1
|
Chávez-Reyes J, Saráchaga-Terrazas F, Colis-Arenas OA, López-Lariz CH, Villalón CM, Marichal-Cancino BA. Aminomethylphosphonic Acid (AMPA), a Glyphosate Metabolite, Decreases Plasma Cholinesterase Activity in Rats. J Xenobiot 2024; 14:604-612. [PMID: 38804288 PMCID: PMC11130852 DOI: 10.3390/jox14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Glyphosate, a widely used herbicide, is linked to a plethora of deleterious effects in both clinical and preclinical studies. Nevertheless, the effects of its main metabolite, aminomethylphosphonic acid (AMPA), whose half-life in soil is even longer than that of glyphosate, have been little explored. On this basis, as a first approach, in this work, we report that intraperitoneal (i.p.) administration of AMPA or glyphosate (at 10, 56, and 100 mg/kg) decreased, to a similar extent, plasma cholinesterase (ChE) activity in acutely exposed rats. Moreover, we designed an experimental protocol to analyze and compare the effects of AMPA and glyphosate on human plasma ChE activity; this protocol consisted of adding these compounds to human plasma to subsequently test the effects of this plasma on the contraction to acetylcholine (ACh) in the frog rectus abdominis muscle (an indirect estimate of ChE activity). Accordingly, this muscular contraction to ACh was evaluated before and after pre-incubation of ACh with (i) plasma alone, (ii) plasma with AMPA, and (iii) plasma with glyphosate. Our results indicate that AMPA, like glyphosate, decreased ChE activity in the plasma of rats (when given i.p.) and humans (when added in vitro), suggesting that both xenobiotics may exert similar toxicological effects.
Collapse
Affiliation(s)
- Jesús Chávez-Reyes
- Department of Physiology and Pharmacology, Centre of Basic Sciences, Autonomous University of Aguascalientes, Ciudad Universitaria 940, Aguascalientes 20100, Mexico; (J.C.-R.); (C.H.L.-L.)
| | - Fernando Saráchaga-Terrazas
- Department of Medicine, Centre of Health Sciences, Autonomous University of Aguascalientes, Ciudad Universitaria 940, Aguascalientes 20100, Mexico
| | - Oliver Alejandro Colis-Arenas
- Department of Medicine, Centre of Health Sciences, Autonomous University of Aguascalientes, Ciudad Universitaria 940, Aguascalientes 20100, Mexico
| | - Carlos H. López-Lariz
- Department of Physiology and Pharmacology, Centre of Basic Sciences, Autonomous University of Aguascalientes, Ciudad Universitaria 940, Aguascalientes 20100, Mexico; (J.C.-R.); (C.H.L.-L.)
| | - Carlos M. Villalón
- Department of Pharmacobiology, Centre for Research and Advanced Studies, the National Polytechnic Institute (Cinvestav-Coapa), Czda. de los Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, Mexico City 14330, Mexico;
| | - Bruno A. Marichal-Cancino
- Department of Physiology and Pharmacology, Centre of Basic Sciences, Autonomous University of Aguascalientes, Ciudad Universitaria 940, Aguascalientes 20100, Mexico; (J.C.-R.); (C.H.L.-L.)
| |
Collapse
|
2
|
Kolić D, Pehar V, Kovarik Z. Environmental exposure to glyphosate does not inhibit human acetylcholinesterase and butyrylcholinesterase. Arh Hig Rada Toksikol 2024; 75:76-80. [PMID: 38548375 PMCID: PMC10978157 DOI: 10.2478/aiht-2024-75-3822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/01/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
Glyphosate has remained the leading herbicide on the global market to date, despite the continuous debate between consumers, scientific community, and regulatory agencies over its carcinogenicity, genotoxicity, environmental persistence, and the role in the development of neurodegenerative disorders. Chemically, glyphosate belongs to a large family of organophosphorus pesticides, which exert a neurotoxic effect by inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), enzymes of the cholinergic system essential for maintaining neurotransmission. Although research shows that glyphosate is a weak cholinesterase inhibitor in fish and mammals compared to other OP compounds, no conclusive data exist concerning the inhibition of human AChE and BChE. In our study we analysed its inhibitory potency on human AChE and BChE, by establishing its IC50 and reversible inhibition in terms of dissociation inhibition constants. Glyphosate concentration of 40 mmol/L caused near total inhibition of enzyme activity (approx. 10 % activity remaining). Inhibition dissociation constants (K i) of glyphosate-AChE and -BChE complexes were 28.4±2.7 mmol/L and 19.3±1.8 mmol/L, respectively. In conclusion, glyphosate shows a slight binding preference for BChE but exhibits inhibition only in a high concentration range. Our results are in line with studies reporting that its neurotoxic effect is not primarily linked to the cholinergic system.
Collapse
Affiliation(s)
- Dora Kolić
- Institute for Medical Research and Occupational Health, Division of Toxicology, Zagreb, Croatia
| | - Vesna Pehar
- Dr Franjo Tuđman Croatian Defence Academy, Zagreb, Croatia
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Division of Toxicology, Zagreb, Croatia
- University of Zagreb Faculty of Science, Zagreb, Croatia
| |
Collapse
|
3
|
Gerbelli BB, Filho PLO, Cortez B, Sodré PT, Coutinho-Neto MD, Hamley IW, Seitsonen J, Alves WA. Interaction between glyphosate pesticide and amphiphilic peptides for colorimetric analysis. NANOSCALE ADVANCES 2022; 4:3592-3599. [PMID: 36134354 PMCID: PMC9400510 DOI: 10.1039/d2na00345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
The large-scale use of glyphosate pesticides in food production has attracted attention due to environmental damage and toxicity risks. Several regulatory authorities have established safe limits or concentrations of these pesticides in water and various food products consumed daily. The irreversible inhibition of acetylcholinesterase (AChE) activity is one of the strategies used for pesticide detection. Herein, we found that lipopeptide sequences can act as biomimetic microenvironments of AChE, showing higher catalytic activities than natural enzymes in an aqueous solution, based on IC50 values. These biomolecules contain in the hydrophilic part the amino acids l-proline (P), l-arginine (R), l-tryptophan (W), and l-glycine (G), covalently linked to a hydrophobic part formed by one or two long aliphatic chains. The obtained materials are referred to as compounds 1 and 2, respectively. According to fluorescence assays, 2 is more hydrophobic than 1. The circular dichroism (CD) data present a significant difference in the molar ellipticity values, likely related to distinct conformations assumed by the proline residue in the lipopeptide supramolecular structure in solution. The morphological aspect was further characterized using small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM), which showed that compounds 1 and 2 self-assembly into cylindrical and planar core-shell structures, respectively. The mimetic AchE behaviour of lipopeptides was confirmed by Ellman's hydrolysis reaction, where the proline residue in the peptides act as a nucleophilic scavenger of organophosphate pesticides. Moreover, the isothermal titration calorimetry (ITC) experiments revealed that host-guest interactions in both systems were dominated by enthalpically-driven thermodynamics. UV-vis kinetic experiments were performed to assess the inhibition of the lipopeptide catalytic activity and the IC50 values were obtained, and we found that the detection limit correlated with the increase in hydrophobicity of the lipopeptides, implying the micellization process is more favorable.
Collapse
Affiliation(s)
- Barbara B Gerbelli
- University of Reading, Department of Chemistry Reading UK
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| | - Pedro L O Filho
- University of Copenhagen, Niels Bohr Institute Copenhagen Denmark
- Universidade de São Paulo, Instituto de Física São Paulo SP Brazil
| | - Bruna Cortez
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| | - Pedro T Sodré
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| | | | - Ian W Hamley
- University of Reading, Department of Chemistry Reading UK
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University Puumiehenkuja 2 FIN-02150 Espoo Finland
| | - Wendel A Alves
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas São Paulo SP Brazil
| |
Collapse
|
4
|
Martins-Gomes C, Coutinho TE, Silva TL, Andreani T, Silva AM. Neurotoxicity Assessment of Four Different Pesticides Using In Vitro Enzymatic Inhibition Assays. TOXICS 2022; 10:toxics10080448. [PMID: 36006126 PMCID: PMC9413506 DOI: 10.3390/toxics10080448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/23/2022]
Abstract
Pesticides affect different organs and tissues according to their bioavailability, chemical properties and further molecular interactions. In animal models exposed to several classes of pesticides, neurotoxic effects have been described, including the reduction of acetylcholinesterase activity in tissue homogenates. However, in homogenates, the reduction in enzymatic activity may also result from lower enzymatic expression and not only from enzymatic inhibition. Thus, in this work, we aimed to investigate the neurotoxic potential of four distinct pesticides: glyphosate (herbicide), imazalil (fungicide), imidacloprid (neonicotinoid insecticide) and lambda-cyhalothrin (pyrethroid insecticide), by assessing their inhibitory effect on the activity of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase, by using direct in vitro enzymatic inhibition methods. All pesticides dose-dependently inhibited AChE activity, with an inhibition of 11 ± 2% for glyphosate, 48 ± 2% for imidacloprid, 49 ± 3% for imazalil and 50 ± 3% for lambda-cyhalothrin, at 1 mM. Only imazalil inhibited BChE. Imazalil induced dose-dependent inhibition of BChE with identical pattern as that observed for AChE; however, for lower concentrations (up to 500 μM), imazalil showed higher specificity for AChE, and for higher concentrations, the same specificity was found. Imazalil, at 1 mM, inhibited the activity of BChE by 49 ± 1%. None of the pesticides, up to 1 mM, inhibited tyrosinase activity. In conclusion, the herbicide glyphosate shows specificity for AChE but low inhibitory capacity, the insecticides imidacloprid and λ-cyhalothrin present selective AChE inhibition, while the fungicide IMZ is a broad-spectrum cholinesterase inhibitor capable of inhibiting AChE and BChE in an equal manner. Among these pesticides, the insecticides and the fungicide are the ones with higher neurotoxic potential.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Tiago E. Coutinho
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Tânia L. Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Tatiana Andreani
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- GreenUPorto—Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Amélia M. Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
5
|
Strilbyska OM, Tsiumpala SA, Kozachyshyn II, Strutynska T, Burdyliuk N, Lushchak VI, Lushchak O. The effects of low-toxic herbicide Roundup and glyphosate on mitochondria. EXCLI JOURNAL 2022; 21:183-196. [PMID: 35221840 PMCID: PMC8859649 DOI: 10.17179/excli2021-4478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
The effects of pesticides on the health of non-target living organisms in agricultural areas are critically important aspects for their safe use. Their release into the environment is an inevitable aspect for predicting and evaluation of the risk of their application. Roundup, a glyphosate-based herbicide, has been designed as an effective pesticide against weeds and now is the most widely used agrochemicals around the world due to its highly specific action of the biosynthesis of certain amino acids in plants. Despite it is claimed to be low toxic for not-target organisms, due to its broad application Roundup and products of its degradation were detected in organisms of diverse animals and humans. In this review, we describe animal and human studies of general adverse effects of Roundup and its principal substance glyphosate with focus on endocrine disruption, oxidative stress and behavioral disorders. At mechanistic level, we focus on the potential toxicity of the herbicide Roundup and glyphosate as effectors of bioenergetic functions of mitochondria. Their effects on mitochondrial membrane potential and oxidative phosphorylation are among described to date critical components responsible for its toxicity. Finally, we discuss general molecular mechanisms potentially involved in the interaction between glyphosate and mitochondria which to some extent are associated with generation of reactive oxygen species.
Collapse
Affiliation(s)
- Olha M Strilbyska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Sviatoslav A Tsiumpala
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Ivanna I Kozachyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Tetiana Strutynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.,Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk, 76000, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.,Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk, 76000, Ukraine
| |
Collapse
|
6
|
Le Du-Carrée J, Cabon J, Morin T, Danion M. Immunological and metabolic effects of acute sublethal exposure to glyphosate or glyphosate-based herbicides on juvenile rainbow trout, Oncorhynchus mykiss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147162. [PMID: 34088035 DOI: 10.1016/j.scitotenv.2021.147162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate is a commonly used agrochemical active substance co-formulated in glyphosate-based herbicides (GBHs) whose environmental safety is still a subject of debate in the European Union. We evaluated the effects of acute sublethal exposure to glyphosate on rainbow trout by measuring changes in their metabolic and hemato-immunologic functions and their ability to survive a viral challenge. Juvenile fish were exposed for 96 h to 500 μg L-1 of glyphosate through the active substance alone or two GHBs, Roundup Innovert® and Viaglif Jardin®, and fish were then infected with the infectious hematopoietic necrosis virus. Red and white blood cell counts (RBCC and WBCC), as well as several enzymatic activities (citrate synthase, CS; cytochrome-c oxidase, CCO; lactate dehydrogenase, LDH; glucose-6-phosphate dehydrogenase, G6PDH; acetylcholinesterase, AChE), were measured 96 h after chemical contamination (S1), and 96 h post-viral infection (S2). Mortality rates were monitored, and virus titers at the mortality peaks and seropositivity of the survivors were analyzed at 60 days post-viral infection (S3). Cumulative mortalities, viral titers, and seropositivity induced by virus infection were similar among conditions. Hematological analysis revealed significant increases of 30% for RBCC for Roundup at S1, and of 22% for WBCC at S2. No changes were observed in metabolic enzyme activities at S1. At S2, CCO and G6PDH activities were significantly higher than controls in all the chemically contaminated groups (+61 to 62% and +65 to 138%, respectively). LDH and AChE activities were increased for the Viaglif (p = 0.07; +55%) and for glyphosate and Roundup conditions (p < 0.05, +62 to 79%), respectively. Rainbow trout acutely exposed to glyphosate or GBHs presented no major physiological changes. Viral infection revealed disruptions, potentially modulated by co-formulants, of hematological and metabolic parameters, showing that it is essential to consider the stressful natural environment of fish in the chemical assessment.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France; UBO University of Western Brittany, Brest, France.
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| |
Collapse
|
7
|
Kumar A, Siddiqi NJ, Alrashood ST, Khan HA, Dubey A, Sharma B. Protective effect of eugenol on hepatic inflammation and oxidative stress induced by cadmium in male rats. Biomed Pharmacother 2021; 139:111588. [PMID: 33862491 DOI: 10.1016/j.biopha.2021.111588] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cadmium is one of the most toxic heavy metals. The prolonged exposure of it can lead to severe alterations and damage in different tissues including blood, liver, kidney and brain. Eugenol, a phenolic compound, is present in various aromatic plants. It acts as a natural antioxidant and anti-inflammatory agent. The aim of this study was to investigate whether the treatment of eugenol is beneficial against the hepatic oxidative stress and inflammation induced by Cd. METHODS To study the effect of eugenol in reversal of Cd toxicity, 24 albino rats were equally divided into four different groups: G1 Control (saline), G2 Eugenol (3 mg kg-1), G3 CdCl2 (5 mg kg-1) and G4 CdCl2 + Eugenol (5 mg kg-1 + 3 mg kg-1). All the groups were treated with gavage orally for the period of 21 days. After this treatment period, rats were sacrificed and liver tissues were removed. The hepatic antioxidant status was evaluated by measuring the activities of SOD, Catalase and GST enzymes. The reduced glutathione, lipid peroxidation, protein carbonyl oxidation (PCO) and thiol contents were measured in hepatic tissues. The activities of liver marker enzymes such as ALT, AST, GGT, ALP, TP, albumin, Bilirubin content and LDH were determined to assess the hepatic damage in different groups. Cd induced hepatic inflammation was determined by evaluating the levels of TNF-a, IL-6 and NO. RESULTS Oral intoxication of Cd for 21 days significantly elevated the level of hepatic markers including activities of LDH, GGT, ALP, ALT, AST and Bilirubin level. The albumin content, reduced GSH level, and activities of antioxidant enzymes were significantly reduced in Cd treated group. The levels of inflammatory markers were significantly elevated in Cd treated group. The eugenol treatment was very effective and it significantly reversed the Cd induced biochemical alterations almost similar to that of control. CONCLUSION The results demonstrated that the eugenol possessed very strong anti-oxidative and anti-inflammatory potential. The co-treatment of eugenol with Cd exhibited protective potential of eugenol against Cd induced toxicity. Eugenol was able to improve the cellular redox system in rats treated with Cd.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Nikhat J Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Sara T Alrashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Anchal Dubey
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
8
|
Bernieri T, Rodrigues D, Randon Barbosa I, Perassolo MS, Grolli Ardenghi P, Basso da Silva L. Effect of pesticide exposure on total antioxidant capacity and biochemical parameters in Brazilian soybean farmers. Drug Chem Toxicol 2021; 44:170-176. [PMID: 30950301 DOI: 10.1080/01480545.2019.1566353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
Farmers represent a population highly vulnerable to the toxic effects of pesticide exposure. Antioxidant capacity and biochemical parameters have been used as biomarkers of occupational exposure to pesticides. The aim of this study was to evaluate hepatic and renal parameters as well as butyrylcholinesterase (BChE) activity and ferric-reducing ability of plasma (FRAP) considering high and low exposure periods in soybean farmers in southern Brazil. The exposed group consisted of 50 soybean farmers. Two control groups were used, composed by 35 (Novo Hamburgo control group) and 28 (Sertão control group) subjects not exposed to pesticides. Farmers blood samples were collected during the high and low pesticide exposure periods. BChE, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyltransferase (GGT), urea, and creatinine levels were determined. The FRAP assay was carried out to evaluate the antioxidant potential in the exposed group. Considering the exposed group, significantly lower BChE and increased AST activity were observed during high pesticide exposure period as well as higher FRAP, urea and creatinine levels; however, ALT and GGT did not differ between the two periods. When compared with the control groups, only urea and creatinine were higher in the exposed group. The present results indicate that occupational exposure to mixtures of pesticides might elicit adverse effects at the biochemical level. In addition, the study highlights the importance in considering periods of a same crop season with different degree of pesticide exposure during biologic monitoring of these biochemical parameters.
Collapse
Affiliation(s)
- Tanandra Bernieri
- Health Sciences Institute, Feevale University, Novo Hamburgo, Brazil
| | - Dabiana Rodrigues
- Health Sciences Institute, Feevale University, Novo Hamburgo, Brazil
| | | | | | | | | |
Collapse
|
9
|
Manfo FPT, Suh CF, Nantia EA, Moundipa PF, Cho-Ngwa F. Occupational use of agrochemicals results in inhibited cholinesterase activity and altered reproductive hormone levels in male farmers from Buea, Cameroon. Toxicol Res (Camb) 2021; 10:232-248. [PMID: 33884174 DOI: 10.1093/toxres/tfaa113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The efficiency of agro pesticides and fertilizers in eliminating pests and scaling up crop yield has motivated farmers to increase their use. Unfortunately, health hazards caused on farmers by these agrochemicals are of growing concern, though not well elucidated. In order to evaluate the effects of occupational exposure to agrochemicals on some key parameters of male farmers' health in Buea Subdivision, Cameroon, a total of 101 men, including 62 farmers using the agrochemicals and a reference population of 39 men not involved in occupational utilization of the agrochemicals, were interviewed on use of protective equipment, exposure symptoms and reproductive health status. Thereafter, serum cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] activities, total antioxidant capacity and reproductive hormones [follicle-stimulating hormone (FSH), luteinizing hormone and testosterone] were assessed. Results revealed that farmers mainly used insecticides followed by fungicides, herbicides and fertilizers, but with inadequate protective measures. The use of agrochemicals resulted in several exposure symptoms including weakness, itches, burning sensation, headache, sneezing, coughing and vomiting, as well as decrease in serum AChE activity when compared to the reference population. The agrochemicals impacted negatively on the farmers' reproductive health as evidenced by increased FSH levels. Taken altogether, these results suggested that exposure to agrochemicals adversely affects farmers' health. Therefore, there is a need to further sensitize the farmers on the use of protective equipment to mitigate the exposure and resulting health hazards.
Collapse
Affiliation(s)
- Faustin Pascal Tsagué Manfo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Christian Fusi Suh
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Edouard Akono Nantia
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39, Bambili, Cameroon
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Fidelis Cho-Ngwa
- Laboratory for Drugs and Molecular Diagnostics Research (ANDI Centre of Excellence for Onchocerciasis Drug Research), Biotechnology Unit, University of Buea, P.O. Box 63, Buea, Cameroon
| |
Collapse
|
10
|
Du-Carrée JL, Morin T, Danion M. Impact of chronic exposure of rainbow trout, Oncorhynchus mykiss, to low doses of glyphosate or glyphosate-based herbicides. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105687. [PMID: 33264693 DOI: 10.1016/j.aquatox.2020.105687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Glyphosate is an herbicidal active substance (AS) entering in the composition of a large diversity of pesticide products (glyphosate-based herbicides; GBH) used in modern intensive agriculture. This compound has a favorable environmental safety profile but was suspected to induce deleterious effects in aquatic organisms, with a potential effect of some associated co-formulants. This study aimed to assess the impact of direct and chronic exposure to glyphosate on the health status of rainbow trout, Oncorhynchus mykiss. A total of 36 genitors were exposed daily for 10 months to a dose of glyphosate representative of environmental concentrations (around 1 μg L-1) using the AS alone or two GBHs formulations (i.e. Roundup Innovert® and Viaglif Jardin®) and findings were compared to an unexposed control group (n=12). The effects of chemical exposure on the reproductive capacities, hemato-immunologic functions, energetic metabolism, oxidative stress and specific biomarkers of exposure were analyzed over a period of 4 months covering spawning. A limited mortality between 15% and 30% specific to the spawning occurred under all conditions. No differences were observed in reproduction parameters i.e. mean weights, relative fertility and fecundity. Red blood cell count, hematocrit index, mean corpuscular volume and white blood cell counts were similar for all the sampling dates. Significant changes were observed two months before spawning with a 70% decrease of the proportion of macrophages in trout exposed to Viaglif only and a reduction of 35% of the phagocytic activity in fish exposed to the two GBHs. Trends towards lower levels of expression of tumor necrosis factor-α (between 38% and 66%) were detected one month after the spawning for all contaminated conditions but without being statistically significant. Biomarkers of exposure, i.e. acetylcholine esterase and carbonic anhydrase activities, were not impacted and none of the chemical contaminants disturbed the oxidative stress or metabolism parameters measured. These results suggest that a 10 months exposure of rainbow trout to a concentration of 1 μg L-1 of glyphosate administered using the pure active substance or two GBHs did not significantly modify their global health including during the spawning period. The immunological disturbances observed will need to be further explored because they could have a major impact in response to infectious stress.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France; UBO University of Western Brittany, Brest, France.
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| |
Collapse
|
11
|
Ren X, Dai P, Perveen A, Tang Q, Zhao L, Jia X, Li Y, Li C. Effects of chronic glyphosate exposure to pregnant mice on hepatic lipid metabolism in offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112906. [PMID: 31374489 DOI: 10.1016/j.envpol.2019.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/20/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate is the active ingredient in Roundup, one of the most popular herbicides in the world, and its toxicity has caused increasing concerns. The present study aims to investigate the toxic effects of prenatal exposure to pure glyphosate or Roundup on lipid metabolism in offspring. During gestational days (GDs), ICR mice (from Institute of Cancer Research) were given distilled water, 0.5% glyphosate solution (w/v, 0.5 g/100 ml) or 0.5%-glyphosate Roundup solution orally. The livers and serum samples of the offspring were collected on gestational day 19 (GD19), postnatal day 7 (PND7) and PND21. The results showed a significant decrease in the body weight and obvious hepatic steatosis with excessive lipid droplet formation in offspring. Moreover, the concentrations of lipids such as triglycerides (TGs), total cholesterol (T-CHO), and low-density lipoprotein cholesterols (LDL-C) increased to a significant extent in both the serum and livers. Furthermore, there were significant differences in the expression levels of the genes SREBP1C, SREBP2, Fasn, Hmgcr, Hmgcs and PPARα, which are related to lipid biosynthesis or catabolism in the liver. These results demonstrate that chronic prenatal exposure to glyphosate can result in lipid metabolism disruption in the offspring of mice, as glyphosate exerts a negative influence on the expression of lipogenesis genes.
Collapse
Affiliation(s)
- Xin Ren
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyuan Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Aneela Perveen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangyu Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Richardson JR, Fitsanakis V, Westerink RHS, Kanthasamy AG. Neurotoxicity of pesticides. Acta Neuropathol 2019; 138:343-362. [PMID: 31197504 PMCID: PMC6826260 DOI: 10.1007/s00401-019-02033-9] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
Abstract
Pesticides are unique environmental contaminants that are specifically introduced into the environment to control pests, often by killing them. Although pesticide application serves many important purposes, including protection against crop loss and against vector-borne diseases, there are significant concerns over the potential toxic effects of pesticides to non-target organisms, including humans. In many cases, the molecular target of a pesticide is shared by non-target species, leading to the potential for untoward effects. Here, we review the history of pesticide usage and the neurotoxicity of selected classes of pesticides, including insecticides, herbicides, and fungicides, to humans and experimental animals. Specific emphasis is given to linkages between exposure to pesticides and risk of neurological disease and dysfunction in humans coupled with mechanistic findings in humans and animal models. Finally, we discuss emerging techniques and strategies to improve translation from animal models to humans.
Collapse
Affiliation(s)
- Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| | - Vanessa Fitsanakis
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences and Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, USA
| |
Collapse
|
13
|
Mumtaz S, Ali S, Khan R, Andleeb S, Ulhaq M, Khan MA, Shakir HA. The protective role of ascorbic acid in the hepatotoxicity of cadmium and mercury in rabbits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14087-14096. [PMID: 30852747 DOI: 10.1007/s11356-019-04620-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
The liver is one of the vital and sensitive organs which are usually exposed against the toxicity of mercury (Hg) and cadmium (Cd). The main objective of the current study was to evaluate the potential toxicological effects of both Cd and Hg as individual and combined. Hepatotoxicity was evaluated by monitoring the biochemical parameters of the liver and their accumulation in the liver as well as therapeutic role of vitamin C in said toxicity in rabbits (Oryctolagus cuniculus). In this research, cadmium chloride (1.5 mg/kg), mercuric chloride (1.2 mg/kg), and vitamin C (150 mg/kg of body weight) were orally administered to treatment groups of the rabbits for 28 alternative days. Various biochemical parameters of the liver such as lactate dehydrogenase (LDH), aspartate aminotransferase (ASAT), bilirubin, alanine aminotransferase (ALAT), total protein, and gamma glutamyl transferase (GGT) were estimated using blood samples. Some biochemical parameters like ASAT, ALAT, LDH, GGT, and bilirubin were significantly elevated (P ≤ 0.001) in individual Cd and Hg treatment groups, while the level of total protein was found to be significantly declined. The effects of Cd and Hg in the presence of vitamin C on these biochemical parameters were low as compared to metals-treated groups. Similar results were found when rabbits were treated with co-administration of both metals and vitamin C. Accumulation of Cd and Hg found to be higher in the liver. However, chemoprevention and chemotreatment with vitamin C significantly (P ≤ 0.01) minimized the toxicological effects of both metals but not regained the accumulation similar to that of the control group. The findings of this study provide awareness on accumulation of metals in the liver in rabbits and their toxicity tested through biochemical parameters as well as the therapeutic role of vitamin C in such alterations.
Collapse
Affiliation(s)
- Shumaila Mumtaz
- Department of Zoology, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan.
| | - Rida Khan
- Department of Zoology, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Saiqa Andleeb
- Department of Zoology, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Mazhar Ulhaq
- Department of Veterinary Biomedical Sciences, PMAS Arid Agriculture University, Rawalpindi, PK-46300, Pakistan
| | - Muhammad Adeeb Khan
- Department of Zoology, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | | |
Collapse
|
14
|
Fu H, Xia Y, Chen Y, Xu T, Xu L, Guo Z, Xu H, Xie HQ, Zhao B. Acetylcholinesterase Is a Potential Biomarker for a Broad Spectrum of Organic Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8065-8074. [PMID: 29995397 DOI: 10.1021/acs.est.7b04004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) is a classical biomarker for monitoring contamination and intoxication of organophosphate (OP) and carbamate pesticides. In addition to these classical environmental AChE inhibitors, other organic toxic substances have been found to alter AChE activity in various species. These emerging organic AChE disruptors include certain persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and wildly used chemicals, most of which have received considerable public health concern in recent years. It is necessary to re-evaluate the environmental significances of AChE in terms of these toxic substances. Therefore, the present review is aiming to summarize correlations of AChE activity of certain organisms with the level of the contaminants in particular habitats, disruptions of AChE activity upon treatment with the emerging disruptors in vivo and in vitro, and action mechanisms underlying the effects on AChE. Over 40 chemicals belonging to six main categories were reviewed, including 12 POPs listed in the Stockholm Convention. AChE activity in certain organisms has been found to be well correlated with the contamination level of certain persistent pesticides and PAHs in particular habitats. Moreover, it has been documented that most of the listed toxic chemicals could inhibit AChE activity in diverse species ranging from invertebrates to mammals. Besides directly inactivating AChE, the mechanisms in terms of interference with the biosynthesis have been recognized for some emerging AChE disruptors, particularly for dioxins. The collected evidence suggests that AChE could serve as a potential biomarker for a diverse spectrum of organic environmental pollutants.
Collapse
Affiliation(s)
- Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Haiming Xu
- School of Public Health and Management , Ningxia Medical University , Yinchuan , Ningxia Hui Autonomous Region 750004 , China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| |
Collapse
|
15
|
Milić M, Žunec S, Micek V, Kašuba V, Mikolić A, Lovaković BT, Semren TŽ, Pavičić I, Čermak AMM, Pizent A, Vrdoljak AL, Valencia-Quintana R, Sánchez-Alarcón J, Želježić D. Oxidative stress, cholinesterase activity, and DNA damage in the liver, whole blood, and plasma of Wistar rats following a 28-day exposure to glyphosate. Arh Hig Rada Toksikol 2018; 69:154-168. [PMID: 29990293 DOI: 10.2478/aiht-2018-69-3114] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/01/2018] [Indexed: 11/21/2022] Open
Abstract
In this 28 day-study, we evaluated the effects of herbicide glyphosate administered by gavage to Wistar rats at daily doses equivalent to 0.1 of the acceptable operator exposure level (AOEL), 0.5 of the consumer acceptable daily intake (ADI), 1.75 (corresponding to the chronic population-adjusted dose, cPAD), and 10 mg kg-1 body weight (bw) (corresponding to 100 times the AOEL). At the end of each treatment, the body and liver weights were measured and compared with their baseline values. DNA damage in leukocytes and liver tissue was estimated with the alkaline comet assay. Oxidative stress was evaluated using a battery of endpoints to establish lipid peroxidation via thiobarbituric reactive substances (TBARS) level, level of reactive oxygen species (ROS), glutathione (GSH) level, and the activity of glutathione peroxidase (GSH-Px). Total cholinesterase activity and the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were also measured. The exposed animals gained less weight than control. Treatment resulted in significantly higher primary DNA damage in the liver cells and leukocytes. Glyphosate exposure significantly lowered TBARS in the liver of the AOEL, ADI, and cPAD groups, and in plasma in the AOEL and cPAD group. AChE was inhibited with all treatments, but the AOEL and ADI groups significantly differed from control. Total ChE and plasma/liver ROS/GSH levels did not significantly differ from control, except for the 35 % decrease in ChE in the AOEL and ADI groups and a significant drop in liver GSH in the cPAD and 100xAOEL groups. AOEL and ADI blood GSH-Px activity dropped significantly, but in the liver it significantly increased in the ADI, cPAD, and 100xAOEL groups vs. control. All these findings show that even exposure to low glyphosate levels can have serious adverse effects and points to a need to change the approach to risk assessment of low-level chronic/sub-chronic glyphosate exposure, where oxidative stress is not necessarily related to the genetic damage and AChE inhibition.
Collapse
Affiliation(s)
- Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vedran Micek
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vilena Kašuba
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Anja Mikolić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Alica Pizent
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Rafael Valencia-Quintana
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Juana Sánchez-Alarcón
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Davor Želježić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
16
|
Maharajan K, Muthulakshmi S, Nataraj B, Ramesh M, Kadirvelu K. Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): A multi biomarker study. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:132-145. [PMID: 29407799 DOI: 10.1016/j.aquatox.2018.01.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Pyriproxyfen (2-[1-methyl-2-(4-phenoxyphenoxy) ethoxy] pyridine) (PPF), a pyridine-based pesticide widely used to control agricultural insect pests and mosquitoes in drinking water sources. However, its ecotoxicological data is limited in aquatic vertebrates particularly in fish. Hence, the present study aimed to evaluate the adverse effect of PPF in zebrafish embryo development (Danio rerio). In order to investigate the impact of PPF, embryos were exposed to 0.16, 0.33 and 1.66 μg/mL (0.52, 1.04 and 5.2 μM, respectively) for 96 hpf and various biomarker indices such as developmental toxicity (edema formation, hyperemia, heart size and scoliosis), oxidative stress (reactive oxygen species (ROS), lipid peroxidation (LPO) and nitric oxide (NO)), antioxidant responses (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx) and reduced glutathione (GSH)), biochemical (lactate dehydrogenase (LDH) and acid phosphatase (AP)), neurotoxicity (acetylcholinesterase (AChE)), genotoxicity (apoptosis and DNA damage) and histopathological changes were determined. The results showed that severe developmental deformities and changes in heart rate were observed in embryos treated with highest (1.66 μg/mL) concentration than the control (P < 0.05). Heart size measurement showed that, significant change in heart size (P < 0.01) was observed in embryos of 96 hpf only at 1.66 μg/mL PPF exposure. The oxidative stress was apparent at highest test concentration (1.66 μg/mL) as reflected by the elevated ROS, LPO and NO and changes in antioxidant enzyme activities including SOD, CAT, GST and GPx (P < 0.05). Besides, GSH level and AChE activity were significantly lowered in 1.66 μg/mL PPF exposed group than the control. After 96 hpf of PPF exposure, no significant changes were found in AP activity whereas, a biphasic response was observed in the LDH activity. There was no genotoxic effect in embryos exposed to PPF at 0.16 and 0.33 μg/mL, while significant (P < 0.05) DNA damage and apoptosis were found in 1.66 μg/mL treated group. Histopathological analysis revealed that exposure to PPF at 1.66 μg/mL resulted in thinning of heart muscles, pericardial edema and hyperemia while there was no obvious changes were observed in other treatment groups. Hence, the results of the present study demonstrate that PPF could cause adverse effect on early developmental stages of zebrafish at higher concentration.
Collapse
Affiliation(s)
- Kannan Maharajan
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India
| | | | - Bojan Nataraj
- Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, India
| | - Mathan Ramesh
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India; Unit of Toxicology, Department of Zoology, Bharathiar University, Coimbatore, India.
| | - Krishna Kadirvelu
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India
| |
Collapse
|
17
|
Tang J, Hu P, Li Y, Win-Shwe TT, Li C. Ion Imbalance Is Involved in the Mechanisms of Liver Oxidative Damage in Rats Exposed to Glyphosate. Front Physiol 2017; 8:1083. [PMID: 29311996 PMCID: PMC5742203 DOI: 10.3389/fphys.2017.01083] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022] Open
Abstract
Glyphosate (N-phosphonomethyl-glycine, GLP) is the most popular herbicide used worldwide. This study aimed to investigate the effects of glyphosate on rats' liver function and induction of pathological changes in ion levels and oxidative stress in hepatic tissue. Sprague-Dawley rats were treated orally with 0, 5, 50, and 500 mg/kg body weight of the GLP. After 5 weeks of treatment, blood and liver samples were analyzed for biochemical and histomorphological parameters. The various mineral elements content in the organs of the rats were also measured. Significant decreases were shown in the weights of body, liver, kidney and spleen between the control and treatment groups. Changes also happened in the histomorphology of the liver and kidney tissue of GLP-treated rats. The GLP resulted in an elevated level of glutamic-oxalacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) and IL-1β in the serum. Besides, decreased total superoxide dismutase (T-SOD) activity and increased malondialdehyde (MDA) contents in the serum, liver, and kidney indicated the presence of oxidative stress. Moreover, increase of hydrogen peroxide (H2O2) level and catalase (CAT) activity in the serum and liver and decrease of glutathione (GSH) and lutathione peroxidase (GSH-Px) activity in the kidney tissue further confirmed the occurrence of oxidative stress. The results of RT-PCR showed that the mRNA expressions of IL-1α, IL-1β, IL-6, MAPK3, NF-κB, SIRT1, TNF-α, Keap1, GPX2, and Caspase-3 were significantly increased in the GLP-treated groups compared to the control group. Furthermore, PPARα, DGAT, SREBP1c, and SCD1 mRNA expressions were also remarkably increased in the GLP-treated groups compared to the control group. In addition, aluminum (Al), iron (Fe), copper (Cu), zinc (Zn), and magnesium (Mg) levels were showed a significant difference reduction or increase in rat liver, kidney, spleen, lung, heart, muscle, brain, and fat tissues. These results suggested that glyphosate caused obvious damage to rats' liver and caused various mineral elements content imbalances in various organs of rats. Ion imbalance could weaken antioxidant capacity and involve in the mechanism of liver oxidative damage caused by GLP.
Collapse
Affiliation(s)
- Juan Tang
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ping Hu
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yansen Li
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tin-Tin Win-Shwe
- Health Effect Assessment Section Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Chunmei Li
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Kissane Z, Shephard JM. The rise of glyphosate and new opportunities for biosentinel early-warning studies. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2017; 31:1293-1300. [PMID: 28474816 DOI: 10.1111/cobi.12955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 04/04/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Glyphosate has become the most commonly used herbicide worldwide and is reputedly environmentally benign, nontoxic, and safe for use near wildlife and humans. However, studies indicate its toxicity is underestimated and its persistence in the environment is greater than once thought. Its actions as a neurotoxin and endocrine disruptor indicate its potential to act in similar ways to persistent organic pollutants such as the organochlorines dichlorodiphenyltrichloroethane (DDT) and dioxin. Exposure to glyphosate and glyphosate-based herbicides for both wildlife and people is likely to be chronic and at sublethal levels, with multiple and ongoing exposure events occurring in urban and agricultural landscapes. Despite this, there has been little research on the impact of glyphosate on wildlife populations, and existing studies appear in the agricultural, toxicology, and water-chemistry literature that may have limited visibility among wildlife biologists. These studies clearly demonstrate a link between chronic exposure and neurotoxicity, endocrine disruption, cell damage, and immune suppression. There is a strong case for the recognition of glyphosate as an emerging organic contaminant and substantial potential exists for collaborative research among ecologists, toxicologists, and chemists to quantify the impact of glyphosate on wildlife and to evaluate the role of biosentinel species in a preemptive move to mitigate downstream impacts on people. There is scope to develop a decision framework to aid the choice of species to biomonitor and analysis methods based on the target contaminant, spatial and temporal extent of contamination, and perceived risk. Birds in particular offer considerable potential in this role because they span agricultural and urban environments, coastal, inland, and wetland ecosystems where glyphosate residues are known to be present.
Collapse
Affiliation(s)
- Zoe Kissane
- School of Veterinary and Life Sciences, Murdoch University, 90 South St Murdoch, Western Australia, Australia
| | - Jill M Shephard
- School of Veterinary and Life Sciences, Murdoch University, 90 South St Murdoch, Western Australia, Australia
| |
Collapse
|
19
|
Sadek KM, Lebda MA, Abouzed TK, Nasr SM, Shoukry M. Neuro- and nephrotoxicity of subchronic cadmium chloride exposure and the potential chemoprotective effects of selenium nanoparticles. Metab Brain Dis 2017; 32:1659-1673. [PMID: 28660360 DOI: 10.1007/s11011-017-0053-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/16/2017] [Indexed: 11/25/2022]
Abstract
Cadmium (Cd) exposure leads to production of reactive oxygen species (ROS), which are associated with Cd-induced neurotoxicity and nephrotoxicity. Selenium nanoparticles (Se-NPs) have high bioavailability and antioxidant activities so it attracted wide spread attention. The present study examined the possible ameliorative effect of Se-NPs with diameters of 3-5 nm and 10-20 nm against cadmium chloride (CdCl2)-induced neuro- and nephrotoxicity in rats. Rats were treated with Se-NPs (0 or 0.5 mg/kg BW, s.c.) one hour prior to the CdCl2 (0 or 5 mg/kg BW, p.o.). Pretreatment with Se-NPs significantly decreased CdCl2-induced elevation of serum kidney and brain damage biomarkers; lipid peroxidation; the percent of DNA fragmentation and nearly normalized the activity of acetylcholinesterase (AchE) and significantly increased the activity and expression of antioxidant biomarkers in the RNA and protein levels. Se-NPs also attenuated CdCl2-induced upregulation of kidney and brain pro-apoptotic B-cell CLL/lymphoma 2 associated X (Bax) RNA and protein levels with preventing the increased body burden of Cd and the altered Fe and Cu homeostasis. Histopathological analysis confirmed the biochemical and molecular outcomes. Our data stated that Se-NPs appear to be effective in ameliorating the adverse neurological and nephrotoxic effects induced by CdCl2 partially through the scavenging of free radicals, metal ion chelation, averting apoptosis and altering the cell-protective pathways. The results indicated that Se-NPs could potentially included as an additive to Cd-based industries to control Cd-induced brain and renal injury.
Collapse
Affiliation(s)
- Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr El-sheikh University, Kafr El-sheikh, Egypt
| | - Sherif M Nasr
- Department of Veterinary Genetics and Molecular biology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Moustafa Shoukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafr El-sheikh University, Kafr El-sheikh, Egypt
| |
Collapse
|
20
|
Quintaneiro C, Patrício D, Novais SC, Soares AMVM, Monteiro MS. Endocrine and physiological effects of linuron and S-metolachlor in zebrafish developing embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:390-400. [PMID: 28209406 DOI: 10.1016/j.scitotenv.2016.11.153] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Evaluation of the effects of linuron and S-metolachlor on apical, biochemical and transcriptional endpoints in zebrafish (Danio rerio) early life stages was the main purpose of this work. Embryos were exposed for 96h to a range of concentrations of each herbicide to determine lethal and sub-lethal effects on apical (e.g. malformations, hatching) and biochemical parameters (cholinesterase, ChE; catalase, CAT; glutathione S-transferase, GST; lipid peroxidation, LPO and lactate dehydrogenase, LDH). To evaluate endocrine disruption effects, embryos were exposed during 96h to 0.88mg/L linuron and 9.66mg/L S-metolachlor, isolated or in binary mixture. Expression of a suite of genes involved in HPT, HPG and HPA-axis was then assessed. Highest concentration of linuron (5.0mg/L) decreased hatching rate to 5% and 70.0mg/L S-metolachlor completely inhibited hatching, about 100%. Both herbicides impaired development by inducing several malformations (100% in 5.0mg/L linuron and 70.0mg/L S-metolachlor). Linuron only affected GST and CAT at concentrations of 0.25 and 0.0025mg/L, respectively. S-metolachlor induced GST (to 256%), inhibited ChE (to 61%) and LDH (to 60%) and reduced LPO levels (to 63%). Linuron isolated treatment seems to have an estrogenic mode of action due to the observed induction of vtg1. Exposure to S-metolachlor seems to interfere with steroidogenesis and with HPT and HPA-axis, since it has inhibited cyp19a2, TSHβ and CRH gene expression. In addition to vtg1 induction and CRH inhibition, herbicide combination also induced sox9b that has a role in regulation of sexual development in zebrafish. This study pointed out adverse effects of linuron and S-metolachlor, namely impairment of neurotransmission and energy production, induction of steroidogenesis, and interference with HPT and HPA-axis. These results contributed to elucidate modes of action of linuron and S-metolachlor in zebrafish embryo model. Furthermore, gene expression patterns obtained are indicative of endocrine disruption action of these herbicides.
Collapse
Affiliation(s)
- C Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - D Patrício
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - S C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M S Monteiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
21
|
Venter C, Oberholzer HM, Cummings FR, Bester MJ. Effects of metals cadmium and chromium alone and in combination on the liver and kidney tissue of male Spraque-Dawley rats: An ultrastructural and electron-energy-loss spectroscopy investigation. Microsc Res Tech 2017; 80:878-888. [PMID: 28401733 DOI: 10.1002/jemt.22877] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/25/2017] [Indexed: 12/21/2022]
Abstract
Heavy metal pollution has increased in the last decades. Water sources are contaminated and human exposure is often long term exposure to variable amounts of different metals. In this study, male Sprague-Dawley rats were exposed via oral gavage for 28 days to cadmium (Cd) and chromium (Cr), alone and in combination at concentrations 1000 times the human World Health Organization's acceptable water limits. Rat equivalent dosages were used. Blood markers of liver and kidney function were measured, changes to cellular morphology was determined with transmission electron microscopy and the intracellular metal localisation was determined with the electron energy-loss spectroscopy and energy filtered transmission electron microscopy analysis. Both Cd and Cr caused changes to the nuclear and mitochondrial membranes and irregular chromatin condensation of hepatocytes. Cr exposure caused dilation of the rough endoplasmic reticulum (rER). The combination caused nuclear and mitochondrial membrane damage as well as irregular chromatin condensation. In the kidney tissue, Cd caused irregular chromatin condensation in the cells of the proximal convoluted tubule (PCT). Cr caused changes to the outer nuclear and mitochondrial membrane and chromatin structure. The combination group caused membrane damage, irregular chromatin condensation and rER changes in the PCT. All the metal groups showed damage to the endothelial cells and pedicles, but not to the mesangial cells. Cd and Cr bio-accumulation was observed in the nucleus, mitochondria and rER of the liver and kidney and therefore are responsible for the cellular observed damage that can cause functional changes to the tissues and organs.
Collapse
Affiliation(s)
- Chantelle Venter
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Hester Magdalena Oberholzer
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | | | - Megan Jean Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| |
Collapse
|
22
|
Bento CPM, Goossens D, Rezaei M, Riksen M, Mol HGJ, Ritsema CJ, Geissen V. Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1079-1089. [PMID: 27876225 DOI: 10.1016/j.envpol.2016.11.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 05/12/2023]
Abstract
Glyphosate is one of the most used herbicides in agricultural lands worldwide. Wind-eroded sediment and dust, as an environmental transport pathway of glyphosate and of its main metabolite aminomethylphosphonic acid (AMPA), can result in environmental- and human exposure far beyond the agricultural areas where it has been applied. Therefore, special attention is required to the airborne transport of glyphosate and AMPA. In this study, we investigated the behavior of glyphosate and AMPA in wind-eroded sediment by measuring their content in different size fractions (median diameters between 715 and 8 μm) of a loess soil, during a period of 28 days after glyphosate application. Granulometrical extraction was done using a wind tunnel and a Soil Fine Particle Extractor. Extractions were conducted on days 0, 3, 7, 14, 21 and 28 after glyphosate application. Results indicated that glyphosate and AMPA contents were significantly higher in the finest particle fractions (median diameters between 8 and 18 μm), and lowered significantly with the increase in particle size. However, their content remained constant when aggregates were present in the sample. Glyphosate and AMPA contents correlated positively with clay, organic matter, and silt content. The dissipation of glyphosate over time was very low, which was most probably due to the low soil moisture content of the sediment. Consequently, the formation of AMPA was also very low. The low dissipation of glyphosate in our study indicates that the risk of glyphosate transport in dry sediment to off-target areas by wind can be very high. The highest glyphosate and AMPA contents were found in the smallest soil fractions (PM10 and less), which are easily inhaled and, therefore, contribute to human exposure.
Collapse
Affiliation(s)
- Célia P M Bento
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands.
| | - Dirk Goossens
- Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Geo-Institute, Celestijnenlaan 200 E, 3001 Leuven, Belgium
| | - Mahrooz Rezaei
- Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Michel Riksen
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Hans G J Mol
- RIKILT - Wageningen University & Research, PO. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Coen J Ritsema
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Violette Geissen
- Soil Physics and Land Management, Wageningen University & Research, PO. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
23
|
Larsen KE, Lifschitz AL, Lanusse CE, Virkel GL. The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:41-4. [PMID: 27258137 DOI: 10.1016/j.etap.2016.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 05/20/2023]
Abstract
The current work evaluated the inhibitory potency of the herbicide glyphosate (GLP) on acetylcholinesterase (AChE) activity in male and female rat tissues. The AChE activity in brain was higher (p<0.05) than those observed in kidney (females: 2.2-fold; males: 1.9-fold), liver (females: 6-fold; males: 6.9-fold) and plasma (females: 14.7-fold; males: 25.3-fold). Enzyme activities were higher in presence of 10mM GLP compared to those measured at an equimolar concentration of the potent AChE inhibitor dichlorvos (DDVP). Moreover, IC50s for GLP resulted between 6×10(4)- and 6.8×10(5)-fold higher than those observed for DDVP. In conclusion, GLP is a weak inhibitor of AChE in rats.
Collapse
Affiliation(s)
- Karen E Larsen
- Laboratorio de Biología y Ecotoxicología, FCV-UNCPBA, Tandil 7000, Argentina; Laboratorio de Farmacología, CIVETAN-CONICET, FCV-UNCPBA, Tandil 7000, Argentina
| | - Adrián L Lifschitz
- Laboratorio de Farmacología, CIVETAN-CONICET, FCV-UNCPBA, Tandil 7000, Argentina
| | - Carlos E Lanusse
- Laboratorio de Farmacología, CIVETAN-CONICET, FCV-UNCPBA, Tandil 7000, Argentina
| | - Guillermo L Virkel
- Laboratorio de Farmacología, CIVETAN-CONICET, FCV-UNCPBA, Tandil 7000, Argentina.
| |
Collapse
|
24
|
García-García CR, Parrón T, Requena M, Alarcón R, Tsatsakis AM, Hernández AF. Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci 2015; 145:274-83. [PMID: 26475762 DOI: 10.1016/j.lfs.2015.10.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/21/2015] [Accepted: 10/11/2015] [Indexed: 01/24/2023]
Abstract
AIMS Although epidemiological studies have investigated associations between occupational pesticide exposures and different adverse health outcomes, they have rarely assessed individuals at two time-points of a same crop season with different pesticide use. MATERIAL AND METHODS Clinical symptoms, physical examination signs, hematological and clinical chemistry parameters were measured in 189 intensive agriculture workers and 91 healthy control subjects from Almeria coastline (Southeastern Spain) to evaluate potential effects of pesticide exposure. KEY FINDINGS Greenhouse workers showed an increased risk of ocular and skin signs relative to controls at the period of high pesticide exposure (OR: 4.80 and 2.87, respectively); however, no differences were observed for clinical symptoms. A greater risk for ECG changes (OR: 3.35) and altered spirometry (OR: 5.02) was found at the period of low exposure. Erythrocyte acetylcholinesterase was significantly decreased in greenhouse workers relative to controls in both periods. Assessment of hematological parameters revealed increased counts of erythrocytes, leukocytes, platelets and hemoglobin in greenhouse workers relative to controls, and also in the period of high versus low pesticide exposure. Changes in clinical chemistry parameters included decreased levels of glucose, creatinine, total cholesterol, triglyceride and alkaline phosphatase in greenhouse workers relative to controls; however, these parameters were raised in the period of high versus low pesticide exposure. SIGNIFICANCE These findings suggest that chronic occupational exposure to pesticides of lower toxicity than former compounds under integrated production systems elicit mild toxic effects, particularly targeting the skin and eyes, as well as subtle subclinical (biochemical) changes of unknown long-term consequences.
Collapse
Affiliation(s)
| | - Tesifón Parrón
- Council of Health at Almeria Province, Almeria, Spain; Department of Neuroscience and Health Sciences, University of Almeria, Almeria, Spain
| | - Mar Requena
- Department of Neuroscience and Health Sciences, University of Almeria, Almeria, Spain
| | - Raquel Alarcón
- Department of Neuroscience and Health Sciences, University of Almeria, Almeria, Spain
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion, Greece
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain.
| |
Collapse
|
25
|
Mesnage R, Defarge N, Spiroux de Vendômois J, Séralini GE. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem Toxicol 2015; 84:133-53. [PMID: 26282372 DOI: 10.1016/j.fct.2015.08.012] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 01/05/2023]
Abstract
Glyphosate-based herbicides (GlyBH), including Roundup, are the most widely used pesticides worldwide. Their uses have increased exponentially since their introduction on the market. Residue levels in food or water, as well as human exposures, are escalating. We have reviewed the toxic effects of GlyBH measured below regulatory limits by evaluating the published literature and regulatory reports. We reveal a coherent body of evidence indicating that GlyBH could be toxic below the regulatory lowest observed adverse effect level for chronic toxic effects. It includes teratogenic, tumorigenic and hepatorenal effects. They could be explained by endocrine disruption and oxidative stress, causing metabolic alterations, depending on dose and exposure time. Some effects were detected in the range of the recommended acceptable daily intake. Toxic effects of commercial formulations can also be explained by GlyBH adjuvants, which have their own toxicity, but also enhance glyphosate toxicity. These challenge the assumption of safety of GlyBH at the levels at which they contaminate food and the environment, albeit these levels may fall below regulatory thresholds. Neurodevelopmental, reproductive, and transgenerational effects of GlyBH must be revisited, since a growing body of knowledge suggests the predominance of endocrine disrupting mechanisms caused by environmentally relevant levels of exposure.
Collapse
Affiliation(s)
- R Mesnage
- University of Caen, Institute of Biology and Network on Risks, Quality and Sustainable Environment (MRSH), Esplanade de la Paix, 14032 Caen Cedex, France; CRIIGEN, 81 rue de Monceau, 75008 Paris, France
| | - N Defarge
- University of Caen, Institute of Biology and Network on Risks, Quality and Sustainable Environment (MRSH), Esplanade de la Paix, 14032 Caen Cedex, France; CRIIGEN, 81 rue de Monceau, 75008 Paris, France
| | | | - G E Séralini
- University of Caen, Institute of Biology and Network on Risks, Quality and Sustainable Environment (MRSH), Esplanade de la Paix, 14032 Caen Cedex, France; CRIIGEN, 81 rue de Monceau, 75008 Paris, France.
| |
Collapse
|
26
|
El-Aswad AF, Badawy MEI. Inhibition kinetics of acid and alkaline phosphatases by atrazine and methomyl pesticides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:484-491. [PMID: 25996812 DOI: 10.1080/03601234.2015.1018759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The main objective of this work was to investigate the kinetic characteristics of acid and alkaline phosphatases isolated from different sources and to study the effects of the herbicide atrazine and insecticide methomyl on the activity and kinetic properties of the enzymes. Acid phosphatase (ACP) was isolated from the tomato plant (Solanum lycopersicum L. var. lycopersicum); alkaline phosphatase (ALP) was isolated from two sources, including mature earthworms (Aporrectodea caliginosa) and larvae of the Egyptian cotton leafworm (Spodoptera littoralis). The specific activities of the enzymes were 33.31, 5.56 and 0.72 mmol substrate hydrolyzed per minute per milligram protein for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. The inhibition kinetics indicated that atrazine and methomyl caused competitive-non-competitive inhibition of the enzymes. The relationships between estimates of K(m) and V(max) calculated from the Michaelis-Menten equation have been explored. The extent of the inhibition was different, as estimated by the values of the inhibition constant Ki that were found to be 3.34 × 10(-3), 1.12 × 10(-2) and 1.07 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively, with methomyl. In the case of atrazine, K(i) were found to be 8.99 × 10(-3), 3.55 × 10(-2) and 1.36 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively.
Collapse
Affiliation(s)
- Ahmed F El-Aswad
- a Department of Pesticide Chemistry and Technology , Faculty of Agriculture , Alexandria University , Alexandria , Egypt
| | | |
Collapse
|
27
|
Impact assessment of cadmium toxicity and its bioavailability in human cell lines (Caco-2 and HL-7702). BIOMED RESEARCH INTERNATIONAL 2014; 2014:839538. [PMID: 24695876 PMCID: PMC3947789 DOI: 10.1155/2014/839538] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/23/2013] [Accepted: 11/09/2013] [Indexed: 01/27/2023]
Abstract
Cadmium (Cd) is a widespread environmental toxic contaminant, which causes serious health-related problems. In this study, human intestinal cell line (Caco-2 cells) and normal human liver cell line (HL-7702 cells) were used to investigate the toxicity and bioavailability of Cd to both cell lines and to validate these cell lines as in vitro models for studying Cd accumulation and toxicity in human intestine and liver. Results showed that Cd uptake by both cell lines increased in a dose-dependent manner and its uptake by Caco-2 cells (720.15 µg mg(-1) cell protein) was significantly higher than HL-7702 cells (229.01 µg mg(-1) cell protein) at 10 mg L(-1). A time- and dose-dependent effect of Cd on cytotoxicity assays (LDH release, MTT assay) was observed in both Cd-treated cell lines. The activities of antioxidant enzymes and differentiation markers (SOD, GPX, and AKP) of the HL-7702 cells were higher than those of Caco-2 cells, although both of them decreased significantly with raising Cd levels. The results from the present study indicate that Cd above a certain level inhibits cellular antioxidant activities and HL-7702 cells are more sensitive to Cd exposure than Caco-2 cells. However, Cd concentrations <0.5 mg L(-1) pose no toxic effects on both cell lines.
Collapse
|
28
|
Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. ENTROPY 2013. [DOI: 10.3390/e15041416] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Sandrini JZ, Rola RC, Lopes FM, Buffon HF, Freitas MM, Martins CDMG, da Rosa CE. Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: in vitro studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:171-3. [PMID: 23411353 DOI: 10.1016/j.aquatox.2013.01.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/07/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Although the herbicide glyphosate [N-(phosphonomethyl)glycine] is not classified as an acethylcholinesterase inhibitor, some studies have reported reduction in the acethylcolinesterase activity after in vivo exposure to both its pure form and its commercial formulations. Considering this controversy, the objective of the present study was to investigate, in vitro, the effects of glyphosate exposure on cholinesterase activity of the brown mussel Perna perna and of two fish species: zebrafish Danio rerio and onesided livebearer Jenynsia multidentata. For this purpose, samples of different tissues (brain and muscle for fish; gills and muscle for mussel) were homogenized and pre-incubated with different glyphosate concentrations before cholinesterase activity determination. Results demonstrated that cholinesterase from different fractions of all species tested was inhibited by glyphosate. The concentrations of glyphosate that inhibits 50% of cholinesterase activity (IC50) ranged from 0.62 mM for P. perna muscle to 8.43 mM for J. multidentata brain. According to this, cholinesterase from mussel seems to be more sensitive to glyphosate exposure than those from the fish D. rerio and J. multidentata.
Collapse
Affiliation(s)
- Juliana Zomer Sandrini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abdel-Salam AM, Al-Dekheil A, Babkr A, Farahna M, Mousa HM. High fiber probiotic fermented mare's milk reduces the toxic effects of mercury in rats. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 2:569-75. [PMID: 22558569 PMCID: PMC3338224 DOI: 10.4297/najms.2010.2569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Since the advent of the Industrial Revolution in the late 19th century, we have all been unfortunately exposed to an increasingly toxic and polluted world. Among the most dangerous of these pollutants is mercury, which is considered to be the most toxic non-radioactive heavy metal. Fermented foods may help cleanse the body of heavy metals. Fermentation breaks down the nutrients in foods by the action of beneficial microorganisms and creates natural chelators that are available to bind toxins and remove them from the body. Aims: The current study was designed to determine the impact of feeding a high fiber probiotic fermented mare's milk on the biological effects of mercury toxicity in rat model. Methods and Materials: The high fiber fermented mare's milk containing probiotics was prepared and its sensory properties, chemical composition, and antioxidant activity were determined. A rat model of mercury toxicity was used. The effect of feeding the high fiber probiotic fermented mare's milk to rats, along with mercury ingestion, was determined by the analysis of several biochemical markers in serum and histopathological examinations of brain and kidney. Results: The high fiber fermented mare's milk containing probiotics was found to be acceptable by all test panels and volunteers. Mercury ingestion was found to cause biochemical and histopathological alterations in rat serum and tissues. The mercury-treated rats showed a decrease in body weight and an increase in kidney weight. Sera of the mercury treated rats showed alterations in biochemical parameters, and histopathological changes in brain and kidney. However, the rats fed high fiber fermented mare`s milk along with mercury ingestion showed improved histopathology of kidney and brain, and there was restoration of the biochemical parameters in serum to almost normal values. Conclusions: Feeding high fiber fermented mare`s milk may reduce the toxic effects of mercury.
Collapse
Affiliation(s)
- Ahmed M Abdel-Salam
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Al-Qassim, Saudi Arabia
| | | | | | | | | |
Collapse
|
31
|
Cavuşoğlu K, Yapar K, Oruç E, Yalçın E. Protective effect of Ginkgo biloba L. leaf extract against glyphosate toxicity in Swiss albino mice. J Med Food 2011; 14:1263-72. [PMID: 21859351 DOI: 10.1089/jmf.2010.0202] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aim of the present study was to investigate the protective role of Ginkgo biloba L. leaf extract against the active agent of Roundup® herbicide (Monsanto, Creve Coeur, MO, USA). The Swiss Albino mice were randomly divided into six groups, with each group consisting of six animals: Group I (control) received an intraperitoneal injection of dimethyl sulfoxide (0.2 mL, once only), Group II received glyphosate at a dose of 50 mg/kg of body weight, Group III received G. biloba at a dose of 50 mg/kg of body weight, Group IV received G. biloba at a dose of 150 mg/kg of body weight, Group V received G. biloba (50 mg/kg of body weight) and glyphosate (50 mg/kg of body weight), and Group VI received G. biloba (150 mg/kg of body weight) and glyphosate (50 mg/kg of body weight). The single dose of glyphosate was given intraperitoneally. Animals from all the groups were sacrificed at the end of 72 hours, and their blood, bone marrow, and liver and kidney tissues were analyzed for aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), creatinine, malondialdehyde (MDA), and glutathione (GSH) levels and the presence of micronucleus (MN), chromosomal aberrations (CAs), and pathological damages. The results indicated that serum AST, ALT, BUN, and creatinine levels significantly increased in mice treated with glyphosate alone compared with the other groups (P<.05). Besides, glyphosate-induced oxidative damage caused a significant decrease in GSH levels and a significant increase in MDA levels of the liver and kidney tissues. Moreover, glyphosate alone-treated mice presented higher frequencies of CAs, MNs, and abnormal metaphases compared with the controls (P<.05). These mice also displayed a lower mean mitotic index than the controls (P<.05). Treatment with G. biloba produced amelioration in indices of hepatotoxicity, nephrotoxicity, lipid peroxidation, and genotoxicity relative to Group II. Each dose of G. biloba provided significant protection against glyphosate-induced toxicity, and the strongest effect was observed at a dose of 150 mg/kg of body weight. Thus, in vivo results showed that G. biloba extract is a potent protector against glyphosate-induced toxicity, and its protective role is dose-dependent.
Collapse
Affiliation(s)
- Kültiğin Cavuşoğlu
- Department of Biology, Faculty of Science and Arts, Giresun University, Giresun, Turkey.
| | | | | | | |
Collapse
|
32
|
Lajmanovich RC, Attademo AM, Peltzer PM, Junges CM, Cabagna MC. Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (anura: bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitors. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 60:681-689. [PMID: 20669015 DOI: 10.1007/s00244-010-9578-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/12/2010] [Indexed: 05/29/2023]
Abstract
In this study, amphibian tadpoles Rhinella arenarum were exposed to different concentrations of Roundup Ultra-Max (ULT), Infosato (INF), Glifoglex, and C-K YUYOS FAV. Tadpoles were exposed to these commercial formulations with glyphosate (CF-GLY) at the following concentrations (acid equivalent [ae]): 0 (control), 1.85, 3.75, 7.5, 15, 30, 60, 120, and 240 mg ae/L for 6-48 h (short-term). Acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carboxylesterase (CbE), and glutathione S-transferase (GST) activities were measured among tadpoles sampled from those treatments that displayed survival rates >85%. Forty-eight-hour LC(50) for R. arenarum tadpoles exposed to CF-GLY in the static tests ranged from ULT = 2.42 to FAV = 77.52 mg ae/L. For all CF-GLY, the LC(50) values stabilized at 24 h of exposure. Tadpoles exposed to all CF-GLY concentrations at 48 h showed decreases in the activities of AChE (control = 17.50 ± 2.23 nmol/min/mg/protein; maximum inhibition INF 30 mg ae/L, 71.52%), BChE (control = 6.31 ± 0.86 nmol/min/mg/protein; maximum inhibition INF 15 mg ae/L, 78.84%), CbE (control = 4.39 ± 0.46 nmol/min/mg/protein; maximum inhibition INF 15 mg ae/L, 81.18%), and GST (control = 4.86 ± 0.49 nmol/min/mg/protein; maximum inhibition INF 1.87 mg ae/L, 86.12%). These results indicate that CF-GLY produce a wide range of toxicities and that all enzymatic parameters tested may be good early indicators of herbicide contamination in R. arenarum tadpoles.
Collapse
Affiliation(s)
- Rafael C Lajmanovich
- Faculty of Biochemistry and Biologic Sciences, National Council for Scientific and Technical Research, FBCB-UNL, Paraje el Pozo s/n (3000), Santa Fe, Argentina.
| | | | | | | | | |
Collapse
|
33
|
Khan DA, Hashmi I, Mahjabeen W, Naqvi TA. Monitoring health implications of pesticide exposure in factory workers in Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2010; 168:231-240. [PMID: 19669582 DOI: 10.1007/s10661-009-1107-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 07/27/2009] [Indexed: 05/28/2023]
Abstract
The study aimed to determine the hazardous health effects of pesticides exposure in the factory workers by measuring plasma cholinesterase (PChE), pesticides residues, and renal and hepatic biochemical markers. In addition, we also assessed the knowledge, attitudes, and safety practices adopted by the industrial workers. The study was conducted in three different sizes of factories located in Lahore (large), Multan (medium), and Karachi (small) in Pakistan. Total 238 adult males consisting of 184 pesticide industrial workers (exposed group) from large-sized (67), medium-sized (61), small-sized (56) industrial formulation factories, and 54 controls (unexposed) were included in the study. All the participants were male of aged 18 to 58 years. PChE levels were estimated by Ellmann's method. Plasma pesticides residue analysis was performed by using reverse phase C-18 on high-performance liquid chromatograph and GC with NPD detector. Plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, urea, and gamma glutamyltransferase (GGT) were measured on Selectra E auto analyzer. Plasma and C-reactive protein was analyzed by Immulite 1000. The results revealed a significant decrease in plasma post exposure PChE levels (<30%) as compared to baseline in the workers of small (29%) and medium (8%) industrial units (p < 0.001). Plasma cypermethrin, endosulfan, imidacloprid, thiodicarb, carbofuran, and methamidophos levels were found to be higher than allowable daily intake. Serum AST, ALT, creatinine GGT, malondialdehyde, total antioxidant, and CRP were significantly raised among the workers of small and medium pesticide formulation factories as compared to large industrial unit and controls (p < 0.001). The study demonstrated that unsafe practices among small- and medium-sized pesticides industrial workers cause significant increase in pesticide exposure, oxidative stress, and derangement of hepatic and renal function.
Collapse
Affiliation(s)
- Dilshad Ahmed Khan
- Department of Chemical Pathology, Army Medical College, National University of Sciences and Technology, Rawalpindi, Pakistan
| | | | | | | |
Collapse
|
34
|
Patil JA, Patil AJ, Sontakke AV, Govindwar SP. Occupational pesticides exposure of sprayers of grape gardens in western Maharashtra (India): effects on liver and kidney function. J Basic Clin Physiol Pharmacol 2010; 20:335-55. [PMID: 20214020 DOI: 10.1515/jbcpp.2009.20.4.335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We compared hematologic parameters and liver and kidney function tests in occupationally exposed pesticide sprayers of grape gardens (n = 60) and normal healthy participants (n = 30), 20-45 years of age, in Western Maharashtra (India). Venous blood samples were collected from both groups. Compared with control participants, sprayers showed the following-significantly increased serum C reactive protein (117.6%), liver function marker enzymes-serum aspartate transaminase (57%), alanine transaminase (37.4%), alkaline phosphatase (16.9%), serum bilirubin (41.8%), creatinine (18.4%), blood glucose (11.4%), and urea (13.%); and decreased acetyl cholinesterase activity (30.9%) and serum cholesterol (12.12%). Serum total protein, globulin, and the A/G ratio were not significantly altered, however, but serum albumin decreased slightly (3.3%, P <.05). Compared with the control group, hematologic parameters significantly decreased in sprayers-hemoglobin (6.9%), hematocrit (3%), mean corpuscular volume (3.8%), mean corpuscular hemoglobin (4.5%), mean corpuscular hemoglobin concentration (5.8%), and red blood cell count (7.7%), whereas the white blood cell count increased (18.2%). The decreased serum acetyl cholinesterase value indicates a high degree of pesticides absorption, which leads to impairment of liver and kidney functions and slightly altered hematologic parameters in the occupationally exposed pesticides sprayers of grape gardens studied here.
Collapse
Affiliation(s)
- Jyotsna A Patil
- Department of Biochemistry, Krishna Institute of Medical Sciences University, Karad, Maharashtra, India.
| | | | | | | |
Collapse
|
35
|
Slager RE, Simpson SL, LeVan TD, Poole JA, Sandler DP, Hoppin JA. Rhinitis associated with pesticide use among private pesticide applicators in the agricultural health study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:1382-93. [PMID: 20818537 PMCID: PMC2964833 DOI: 10.1080/15287394.2010.497443] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Farmers commonly experience rhinitis but the risk factors are not well characterized. The aim of this study was to analyze cross-sectional data on rhinitis in the past year and pesticide use from 21,958 Iowa and North Carolina farmers in the Agricultural Health Study, enrolled 1993-1997, to evaluate pesticide predictors of rhinitis. Polytomous and logistic regression models were used to assess association between pesticide use and rhinitis while controlling for demographics and farm-related exposures. Sixty-seven percent of farmers reported current rhinitis and 39% reported 3 or more rhinitis episodes. The herbicides glyphosate [odds ratio (OR) = 1.09, 95% confidence interval (95% CI) = 1.05-1.13] and petroleum oil (OR = 1.12, 95% CI = 1.05-1.19) were associated with current rhinitis and increased rhinitis episodes. Of the insecticides, four organophosphates (chlorpyrifos, diazinon, dichlorvos, and malathion), carbaryl, and use of permethrin on animals were predictors of current rhinitis. Diazinon was significant in the overall polytomous model and was associated with an elevated OR of 13+ rhinitis episodes (13+ episodes OR = 1.23, 95% CI = 1.09-1.38). The fungicide captan was also a significant predictor of rhinitis. Use of petroleum oil, use of malathion, use of permethrin, and use of the herbicide metolachlor were significant in exposure-response polytomous models. Specific pesticides may contribute to rhinitis in farmers; agricultural activities did not explain these findings.
Collapse
Affiliation(s)
- Rebecca E. Slager
- Center for Genomics and Personalized Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC, 27157 phone: 336-713-7513
| | - Sean L. Simpson
- Department of Biostatistics, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, 27157 phone: 336-716-8369
| | - Tricia D. LeVan
- Pulmonary, Critical Care, Sleep, and Allergy Division, Department of Medicine and Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198 phone: 402-559-3985
| | - Jill A. Poole
- Pulmonary, Critical Care, Sleep, and Allergy Division, Department of Medicine, University of Nebraska Medical Center, Omaha NE, 68198 phone: (402) 559-6266
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 phone: (919) 541-4668
| | - Jane A. Hoppin
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 phone: (919) 541-7622
| |
Collapse
|
36
|
F. A, E. D. Effect of the sterol demethylation-inhibiting fungicide fenarimol on selected biochemical parameters in rats. ACTA VET-BEOGRAD 2010. [DOI: 10.2298/avb1001031a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
37
|
El-Shenawy NS. Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 28:379-85. [PMID: 21784030 DOI: 10.1016/j.etap.2009.06.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 05/12/2023]
Abstract
Glyphosate is the active ingredient and polyoxyethyleneamine, the major component, is the surfactant present in the herbicide Roundup formulation. The objective of this study was to analyze potential cytotoxicity of the Roundup and its fundamental substance (glyphosate). Albino male rats were intraperitoneally treated with sub-lethal concentration of Roundup (269.9mg/kg) or glyphosate (134.95mg/kg) each 2 days, during 2 weeks. Hepatotoxicity was monitored by quantitative analysis of the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities, total protein, albumin, triglyceride and cholesterol. Creatinine and urea were used as the biochemical markers of kidney damages. The second aim of this study to investigate how glyphosate alone or included in herbicide Roundup affected hepatic reduced glutathione (GSH) and lipid peroxidation (LPO) levels of animals as an index of antioxidant status and oxidative stress, respectively, as well as the serum nitric oxide (NO) and alpha tumour necrosis factor (TNF-α) were measured. Treatment of animals with Roundup induced the leakage of hepatic intracellular enzymes, ALT, AST and ALP suggesting irreversible damage in hepatocytes starting from the first week. It was found that the effects were different on the enzymes in Roundup and glyphosate-treated groups. Significant time-dependent depletion of GSH levels and induction of oxidative stress in liver by the elevated levels of LPO, further confirmed the potential of Roundup to induce oxidative stress in hepatic tissue. However, glyphosate caused significant increases in NO levels more than Roundup after 2 weeks of treatment. Both treatments increased the level of TNF-α by the same manner. The results suggest that excessive antioxidant disruptor and oxidative stress is induced with Roundup than glyphosate.
Collapse
Affiliation(s)
- Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, El Daeri kilo 4, Ismailia, Egypt
| |
Collapse
|
38
|
Anadón A, Martínez-Larrañaga MR, Martínez MA, Castellano VJ, Martínez M, Martin MT, Nozal MJ, Bernal JL. Toxicokinetics of glyphosate and its metabolite aminomethyl phosphonic acid in rats. Toxicol Lett 2009; 190:91-5. [PMID: 19607892 DOI: 10.1016/j.toxlet.2009.07.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 12/01/2022]
Abstract
The toxicokinetics of glyphosate after single 100 mgkg(-1) intravenous (i.v.) and 400 mgkg(-1) oral doses were studied in rats. Serial blood samples were obtained after i.v. and oral administration. Plasma concentrations of glyphosate and its metabolite amiomethyl phosphonic acid (AMPA) were determined by HPLC method. After i.v. and oral administration, plasma concentration-time curves were best described by a two-compartment open model. For glyphosate, the elimination half-lives (T(1/2beta)) from plasma were 9.99 h after i.v. and 14.38 h after oral administration. The total plasma clearance was not influenced by dose concentration or route and reached a value of 0.995 l h(-1)kg(-1). After i.v. administration, the apparent volume of distribution in the second compartment (V(2)) and volume of distribution at steady state (V(ss)) were 2.39 and 2.99 l kg(-1), respectively, suggesting a considerable diffusion of the herbicide into tissues. After oral administration, glyphosate was partially and slowly absorbed with a T(max) of 5.16 h. The oral bioavailability of glyphosate was found to be 23.21%. Glyphosate was converted to AMPA. The metabolite AMPA represented 6.49% of the parent drug plasma concentrations. The maximum plasma concentrations of glyphosate and AMPA were 4.62 and 0.416 microg ml(-1), respectively. The maximum plasma concentration of AMPA was achieved at 2.42 h. For AMPA, the elimination half-life (T(1/2beta)) was 15.08 h after oral administration of glyphosate parent compound.
Collapse
Affiliation(s)
- A Anadón
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Malatesta M, Perdoni F, Santin G, Battistelli S, Muller S, Biggiogera M. Hepatoma tissue culture (HTC) cells as a model for investigating the effects of low concentrations of herbicide on cell structure and function. Toxicol In Vitro 2008; 22:1853-60. [PMID: 18835430 DOI: 10.1016/j.tiv.2008.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/12/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
Abstract
Previous studies on mice fed genetically modified (GM) soybean demonstrated modifications of the mitochondrial functions and of the transcription/splicing pathways in hepatocytes. The cause(s) of these alterations could not be conclusively established but, since the GM soybean used is tolerant to glyphosate and was treated with the glyphosate-containing herbicide Roundup , the possibility exists that the effects observed may be due to herbicide residues. In order to verify this hypothesis, we treated HTC cells with 1-10mM Roundup and analysed cellular features by flow cytometry, fluorescence and electron microscopy. Under these experimental conditions, the death rate and the general morphology of HTC cells were not affected, as well as most of the cytoplasmic organelles. However, in HTC-treated cells, lysosome density increased and mitochondrial membranes modified indicating a decline in the respiratory activity. Moreover, nuclei underwent morpho-functional modifications suggestive of a decreased transcriptional/splicing activity. Although we cannot exclude that other factors than the presence of the herbicide residues could be responsible for the cellular modifications described in GM-fed mice, the concordance of the effects induced by low concentrations of Roundup on HTC cells suggests that the presence of Roundup residues could be one of the factors interfering with multiple metabolic pathways.
Collapse
Affiliation(s)
- M Malatesta
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Anatomia e Istologia, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Dost FN. Peer review at a crossroads--a case study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2008; 15:443-7. [PMID: 18704531 DOI: 10.1007/s11356-008-0032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 07/15/2008] [Indexed: 05/26/2023]
Affiliation(s)
- Frank N Dost
- Department of Agricultural Chemistry, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
41
|
Jonsson CM, Aoyama H. In vitro effect of agriculture pollutants and their joint action on Pseudokirchneriella subcapitata acid phosphatase. CHEMOSPHERE 2007; 69:849-55. [PMID: 17673275 DOI: 10.1016/j.chemosphere.2007.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 05/09/2007] [Accepted: 06/12/2007] [Indexed: 05/16/2023]
Abstract
Acid phosphatase plays important roles in algae metabolism such as availability and recycling of inorganic phosphate, autophagic digestive processes and fertilization. Chemicals released into the environment from agriculture activities may impair algae phosphatase activity. The aim of this work was to evaluate the in vitro effect of twenty-four organic compounds and six metals used as pesticides, or present as contaminants in sewage sludge, on the acid phosphatase activity extracted from Pseudokirchneriella subcapitata. Results demonstrated that only the linear surfactant alkyl benzenesulphonate (LAS) and the heavy metals Hg(2+), Al(3+) and Cu(2+) markedly altered (50%) the enzyme activity. Join action inhibition studies indicated that Hg(2+) was more potent inhibitor than Al(3+) or LAS, and that the Hg(2+)+Al(3+) and Hg(2+)+LAS mixtures have, respectively, additive and slight antagonism effects. Copper, which demonstrated an activator effect when preincubated with the enzyme, behaved as a slight antagonist for the inhibitor effect of Hg(2+).
Collapse
Affiliation(s)
- Claudio Martín Jonsson
- Laboratório de Ecotoxicologia e Biossegurança, Embrapa Meio Ambiente, CP 69, CEP 13820-000, Jaguariúna, São Paulo, Brazil.
| | | |
Collapse
|
42
|
Solomon KR, Anadón A, Carrasquilla G, Cerdeira AL, Marshall J, Sanin LH. Coca and poppy eradication in Colombia: environmental and human health assessment of aerially applied glyphosate. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 190:43-125. [PMID: 17432331 DOI: 10.1007/978-0-387-36903-7_2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 06/01/2006] [Indexed: 05/14/2023]
Abstract
The production of coca and poppy as well as the processing and production of cocaine and heroin involve significant environmental impacts. Both coca and poppy are grown intensively in a process that involves the clearing of land in remote areas, the planting of the crop, and protection against pests such as weeds, insects, and pathogens. The aerial spray program to control coca and poppy production in Colombia with the herbicide glyphosate is conducted with modern state-of-the-art aircraft and spray equipment. As a result of the use of best available spray and navigation technology, the likelihood of accidental off-target spraying is small and is estimated to be less than 1% of the total area sprayed. Estimated exposures in humans resulting from direct overspray, contact with treated foliage after reentry to fields, inhalation, diet, and drinking water were small and infrequent. Analyses of surface waters in five watersheds showed that, on most occasions, glyphosate was not present at measurable concentrations; only two samples had residues just above the method detection limit of 25 microg/L. Concentrations of glyphosate in air were predicted to be very small because of negligible volatility. Glyphosate in soils that are directly sprayed will be tightly bound and biologically unavailable and have no residual activity. Concentrations of glyphosate plus Cosmo-Flux will be relatively large in shallow surface waters that are directly oversprayed (maximum instantaneous concentration of 1,229microgAE/L in water 30cm deep); however, no information was available on the number of fields in close proximity to surface waters, and thus it was not possible to estimate the likelihood of such contamination. The formulation used in Colombia, a mixture of glyphosate and Cosmo-Flux, has low toxicity to mammals by all routes of exposure, although some temporary eye irritation may occur. Published epidemiological studies have not suggested a strong or consistent linkage between glyphosate use and specific human health outcomes. An epidemiology study conducted in Colombia did not show any association between time to pregnancy in humans and the use of glyphosate in eradication spraying. The mixture of glyphosate and Cosmo-Flux was not toxic to honeybees. The mixture was, however, more toxic to the alga Selenastrum, the cladoceran Daphnia magna, fathead minnow, and rainbow trout than formulated glyphosate (Roundup) alone. Studies on the use of glyphosate in agriculture and forestry have shown that direct effects on nontarget organisms other than plants are unlikely. Indirect effects on terrestrial arthropods and other wildlife may be the result of habitat alteration and environmental change brought about by the removal of plants by glyphosate. Because of the lack of residual activity, recovery of glyphosate-treated areas in Colombia is expected to be rapid because of good plant growth conditions. However, return to the conditions of tropical old-growth forest that existed before clear-cutting and burning may take hundreds of years, not from the use of glyphosate but because of the clear-cutting and burning, which are the primary cause of effects in the environment. The risk assessment concluded that glyphosate and Cosmo-Flux did not present a significant risk to human health. In the entire cycle of coca and poppy production and eradication, human health risks associated with physical injury during clear-cutting and burning and the use of pesticides for protection of the illicit crops were judged to be considerably more important than those from exposure to glyphosate. For the environment, direct risks from the use of glyphosate and Cosmo-Flux to terrestrial mammals and birds were judged to be negligible. Moderate risks could occur in aquatic organisms in shallow surface waters that are oversprayed during the eradication program. However, the frequency of occurrence and extent to which this happens are unknown as data on the proximity of surface waters to coca fields were not available. Considering the effects of the entire cycle of coca and poppy production and eradication, clear-cutting and burning and displacement of the natural flora and fauna were identified as the greatest environmental risks and are considerably more important than those from the use of glyphosate for the control of coca and poppy.
Collapse
Affiliation(s)
- Keith R Solomon
- Centre for Toxicology and Department of Environmental Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Hernández AF, Amparo Gómez M, Pérez V, García-Lario JV, Pena G, Gil F, López O, Rodrigo L, Pino G, Pla A. Influence of exposure to pesticides on serum components and enzyme activities of cytotoxicity among intensive agriculture farmers. ENVIRONMENTAL RESEARCH 2006; 102:70-6. [PMID: 16620808 DOI: 10.1016/j.envres.2006.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 01/18/2006] [Accepted: 03/03/2006] [Indexed: 05/08/2023]
Abstract
Although the effects of acute pesticide poisoning are well known for the pesticides most currently used, hardly any data exist on health effects after long-term low-dose exposures. Major unresolved issues include the effect of moderate exposure in the absence of poisoning. The increased utilization of pesticides other than organophosphates makes it even more difficult to find associations. In this study a cohort of 106 intensive agriculture workers were assessed twice during the course of a spraying season for changes in serum biochemistry, namely enzymes reflecting cytotoxicity (AST, ALT, LDH, CK, and amino-oxidase) and other biochemical parameters, such as markers of nephrotoxicity (urea, creatinine) and lipid profile (cholesterol and triglycerides). Several criteria for estimating pesticide exposure were used, the most important one being serum cholinesterase depression greater than 25% from baseline to peak exposure. Our results revealed an association of pesticide exposure with changes in AST (increased activity), LDH, and amino-oxidase (decreased activity) as well as with changes in serum creatinine and phosphorus (lower and higher levels, respectively). These results provide support for a very slight impairment of the liver function, but overall these findings are consistent with no clinically significant hepatotoxicity. Intriguingly, paraoxonase-1 R allele was found to be an independent predictor of higher rates of AST and lower rates of amino-oxidase, so that it may play a supporting role as an individual marker of susceptibility on pesticide-induced health effects. In conclusion, different biomarkers might be used to detect early biochemical effects of pesticides before adverse clinical health effects occur.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yanardag R, Ozsoy-Sacan O, Bolkent S, Orak H, Karabulut-Bulan O. Protective effects of metformin treatment on the liver injury of streptozotocin-diabetic rats. Hum Exp Toxicol 2005; 24:129-35. [PMID: 15901052 DOI: 10.1191/0960327104ht507oa] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Metformin is a biguanide derivate used as an oral hypoglycaemic drug in diabetics. The aim of this study was to examine the histological and biochemical effects of metformin in streptozotocin (STZ)-treated rats. The animals were rendered diabetic by intraperitoneal injection of 65 mg/kg STZ. Fourteen days later, metformin was given at 25 mg/kg by gavage, daily for 28 days, to STZ-diabetic rats and a control group. In the STZ-diabetic group, some degenerative changes were observed by light microscopic examination. But the degenerative changes were decreased in the STZ-diabetic group given metformin. In the STZ-diabetic group, blood glucose levels, serum alanine and aspartate transaminase (ALT and AST) activities, total lipid levels, and sodium and potassium levels increased, while body weight, serum magnesium levels and liver glutathione (GSH) levels decreased. In the STZ-diabetic group given metformin, blood glucose levels, serum ALT and AST activities, total lipid, and sodium and potassium levels decreased, and liver GSH and serum magnesium levels increased. As a result of all the morphological and biochemical findings obtained, it was concluded that metformin has a protective effect against the hepatotoxicity produced by STZ diabetes.
Collapse
Affiliation(s)
- R Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University, Avcilar, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
45
|
De Roos AJ, Blair A, Rusiecki JA, Hoppin JA, Svec M, Dosemeci M, Sandler DP, Alavanja MC. Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:49-54. [PMID: 15626647 PMCID: PMC1253709 DOI: 10.1289/ehp.7340] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/03/2004] [Indexed: 05/05/2023]
Abstract
Glyphosate is a broad-spectrum herbicide that is one of the most frequently applied pesticides in the world. Although there has been little consistent evidence of genotoxicity or carcinogenicity from in vitro and animal studies, a few epidemiologic reports have indicated potential health effects of glyphosate. We evaluated associations between glyphosate exposure and cancer incidence in the Agricultural Health Study (AHS), a prospective cohort study of 57,311 licensed pesticide applicators in Iowa and North Carolina. Detailed information on pesticide use and other factors was obtained from a self-administered questionnaire completed at time of enrollment (1993-1997). Among private and commercial applicators, 75.5% reported having ever used glyphosate, of which > 97% were men. In this analysis, glyphosate exposure was defined as a) ever personally mixed or applied products containing glyphosate; b) cumulative lifetime days of use, or "cumulative exposure days" (years of use times days/year); and c) intensity-weighted cumulative exposure days (years of use times days/year times estimated intensity level). Poisson regression was used to estimate exposure-response relations between glyphosate and incidence of all cancers combined and 12 relatively common cancer subtypes. Glyphosate exposure was not associated with cancer incidence overall or with most of the cancer subtypes we studied. There was a suggested association with multiple myeloma incidence that should be followed up as more cases occur in the AHS. Given the widespread use of glyphosate, future analyses of the AHS will allow further examination of long-term health effects, including less common cancers.
Collapse
Affiliation(s)
- Anneclaire J De Roos
- Program in Epidemiology, Fred Hutchinson Cancer Research Center and the Department of Epidemiology, University of Washington, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
El-Demerdash FM, Yousef MI, Kedwany FS, Baghdadi HH. Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and β-carotene. Food Chem Toxicol 2004; 42:1563-71. [PMID: 15304303 DOI: 10.1016/j.fct.2004.05.001] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 05/03/2004] [Indexed: 11/18/2022]
Abstract
Cadmium is a well-known human carcinogen and a potent nephrotoxin. Lipid peroxidation is involved in cadmium-related toxicity. Vitamin E and beta-carotene are effective antioxidants and free radical scavengers. Therefore, the present study was carried out to investigate the potential protective effects of vitamin E and beta-carotene alone or in combination against cadmium (Cd) toxicity. Cadmium chloride (CdCl2, 5 mg/kg BW, 1/15 LD50), vitamin E (100 mg/kg BW), beta-carotene (10 mg/kg BW), and vitamin E with beta-carotene (100 + 10 mg/kg BW, respectively) were orally administered by gavage alone or in combination. The tested doses were given to rats every other day (15 times). Results obtained showed that CdCl2 significantly (P < 0.05) induced free radicals in plasma, liver and brain. The activities of glutathione S-transferase (GST) (plasma and liver), alkaline phosphatase (AlP) (plasma and liver), aspartate aminotransferase (AST), alanine aminotransferase (ALT) (liver) and acetylcholinesterase (AChE) (plasma and brain) were significantly (P < 0.05) decreased due to CdCl2 administration, whereas, the activities of AST and ALT were increased in plasma. Treatment with CdCl2 caused a significant (P < 0.05) increase in glucose, urea, creatinine and bilirubin in plasma. On the other hand, results showed that CdCl2 significantly (P < 0.05) decreased plasma total protein (TP), albumin (A), blood hemoglobin (Hb), total erythrocytic count (TEC) and packed cell volume (PCV), while total leukocyte count (TLC) increased. Treatment with CdCl2 caused a significant (P < 0.05) decrease in sperm concentration, motility (%), weight of testes and epididymis, and increase in dead and abnormal sperm. Results demonstrated the beneficial influences of vitamin E, -carotene alone and/or in combination in reducing the harmful effects of CdCl2.
Collapse
Affiliation(s)
- Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, University of Alexandria, 163, Horreya Avenue, P.O. Box 832, Alexandria 21526, Egypt.
| | | | | | | |
Collapse
|