleus (bmal, per2) of C57BL/6J mice were examined using real-time polymerase chain reaction and Western blotting (BMAL, PER2). Colonic clock gene localization was examined using immunohistochemistry (BMAL, PER1-2). RESULTS Clock immunoreactivity was observed in the myenteric plexus and epithelial crypt cells. Clock genes were expressed rhythmically throughout the gastrointestinal tract. Timed feeding shifted clock gene expression at the RNA and protein level but did not shift clock gene expression in the central clock. Vagotomy did not alter gastric clock gene expression compared with sham-treated controls. CONCLUSIONS The murine gastrointestinal tract contains functional clock genes, which are molecular core components of the circadian clock. Daytime feeding in nocturnal rodents is a strong synchronizer of gastrointestinal clock genes. This synchronization occurs independently of the central clock. Gastric clock gene expression is not mediated through the vagal nerve. The presence of clock genes in the myenteric plexus and epithelial cells suggests a role for clock genes in circadian coordination of gastrointestinal functions such as motility, cell proliferation, and migration.
Collapse
Affiliation(s)
- Willemijntje A Hoogerwerf
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Guney Y, Hicsonmez A, Uluoglu C, Guney HZ, Ozel Turkcu U, Take G, Yucel B, Caglar G, Bilgihan A, Erdogan D, Nalca Andrieu M, Kurtman C, Zengil H. Melatonin prevents inflammation and oxidative stress caused by abdominopelvic and total body irradiation of rat small intestine. Braz J Med Biol Res 2007; 40:1305-14. [PMID: 17713655 DOI: 10.1590/s0100-879x2006005000156] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 05/14/2007] [Indexed: 11/22/2022] Open
Abstract
We investigated the day-night differences in intestinal oxidative-injury and the inflammatory response following total body (TB) or abdominopelvic (AP) irradiation, and the influence of melatonin administration on tissue injury induced by radiation. Rats (male Wistar, weighing 220-280 g) in the irradiated groups were exposed to a dose of 8 Gy to the TB or AP region in the morning (resting period - 1 h after light onset) or evening (activity span - 13 h after light onset). Vehicle or melatonin was administered immediately before, immediately after and 24 h after irradiation (10, 2.0 and 10 mg/kg, ip, respectively) to the irradiated rats. AP (P < 0.05) and TB (P < 0.05) irradiation applied in the morning caused a significant increase in thiobarbituric acid reactive substance (TBARS) levels. Melatonin treatment in the morning (P < 0.05) or evening (P < 0.05) decreased TBARS levels after TB irradiation. After AP irradiation, melatonin treatment only in the morning caused a significant decrease in TBARS levels (P < 0.05). Although we have confirmed the development of inflammation after radiotherapy by histological findings, neither AP nor TB irradiation caused any marked changes in myeloperoxidase activity in the morning or evening. Our results indicate that oxidative damage is more prominent in rats receiving TB and AP irradiation in the morning and melatonin appears to have beneficial effects on oxidative damage irrespective of the time of administration. Increased neutrophil accumulation indicates that melatonin administration exerts a protective effect on AP irradiation-induced tissue oxidative injury, especially in the morning.
Collapse
Affiliation(s)
- Y Guney
- Department of Radiation Oncology, Ankara University, Faculty of Medicine, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Berk L, Berkey B, Rich T, Hrushesky W, Blask D, Gallagher M, Kudrimoti M, McGarry RC, Suh J, Mehta M. Randomized phase II trial of high-dose melatonin and radiation therapy for RPA class 2 patients with brain metastases (RTOG 0119). Int J Radiat Oncol Biol Phys 2007; 68:852-7. [PMID: 17418968 PMCID: PMC2709786 DOI: 10.1016/j.ijrobp.2007.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/28/2006] [Accepted: 12/28/2006] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine if high-dose melatonin for Radiation Therapy Oncology Group (RTOG) recursive partitioning analysis (RPA) Class 2 patients with brain metastases improved survival over historical controls, and to determine if the time of day melatonin was given affected its toxicity or efficacy. RTOG 0119 was a phase II randomized trial for this group of patients. METHODS AND MATERIALS RTOG RPA Class 2 patients with brain metastases were randomized to 20 mg of melatonin, given either in the morning (8-9 AM) or in the evening (8-9 PM). All patients received radiation therapy (30 Gy in 10 fractions) in the afternoon. Melatonin was continued until neurologic deterioration or death. The primary endpoint was overall survival time. Neurologic deterioration, as reflected by the Mini-Mental Status Examination, was also measured. RESULTS Neither of the randomized groups had survival distributions that differed significantly from the historic controls of patients treated with whole-brain radiotherapy. The median survivals of the morning and evening melatonin treatments were 3.4 and 2.8 months, while the RTOG historical control survival was 4.1 months. CONCLUSIONS High-dose melatonin did not show any beneficial effect in this group of patients.
Collapse
Affiliation(s)
- Lawrence Berk
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, University of South Florida, Tampa, FL, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang GQ, Du YZ, Tong J. Daily oscillation and photoresponses of clock gene, Clock, and clock-associated gene, arylalkylamine N-acetyltransferase gene transcriptions in the rat pineal gland. Chronobiol Int 2007; 24:9-20. [PMID: 17364576 DOI: 10.1080/07420520601139821] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study was conducted to investigate the circadian rhythms and light responses of Clock and arylalkylamine N-acetyltransferase (NAT) gene expressions in the rat pineal gland under the environmental conditions of a 12 h light (05:00-17:00 h): 12 h-dark (17:00-05:00 h) cycle (LD) and constant darkness (DD). The pineal gland of Sprague-Dawley rats housed under a LD regime (n=42) for four weeks and of a regime (n=42) for eight weeks were sampled at six different times, every 4 h (n=7 animals per time point), during a 24 h period. Total RNA was extracted from each sample, and the semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was used to determine temporal changes in mRNA levels of Clock and NAT genes during different circadian or zeitgeber times. The data and parameters were analyzed by the cosine function software, Clock Lab software, and the amplitude F test was used to reveal the circadian rhythm. In the DD or LD condition, both the Clock and NAT mRNA levels in the pineal gland showed robust circadian oscillation (p<0.05) with the peak at the subjective night or at nighttime. In comparison with the DD regime, the amplitudes and mRNA levels at the peaks of Clock and NAT expressions in LD in the pineal gland were significantly reduced (p<0.05). In the DD or LD condition, the circadian expressions of NAT were similar in pattern to those of Clock in the pineal gland (p>0.05). These findings indicate that the transcriptions of Clock and NAT genes in the pineal gland not only show remarkably synchronous endogenous circadian rhythmic changes, but also respond to the ambient light signal in a reduced manner.
Collapse
Affiliation(s)
- Guo-Qing Wang
- Department of Physiology, Medical School, Soochow University, Suzhou 215123, Jiangsu, China
| | | | | |
Collapse
|
38
|
Abstract
The gastrointestinal tract displays biologic rhythms in basal gastric acid output, epithelial cell proliferation, gastrointestinal motility, and appetite regulation. Furthermore, the development of gastrointestinal complications after administration of aspirin and after chemo- and radiotherapy for metastatic colon cancer depends on the time of administration. Biologic rhythms are driven by so-called clock genes. Thus, it is conceivable that subsets of genes in the gastrointestinal tract are under clock gene control as well. The purpose of this article is to discuss basic concepts in the studies of biologic rhythms, to review examples of biologic rhythms in the gastrointestinal tract, and to discuss examples of gastrointestinal diseases in which alterations in biologic rhythms may play a pathogenetic role.
Collapse
Affiliation(s)
- Willemijntje A Hoogerwerf
- Department of Internal Medicine, Division of Gastroenterology, The University of Michigan, 1500 East Medical Center Drive, 3912 Taubman Center, Ann Arbor, MI 48109-0362, USA
| |
Collapse
|
39
|
Haus E, Smolensky M. Biological clocks and shift work: circadian dysregulation and potential long-term effects. Cancer Causes Control 2006; 17:489-500. [PMID: 16596302 DOI: 10.1007/s10552-005-9015-4] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Long-term epidemiologic studies on large numbers of night and rotating shift workers have suggested an increase in the incidence of breast and colon cancer in these populations. These studies suffer from poor definition and quantification of the work schedules of the exposed subjects. Against this background, the pathophysiology of phase shift and phase adaptation is reviewed. A phase shift as experienced in night and rotating shift work involves desynchronization at the molecular level in the circadian oscillators in the central nervous tissue and in most peripheral tissues of the body. There is a change in the coordination between oscillators with transient loss of control by the master-oscillator (the Suprachiasmatic Nucleus, SCN) in the hypothalamus. The implications of the pathophysiology of phase shift are discussed for long-term health effects and for the design of ergonomic work schedules minimizing the adverse health effects upon the worker.
Collapse
Affiliation(s)
- Erhard Haus
- Department of Laboratory Medicine & Pathology, University of Minnesota, Health Partners Medical Group, Regions Hospital, St. Paul, Minnesota 55101, USA.
| | | |
Collapse
|
40
|
Abstract
The molecular circadian clock entrains biological rhythms to a 24-hour schedule. Aspects of cardiovascular physiology and, indeed, the incidence of myocardial infarction and stroke are also subject to diurnal variation. The use of rodent models of disrupted clock function has begun to elucidate the role of the molecular clock in the pathophysiology of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Anne M Curtis
- The Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
41
|
Antoch MP, Kondratov RV, Takahashi JS. Circadian clock genes as modulators of sensitivity to genotoxic stress. Cell Cycle 2005; 4:901-7. [PMID: 15917646 PMCID: PMC3774065 DOI: 10.4161/cc.4.7.1792] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A broad variety of organisms display circadian rhythms (i.e., oscillations with 24-hr periodicities) in many aspects of their behavior, physiology and metabolism. These rhythms are under genetic control and are generated endogenously at the cellular level. In mammals, the core molecular mechanism of the oscillator consists of two transcriptional activators, CLOCK and BMAL1, and their transcriptional targets, CRYPTOCHROMES (CRYS) and PERIODS (PERS). The CRY and PER proteins function as negative regulators of CLOCK/BMAL1 activity, thus forming the major circadian autoregulatory feedback loop. It is believed that the circadian clock system regulates daily variations in output physiology and metabolism through periodic activation/repression of the set of clock-controlled genes that are involved in various metabolic pathways. Importantly, circadian-controlled pathways include those that determine in vivo responses to genotoxic stress. By using circadian mutant mice deficient in different components of the molecular clock system, we have established genetic models that correlate with the two opposite extremes of circadian cycle as reflected by the activity of the CLOCK/BMAL1 transactivation complex. Comparison of the in vivo responses of these mutants to the chemotherapeutic drug, cyclophosphamide (CY), has established a direct correlation between drug toxicity and the functional status of the CLOCK/BMAL1 transcriptional complex. We have also demonstrated that CLOCK/BMAL1 modulates sensitivity to drug-induced toxicity by controlling B cell responses to active CY metabolites. These results suggest that the sensitivity of cells to genotoxic stress induced by anticancer therapy may be modulated by CLOCK/BMAL1 transcriptional activity. Further elucidation of the molecular mechanisms of circadian control as well as identification of specific pharmacological modulators of CLOCK/BMAL1 activity are likely to lead to the development of new anti-cancer treatment schedules with increased therapeutic index and reduced morbidity.
Collapse
Affiliation(s)
- Marina P Antoch
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
42
|
Eriguchi M, Levi F, Hisa T, Yanagie H, Nonaka Y, Takeda Y. Chronotherapy for cancer. Biomed Pharmacother 2003; 57 Suppl 1:92s-95s. [PMID: 14572683 DOI: 10.1016/j.biopha.2003.08.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cancer chronotherapy is attracting attention as a novel and logical therapy in which anti-cancer drugs are administered with optimal timing according to circadian rhythms of anti-cancer action and those of adverse effects on normal cells. Advances in chronobiology have identified the suprachiasmatic nucleus (SCN) as the center of biological rhythms and the area in which clock genes such as PER1, PER2, PER3, CLOCK, BMAL1, TIM, CRY1, CRY2, tau act to generate and coordinate biological rhythms. These findings have led to the development of chronotherapy. Clinically, patients with advanced gastrointestinal cancer have been treated by chronomodulated chemotherapy with good response. For colorectal cancer patients with unresectable liver metastases, chronotherapy with l-OHP + 5-FU + FA (folinic acid) has been reported to allow complete surgical resection of liver metastases, resulting in 39-50% 5-year survival. Many believe that chronotherapy will become accepted as a refined and advantageous therapeutic option for not only cancer but also for other diseases, due to its universally applicable principles.
Collapse
Affiliation(s)
- M Eriguchi
- Incubation Project Cancer Metastasis, Department of Intellectual Property, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Ionizing radiation (IR) has proven to be a powerful medical treatment in the fight against cancer. Rational and effective use of its killing power depends on understanding IR-mediated responses at the molecular, cellular and tissue levels. Tumour cells frequently acquire defects in the molecular regulatory mechanisms of the response to IR, which sensitizes them to radiation therapy. One of the key molecules involved in a cell's response to IR is p53. Understanding these mechanisms indicates new rational approaches to improving cancer treatment by IR.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Molecular Biology, NC20, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
44
|
Abstract
Mammalian circadian rhythms result from a complex organization involving molecular clocks within nearly all "normal" cells and a dedicated neuroanatomical system, which coordinates the so-called "peripheral oscillators." The core of the central clock system is constituted by the suprachiasmatic nuclei that are located on the floor of the hypothalamus. Our understanding of the mechanisms of circadian rhythm generation and coordination processes has grown rapidly over the past few years. In parallel, we have learnt how to use the predictable changes in cellular metabolism or proliferation along the 24h time scale in order to improve treatment outcome for a variety of diseases, including cancer. The chronotherapeutics of malignant diseases has emerged as a result of a consistent development ranging from experimental, clinical, and technological prerequisites to multicenter clinical trials of chronomodulated delivery schedules. Indeed large dosing-time dependencies characterize the tolerability of anticancer agents in mice or rats, a better efficacy usually results from treatment administration near the least toxic circadian time in rodent tumor models. Programmable in time multichannel pumps have allowed to test the chronotherapy concepts in cancer patients and to implement chronomodulated delivery schedules in current practice. Clinical phase I and II trials have established the feasibility, the safety, and the activity of the chronotherapy schedules, so that this treatment method has undergone further evaluation in international multicenter phase III trials. Overall, more than 2,000 patients with metastatic disease have been registered in chronotherapy trials. Improved tolerability and/or better antitumor activity have been demonstrated in randomized multicenter studies involving large patient cohorts. The relation between circadian rhythmicity and quality of life and even survival has also been a puzzling finding over the recent years. An essential step toward further developments of circadian-timed therapy has been the recent constitution of a Chronotherapy cooperative group within the European Organization for Research and Treatment of Cancer. This group now involves over 40 institutions in 12 countries. It is conducting currently six trials and preparing four new studies. The 19 contributions in this special issue reflect the current status and perspectives of the several components of cancer chronotherapeutics.
Collapse
Affiliation(s)
- Francis Lévi
- INSERM EPI 0118 Cancer Chronotherapeutics, Université Paris XI and Chronotherapy Group, European Organisation for Research and Treatment of Cancer, Hĵpital Paul Brousse, Villejuif, France
| |
Collapse
|