1
|
Ansari FA, Khan AA, Mahmood R. Ameliorative effect of carnosine and N-acetylcysteine against sodium nitrite induced nephrotoxicity in rats. J Cell Biochem 2019; 120:7032-7044. [PMID: 30368897 DOI: 10.1002/jcb.27971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023]
Abstract
The widespread use of sodium nitrite (NaNO2 ) for various industrial purposes has increased human exposure to alarmingly high levels of nitrate/nitrite. Because NaNO 2 is a strong oxidizing agent, induction of oxidative stress is one of the mechanisms by which it can exert toxicity in humans and animals. We have investigated the possible protection offered by carnosine (CAR) and N-acetylcysteine (NAC) against NaNO 2 -induced nephrotoxicity in rats. Animals orally received CAR at 100 mg/kg body weight/d for seven days or NAC at 100 mg/kg body weight/d for five days followed by a single oral dose of NaNO 2 at 60 mg/kg body weight. The rats were killed after 24 hours, and the kidneys were removed and processed for various analyses. NaNO 2 induced oxidative stress in kidneys, as shown by the decreased activities of antioxidant defense, brush border membrane, and metabolic enzymes. DNA-protein crosslinking and DNA fragmentation were also observed. CAR/NAC pretreatment significantly protected the kidney against these biochemical alterations. Histological studies supported these findings, showing kidney damage in NaNO 2 -treated animals and reduced tissue impairment in the combination groups. The protection offered by CAR and NAC against NaNO 2 -induced damage, and their nontoxic nature, makes them potential therapeutic agents against nitrite-induced nephrotoxicity.
Collapse
Affiliation(s)
- Fariheen Aisha Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, Faculty of Medicine, J.N. Medical College, Aligarh Muslim University, Aligarh, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
2
|
Turkmen R, Birdane YO, Demirel HH, Yavuz H, Kabu M, Ince S. Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11427-11437. [PMID: 30805841 DOI: 10.1007/s11356-019-04585-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 05/05/2023]
Abstract
It is claimed that oxidative stress has a prominent role in the mechanism of toxic effects formed by glyphosate-based herbicide (GBH) in living systems. A strong thiol compound, N-acetylcysteine (NAC), has antioxidative and cytoprotective properties. The objective in this subchronic toxicity study was to identify the prophylactic effect of NAC over histopathological changes and oxidative stress induced by GBH in blood, renal, liver, cardiac, and brain tissues. A sum of 28 male Wistar rats were divided into four equal groups, each containing 7 rats. During the study, group I (control group) was supplied with normal rodent bait and tap water ad libitum. The applied agents were 160 mg/kg NAC to group II, 375 mg/kg as equivalent to 1/10 of lethal dose 50% (LD50) of GBH to group III, and 160 mg/kg of NAC and 375 mg/kg of GBH together once per day as oral gavage to group IV for 8 weeks. While GBH decreased the levels of GSH in blood, liver, kidney, and brain tissues, it considerably increased malondialdehyde levels. On the contrary, these parameters happened to improve in the group supplied with NAC. Besides, it was seen that NAC was observed to improve the histopathologic changes in rat tissues induced by GBH. It was concluded that NAC protects oxidative stress and tissue damage induced by GBH in blood and tissue and this prophylactic effect could be attributed to its antioxidant and free radical sweeper character.
Collapse
Affiliation(s)
- Ruhi Turkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey.
| | - Yavuz Osman Birdane
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | | | - Hidayet Yavuz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Mustafa Kabu
- Department of Internal Medicine, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
3
|
Carmean CM, Seino S. Braving the Element: Pancreatic β-Cell Dysfunction and Adaptation in Response to Arsenic Exposure. Front Endocrinol (Lausanne) 2019; 10:344. [PMID: 31258514 PMCID: PMC6587364 DOI: 10.3389/fendo.2019.00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/13/2019] [Indexed: 12/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a serious global health problem, currently affecting an estimated 451 million people worldwide. T2DM is characterized by hyperglycemia and low insulin relative to the metabolic demand. The precise contributing factors for a given individual vary, but generally include a combination of insulin resistance and insufficient insulin secretion. Ultimately, the progression to diabetes occurs only after β-cells fail to meet the needs of the individual. The stresses placed upon β-cells in this context manifest as increased oxidative damage, local inflammation, and ER stress, often inciting a destructive spiral of β-cell death, increased metabolic stress due to further insufficiency, and additional β-cell death. Several pathways controlling insulin resistance and β-cell adaptation/survival are affected by a class of exogenous bioactive compounds deemed endocrine disrupting chemicals (EDCs). Epidemiological studies have shown that, in several regions throughout the world, exposure to the EDC inorganic arsenic (iAs) correlates significantly with T2DM. It has been proposed that a lifetime of exposure to iAs may exacerbate problems with both insulin sensitivity as well as β-cell function/survival, promoting the development of T2DM. This review focuses on the mechanisms of iAs action as they relate to known adaptive and maladaptive pathways in pancreatic β-cells.
Collapse
Affiliation(s)
- Christopher M. Carmean
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Christopher M. Carmean
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Susumu Seino
| |
Collapse
|
4
|
Dash M, Maity M, Dey A, Perveen H, Khatun S, Jana L, Chattopadhyay S. The consequence of NAC on sodium arsenite-induced uterine oxidative stress. Toxicol Rep 2018; 5:278-287. [PMID: 29511641 PMCID: PMC5835492 DOI: 10.1016/j.toxrep.2018.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 01/21/2018] [Accepted: 02/09/2018] [Indexed: 01/09/2023] Open
Abstract
Arsenic consumption through drinking water is a worldwide major health problem. Management of arsenic intoxication with invasive, painful therapy using metal chelators is usually used as a conventional treatment strategy in human. In this present study, we examined the efficacy of oral administration of N-acetyl l-cysteine (NAC) in limiting arsenic-mediated female reproductive disorders and oxidative stress in female Wistar rats. The treatment was continued for 8 days (2 estrus cycles) on rats with sodium arsenite (10 mg/Kg body weight) orally. We examined the electrozymographic imprint of three different enzymatic antioxidants in uterine tissue. Rats fed with sodium arsenite exhibited a significant lessening in the activities of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx). Uterine DNA breakage, necrosis, ovarian and uterine tissue damage, disruption in steroidogenesis were also found in arsenic treated rats. Co-administration of NAC at different doses (50 mg/kg body weight, 100 mg/kg body weight, respectively) significantly reversed the action of uterine oxidative stress markers like malondialdehyde (MDA), conjugated dienes (CD) and non protein soluble thiol (NPSH); and noticeably improved antioxidant status of the arsenic fed rats. This ultimately resulted in the uterine tissue repairing followed by improvement of ovarian steroidogenesis. However, this effective function of NAC might be crucial for the restoration of arsenic-induced female reproductive organ damage in rats.
Collapse
Affiliation(s)
- Moumita Dash
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Moulima Maity
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Arindam Dey
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Shamima Khatun
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Lipirani Jana
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| |
Collapse
|
5
|
Rezaei M, Khodayar MJ, Seydi E, Soheila A, Parsi IK. Acute, but not Chronic, Exposure to Arsenic Provokes Glucose Intolerance in Rats: Possible Roles for Oxidative Stress and the Adrenergic Pathway. Can J Diabetes 2017; 41:273-280. [DOI: 10.1016/j.jcjd.2016.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 09/06/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022]
|
6
|
Singh P, Dutta SR, Passi D, Bharti J. Benefits of Alcohol on Arsenic Toxicity in Rats. J Clin Diagn Res 2017; 11:BF01-BF06. [PMID: 28273963 PMCID: PMC5324408 DOI: 10.7860/jcdr/2017/21700.9146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION It has been demonstrated earlier that exposure to ethanol and/or arsenic compounds (such as sodium arsenite) produces toxic effects as shown by both in vitro and in vivo experiments. Chronic exposure of humans to arsenic through drinking water, pesticides or consumption of alcoholic beverages has produced major health problem and concern in recent years. Water being one of the main ingredients for alcohol formation (beer fermentation process) can lead to contamination with arsenic. Thus, people consuming such alcohol are getting continuously exposed to arsenic compounds as well along with alcohol. AIM The present study was undertaken to investigate the effect of alcohol co-administration on arsenic induced changes in carbohydrate metabolic status in adult male albino rats. MATERIALS AND METHODS Adult male albino rats of Wistar strain (weighing~100g) were divided into three groups (n=8 rats/group) including Control or vehicle treated (C), Arsenic treated (As) and Arsenic treated alcohol co-exposed (As+Alc). Treatment with Sodium-arsenite included intra-peritoneal injection consecutively for 14 days at a dose of 5.55 mg/kg (equivalent to 35% of LD50) per day. Absolute alcohol (15% v/v) was fed at a dose of 0.5 ml/100 g body weight per day for five consecutive days from start of the treatment schedule. Distilled water (D/W) was used as vehicle. Blood Glucose (BG) level, levels of glycogen, Pyruvic Acid (PA), Free Amino Acid Nitrogen (FAAN), total protein, Glutamate Oxalate transaminase (GOT) and Glutamate Pyruvate Transaminase (GPT) activity, and glucose-6-phosphatase (G6Pase) activity were measured in tissues including liver, kidney and muscle. RESULTS Treatment with arsenic decreased the levels of BG, liver glycogen and PA, tissue protein and G6Pase activity, GOT activity in liver and muscle, and increased free amino acid content in kidney and muscle, GPT activity in liver and kidney. Alcohol administration to rats co-exposed to arsenic treatment reversed these changes. CONCLUSION Thus, it is suggested that combined administration of alcohol with arsenic can result in the suppression of the down-regulating action of arsenic on glucose homeostasis as evidenced by its hypoglycaemic effect and increased gluconeogenesis and transamination in liver.
Collapse
Affiliation(s)
- Purnima Singh
- Associate Professor, Department of Physiology, M. B. Kedia Dental College, Chhapkaiya, Birgunj, Nepal
| | - Shubha Ranjan Dutta
- Assistant Professor, Department of Oral and Maxillofacial Surgery, M. B. Kedia Dental College, Chhapkaiya, Birgunj, Nepal
| | - Deepak Passi
- Tutor, Department of Oral and Maxillofacial Surgery, ESIC Dental College and Hospital, Rohini, Delhi, India
| | - Jaya Bharti
- Dental Surgeon, Karuna Hospital, Delhi, india
| |
Collapse
|
7
|
Kaushal P, Mehra RD, Dhar P. Curcumin induced up-regulation of Myelin basic protein (MBP) ameliorates sodium arsenite induced neurotoxicity in developing rat cerebellum. J ANAT SOC INDIA 2014. [DOI: 10.1016/j.jasi.2014.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Zhang W, Liu Y, Ge M, Jing J, Chen Y, Jiang H, Yu H, Li N, Zhang Z. Protective effect of resveratrol on arsenic trioxide-induced nephrotoxicity in rats. Nutr Res Pract 2014; 8:220-6. [PMID: 24741408 PMCID: PMC3988513 DOI: 10.4162/nrp.2014.8.2.220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/30/2013] [Accepted: 09/30/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUD/OBEJECTIVES Arsenic, which causes human carcinogenicity, is ubiquitous in the environment. This study was designed to evaluate modulation of arsenic induced cancer by resveratrol, a phytoalexin found in vegetal dietary sources that has antioxidant and chemopreventive properties, in arsenic trioxide (As2O3)-induced Male Wistar rats. MATERIALS/METHODS Adult rats received 3 mg/kg As2O3 (intravenous injection, iv.) on alternate days for 4 days. Resveratrol (8 mg/kg) was administered (iv.) 1 h before As2O3 treatment. The plasma and homogenization enzymes associated with oxidative stress of rat kidneys were measured, the kidneys were examined histologically and trace element contents were assessed. RESULTS Rats treated with As2O3 had significantly higher oxidative stress and kidney arsenic accumulation; however, pretreatment with resveratrol reversed these changes. In addition, prior to treatment with resveratrol resulted in lower blood urea nitrogen, creatinine and insignificant renal tubular epithelial cell necrosis. Furthermore, the presence of resveratrol preserved the selenium content (0.805 ± 0.059 µg/g) of kidneys in rats treated with As2O3. However, resveratrol had no effect on zinc level in the kidney relative to As2O3-treated groups. CONCLUSIONS Our data show that supplementation with resveratrol alleviated nephrotoxicity by improving antioxidant capacity and arsenic efflux. These findings suggest that resveratrol has the potential to protect against kidney damage in populations exposed to arsenic.
Collapse
Affiliation(s)
- Weiqian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yan Liu
- School of Life Sciences, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiang Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongxiang Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ning Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, Silbergeld EK, Styblo M, Tseng CH, Thayer KA, Loomis D. Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1658-70. [PMID: 22889723 PMCID: PMC3548281 DOI: 10.1289/ehp.1104579] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 08/10/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Diabetes affects an estimated 346 million persons globally, and total deaths from diabetes are projected to increase > 50% in the next decade. Understanding the role of environmental chemicals in the development or progression of diabetes is an emerging issue in environmental health. In 2011, the National Toxicology Program (NTP) organized a workshop to assess the literature for evidence of associations between certain chemicals, including inorganic arsenic, and diabetes and/or obesity to help develop a focused research agenda. This review is derived from discussions at that workshop. OBJECTIVES Our objectives were to assess the consistency, strength/weaknesses, and biological plausibility of findings in the scientific literature regarding arsenic and diabetes and to identify data gaps and areas for future evaluation or research. The extent of the existing literature was insufficient to consider obesity as an outcome. DATA SOURCES, EXTRACTION, AND SYNTHESIS Studies related to arsenic and diabetes or obesity were identified through PubMed and supplemented with relevant studies identified by reviewing the reference lists in the primary literature or review articles. CONCLUSIONS Existing human data provide limited to sufficient support for an association between arsenic and diabetes in populations with relatively high exposure levels (≥ 150 µg arsenic/L in drinking water). The evidence is insufficient to conclude that arsenic is associated with diabetes in lower exposure (< 150 µg arsenic/L drinking water), although recent studies with better measures of outcome and exposure support an association. The animal literature as a whole was inconclusive; however, studies using better measures of diabetes-relevant end points support a link between arsenic and diabetes.
Collapse
Affiliation(s)
- Elizabeth A Maull
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Delineating the degree of association between biomarkers of arsenic exposure and type-2 diabetes mellitus. Int J Hyg Environ Health 2012; 216:35-49. [PMID: 22920650 DOI: 10.1016/j.ijheh.2012.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/01/2012] [Accepted: 07/04/2012] [Indexed: 01/18/2023]
Abstract
Non-carcinogenic effects in low-level (< 100 μgL(-1)) arsenic (As)-impacted populations, such as the development and progression of type-2 diabetes mellitus (T2DM), are often neglected given the primary emphasis of public health authorities on As carcinogenicity. We gathered studies reporting urinary biomarkers of As exposure (U-As) and biomarkers associated with T2DM and its complications (U-T2DM), such as renal damage, oxidation stress, low-grade inflammation, and endothelial damage. Studied U-T2DM biomarkers were: 8-hydroxy-2'deoxyguanosine, N-acetyl-β-d-glucosaminidase, β2-microglobulin, and albumin. Data was expressed as: either arithmetic means and standard deviations, or geometric means and geometric standard deviations, or correlation coefficients of U-As and U-T2DM. Urinary As concentrations were consistently associated with the aforementioned biomarkers of T2DM pathologic complications. Despite the limited selectivity of the selected T2DM biomarkers, a per unit change in As exposure level was reflected in the corresponding T2DM biomarker urinary concentrations. Our systematic review provides new evidence on the role of environmental As exposures influencing the T2DM disease process. Additional epidemiologic studies onto the association between As and T2DM should incorporate both urinary As and T2DM biomarkers, as suggested in this study, in order to evaluate subclinical effects of low-level As exposures.
Collapse
|
11
|
Huang CF, Chen YW, Yang CY, Tsai KS, Yang RS, Liu SH. Arsenic and diabetes: current perspectives. Kaohsiung J Med Sci 2011; 27:402-10. [PMID: 21914528 DOI: 10.1016/j.kjms.2011.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/24/2011] [Indexed: 01/19/2023] Open
Abstract
Arsenic is a naturally occurring toxic metalloid of global concern. Many studies have indicated a dose-response relationship between accumulative arsenic exposure and the prevalence of diabetes mellitus (DM) in arseniasis-endemic areas in Taiwan and Bangladesh, where arsenic exposure occurs through drinking water. Epidemiological researches have suggested that the characteristics of arsenic-induced DM observed in arseniasis-endemic areas in Taiwan and Mexico are similar to those of non-insulin-dependent DM (Type 2 DM). These studies analyzed the association between high and chronic exposure to inorganic arsenic in drinking water and the development of DM, but the effect of exposure to low to moderate levels of inorganic arsenic on the risk of DM is unclear. Navas-Acien et al. recently proposed that a positive association existed between total urine arsenic and the prevalence of Type 2 DM in people exposed to low to moderate levels of arsenic. However, the diabetogenic role played by arsenic is still debated upon. An increase in the prevalence of DM has been observed among residents of highly arsenic-contaminated areas, whereas the findings from community-based and occupational studies in low-arsenic-exposure areas have been inconsistent. Recently, a population-based cross-sectional study showed that the current findings did not support an association between arsenic exposure from drinking water at levels less than 300 μg/L and a significantly increased risk of DM. Moreover, although the precise mechanisms for the arsenic-induced diabetogenic effect are still largely undefined, recent in vitro experimental studies indicated that inorganic arsenic or its metabolites impair insulin-dependent glucose uptake or glucose-stimulated insulin secretion. Nevertheless, the dose, the form of arsenic used, and the experimental duration in the in vivo studies varied greatly, leading to conflicting results and ambiguous interpretation of these data with respect to human exposure to arsenic in the environment. Moreover, the experimental studies were limited to the use of arsenic concentrations much higher than those relevant to human exposure. Further prospective epidemiological studies might help to clarify this controversy. The issues about environmental exposure assessment and appropriate biomarkers should also be considered. Here, we focus on the review of mechanism studies and discuss the currently available evidence and conditions for the association between environmental arsenic exposure and the development of DM.
Collapse
Affiliation(s)
- Chun Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Kavitha C, Malarvizhi A, Senthil Kumaran S, Ramesh M. Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp, Catla catla. Food Chem Toxicol 2010; 48:2848-54. [DOI: 10.1016/j.fct.2010.07.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/15/2010] [Accepted: 07/12/2010] [Indexed: 11/16/2022]
|
13
|
Joshi D, Mittal DK, Shrivastava S, Shukla S. Protective role of thiol chelators against dimethylmercury induced toxicity in male rats. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 84:613-617. [PMID: 20401649 DOI: 10.1007/s00128-010-9982-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 04/07/2010] [Indexed: 05/29/2023]
Abstract
The present study was undertaken to establish mode of action, comparative therapeutic efficacy and safety evaluation of N-acetyl cysteine and dithiothreitol against acute dimethylmercury poisoning in rats. Male Sprague-Dawley albino rats (150 +/- 10 g) were randomly divided into six groups. Group 1 served as control. Group 2-4 were administered dimethylmercury (10 mg/kg, p.o.) once only and group 2 served as experimental control. Animals of group 3 and 4 were received N-acetyl cysteine and dithiothreitol. Compared to the control, significant increase (p < or = 0.05) was observed in the activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lipid peroxidation level and mercury ion concentration, however reduced glutathione, catalase, adenosine triphosphatase, acetyl cholinesterase (in brain only) were also decreased. It was concluded that N-acetyl cysteine provided maximum protection when compared with dithiothreitol group.
Collapse
Affiliation(s)
- Deepmala Joshi
- Reproductive Biology and Toxicology Laboratory, UNESCO Setellite center of Trace Element Research & School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, India.
| | | | | | | |
Collapse
|
14
|
Das J, Ghosh J, Manna P, Sinha M, Sil PC. Arsenic-induced oxidative cerebral disorders: Protection by taurine. Drug Chem Toxicol 2009; 32:93-102. [PMID: 19514944 DOI: 10.1080/01480540802564171] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Yousef MI, El-Demerdash FM, Radwan FM. Sodium arsenite induced biochemical perturbations in rats: Ameliorating effect of curcumin. Food Chem Toxicol 2008; 46:3506-11. [DOI: 10.1016/j.fct.2008.08.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 08/15/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
|
16
|
Yang HT, Chou HJ, Han BC, Huang SY. Lifelong inorganic arsenic compounds consumption affected blood pressure in rats. Food Chem Toxicol 2007; 45:2479-87. [PMID: 17688991 DOI: 10.1016/j.fct.2007.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 04/16/2007] [Accepted: 05/23/2007] [Indexed: 11/24/2022]
Abstract
Chronic arsenic exposure is a known risk factor for cardiovascular disease and has a strong correlation with hypertension. Oxidative stress may be one of the major contributors to arsenic-induced hypertension. To investigate the antioxidative and CYP systems through which inorganic arsenic compounds may contribute to blood pressure elevation in rats, we administered 50ppm arsenic (as arsenite and arsenate) in drinking water to Wistar rats for 200 successive days. Systolic blood pressure was determined every 20 days, and blood samples and tissues were collected at each time point for biological analysis. Compared to the control group, weight gain in the arsenic-exposed animals was slightly but significantly lower, whereas the relative weights of the various tissues was higher. Blood pressure was elevated until day 80 in both arsenic groups followed by a time-dependent change in the antioxidative enzyme system. The hypertensive effect remained until day 200 for arsenite when the change by arsenate was minimized. Patterns of antioxidative enzyme change differed between arsenite and arsenate. However, the most common marker of hypertension, the angiotensin-converting enzyme, showed no significant change in either arsenic group. CYP4A was highly expressed in both arsenic groups, particularly in the arsenite group. These results indicate that low but chronic arsenic exposure might cause elevated blood pressure and antioxidative interference. Furthermore, CYP4A might be more important than ACE in contributing to arsenic-induced hypertension.
Collapse
Affiliation(s)
- Hui-Ting Yang
- School of Pharmaceutical Science, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | |
Collapse
|
17
|
Sinha M, Manna P, Sil PC. Taurine, a conditionally essential amino acid, ameliorates arsenic-induced cytotoxicity in murine hepatocytes. Toxicol In Vitro 2007; 21:1419-28. [PMID: 17624716 DOI: 10.1016/j.tiv.2007.05.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/02/2007] [Accepted: 05/24/2007] [Indexed: 01/01/2023]
Abstract
Arsenic is a potent environmental toxin. Present study has been designed to evaluate the protective role of taurine (2-aminoethanesulfonic acid) against arsenic induced cytotoxicity in murine hepatocytes. Sodium arsenite (NaAsO(2)) was chosen as the source of arsenic. Incubation of hepatocytes with the toxin (1 mM) for 2 h reduced the cell viability as well as intra-cellular antioxidant power. Increased activities of alanine transaminase (ALT) and alkaline phosphatase (ALP) due to toxin exposure confirmed membrane damage. Toxin treatment caused reduction in the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx). In addition, the same treatment reduced the level of glutathione (GSH), elevated the level of oxidized glutathione (GSSG) and increased the extent of lipid peroxidation. Incubation of hepatocytes with taurine, both prior to and in combination with NaAsO(2), attenuated the extent of lipid peroxidation and enhanced the activities of enzymatic as well as non enzymatic antioxidants. Besides, taurine administration normalized the arsenic-induced enhanced levels of the marker enzymes ALT and ALP in hepatocytes. The cytoprotective activity of taurine against arsenic poisoning was found to be comparable to that of a known antioxidant, vitamin C. Combining all, the results suggest that taurine protects mouse hepatocytes against arsenic induced cytotoxicity.
Collapse
Affiliation(s)
- Mahua Sinha
- Department of Chemistry, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700 009, India
| | | | | |
Collapse
|
18
|
In vitro and in vivo reduction of sodium arsenite induced toxicity by aqueous garlic extract. Food Chem Toxicol 2007; 46:740-51. [PMID: 17983699 DOI: 10.1016/j.fct.2007.09.108] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 08/30/2007] [Accepted: 09/25/2007] [Indexed: 01/12/2023]
Abstract
BACKGROUND Arsenic is ubiquitous in the environment, and chronic or acute exposure through food and water as well as occupational sources can contribute to a well-defined spectrum of disease. Despite arsenic being a health hazard and a well-documented human carcinogen, a safe, effective and specific preventive or therapeutic measure for treating arsenic induced toxicity still eludes us. OBJECTIVE This study was undertaken to evaluate the therapeutic efficacy of aqueous garlic (Allium sativum L.) extract (AGE) in terms of normalization of altered biochemical parameters particularly indicative of oxidative stress following sodium arsenite (NaAsO(2)) exposure and depletion of inorganic arsenic burden, in vitro and in vivo. RESULTS AGE (2mg/ml) co-administered with 10 microM NaAsO(2) attenuated arsenite induced cytotoxicity, reduced intracellular reactive oxygen species (ROS) level in human malignant melanoma cells (A375), human keratinocyte cells (HaCaT) and in cultured human normal dermal fibroblast cells. Moreover, AGE application in NaAsO(2) intoxicated Sprague-Dawley rats resulted in a marked inhibition of tissue lipid peroxide generation; enhanced level of total tissue sulfhydryl groups and glutathione; and also increased the activities of antioxidant enzymes, superoxide dismutase and catalase to near normal. An increase in blood ROS level and myeloperoxidase activity in arsenic-intoxicated rats was effectively prevented by AGE administration. AGE was also able to counter arsenic mediated incongruity in blood hematological variables and glucose level. CONCLUSIONS The restorative property of AGE was attributed to its antioxidant activity, chelating efficacy, and/or oxidizing capability of trivalent arsenic to its less toxic pentavalent form. Taken together, evidences indicate that AGE can be a potential protective regimen for arsenic mediated toxicity.
Collapse
|
19
|
Paul DS, Hernández-Zavala A, Walton FS, Adair BM, dina JD, Matoušek T, Stýblo M. Examination of the effects of arsenic on glucose homeostasis in cell culture and animal studies: development of a mouse model for arsenic-induced diabetes. Toxicol Appl Pharmacol 2007; 222:305-14. [PMID: 17336358 PMCID: PMC2680915 DOI: 10.1016/j.taap.2007.01.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 01/05/2007] [Accepted: 01/12/2007] [Indexed: 12/19/2022]
Abstract
Previous epidemiologic studies found increased prevalences of type 2 diabetes mellitus in populations exposed to high levels of inorganic arsenic (iAs) in drinking water. Although results of epidemiologic studies in low-exposure areas or occupational settings have been inconclusive, laboratory research has shown that exposures to iAs can produce effects that are consistent with type 2 diabetes. The current paper reviews the results of laboratory studies that examined the effects of iAs on glucose metabolism and describes new experiments in which the diabetogenic effects of iAs exposure were reproduced in a mouse model. Here, weanling male C57BL/6 mice drank deionized water with or without the addition of arsenite (25 or 50 ppm As) for 8 weeks. Intraperitoneal glucose tolerance tests revealed impaired glucose tolerance in mice exposed to 50 ppm As, but not to 25 ppm As. Exposure to 25 and 50 ppm As in drinking-water resulted in proportional increases in the concentration of iAs and its metabolites in the liver and in organs targeted by type 2 diabetes, including pancreas, skeletal muscle and adipose tissue. Dimethylarsenic was the predominant form of As in the tissues of mice in both 25 and 50 ppm groups. Notably, the average concentration of total speciated arsenic in livers from mice in the 50 ppm group was comparable to the highest concentration of total arsenic reported in the livers of Bangladeshi residents who had consumed water with an order of magnitude lower level of iAs. These data suggest that mice are less susceptible than humans to the diabetogenic effects of chronic exposure to iAs due to a more efficient clearance of iAs or its metabolites from target tissues.
Collapse
Affiliation(s)
- David S. Paul
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Araceli Hernández-Zavala
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Felecia S. Walton
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Blakely M. Adair
- Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Jiří D dina
- Academy of Sciences of the Czech Republic, Institute of Analytical Chemistry, Laboratory of Trace Element Analysis, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Tomáš Matoušek
- Academy of Sciences of the Czech Republic, Institute of Analytical Chemistry, Laboratory of Trace Element Analysis, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Miroslav Stýblo
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| |
Collapse
|
20
|
Paul DS, Harmon AW, Devesa V, Thomas DJ, Stýblo M. Molecular mechanisms of the diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:734-42. [PMID: 17520061 PMCID: PMC1867998 DOI: 10.1289/ehp.9867] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 01/29/2007] [Indexed: 04/14/2023]
Abstract
BACKGROUND Increased prevalences of diabetes mellitus have been reported among individuals chronically exposed to inorganic arsenic (iAs). However, the mechanisms underlying the diabetogenic effects of iAs have not been characterized. We have previously shown that trivalent metabolites of iAs, arsenite (iAs(III)) and methylarsonous acid (MAs(III)) inhibit insulin-stimulated glucose uptake (ISGU) in 3T3-L1 adipocytes by suppressing the insulin-dependent phosphorylation of protein kinase B (PKB/Akt). OBJECTIVES Our goal was to identify the molecular mechanisms responsible for the suppression of PKB/Akt phosphorylation by iAs(III) and MAs(III). METHODS The effects of iAs(III) and MAs(III) on components of the insulin-activated signal transduction pathway that regulate PKB/Akt phosphorylation were examined in 3T3-L1 adipocytes. RESULTS Subtoxic concentrations of iAs(III) or MAs(III) had little or no effect on the activity of phosphatidylinositol 3-kinase (PI-3K), which synthesizes phosphatidylinositol-3,4,5-triphosphate (PIP(3)), or on phosphorylation of PTEN (phosphatase and tensin homolog deleted on chromosome ten), a PIP(3) phosphatase. Neither iAs(III) nor MAs(III) interfered with the phosphorylation of 3-phosphoinositide-dependent kinase-1 (PDK-1) located downstream from PI-3K. However, PDK-1 activity was inhibited by both iAs(III) and MAs(III). Consistent with these findings, PDK-1-catalyzed phosphorylation of PKB/Akt(Thr308) and PKB/Akt activity were suppressed in exposed cells. In addition, PKB/Akt(Ser473) phosphorylation, which is catalyzed by a putative PDK-2, was also suppressed. Notably, expression of constitutively active PKB/Akt restored the normal ISGU pattern in adipocytes treated with either iAs(III) or MAs(III). CONCLUSIONS These results suggest that inhibition of the PDK-1/PKB/Akt-mediated transduction step is the key mechanism for the inhibition of ISGU in adipocytes exposed to iAs(III) or MAs(III), and possibly for impaired glucose tolerance associated with human exposures to iAs.
Collapse
Affiliation(s)
- David S Paul
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7461, USA.
| | | | | | | | | |
Collapse
|
21
|
Navas-Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E. Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiological evidence. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:641-8. [PMID: 16675414 PMCID: PMC1459913 DOI: 10.1289/ehp.8551] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Chronic arsenic exposure has been suggested to contribute to diabetes development. We performed a systematic review of the experimental and epidemiologic evidence on the association of arsenic and type 2 diabetes. We identified 19 in vitro studies of arsenic and glucose metabolism. Five studies reported that arsenic interfered with transcription factors involved in insulin-related gene expression: upstream factor 1 in pancreatic beta-cells and peroxisome proliferative-activated receptor gamma in preadipocytes. Other in vitro studies assessed the effect of arsenic on glucose uptake, typically using very high concentrations of arsenite or arsenate. These studies provide limited insight on potential mechanisms. We identified 10 in vivo studies in animals. These studies showed inconsistent effects of arsenic on glucose metabolism. Finally, we identified 19 epidemiologic studies (6 in high-arsenic areas in Taiwan and Bangladesh, 9 in occupational populations, and 4 in other populations). In studies from Taiwan and Bangladesh, the pooled relative risk estimate for diabetes comparing extreme arsenic exposure categories was 2.52 (95% confidence interval, 1.69-3.75), although methodologic problems limit the interpretation of the association. The evidence from occupational studies and from general populations other than Taiwan or Bangladesh was inconsistent. In summary, the current available evidence is inadequate to establish a causal role of arsenic in diabetes. Because arsenic exposure is widespread and diabetes prevalence is reaching epidemic proportions, experimental studies using arsenic concentrations relevant to human exposure and prospective epidemiologic studies measuring arsenic biomarkers and appropriately assessing diabetes should be a research priority.
Collapse
Affiliation(s)
- Ana Navas-Acien
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205-2223, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Pal S, Chatterjee AK. Prospective protective role of melatonin against arsenic-induced metabolic toxicity in Wistar rats. Toxicology 2005; 208:25-33. [PMID: 15664430 DOI: 10.1016/j.tox.2004.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 11/02/2004] [Accepted: 11/02/2004] [Indexed: 12/31/2022]
Abstract
Subchronic exposure to arsenic is associated with alteration of glucose homeostasis. Arsenic treatment (as sodium arsenite) of male Wistar rats (weighing 130-150 g) at a dose of 5.55 mg kg(-1) body weight (equivalent to 35% of LD(50)) (i.p.) per day for a period of 30 days produced hypoglycemia, with associated increased urinary excretion of glucose and depletion of liver glycogen and pyruvic acid contents. Mobilization of free amino acids from kidney to liver was facilitated by arsenic treatment. Arsenic exposure significantly decreased the glutamate-pyruvate transaminase activity in kidney. Glucose 6-phosphatase activity in liver tissue was also significantly decreased after arsenic treatment. In addition to these, liver lactate dehydrogenase activity was elevated due to arsenic treatment. Melatonin supplementation (i.p.) at a dose of 10 mg kg(-1) day(-1) for last five days prior to sacrifice reversed most of the above changes caused by arsenic. Melatonin, being a potent free radical scavenger may reduce arsenic-induced free radical production, and thereby, eliminating its toxic effects. So, arsenic-induced hypoglycemia, with associated glycogenolytic as well as glycolytic activities of liver can be partially counteracted by melatonin supplementation. Accordingly, it may be suggested that melatonin can serve as a prospective protective agent against arsenic-induced metabolic toxicity.
Collapse
Affiliation(s)
- Sudipta Pal
- Biochemistry and Nutrition Laboratory, Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, West Bengal, Kolkata 700009, India
| | | |
Collapse
|