1
|
Danziger M, Xu F, Noble H, Yang P, Roque DM. Tubulin Complexity in Cancer and Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:21-35. [PMID: 38805123 DOI: 10.1007/978-3-031-58311-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Tubulin plays a fundamental role in cellular function and as the subject for microtubule-active agents in the treatment of ovarian cancer. Microtubule-binding proteins (e.g., tau, MAP1/2/4, EB1, CLIP, TOG, survivin, stathmin) and posttranslational modifications (e.g., tyrosination, deglutamylation, acetylation, glycation, phosphorylation, polyamination) further diversify tubulin functionality and may permit additional opportunities to understand microtubule behavior in disease and to develop microtubule-modifying approaches to combat ovarian cancer. Tubulin-based structures that project from suspended ovarian cancer cells known as microtentacles may contribute to metastatic potential of ovarian cancer cells and could represent an exciting novel therapeutic target.
Collapse
Affiliation(s)
- Michael Danziger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fuhua Xu
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Noble
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dana M Roque
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Abbaali I, Truong D, Day SD, Mushayeed F, Ganesh B, Haro-Ramirez N, Isles J, Nag H, Pham C, Shah P, Tomar I, Manel-Romero C, Morrissette NS. The tubulin database: Linking mutations, modifications, ligands and local interactions. PLoS One 2023; 18:e0295279. [PMID: 38064432 PMCID: PMC10707541 DOI: 10.1371/journal.pone.0295279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Microtubules are polymeric filaments, constructed of α-β tubulin heterodimers that underlie critical subcellular structures in eukaryotic organisms. Four homologous proteins (γ-, δ-, ε- and ζ-tubulin) additionally contribute to specialized microtubule functions. Although there is an immense volume of publicly available data pertaining to tubulins, it is difficult to assimilate all potentially relevant information across diverse organisms, isotypes, and categories of data. We previously assembled an extensive web-based catalogue of published missense mutations to tubulins with >1,500 entries that each document a specific substitution to a discrete tubulin, the species where the mutation was described and the associated phenotype with hyperlinks to the amino acid sequence and citation(s) for research. This report describes a significant update and expansion of our online resource (TubulinDB.bio.uci.edu) to nearly 18,000 entries. It now encompasses a cross-referenced catalog of post-translational modifications (PTMs) to tubulin drawn from public datasets, primary literature, and predictive algorithms. In addition, tubulin protein structures were used to define local interactions with bound ligands (GTP, GDP and diverse microtubule-targeting agents) and amino acids at the intradimer interface, within the microtubule lattice and with associated proteins. To effectively cross-reference these datasets, we established a universal tubulin numbering system to map entries into a common framework that accommodates specific insertions and deletions to tubulins. Indexing and cross-referencing permitted us to discern previously unappreciated patterns. We describe previously unlinked observations of loss of PTM sites in the context of cancer cells and tubulinopathies. Similarly, we expanded the set of clinical substitutions that may compromise MAP or microtubule-motor interactions by collecting tubulin missense mutations that alter amino acids at the interface with dynein and doublecortin. By expanding the database as a curated resource, we hope to relate model organism data to clinical findings of pathogenic tubulin variants. Ultimately, we aim to aid researchers in hypothesis generation and design of studies to dissect tubulin function.
Collapse
Affiliation(s)
- Izra Abbaali
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Danny Truong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Shania Deon Day
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Faliha Mushayeed
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Bhargavi Ganesh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Nancy Haro-Ramirez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Juliet Isles
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Hindol Nag
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Catherine Pham
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Priya Shah
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Ishaan Tomar
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Carolina Manel-Romero
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| | - Naomi S. Morrissette
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States of America
| |
Collapse
|
3
|
Tang Q, Sensale S, Bond C, Xing J, Qiao A, Hugelier S, Arab A, Arya G, Lakadamyali M. Interplay between stochastic enzyme activity and microtubule stability drives detyrosination enrichment on microtubule subsets. Curr Biol 2023; 33:5169-5184.e8. [PMID: 37979580 PMCID: PMC10843832 DOI: 10.1016/j.cub.2023.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023]
Abstract
Microtubules in cells consist of functionally diverse subpopulations carrying distinct post-translational modifications (PTMs). Akin to the histone code, the tubulin code regulates a myriad of microtubule functions, ranging from intracellular transport to chromosome segregation. However, how individual PTMs only occur on subsets of microtubules to contribute to microtubule specialization is not well understood. In particular, microtubule detyrosination, the removal of the C-terminal tyrosine on α-tubulin subunits, marks the stable population of microtubules and modifies how microtubules interact with other microtubule-associated proteins to regulate a wide range of cellular processes. Previously, we found that in certain cell types, only ∼30% of microtubules are highly enriched with the detyrosination mark and that detyrosination spans most of the length of a microtubule, often adjacent to a completely tyrosinated microtubule. How the activity of a cytosolic detyrosinase, vasohibin (VASH), leads to only a small subpopulation of highly detyrosinated microtubules is unclear. Here, using quantitative super-resolution microscopy, we visualized nascent microtubule detyrosination events in cells consisting of 1-3 detyrosinated α-tubulin subunits after nocodazole washout. Microtubule detyrosination accumulates slowly and in a dispersed pattern across the microtubule length. By visualizing single molecules of VASH in live cells, we found that VASH engages with microtubules stochastically on a short timescale, suggesting limited removal of tyrosine per interaction, consistent with the super-resolution results. Combining these quantitative imaging results with simulations incorporating parameters from our experiments, we provide evidence for a stochastic model for cells to establish a subset of detyrosinated microtubules via a detyrosination-stabilization feedback mechanism.
Collapse
Affiliation(s)
- Qing Tang
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sebastian Sensale
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; Department of Physics, Cleveland State University, Cleveland, OH 44115-2214, USA.
| | - Charles Bond
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiazheng Xing
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andy Qiao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Siewert Hugelier
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arian Arab
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Fu G, Yan S, Khoo CJ, Chao VC, Liu Z, Mukhi M, Hervas R, Li XD, Ti SC. Integrated regulation of tubulin tyrosination and microtubule stability by human α-tubulin isotypes. Cell Rep 2023; 42:112653. [PMID: 37379209 DOI: 10.1016/j.celrep.2023.112653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 05/03/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
Tubulin isotypes are critical for the functions of cellular microtubules, which exhibit different stability and harbor various post-translational modifications. However, how tubulin isotypes determine the activities of regulators for microtubule stability and modifications remains unknown. Here, we show that human α4A-tubulin, a conserved genetically detyrosinated α-tubulin isotype, is a poor substrate for enzymatic tyrosination. To examine the stability of microtubules reconstituted with defined tubulin compositions, we develop a strategy to site-specifically label recombinant human tubulin for single-molecule TIRF microscopy-based in vitro assays. The incorporation of α4A-tubulin into the microtubule lattice stabilizes the polymers from passive and MCAK-stimulated depolymerization. Further characterization reveals that the compositions of α-tubulin isotypes and tyrosination/detyrosination states allow graded control for the microtubule binding and the depolymerization activities of MCAK. Together, our results uncover the tubulin isotype-dependent enzyme activity for an integrated regulation of α-tubulin tyrosination/detyrosination states and microtubule stability, two well-correlated features of cellular microtubules.
Collapse
Affiliation(s)
- Guoling Fu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Shan Yan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chen Jing Khoo
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Victor C Chao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mayur Mukhi
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Rubén Hervas
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shih-Chieh Ti
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Iwanski MK, Kapitein LC. Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton. Front Cell Dev Biol 2023; 11:1052245. [PMID: 37035244 PMCID: PMC10073685 DOI: 10.3389/fcell.2023.1052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Microtubules, one of the major components of the cytoskeleton, play a crucial role during many aspects of neuronal development and function, such as neuronal polarization and axon outgrowth. Consequently, the microtubule cytoskeleton has been implicated in many neurodevelopmental and neurodegenerative disorders. The polar nature of microtubules is quintessential for their function, allowing them to serve as tracks for long-distance, directed intracellular transport by kinesin and dynein motors. Most of these motors move exclusively towards either the plus- or minus-end of a microtubule and some have been shown to have a preference for either dynamic or stable microtubules, those bearing a particular post-translational modification or those decorated by a specific microtubule-associated protein. Thus, it becomes important to consider the interplay of these features and their combinatorial effects on transport, as well as how different types of microtubules are organized in the cell. Here, we discuss microtubule subsets in terms of tubulin isotypes, tubulin post-translational modifications, microtubule-associated proteins, microtubule stability or dynamicity, and microtubule orientation. We highlight techniques used to study these features of the microtubule cytoskeleton and, using the information from these studies, try to define the composition, role, and organization of some of these subsets in neurons.
Collapse
Affiliation(s)
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Lopes D, Seabra AL, Orr B, Maiato H. α-Tubulin detyrosination links the suppression of MCAK activity with taxol cytotoxicity. J Cell Biol 2023; 222:213730. [PMID: 36459065 PMCID: PMC9723805 DOI: 10.1083/jcb.202205092] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
α/β-Tubulin posttranslational modifications (PTMs) generate microtubule diversity, but whether they account for cancer cell resistance to microtubule-targeting drugs remains unknown. Here, we performed a pilot dissection of the "cancer tubulin code" using the NCI-60 cancer cell panel. We found that acetylated, detyrosinated, and ∆2-α-tubulin that typically accumulate on stable microtubules were uncoupled in many cancer cells. Acetylated α-tubulin did not affect microtubule dynamics, whereas its levels correlated with, but were not required for, taxol-induced cytotoxicity. In contrast, experimental increase of α-tubulin detyrosination, and/or depletion of the detyrosination-sensitive microtubule-depolymerizing enzyme MCAK, enhanced taxol-induced cytotoxicity by promoting cell death in mitosis and the subsequent interphase, without causing a cumulative effect. Interestingly, only increased detyrosinated α-tubulin aggravated taxol-induced spindle multipolarity. Overall, we identified high α-tubulin acetylation as a potential biomarker for cancer cell response to taxol and uncovered a mechanistic link between α-tubulin detyrosination and the suppression of MCAK activity in taxol-induced cytotoxicity, likely by promoting chromosome missegregation, regardless of spindle defects.
Collapse
Affiliation(s)
- Danilo Lopes
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandre L Seabra
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Almeida AC, Soares-de-Oliveira J, Drpic D, Cheeseman LP, Damas J, Lewin HA, Larkin DM, Aguiar P, Pereira AJ, Maiato H. Augmin-dependent microtubule self-organization drives kinetochore fiber maturation in mammals. Cell Rep 2022; 39:110610. [PMID: 35385739 PMCID: PMC8994134 DOI: 10.1016/j.celrep.2022.110610] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/07/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
Chromosome segregation in mammals relies on the maturation of a thick bundle of kinetochore-attached microtubules known as k-fiber. How k-fibers mature from initial kinetochore microtubule attachments remains a fundamental question. By combining molecular perturbations and phenotypic analyses in Indian muntjac fibroblasts containing the lowest known diploid chromosome number in mammals (2N = 6) and distinctively large kinetochores, with fixed/live-cell super-resolution coherent-hybrid stimulated emission depletion (CH-STED) nanoscopy and laser microsurgery, we demonstrate a key role for augmin in kinetochore microtubule self-organization and maturation, regardless of pioneer centrosomal microtubules. In doing so, augmin promotes kinetochore and interpolar microtubule turnover and poleward flux. Tracking of microtubule growth events within individual k-fibers reveals a wide angular dispersion, consistent with augmin-mediated branched microtubule nucleation. Augmin depletion reduces the frequency of kinetochore microtubule growth events and hampers efficient repair after acute k-fiber injury by laser microsurgery. Together, these findings underscore the contribution of augmin-mediated microtubule amplification for k-fiber self-organization and maturation in mammals.
Collapse
Affiliation(s)
- Ana C Almeida
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Soares-de-Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Danica Drpic
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Liam P Cheeseman
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK; Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Harris A Lewin
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - António J Pereira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Helder Maiato
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
8
|
Desmin intermediate filaments and tubulin detyrosination stabilize growing microtubules in the cardiomyocyte. Basic Res Cardiol 2022; 117:53. [PMID: 36326891 PMCID: PMC9633452 DOI: 10.1007/s00395-022-00962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
In heart failure, an increased abundance of post-translationally detyrosinated microtubules stiffens the cardiomyocyte and impedes its contractile function. Detyrosination promotes interactions between microtubules, desmin intermediate filaments, and the sarcomere to increase cytoskeletal stiffness, yet the mechanism by which this occurs is unknown. We hypothesized that detyrosination may regulate the growth and shrinkage of dynamic microtubules to facilitate interactions with desmin and the sarcomere. Through a combination of biochemical assays and direct observation of growing microtubule plus-ends in adult cardiomyocytes, we find that desmin is required to stabilize growing microtubules at the level of the sarcomere Z-disk, where desmin also rescues shrinking microtubules from continued depolymerization. Further, reducing detyrosination (i.e. tyrosination) below basal levels promotes frequent depolymerization and less efficient growth of microtubules. This is concomitant with tyrosination promoting the interaction of microtubules with the depolymerizing protein complex of end-binding protein 1 (EB1) and CAP-Gly domain-containing linker protein 1 (CLIP1/CLIP170). The dynamic growth and shrinkage of tyrosinated microtubules reduce their opportunity for stabilizing interactions at the Z-disk region, coincident with tyrosination globally reducing microtubule stability. These data provide a model for how intermediate filaments and tubulin detyrosination establish long-lived and physically reinforced microtubules that stiffen the cardiomyocyte and inform both the mechanism of action and therapeutic index for strategies aimed at restoring tyrosination for the treatment of cardiac disease.
Collapse
|
9
|
Sanyal C, Pietsch N, Ramirez Rios S, Peris L, Carrier L, Moutin MJ. The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes. Semin Cell Dev Biol 2021; 137:46-62. [PMID: 34924330 DOI: 10.1016/j.semcdb.2021.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022]
Abstract
Among the variety of post-translational modifications to which microtubules are subjected, the detyrosination/re-tyrosination cycle is specific to tubulin. It is conserved by evolution and characterized by the enzymatic removal and re-addition of a gene-encoded tyrosine residue at the C-terminus of α-tubulin. Detyrosinated tubulin can be further converted to Δ2-tubulin by the removal of an additional C-terminal glutamate residue. Detyrosinated and Δ2-tubulin are carried by stable microtubules whereas tyrosinated microtubules are present on dynamic polymers. The cycle regulates trafficking of many cargo transporting molecular motors and is linked to the microtubule dynamics via regulation of microtubule interactions with specific cellular effectors such as kinesin-13. Here, we give an historical overview of the general features discovered for the cycle. We highlight the recent progress toward structure and functioning of the enzymes that keep the levels of tyrosinated and detyrosinated tubulin in cells, the long-known tubulin tyrosine ligase and the recently discovered vasohibin-SVBP complexes. We further describe how the cycle controls microtubule functions in healthy neurons and cardiomyocytes and how deregulations of the cycle are involved in dysfunctions of these highly differentiated cells, leading to neurodegeneration and heart failure in humans.
Collapse
Affiliation(s)
- Chadni Sanyal
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Niels Pietsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sacnicte Ramirez Rios
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Marie-Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
10
|
Acetylation/deacetylation and microtubule associated proteins influence flagellar axonemal stability and sperm motility. Biosci Rep 2021; 40:226984. [PMID: 33200789 PMCID: PMC7711059 DOI: 10.1042/bsr20202442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
PTMs and microtubule-associated proteins (MAPs) are known to regulate microtubule dynamicity in somatic cells. Reported literature on modulation of α-tubulin acetyl transferase (αTAT1) and histone deacetylase 6 (HDAC6) in animal models and cell lines illustrate disparity in correlating tubulin acetylation status with stability of MT. Our earlier studies showed reduced acetyl tubulin in sperm of asthenozoospermic individuals. Our studies on rat sperm showed that on inhibition of HDAC6 activity, although tubulin acetylation increased, sperm motility was reduced. Studies were therefore undertaken to investigate the influence of tubulin acetylation/deacetylation on MT dynamicity in sperm flagella using rat and human sperm. Our data on rat sperm revealed that HDAC6 specific inhibitor Tubastatin A (T) inhibited sperm motility and neutralized the depolymerizing and motility debilitating effect of Nocodazole. The effect on polymerization was further confirmed in vitro using pure MT and recHDAC6. Also polymerized axoneme was less in sperm of asthenozoosperm compared to normozoosperm. Deacetylase activity was reduced in sperm lysates and axonemes exposed to T and N+T but not in axonemes of sperm treated similarly suggesting that HDAC6 is associated with sperm axonemes or MT. Deacetylase activity was less in asthenozoosperm. Intriguingly, the expression of MDP3 physiologically known to bind to HDAC6 and inhibit its deacetylase activity remained unchanged. However, expression of acetyl α-tubulin, HDAC6 and microtubule stabilizing protein SAXO1 was less in asthenozoosperm. These observations suggest that MAPs and threshold levels of MT acetylation/deacetylation are important for MT dynamicity in sperm and may play a role in regulating sperm motility.
Collapse
|
11
|
Perez T, Bergès R, Maccario H, Oddoux S, Honoré S. Low concentrations of vorinostat decrease EB1 expression in GBM cells and affect microtubule dynamics, cell survival and migration. Oncotarget 2021; 12:304-315. [PMID: 33659042 PMCID: PMC7899546 DOI: 10.18632/oncotarget.27892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiform (GBM) is the most frequent primitive brain tumor with a high recurrence and mortality. Histone deacetylase inhibitors (HDACi) have evoked great interest because they are able to change transcriptomic profiles to promote tumor cell death but also induce side effects due to the lack of selectivity. We show in this paper new anticancer properties and mechanisms of action of low concentrations of vorinostat on various GBM cells which acts by affecting microtubule cytoskeleton in a non-histone 3 (H3) manner. Indeed, vorinostat induces tubulin acetylation and detyrosination, affects EB stabilizing cap on microtubule plus ends and suppresses microtubule dynamic instability. We previously identified EB1 overexpression as a marker of bad prognostic in GBM. Interestingly, we show for the first time to our knowledge, a strong decrease of EB1 expression in GBM cells by a drug. Altogether, our results suggest that low dose vorinostat, which is more selective for HDAC6 inhibition, could therefore represent an interesting therapeutic option for GBM especially in patients with EB1 overexpressing tumor with lower expected side effects. A validation of our hypothesis is needed during future clinical trials with this drug in GBM.
Collapse
Affiliation(s)
- Thomas Perez
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Raphaël Bergès
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Hélène Maccario
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Sarah Oddoux
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France
| | - Stéphane Honoré
- Aix-Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| |
Collapse
|
12
|
Ferreira LT, Orr B, Rajendraprasad G, Pereira AJ, Lemos C, Lima JT, Guasch Boldú C, Ferreira JG, Barisic M, Maiato H. α-Tubulin detyrosination impairs mitotic error correction by suppressing MCAK centromeric activity. J Cell Biol 2020; 219:133849. [PMID: 32328631 PMCID: PMC7147099 DOI: 10.1083/jcb.201910064] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/30/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
Incorrect kinetochore–microtubule attachments during mitosis can lead to chromosomal instability, a hallmark of human cancers. Mitotic error correction relies on the kinesin-13 MCAK, a microtubule depolymerase whose activity in vitro is suppressed by α-tubulin detyrosination—a posttranslational modification enriched on long-lived microtubules. However, whether and how MCAK activity required for mitotic error correction is regulated by α-tubulin detyrosination remains unknown. Here we found that detyrosinated α-tubulin accumulates on correct, more stable, kinetochore–microtubule attachments. Experimental manipulation of tubulin tyrosine ligase (TTL) or carboxypeptidase (Vasohibins-SVBP) activities to constitutively increase α-tubulin detyrosination near kinetochores compromised efficient error correction, without affecting overall kinetochore microtubule stability. Rescue experiments indicate that MCAK centromeric activity was required and sufficient to correct the mitotic errors caused by excessive α-tubulin detyrosination independently of its global impact on microtubule dynamics. Thus, microtubules are not just passive elements during mitotic error correction, and the extent of α-tubulin detyrosination allows centromeric MCAK to discriminate correct vs. incorrect kinetochore–microtubule attachments, thereby promoting mitotic fidelity.
Collapse
Affiliation(s)
- Luísa T Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - António J Pereira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,UnIGENe, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Joana T Lima
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Clàudia Guasch Boldú
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jorge G Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigacão e Inovacão em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
13
|
Wall KP, Hart H, Lee T, Page C, Hawkins TL, Hough LE. C-Terminal Tail Polyglycylation and Polyglutamylation Alter Microtubule Mechanical Properties. Biophys J 2020; 119:2219-2230. [PMID: 33137305 DOI: 10.1016/j.bpj.2020.09.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Microtubules are biopolymers that perform diverse cellular functions. Microtubule behavior regulation occurs in part through post-translational modification of both the α- and β-subunits of tubulin. One class of modifications is the heterogeneous addition of glycine and/or glutamate residues to the disordered C-terminal tails (CTTs) of tubulin. Because of their prevalence in stable, high-stress cellular structures such as cilia, we sought to determine if these modifications alter microtubules' intrinsic stiffness. Here, we describe the purification and characterization of differentially modified pools of tubulin from Tetrahymena thermophila. We found that post-translational modifications do affect microtubule stiffness but do not affect the number of protofilaments incorporated into microtubules. We measured the spin dynamics of nuclei in the CTT backbone by NMR spectroscopy to explore the mechanism of this change. Our results show that the α-tubulin CTT does not protrude out from the microtubule surface, as is commonly depicted in models, but instead interacts with the dimer's surface. This suggests that the interactions of the α-tubulin CTT with the tubulin body contributes to the stiffness of the assembled microtubule, thus providing insight into the mechanism by which polyglycylation and polyglutamylation can alter microtubule mechanical properties.
Collapse
Affiliation(s)
- Kathryn P Wall
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado; BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Harold Hart
- Physics Department, University of Wisconsin La Crosse, La Crosse, Wisconsin
| | - Thomas Lee
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Cynthia Page
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Taviare L Hawkins
- Physics Department, University of Wisconsin La Crosse, La Crosse, Wisconsin
| | - Loren E Hough
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado; Department of Physics, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
14
|
Kobayashi M, Wakabayashi I, Suzuki Y, Fujiwara K, Nakayama M, Watabe T, Sato Y. Tubulin carboxypeptidase activity of vasohibin-1 inhibits angiogenesis by interfering with endocytosis and trafficking of pro-angiogenic factor receptors. Angiogenesis 2020; 24:159-176. [PMID: 33052495 DOI: 10.1007/s10456-020-09754-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/25/2023]
Abstract
Receptor endocytosis is crucial for integrating extracellular stimuli of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), into the cell via signal transduction. VEGF not only triggers various angiogenic events including endothelial cell (EC) migration, but also induces the expression of negative regulators of angiogenesis, including vasohibin-1 (VASH1). While we have previously reported that VASH1 inhibits angiogenesis in vitro and in vivo, its mode of action on EC behavior remains elusive. Recently VASH1 was shown to have tubulin carboxypeptidase (TCP) activity, mediating the post-translational modification of microtubules (MTs) by detyrosination of α-tubulin within cells. However, the role of VASH1 TCP activity in angiogenesis has not yet been clarified. Here, we showed that VASH1 detyrosinated α-tubulin in ECs and suppressed in vitro and in vivo angiogenesis. In cultured ECs, VASH1 impaired endocytosis and trafficking of VEGF receptor 2 (VEGFR2), which resulted in the decreased signal transduction and EC migration. These effects of VASH1 could be restored by tubulin tyrosine ligase (TTL) in ECs, suggesting that detyrosination of α-tubulin negatively regulates angiogenesis. Furthermore, we found that detyrosinated tubulin-rich MTs were not adequate as trafficking rails for VEGFR2 endocytosis. Consistent with these results, inhibition of TCP activity of VASH1 led to the inhibition of VASH1-mediated suppression of VEGF-induced signals, EC migration, and in vivo angiogenesis. Our results indicate a novel mechanism of VASH1-mediated inhibition of pro-angiogenic factor receptor trafficking via modification of MTs.
Collapse
Affiliation(s)
- Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan. .,Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.
| | - Ikumi Wakabayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan
| | - Kashio Fujiwara
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan. .,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
15
|
The Tubulin Detyrosination Cycle: Function and Enzymes. Trends Cell Biol 2019; 29:80-92. [DOI: 10.1016/j.tcb.2018.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/24/2022]
|
16
|
Ferreira LT, Figueiredo AC, Orr B, Lopes D, Maiato H. Dissecting the role of the tubulin code in mitosis. Methods Cell Biol 2018; 144:33-74. [PMID: 29804676 DOI: 10.1016/bs.mcb.2018.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitosis is an essential process that takes place in all eukaryotes and involves the equal division of genetic material from a parental cell into two identical daughter cells. During mitosis, chromosome movement and segregation are orchestrated by a specialized structure known as the mitotic spindle, composed of a bipolar array of microtubules. The fundamental structure of microtubules comprises of α/β-tubulin heterodimers that associate head-to-tail and laterally to form hollow filaments. In vivo, microtubules are modified by abundant and evolutionarily conserved tubulin posttranslational modifications (PTMs), giving these filaments the potential for a wide chemical diversity. In recent years, the concept of a "tubulin code" has emerged as an extralayer of regulation governing microtubule function. A range of tubulin isoforms, each with a diverse set of PTMs, provides a readable code for microtubule motors and other microtubule-associated proteins. This chapter focuses on the complexity of tubulin PTMs with an emphasis on detyrosination and summarizes the methods currently used in our laboratory to experimentally manipulate these modifications and study their impact in mitosis.
Collapse
Affiliation(s)
- Luísa T Ferreira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana C Figueiredo
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Danilo Lopes
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
17
|
Loehr JA, Wang S, Cully TR, Pal R, Larina IV, Larin KV, Rodney GG. NADPH oxidase mediates microtubule alterations and diaphragm dysfunction in dystrophic mice. eLife 2018; 7:31732. [PMID: 29381135 PMCID: PMC5812717 DOI: 10.7554/elife.31732] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/20/2018] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle from mdx mice is characterized by increased Nox2 ROS, altered microtubule network, increased muscle stiffness, and decreased muscle/respiratory function. While microtubule de-tyrosination has been suggested to increase stiffness and Nox2 ROS production in isolated single myofibers, its role in altering tissue stiffness and muscle function has not been established. Because Nox2 ROS production is upregulated prior to microtubule network alterations and ROS affect microtubule formation, we investigated the role of Nox2 ROS in diaphragm tissue microtubule organization, stiffness and muscle/respiratory function. Eliminating Nox2 ROS prevents microtubule disorganization and reduces fibrosis and muscle stiffness in mdx diaphragm. Fibrosis accounts for the majority of variance in diaphragm stiffness and decreased function, implicating altered extracellular matrix and not microtubule de-tyrosination as a modulator of diaphragm tissue function. Ultimately, inhibiting Nox2 ROS production increased force and respiratory function in dystrophic diaphragm, establishing Nox2 as a potential therapeutic target in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- James Anthony Loehr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Shang Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Tanya R Cully
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Kirill V Larin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States.,Department of Biomedical Engineering, University of Houston, Houston, United States.,Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| |
Collapse
|
18
|
Rayevsky AV, Sharifi M, Samofalova DA, Karpov PA, Blume YB. Structural and functional features of lysine acetylation of plant and animal tubulins. Cell Biol Int 2017; 43:1040-1048. [DOI: 10.1002/cbin.10887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Alexey V. Rayevsky
- Laboratory of Structural Biology, Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv04123 Ukraine
| | - Mohsen Sharifi
- Medway School of PharmacyUniversities of Kent and GreenwichKent ME4 4TB UK
| | - Dariya A. Samofalova
- Laboratory of Structural Biology, Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv04123 Ukraine
| | - Pavel A. Karpov
- Laboratory of Structural Biology, Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv04123 Ukraine
| | - Yaroslav B. Blume
- Laboratory of Structural Biology, Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyiv04123 Ukraine
| |
Collapse
|
19
|
Wloga D, Joachimiak E, Fabczak H. Tubulin Post-Translational Modifications and Microtubule Dynamics. Int J Mol Sci 2017; 18:ijms18102207. [PMID: 29065455 PMCID: PMC5666887 DOI: 10.3390/ijms18102207] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022] Open
Abstract
Microtubules are hollow tube-like polymeric structures composed of α,β-tubulin heterodimers. They play an important role in numerous cellular processes, including intracellular transport, cell motility and segregation of the chromosomes during cell division. Moreover, microtubule doublets or triplets form a scaffold of a cilium, centriole and basal body, respectively. To perform such diverse functions microtubules have to differ in their properties. Post-translational modifications are one of the factors that affect the properties of the tubulin polymer. Here we focus on the direct and indirect effects of post-translational modifications of tubulin on microtubule dynamics.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland.
| |
Collapse
|
20
|
Diggle CP, Martinez-Garay I, Molnar Z, Brinkworth MH, White E, Fowler E, Hughes R, Hayward BE, Carr IM, Watson CM, Crinnion L, Asipu A, Woodman B, Coletta PL, Markham AF, Dear TN, Bonthron DT, Peckham M, Morrison EE, Sheridan E. A tubulin alpha 8 mouse knockout model indicates a likely role in spermatogenesis but not in brain development. PLoS One 2017; 12:e0174264. [PMID: 28388629 PMCID: PMC5384676 DOI: 10.1371/journal.pone.0174264] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/05/2017] [Indexed: 11/19/2022] Open
Abstract
Tubulin alpha 8 (Tuba8) is the most divergent member of the highly conserved alpha tubulin family, and uniquely lacks two key post-translational modification sites. It is abundantly expressed in testis and muscle, with lower levels in the brain. We previously identified homozygous hypomorphic TUBA8 mutations in human subjects with a polymicrogyria (PMG) syndrome, suggesting its involvement in development of the cerebral cortex. We have now generated and characterized a Tuba8 knockout mouse model. Homozygous mice were confirmed to lack Tuba8 protein in the testis, but did not display PMG and appeared to be neurologically normal. In response to this finding, we re-analyzed the human PMG subjects using whole exome sequencing. This resulted in identification of an additional homozygous loss-of-function mutation in SNAP29, suggesting that SNAP29 deficiency, rather than TUBA8 deficiency, may underlie most or all of the neurodevelopmental anomalies in these subjects. Nonetheless, in the mouse brain, Tuba8 specifically localised to the cerebellar Purkinje cells, suggesting that the human mutations may affect or modify motor control. In the testis, Tuba8 localisation was cell-type specific. It was restricted to spermiogenesis with a strong acrosomal localization that was gradually replaced by cytoplasmic distribution and was absent from spermatozoa. Although the knockout mice were fertile, the localisation pattern indicated that Tuba8 may have a role in spermatid development during spermatogenesis, rather than as a component of the mature microtubule-rich flagellum itself.
Collapse
Affiliation(s)
- Christine P. Diggle
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
- * E-mail:
| | - Isabel Martinez-Garay
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Zoltan Molnar
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Ed White
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Ewan Fowler
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Ruth Hughes
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Bruce E. Hayward
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Ian M. Carr
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Christopher M. Watson
- Yorkshire Regional Genetics Service, St. James's University Hospital, Leeds, United Kingdom
| | - Laura Crinnion
- Yorkshire Regional Genetics Service, St. James's University Hospital, Leeds, United Kingdom
| | - Aruna Asipu
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Ben Woodman
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - P. Louise Coletta
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Alexander F. Markham
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - T. Neil Dear
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - David T. Bonthron
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Ewan E. Morrison
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| | - Eamonn Sheridan
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
|
22
|
Back to the tubule: microtubule dynamics in Parkinson's disease. Cell Mol Life Sci 2016; 74:409-434. [PMID: 27600680 PMCID: PMC5241350 DOI: 10.1007/s00018-016-2351-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
Cytoskeletal homeostasis is essential for the development, survival and maintenance of an efficient nervous system. Microtubules are highly dynamic polymers important for neuronal growth, morphology, migration and polarity. In cooperation with several classes of binding proteins, microtubules regulate long-distance intracellular cargo trafficking along axons and dendrites. The importance of a delicate interplay between cytoskeletal components is reflected in several human neurodegenerative disorders linked to abnormal microtubule dynamics, including Parkinson’s disease (PD). Mounting evidence now suggests PD pathogenesis might be underlined by early cytoskeletal dysfunction. Advances in genetics have identified PD-associated mutations and variants in genes encoding various proteins affecting microtubule function including the microtubule-associated protein tau. In this review, we highlight the role of microtubules, their major posttranslational modifications and microtubule associated proteins in neuronal function. We then present key evidence on the contribution of microtubule dysfunction to PD. Finally, we discuss how regulation of microtubule dynamics with microtubule-targeting agents and deacetylase inhibitors represents a promising strategy for innovative therapeutic development.
Collapse
|
23
|
Barisic M, Maiato H. The Tubulin Code: A Navigation System for Chromosomes during Mitosis. Trends Cell Biol 2016; 26:766-775. [PMID: 27344407 DOI: 10.1016/j.tcb.2016.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 10/25/2022]
Abstract
Before chromosomes segregate during mitosis in metazoans, they align at the cell equator by a process known as chromosome congression. This is in part mediated by the coordinated activities of kinetochore motors with opposite directional preferences that transport peripheral chromosomes along distinct spindle microtubule populations. Because spindle microtubules are all made from the same α/β-tubulin heterodimers, a critical longstanding question has been how chromosomes are guided to specific locations during mitosis. This implies the existence of spatial cues/signals on specific spindle microtubules that are read by kinetochore motors on chromosomes and ultimately indicate the way towards the equator. Here, we discuss the emerging concept that tubulin post-translational modifications (PTMs), as part of the so-called tubulin code, work as a navigation system for kinetochore-based chromosome motility during early mitosis.
Collapse
Affiliation(s)
- Marin Barisic
- Danish Cancer Society Research Center, Cell Division Laboratory, Strandboulevarden 49, 2100 Copenhagen, Denmark.
| | - Helder Maiato
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Unit, Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
24
|
Barnat M, Benassy MN, Vincensini L, Soares S, Fassier C, Propst F, Andrieux A, von Boxberg Y, Nothias F. The GSK3–MAP1B pathway controls neurite branching and microtubule dynamics. Mol Cell Neurosci 2016; 72:9-21. [DOI: 10.1016/j.mcn.2016.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 01/05/2023] Open
|
25
|
Abstract
Microtubules give rise to intracellular structures with diverse morphologies and dynamics that are crucial for cell division, motility, and differentiation. They are decorated with abundant and chemically diverse posttranslational modifications that modulate their stability and interactions with cellular regulators. These modifications are important for the biogenesis and maintenance of complex microtubule arrays such as those found in spindles, cilia, neuronal processes, and platelets. Here we discuss the nature and subcellular distribution of these posttranslational marks whose patterns have been proposed to constitute a tubulin code that is interpreted by cellular effectors. We review the enzymes responsible for writing the tubulin code, explore their functional consequences, and identify outstanding challenges in deciphering the tubulin code.
Collapse
Affiliation(s)
- Ian Yu
- From the Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, NINDS, and
| | - Christopher P Garnham
- From the Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, NINDS, and
| | - Antonina Roll-Mecak
- From the Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, NINDS, and NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
26
|
Song Y, Brady ST. Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol 2014; 25:125-36. [PMID: 25468068 DOI: 10.1016/j.tcb.2014.10.004] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/01/2023]
Abstract
Tubulin and microtubules are subject to a remarkable number of post-translational modifications. Understanding the roles these modifications play in determining the functions and properties of microtubules has presented a major challenge that is only now being met. Many of these modifications are found concurrently, leading to considerable diversity in cellular microtubules, which varies with development, differentiation, cell compartment, and cell cycle. We now know that post-translational modifications of tubulin affect, not only the dynamics of the microtubules, but also their organization and interaction with other cellular components. Many early suggestions of how post-translational modifications affect microtubules have been replaced with new ideas and even new modifications as our understanding of cellular microtubule diversity comes into focus.
Collapse
Affiliation(s)
- Yuyu Song
- Yale School of Medicine, Department of Genetics and Howard Hughes Medical Institute, Boyer Center, 295 Congress Avenue, New Haven, CT 065105, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, 808 S. Wood St., Rm 578 (M/C 512), University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
27
|
Morris EJ, Nader GPF, Ramalingam N, Bartolini F, Gundersen GG. Kif4 interacts with EB1 and stabilizes microtubules downstream of Rho-mDia in migrating fibroblasts. PLoS One 2014; 9:e91568. [PMID: 24658398 PMCID: PMC3962350 DOI: 10.1371/journal.pone.0091568] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/12/2014] [Indexed: 01/03/2023] Open
Abstract
Selectively stabilized microtubules (MTs) form in the lamella of fibroblasts and contribute to cell migration. A Rho-mDia-EB1 pathway regulates the formation of stable MTs, yet how selective stabilization of MTs is achieved is unknown. Kinesin activity has been implicated in selective MT stabilization and a number of kinesins regulate MT dynamics both in vitro and in cells. Here, we show that the mammalian homolog of Xenopus XKLP1, Kif4, is both necessary and sufficient for the induction of selective MT stabilization in fibroblasts. Kif4 localized to the ends of stable MTs and participated in the Rho-mDia-EB1 MT stabilization pathway since Kif4 depletion blocked mDia- and EB1-induced selective MT stabilization and EB1 was necessary for Kif4 induction of stable MTs. Kif4 and EB1 interacted in cell extracts, and binding studies revealed that the tail domain of Kif4 interacted directly with the N-terminal domain of EB1. Consistent with its role in regulating formation of stable MTs in interphase cells, Kif4 knockdown inhibited migration of cells into wounded monolayers. These data identify Kif4 as a novel factor in the Rho-mDia-EB1 MT stabilization pathway and cell migration.
Collapse
Affiliation(s)
- Edward J. Morris
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Guilherme P. F. Nader
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Nagendran Ramalingam
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Ledda FD, Ramoino P, Ravera S, Perino E, Bianchini P, Diaspro A, Gallus L, Pronzato R, Manconi R. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:98-105. [PMID: 23765032 DOI: 10.1016/j.aquatox.2013.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 05/09/2023]
Abstract
As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl2, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd(2+)-treated cells indicates that divalent Cd ions stabilize microtubules. The possibility that Cd(2+) may increase the stability of cytoplasmic microtubules was tested by exposing Cd(2+)-treated cells to a cold temperature (0°C). As shown, the microtubule bundles induced by Cd(2+), which were labeled by the monoclonal antibodies against acetylated and detyrosinated α-tubulin, were resistant to cold.
Collapse
Affiliation(s)
- F D Ledda
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Song Y, Kirkpatrick LL, Schilling AB, Helseth DL, Chabot N, Keillor JW, Johnson GVW, Brady ST. Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 2013; 78:109-23. [PMID: 23583110 DOI: 10.1016/j.neuron.2013.01.036] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2013] [Indexed: 11/30/2022]
Abstract
Neuronal microtubules support intracellular transport, facilitate axon growth, and form a basis for neuronal morphology. While microtubules in nonneuronal cells are depolymerized by cold, Ca(2+), or antimitotic drugs, neuronal microtubules are unusually stable. Such stability is important for normal axon growth and maintenance, while hyperstability may compromise neuronal function in aging and degeneration. Though mechanisms for stability are unclear, studies suggest that stable microtubules contain biochemically distinct tubulins that are more basic than conventional tubulins. Transglutaminase-catalyzed posttranslational incorporation of polyamines is one of the few modifications of intracellular proteins that add positive charges. Here we show that neuronal tubulin can be polyaminated by transglutaminase. Endogenous brain transglutaminase-catalyzed polyaminated tubulins have the biochemical characteristics of neuronal stable microtubules. Inhibiting polyamine synthesis or transglutaminase activity significantly decreases microtubule stability in vitro and in vivo. Together, these findings suggest that transglutaminase-catalyzed polyamination of tubulins stabilizes microtubules essential for unique neuronal structures and functions.
Collapse
Affiliation(s)
- Yuyu Song
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Akisaka T, Yoshida H, Takigawa T. Differential distribution of posttranslationally modified microtubules in osteoclasts. J Histochem Cytochem 2011; 59:630-8. [PMID: 21421796 DOI: 10.1369/0022155411405334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The differential distribution of microtubules in osteoclasts in culture was examined by using antibodies against acetylated, tyrosinated, or detyrosinated tubulins. Tyrosinated tubulin was found throughout the cytoplasmic microtubules in all cells examined. An expanding protrusion that contained tyrosinated tubulin but none of the detyrosinated or acetylated form was seen in the immature osteoclasts. Detyrosinated or acetylated tubulin was detectable in the peripheral cytoplasm of the mature osteoclasts displaying the loss of the expanding protrusion. Although most of the microtubules were derived from the centrosome, noncentrosomal microtubules were distributed in the expanding protrusion, which was predominantly positive for tyrosinated tubulin. By tracing single microtubules, the authors found that their growing ends were always rich in tyrosinated tubulin subunits. End binding protein 1 bound preferentially to the microtubule ends. Both acetylated and tyrosinated microtubules were shown to be closely associated with podosomes. Microtubules appeared to grow over or into the podosomes; in addition, the growing ends of single microtubules could be observed to target the podosomes. Moreover, a microtubule-associated histone deacetylase 6 was localized in the podosomes of the osteoclast. On the basis of these results, the authors conclude that posttranslational modifications of microtubules may correlate with characteristic changes in podosome dynamics in osteoclasts.
Collapse
Affiliation(s)
- Toshitaka Akisaka
- Division of Oral Anatomy, Asahi University School of Dentistry, Mizuho, Gifu, Japan. mail:
| | | | | |
Collapse
|
31
|
Banerjee A, Panosian TD, Mukherjee K, Ravindra R, Gal S, Sackett DL, Bane S. Site-specific orthogonal labeling of the carboxy terminus of alpha-tubulin. ACS Chem Biol 2010; 5:777-85. [PMID: 20545322 PMCID: PMC2924941 DOI: 10.1021/cb100060v] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A fluorescent probe has been attached to the carboxy terminus of the alpha-subunit of alpha,beta-tubulin by an enzymatic reaction followed by a chemical reaction. The unnatural amino acid 3-formyltyrosine is attached to the carboxy terminus of alpha-tubulin through the use of the enzyme tubulin tyrosine ligase. The aromatic aldehyde of the unnatural amino acid serves as an orthogonal electrophile that specifically reacts with a fluorophore containing an aromatic hydrazine functional group, which in this case is 7-hydrazino-4-methyl coumarin. Conditions for covalent bond formation between the unnatural amino acid and the fluorophore are mild, allowing fluorescently labeled tubulin to retain its ability to assemble into microtubules. A key feature of the labeling reaction is that it produces a red shift in the fluorophore's absorption and emission maxima, accompanied by an increase in its quantum yield; thus, fluorescently labeled protein can be observed in the presence of unreacted fluorophore. Both the enzymatic and coupling reaction can occur in living cells. The approach presented here should be applicable to a wide variety of in vitro systems.
Collapse
Affiliation(s)
- Abhijit Banerjee
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902
| | - Timothy D. Panosian
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902
| | - Kamalika Mukherjee
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902
| | - Rudravajhala Ravindra
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902
| | - Susannah Gal
- Department of Biological Sciences, Binghamton University, Bethesda MD 20892
| | - Dan L. Sackett
- Laboratory of Integrative and Medical Biophysics, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892
| | - Susan Bane
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902
| |
Collapse
|
32
|
Ikegami K, Setou M. Unique post-translational modifications in specialized microtubule architecture. Cell Struct Funct 2010; 35:15-22. [PMID: 20190462 DOI: 10.1247/csf.09027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubules (MTs) play specialized roles in a wide variety of cellular events, e.g. molecular transport, cell motility, and cell division. Specialized MT architectures, such as bundles, axonemes, and centrioles, underlie the function. The specialized function and highly organized structure depend on interactions with MT-binding proteins. MT-associated proteins (e.g. MAP1, MAP2, and tau), molecular motors (kinesin and dynein), plus-end tracking proteins (e.g. CLIP-170), and MT-severing proteins (e.g. katanin) interact with MTs. How can the MT-binding proteins know temporospatial information to associate with MTs and to properly play their roles? Post-translational modifications (PTMs) including detyrosination, polyglutamylation, and polyglycylation can provide molecular landmarks for the proteins. Recent efforts to identify modification-regulating enzymes (TTL, carboxypeptidase, polyglutamylase, polyglycylase) and to generate genetically manipulated animals enable us to understand the roles of the modifications. In this review, we present recent advances in understanding regulation of MT function, structure, and stability by PTMs.
Collapse
Affiliation(s)
- Koji Ikegami
- Department of Molecular Anatomy, Molecular Imaging Advanced Research Center, Hamamatsu University School of Medicine, Japan
| | | |
Collapse
|
33
|
Abstract
Tubulin and other flagellar and ciliary proteins are the substrates for a host of posttranslational modifications (PTMs), many of which have been highly conserved over evolutionary time. In addition to the binding of MAPs (microtubule-associated proteins) that provide a specific functionality, or the use of different tubulin isotypes to convey a specific function, most cells rely on an array of PTMs. These include phosphorylation, acetylation, glycylation, glutamylation, and methylation. The first and the last of this list are not unique to the tubulin in cilia and flagella, while the others are. This chapter will review briefly these varying modifications and will conclude with detailed methods for their detection and localization at the limit of resolution provided by electron microscopy.
Collapse
Affiliation(s)
- Roger D Sloboda
- Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
34
|
Arnold DB. Actin and microtubule-based cytoskeletal cues direct polarized targeting of proteins in neurons. Sci Signal 2009; 2:pe49. [PMID: 19671926 DOI: 10.1126/scisignal.283pe49] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Neuronal proteins are transported to either the axon or dendrites through the action of kinesin motors; however, understanding of how cytoskeletal elements steer these cargo-motor complexes to one compartment or the other has remained elusive. Three recent developments-the discovery of an actin-based filter within the axon initial segment, the identification of the pivotal role played by myosin motors in dendritic targeting, and the determination of the properties of a kinesin motor that cause it to prefer axonal to dendritic microtubules-have now provided a structural framework for understanding polarized targeting in neurons.
Collapse
Affiliation(s)
- Don B Arnold
- Department of Biology and Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
35
|
Marcos S, Moreau J, Backer S, Job D, Andrieux A, Bloch-Gallego E. Tubulin tyrosination is required for the proper organization and pathfinding of the growth cone. PLoS One 2009; 4:e5405. [PMID: 19404406 PMCID: PMC2672595 DOI: 10.1371/journal.pone.0005405] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 03/18/2009] [Indexed: 12/03/2022] Open
Abstract
Background During development, neuronal growth cones integrate diffusible and contact guidance cues that are conveyed to both actin and microtubule (MT) cytoskeletons and ensure axon outgrowth and pathfinding. Although several post-translational modifications of tubulin have been identified and despite their strong conservation among species, their physiological roles during development, especially in the nervous sytem, are still poorly understood. Methodology/Findings Here, we have dissected the role of a post-translational modification of the last amino acid of the α-tubulin on axonal growth by analyzing the phenotype of precerebellar neurons in Tubulin tyrosin ligase knock-out mice (TTL−/−) through in vivo, ex vivo and in vitro analyses. TTL−/− neurons are devoid of tyrosinated tubulin. Their pathway shows defects in vivo, ex vivo, in hindbrains open-book preparations or in vitro, in a collagen matrix. Their axons still orient toward tropic cues, but they emit supernumerary branches and their growth cones are enlarged and exhibit an emission of mis-oriented filopodia. Further analysis of the TTL−/− growth cone intracellular organization also reveals that the respective localization of actin and MT filaments is disturbed, with a decrease in the distal accumulation of Myosin IIB, as well as a concomitant Rac1 over-activation in the hindbrain. Pharmacological inhibition of Rac1 over-activation in TTL−/− neurons can rescue Myosin IIB localization. Conclusions/Significance In the growth cone, we propose that tubulin tyrosination takes part in the relative arrangement of actin and MT cytoskeletons, in the regulation of small GTPases activity, and consequently, in the proper morphogenesis, organization and pathfinding of the growth cone during development.
Collapse
Affiliation(s)
- Séverine Marcos
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Département Génétique et Développement, Paris, France
| | - Julie Moreau
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Département Génétique et Développement, Paris, France
| | - Stéphanie Backer
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Département Génétique et Développement, Paris, France
| | - Didier Job
- Grenoble Institut des Neurosciences, Centre de Recherche Inserm U.836 – UJF-CEA-CHU, Bâtiment Edmond J. Safra, Université Joseph Fourier, Site Santé à La Tronche, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut des Neurosciences, Centre de Recherche Inserm U.836 – UJF-CEA-CHU, Bâtiment Edmond J. Safra, Université Joseph Fourier, Site Santé à La Tronche, Grenoble, France
| | - Evelyne Bloch-Gallego
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Département Génétique et Développement, Paris, France
- * E-mail:
| |
Collapse
|
36
|
Yu JZ, Dave RH, Allen JA, Sarma T, Rasenick MM. Cytosolic G{alpha}s acts as an intracellular messenger to increase microtubule dynamics and promote neurite outgrowth. J Biol Chem 2009; 284:10462-72. [PMID: 19237344 DOI: 10.1074/jbc.m809166200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It is now evident that Galpha(s) traffics into cytosol following G protein-coupled receptor activation, and alpha subunits of some heterotrimeric G-proteins, including Galpha(s) bind to tubulin in vitro. Nevertheless, many features of G-protein-microtubule interaction and possible intracellular effects of G protein alpha subunits remain unclear. In this study, several biochemical approaches demonstrated that activated Galpha(s) directly bound to tubulin and cellular microtubules, and fluorescence microscopy showed that cholera toxin-activated Galpha(s) colocalized with microtubules. The activated, GTP-bound, Galpha(s) mimicked tubulin in serving as a GTPase activator for beta-tubulin. As a result, activated Galpha(s) made microtubules more dynamic, both in vitro and in cells, decreasing the pool of insoluble microtubules without changing total cellular tubulin content. The amount of acetylated tubulin (an indicator of microtubule stability) was reduced in the presence of Galpha(s) activated by mutation. Previous studies showed that cholera toxin and cAMP analogs may stimulate neurite outgrowth in PC12 cells. However, in this study, overexpression of a constitutively activated Galpha(s) or activation of Galpha(s) with cholera toxin in protein kinase A-deficient PC12 cells promoted neurite outgrowth in a cAMP-independent manner. Thus, it is suggested that activated Galpha(s) acts as an intracellular messenger to regulate directly microtubule dynamics and promote neurite outgrowth. These data serve to link G-protein signaling with modulation of the cytoskeleton and cell morphology.
Collapse
Affiliation(s)
- Jiang-Zhou Yu
- Departments of Physiology and Biophysics and Psychiatry, University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | | | |
Collapse
|
37
|
Abuhatzira L, Shemer R, Razin A. MeCP2 involvement in the regulation of neuronal alpha-tubulin production. Hum Mol Genet 2009; 18:1415-23. [PMID: 19174478 DOI: 10.1093/hmg/ddp048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by a dominant mutation in the X-linked methyl CpG binding protein 2 (MeCP2) gene. Neuroanatomically, RTT is characterized by a reduction in dendritic arborization and perikaryal size in the brain. MECP2 binds methylated promoters and facilitates assembly of a multiprotein repressor complex that includes Sin3A and the histone deacetylases HDAC1/HDAC2. MeCP2 has recently been found to be downregulated in autistic spectrum disorders such as Angelman syndrome (AS) and RTT, which share some phenotypic manifestations. We have conducted expression analysis of cytoskeleton-related genes in brain tissue of RTT and AS patients. Striking examples of genes with reduced expression were TUBA1B and TUBA3 that encode the ubiquitous alpha-tubulin and the neuronal specific alpha-tubulin, respectively. In accordance with the downregulation of expression of these genes, we have observed a reduction in the level of the corresponding protein product-tyrosinated alpha-tubulin. Low levels of alpha-tubulin and deteriorated cell morphology were also observed in MeCP2(-/y) MEF cells. The effects of MeCP2 deficiency in these cells were completely reversed by introducing and expressing the human MeCP2 gene. These results imply that MeCP2 is involved in the regulation of neuronal alpha-tubulin and add molecular evidence that reversal of the effects of MeCP2 deficiency is achievable. This raises hopes for a cure of Rett syndrome and related MeCP2 deficiency disorders of the autistic spectrum.
Collapse
Affiliation(s)
- Liron Abuhatzira
- Department of Cellular Biochemistry and Human Genetics, Hebrew University Medical School, Ein Kerem, Jerusalem 91120, Israel
| | | | | |
Collapse
|
38
|
Zhuang SH, Hung YE, Hung L, Robey RW, Sackett DL, Linehan WM, Bates SE, Fojo T, Poruchynsky MS. Evidence for Microtubule Target Engagement in Tumors of Patients Receiving Ixabepilone. Clin Cancer Res 2007; 13:7480-6. [DOI: 10.1158/1078-0432.ccr-06-2883] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Bianchi M, Fone KFC, Azmi N, Heidbreder CA, Hagan JJ, Marsden CA. Isolation rearing induces recognition memory deficits accompanied by cytoskeletal alterations in rat hippocampus. Eur J Neurosci 2006; 24:2894-902. [PMID: 17116162 DOI: 10.1111/j.1460-9568.2006.05170.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Social isolation from weaning affects hippocampal structure and function in the rat. The intrinsic dynamic instability of the cytoskeletal microtubular system is essential for neuronal development and organization. Accordingly, the present paper investigated the effects of social isolation on hippocampal levels of alpha-tubulin isoforms associated with microtubule dynamics, the dendritic marker MAP-2 and alterations in locomotor activity and recognition memory. Male Lister Hooded rats (postnatal day 25-28) were housed either in groups or singly (isolated animals) for 30 days. Locomotor activity in a novel arena and novel object recognition were monitored in activity boxes. The hippocampus was dissected out 18 h after the novel object recognition task. Levels of alpha-tubulin isoforms and MAP-2 were analysed using Western blots. The experiments were conducted in duplicate, using two batches of rats obtained from different suppliers. Isolated animals were hyperactive and showed recognition memory deficits in the novel object recognition task. These behavioural alterations were accompanied by specific alterations in hippocampal alpha-tubulin isoforms and decreased MAP-2 expression. The results confirm that rearing rats in isolation produces hyperactivity and cognitive deficits. The behavioural alterations were accompanied by hippocampal cytoskeletal changes consistent with microtubule stabilization, and by decreased MAP-2 expression. These findings are indicative of an abnormal development of synaptic connections and/or reductions in neuronal cell number. The developmental structural abnormalities in the hippocampus may contribute to the cognitive impairments which result from isolation rearing in rats.
Collapse
Affiliation(s)
- M Bianchi
- Institute of Neuroscience, School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Liang XJ, Mukherjee S, Shen DW, Maxfield FR, Gottesman MM. Endocytic recycling compartments altered in cisplatin-resistant cancer cells. Cancer Res 2006; 66:2346-53. [PMID: 16489040 PMCID: PMC1382193 DOI: 10.1158/0008-5472.can-05-3436] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The clinical utility of cisplatin to treat human malignancies is often limited by the development of drug resistance. We have previously shown that cisplatin-resistant human KB adenocarcinoma cells that are cross-resistant to methotrexate and heavy metals have altered endocytic recycling. In this work, we tracked lipids in the endocytic recycling compartment (ERC) and found that the distribution of the ERC is altered in KB-CP.5 cells compared with parental KB-3-1 cells. A tightly clustered ERC is located near the nucleus in parental KB-3-1 cells but it appears loosely arranged and widely dispersed throughout the cytoplasm in KB-CP.5 cells. The altered distribution of the ERC in KB-CP.5 cells is related to the amount and distribution of stable detyrosinated microtubules (Glu-alpha-tubulin), as previously shown in Chinese hamster ovary B104-5 cells that carry a temperature-sensitive Glu-alpha-tubulin allele. In addition, B104-5 cells with a dispersed ERC under nonpermissive conditions were more resistant to cisplatin compared with B104-5 cells with a clustered ERC under permissive conditions. We conclude that resistance to cisplatin might be due, in part, to reduced uptake of cisplatin resulting from an endocytic defect reflecting defective formation of the ERC, possibly related to a shift in the relative amounts and distributions of stable microtubules.
Collapse
Affiliation(s)
- Xing-Jie Liang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sushmita Mukherjee
- Department of Biochemistry, Weill Medical College of Cornell University, NewYork, NY 10021
| | - Ding-Wu Shen
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Medical College of Cornell University, NewYork, NY 10021
| | - Michael M. Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
41
|
Lakämper S, Meyhöfer E. Back on track – On the role of the microtubule for kinesin motility and cellular function. J Muscle Res Cell Motil 2006; 27:161-71. [PMID: 16453157 DOI: 10.1007/s10974-005-9052-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
The evolution of cytoskeletal filaments (actin- and intermediate-filaments, and the microtubules) and their associated motor- and non-motor-proteins has enabled the eukaryotic cell to achieve complex organizational and structural tasks. This ability to control cellular transport processes and structures allowed for the development of such complex cellular organelles like cilia or flagella in single-cell organisms and made possible the development and differentiation of multi-cellular organisms with highly specialized, polarized cells. Also, the faithful segregation of large amounts of genetic information during cell division relies crucially on the reorganization and control of the cytoskeleton, making the cytoskeleton a key prerequisite for the development of highly complex genomes. Therefore, it is not surprising that the eukaryotic cell continuously invests considerable resources in the establishment, maintenance, modification and rearrangement of the cytoskeletal filaments and the regulation of its interaction with accessory proteins. Here we review the literature on the interaction between microtubules and motor-proteins of the kinesin-family. Our particular interest is the role of the microtubule in the regulation of kinesin motility and cellular function. After an introduction of the kinesin-microtubule interaction we focus on two interrelated aspects: (1) the active allosteric participation of the microtubule during the interaction with kinesins in general and (2) the possible regulatory role of post-translational modifications of the microtubule in the kinesin-microtubule interaction.
Collapse
Affiliation(s)
- Stefan Lakämper
- Physics of Complex Systems, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | |
Collapse
|
42
|
Erck C, Peris L, Andrieux A, Meissirel C, Gruber AD, Vernet M, Schweitzer A, Saoudi Y, Pointu H, Bosc C, Salin PA, Job D, Wehland J. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc Natl Acad Sci U S A 2005; 102:7853-8. [PMID: 15899979 PMCID: PMC1129054 DOI: 10.1073/pnas.0409626102] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tubulin is subject to a special cycle of detyrosination/tyrosination in which the C-terminal tyrosine of alpha-tubulin is cyclically removed by a carboxypeptidase and readded by a tubulin-tyrosine-ligase (TTL). This tyrosination cycle is conserved in evolution, yet its physiological importance is unknown. Here, we find that TTL suppression in mice causes perinatal death. A minor pool of tyrosinated (Tyr-)tubulin persists in TTL null tissues, being present mainly in dividing TTL null cells where it originates from tubulin synthesis, but it is lacking in postmitotic TTL null cells such as neurons, which is apparently deleterious because early death in TTL null mice is, at least in part, accounted for by a disorganization of neuronal networks, including a disruption of the cortico-thalamic loop. Correlatively, cultured TTL null neurons display morphogenetic anomalies including an accelerated and erratic time course of neurite outgrowth and a premature axonal differentiation. These anomalies may involve a mislocalization of CLIP170, which we find lacking in neurite extensions and growth cones of TTL null neurons. Our results demonstrate a vital role of TTL for neuronal organization and suggest a requirement of Tyr-tubulin for proper control of neurite extensions.
Collapse
Affiliation(s)
- Christian Erck
- Department of Cell Biology, German Research Center for Biotechnology, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bouquet C, Soares S, von Boxberg Y, Ravaille-Veron M, Propst F, Nothias F. Microtubule-associated protein 1B controls directionality of growth cone migration and axonal branching in regeneration of adult dorsal root ganglia neurons. J Neurosci 2005; 24:7204-13. [PMID: 15306655 PMCID: PMC6729172 DOI: 10.1523/jneurosci.2254-04.2004] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During development, microtubule-associated protein 1B (MAP1B) is one of the earliest MAPs, preferentially localized in axons and growth cones, and plays a role in axonal outgrowth. Although generally downregulated in the adult, we have shown that MAP1B is constitutively highly expressed in adult dorsal root ganglia (DRGs) and associated with central sprouting and peripheral regeneration of these neurons. Mutant mice with a complete MAP1B null allele that survive until adulthood exhibit a reduced myelin sheath diameter and conductance velocity of peripheral axons and lack of the corpus callosum. Here, to determine the function of MAP1B in axonal regeneration, we used cultures of adult DRG explants and/or dissociated neurons derived from this map1b-/- mouse line. Whereas the overall length of regenerating neurites lacking MAP1B was similar to wild-type controls, our analysis revealed two main defects. First, map1b-/- neurites exhibited significantly (twofold) higher terminal and collateral branching. Second, the turning capacity of growth cones (i.e., "choice" of a proper orientation) was impaired. In addition, lack of MAP1B may affect the post-translational modification of tubulin polymers: quantitative analysis showed a reduced amount of acetylated microtubules within growth cones, whereas the distribution of tyrosinated or detyrosinated microtubules was normal. Both growth cone turning and axonal branch formation are known to involve local regulation of the microtubule network. Our results demonstrate that MAP1B plays a role in these processes during plastic changes in the adult. In particular, the data suggest MAP1B implication in the locally coordinated assembly of cytoskeletal components required for branching and straight directional axon growth.
Collapse
Affiliation(s)
- Céline Bouquet
- Unité Mixte de Recherche 7101, Centre National de la Recherche Scientifique-Université Pierre et Marie Curie, Laboratory Neurobiologie des Signaux Intercellulaires, Institut Fédératif de Recherche-Biologie Intégrative, Paris, France
| | | | | | | | | | | |
Collapse
|
44
|
Qiu D, Cheng SM, Wozniak L, McSweeney M, Perrone E, Levin M. Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left-right asymmetry. Dev Dyn 2005; 234:176-89. [PMID: 16059906 DOI: 10.1002/dvdy.20509] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Left-right asymmetry is a crucial feature of the vertebrate body plan. While much molecular detail of this patterning pathway has been uncovered, the embryonic mechanisms of the initiation of asymmetry, and their evolutionary conservation among species, are still not understood. A popular recent model based on data from mouse embryos suggests extracellular movement of determinants by ciliary motion at the gastrulating node as the initial step. An alternative model, driven by findings in the frog and chick embryo, focuses instead on cytoplasmic roles of motor proteins. To begin to test the latter hypothesis, we analyzed the very early embryonic localization of ciliary targets implicated in mouse LR asymmetry. Immunohistochemistry was performed on frog and chick embryos using antibodies that have (KIF3B, Polaris, Polycystin-2, acetylated alpha-tubulin) or have not (LRD, INV, detyrosinated alpha-tubulin) been shown to detect in frog embryos only the target that they detect in mammalian tissue. Immunohistochemistry revealed localization signals for all targets in the cytoplasm of cleavage-stage Xenopus embryos, and in the base of the primitive streak in chick embryos at streak initiation. Importantly, several left-right asymmetries were detected in both species, and the localization signals were dependent on microtubule and actin cytoskeletal organization. Moreover, loss-of-function experiments implicated very early intracellular microtubule-dependent motor protein function as an obligate aspect of oriented LR asymmetry in Xenopus embryos. These data are consistent with cytoplasmic roles for motor proteins in patterning the left-right axis that do not involve ciliary motion.
Collapse
Affiliation(s)
- Dayong Qiu
- Cytokine Biology Department, The Forsyth Institute, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
45
|
Davis FJ, Pillai JB, Gupta M, Gupta MP. Concurrent opposite effects of trichostatin A, an inhibitor of histone deacetylases, on expression of alpha-MHC and cardiac tubulins: implication for gain in cardiac muscle contractility. Am J Physiol Heart Circ Physiol 2004; 288:H1477-90. [PMID: 15388503 DOI: 10.1152/ajpheart.00789.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes that catalyze the removal of acetyl groups from core histones, resulting in change of chromatin structure and gene transcription activity. In the heart, HDACs are targets of hypertrophic signaling, and their nonspecific inhibition by trichostatin A (TSA) attenuates hypertrophy of cultured cardiac myocytes. In this study, we examined the effect of TSA on two major determinants of cardiac contractility: alpha-myosin heavy chain (MHC) expression and microtubular composition and organization. TSA upregulated the expression of alpha-MHC in cultured cardiac myocytes, as well as in an in vivo model of hypothyroid rats. Studies designed to delineate mechanisms of alpha-MHC induction by TSA revealed an obligatory role of early growth response factor-1 on activation of the alpha-MHC promoter. Concurrently, TSA downregulated the expression of alpha- and beta-tubulins and prevented the induction of tubulins by a hypertrophy agonist, ANG II. The ANG II-mediated increased proportion of alpha- and beta-tubulins associated with polymerized microtubules was also markedly reduced after treatment of cells by TSA. Results obtained from immunofluorescent microscopy indicated that TSA had no noticeable effect on the organization of cardiac microtubules in control cells, whereas it prevented the ANG II-induced dense parallel linear arrays of microtubules to a profile similar to that of controls. Together, these results demonstrate that inhibition of HDACs by TSA regulates the cardiac alpha-MHC and tubulins in a manner predictive of improved cardiac contractile function. These studies improve our understanding of the role of HDACs on cardiac hypertrophy with implications in development of new therapeutic agents for treatment of cardiac abnormalities.
Collapse
|
46
|
McElhinny AS, Perry CN, Witt CC, Labeit S, Gregorio CC. Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. J Cell Sci 2004; 117:3175-88. [PMID: 15199100 DOI: 10.1242/jcs.01158] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The efficient functioning of striated muscle is dependent upon the structure of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, little is known about how these networks function together during muscle differentiation and maintenance. In vitro studies suggest that members of the muscle-specific RING finger protein family (MURF-1, 2, and 3) act as cytoskeletal adaptors and signaling molecules by associating with myofibril components (including the giant protein, titin), microtubules and/or nuclear factors. We investigated the role of MURF-2, the least-characterized family member, in primary cultures of embryonic chick skeletal and cardiac myocytes. MURF-2 is detected as two species (approximately 55 kDa and approximately 60 kDa) in embryonic muscle, which are down-regulated in adult muscle. Although predominantly located diffusely in the cytoplasm, MURF-2 also colocalizes with a sub-group of microtubules and the M-line region of titin. Reducing MURF-2 levels in cardiac myocytes using antisense oligonucleotides perturbed the structure of stable microtubule populations, the intermediate filament proteins desmin and vimentin, and the sarcomeric M-line region. In contrast, other sarcomeric regions and dynamic microtubules remained unaffected. MURF-2 knock-down studies in skeletal myoblasts also delayed myoblast fusion and myofibrillogenesis. Furthermore, contractile activity was also affected. We speculate that some of the roles of MURF-2 are modulated via titin-based mechanisms.
Collapse
Affiliation(s)
- Abigail S McElhinny
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Kerry Bloom
- Department of Biology, University of North Carolina, 623 Fordham Hall, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
48
|
Westermann S, Weber K. Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 2004; 4:938-47. [PMID: 14685172 DOI: 10.1038/nrm1260] [Citation(s) in RCA: 525] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefan Westermann
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
49
|
Affiliation(s)
- Alexander Palazzo
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
50
|
Bisig CG, Purro SA, Contín MA, Barra HS, Arce CA. Incorporation of 3-nitrotyrosine into the C-terminus of alpha-tubulin is reversible and not detrimental to dividing cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5037-45. [PMID: 12383263 DOI: 10.1046/j.1432-1033.2002.03220.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The C-terminus of the alpha-chain of tubulin is subject to reversible incorporation of tyrosine by tubulin tyrosine ligase and removal by tubulin carboxypeptidase. Thus, microtubules rich in either tyrosinated or detyrosinated tubulin can coexist in the cell. Substitution of the terminal tyrosine by 3-nitrotyrosine has been claimed to cause microtubule dysfunction and consequent injury of epithelial lung carcinoma A549 cells. Nitrotyrosine is formed in cells by nitration of tyrosine by nitric oxide-derived species. We studied properties of tubulin modified by in vitro nitrotyrosination at the C-terminus of the alpha-subunit, and the consequences for cell functioning. Nitrotyrosinated tubulin was a good substrate of tubulin carboxypeptidase, and showed a similar capability to assemble into microtubules in vitro to that of tyrosinated tubulin. Tubulin of C6 cells cultured in F12K medium in the presence of 500 micro m nitrotyrosine became fully nitrotyrosinated. This nitrotyrosination was shown to be reversible. No changes in morphology, proliferation, or viability were observed during cycles of nitrotyrosination, denitrotyrosination, and re-nitrotyrosination. Similar results were obtained with CHO, COS-7, HeLa, NIH-3T3, NIH-3T3(TTL-), and A549 cells. C6 and A549 cells were subjected to several passages during 45 days or more in the continuous presence of 500 micro m nitrotyrosine without noticeable alteration of morphology, viability, or proliferation. The microtubular networks visualized by immunofluorescence with antibodies to nitrotyrosinated and total tubulin were identical. Furthermore, nitrotyrosination of tubulin in COS cells did not alter the association of tubulin carboxypeptidase with microtubules. Our results demonstrate that substitution of C-terminal tyrosine by 3-nitrotyrosine has no detrimental effect on dividing cells.
Collapse
Affiliation(s)
- C Gastón Bisig
- Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Universidad Nacional de Córdoba, Argentina
| | | | | | | | | |
Collapse
|