1
|
Abou-Shaara HF. The response of heat shock proteins in honey bees to abiotic and biotic stressors. J Therm Biol 2024; 119:103784. [PMID: 38232472 DOI: 10.1016/j.jtherbio.2024.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Honey bees, Apis mellifera, are the most important managed pollinators worldwide. They are highly impacted by various abiotic and biotic stressors, especially temperature extremes, which can lead to cellular damage and death. The induction of heat shock proteins (HSPs) has been recorded in honey bees as a response to various types of stressors. HSPs are classified into different gene families according to their molecular weights. HSPs play an important role in maintaining cellular protein homeostasis due to their contribution as molecular chaperones or co-chaperones. HSPs in honey bees have complex functions with induction even under normal colony conditions. Previous studies have suggested various functions of HSPs to protect cells from damage under exposure to environmental stressors, pollutants, and pathogens. Surprisingly, HSPs have also been found to play roles in larval development and age-related tasks. The expression of HSPs varies depending on tissue type, developmental stage, age, and stress period. This article reviews studies on HSPs (sHSPs, HSP40, HSP60, HSP70, and HSP90) in honey bees and highlights gaps in the available knowledge. This review is crucial for honey bee research, particularly in the face of climate change challenges.
Collapse
Affiliation(s)
- Hossam F Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
| |
Collapse
|
2
|
Roxburgh BH, Cotter JD, Campbell HA, Reymann U, Wilson LC, Gwynne-Jones D, van Rij AM, Thomas KN. Physiological relationship between cardiorespiratory fitness and fitness for surgery: a narrative review. Br J Anaesth 2023; 130:122-132. [PMID: 36529576 DOI: 10.1016/j.bja.2022.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
Epidemiological evidence has highlighted a strong relationship between cardiorespiratory fitness and surgical outcomes; specifically, fitter patients possess heightened resilience to withstand the surgical stress response. This narrative review draws on exercise and surgical physiology research to discuss and hypothesise the potential mechanisms by which higher fitness affords perioperative benefit. A higher fitness, as indicated by higher peak rate of oxygen consumption and ability to sustain metabolic homeostasis (i.e. higher anaerobic threshold) is beneficial postoperatively when metabolic demands are increased. However, the associated adaptations with higher fitness, and the related participation in regular exercise or physical activity, might also underpin the observed perioperative benefit through a process of hormesis, a protective adaptive response to the moderate and intermittent stress of exercise. Potential mediators discussed include greater antioxidant capacity, metabolic flexibility, glycaemic control, lean body mass, and improved mood.
Collapse
Affiliation(s)
- Brendon H Roxburgh
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; School of Physical Education, Sport and Exercise Sciences, Dunedin, University of Otago, New Zealand.
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, Dunedin, University of Otago, New Zealand
| | - Holly A Campbell
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ulla Reymann
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Luke C Wilson
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - David Gwynne-Jones
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Orthopaedic Surgery, Southern District Health Board, Dunedin, New Zealand
| | - Andre M van Rij
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kate N Thomas
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Hirsch GE, Heck TG. Inflammation, oxidative stress and altered heat shock response in type 2 diabetes: the basis for new pharmacological and non-pharmacological interventions. Arch Physiol Biochem 2022; 128:411-425. [PMID: 31746233 DOI: 10.1080/13813455.2019.1687522] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (DM2) is a chronic disease characterised by variable degrees of insulin resistance and impaired insulin secretion. Besides, several pieces of evidence have shown that chronic inflammation, oxidative stress, and 70 kDa heat shock proteins (HSP70) are strongly involved in DM2 and its complications, and various pharmacological and non-pharmacological treatment alternatives act in these processes/molecules to modulate them and ameliorate the disease. Besides, uncontrolled hyperglycaemia is related to several complications as diabetic retinopathy, neuropathy and hepatic, renal and cardiac complications. In this review, we address discuss the involvement of different inflammatory and pro-oxidant pathways related to DM2, and we described molecular targets modulated by therapeutics currently available to treat DM2.
Collapse
Affiliation(s)
- Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Rua do Comércio, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Rua do Comércio, Brazil
| |
Collapse
|
4
|
Tye BW, Churchman LS. Hsf1 activation by proteotoxic stress requires concurrent protein synthesis. Mol Biol Cell 2021; 32:1800-1806. [PMID: 34191586 PMCID: PMC8684711 DOI: 10.1091/mbc.e21-01-0014] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Heat shock factor 1 (Hsf1) activation is responsible for increasing the abundance of protein-folding chaperones and degradation machinery in response to proteotoxic conditions that give rise to misfolded or aggregated proteins. Here we systematically explored the link between concurrent protein synthesis and proteotoxic stress in the budding yeast, Saccharomyces cerevisiae. Consistent with prior work, inhibiting protein synthesis before inducing proteotoxic stress prevents Hsf1 activation, which we demonstrated across a broad array of stresses and validate using orthogonal means of blocking protein synthesis. However, other stress-dependent transcription pathways remained activatable under conditions of translation inhibition. Titrating the protein denaturant ethanol to a higher concentration results in Hsf1 activation in the absence of translation, suggesting extreme protein-folding stress can induce proteotoxicity independent of protein synthesis. Furthermore, we demonstrate this connection under physiological conditions where protein synthesis occurs naturally at reduced rates. We find that disrupting the assembly or subcellular localization of newly synthesized proteins is sufficient to activate Hsf1. Thus, new proteins appear to be especially sensitive to proteotoxic conditions, and we propose that their aggregation may represent the bulk of the signal that activates Hsf1 in the wake of these insults.
Collapse
Affiliation(s)
- Blake W Tye
- Department of Genetics, Harvard Medical School, Boston, MA 02115.,Program in Chemical Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
5
|
Triandafillou CG, Katanski CD, Dinner AR, Drummond DA. Transient intracellular acidification regulates the core transcriptional heat shock response. eLife 2020; 9:e54880. [PMID: 32762843 PMCID: PMC7449696 DOI: 10.7554/elife.54880] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/07/2020] [Indexed: 01/18/2023] Open
Abstract
Heat shock induces a conserved transcriptional program regulated by heat shock factor 1 (Hsf1) in eukaryotic cells. Activation of this heat shock response is triggered by heat-induced misfolding of newly synthesized polypeptides, and so has been thought to depend on ongoing protein synthesis. Here, using the budding yeast Saccharomyces cerevisiae, we report the discovery that Hsf1 can be robustly activated when protein synthesis is inhibited, so long as cells undergo cytosolic acidification. Heat shock has long been known to cause transient intracellular acidification which, for reasons which have remained unclear, is associated with increased stress resistance in eukaryotes. We demonstrate that acidification is required for heat shock response induction in translationally inhibited cells, and specifically affects Hsf1 activation. Physiological heat-triggered acidification also increases population fitness and promotes cell cycle reentry following heat shock. Our results uncover a previously unknown adaptive dimension of the well-studied eukaryotic heat shock response.
Collapse
Affiliation(s)
| | - Christopher D Katanski
- Department of Biochemistry and Molecular Biology and Department of Medicine, Section of Genetic Medicine, The University of ChicagoChicagoUnited States
| | - Aaron R Dinner
- Department of Chemistry and the James Franck Institute, The University of ChicagoChicagoUnited States
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biology and Department of Medicine, Section of Genetic Medicine, The University of ChicagoChicagoUnited States
| |
Collapse
|
6
|
Morammazi S, Shokrollahi B. The pattern of HSP70 gene expression, flight activity and temperature in Apis mellifera meda colonies. J Therm Biol 2020; 91:102647. [PMID: 32716888 DOI: 10.1016/j.jtherbio.2020.102647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Honey bees produce heat shock proteins (HSPs) following biotic and abiotic stressors to protect cells from damage. In the current study, the pattern of HSP70 gene transcription, foraging, and temperature inside and outside the hive and their association in Apis mellifera meda colonies during Ziziphus blooming period were investigated. Therefore, the number of bees entering the hive, temperature inside and outside the hive were recorded in six colonies at different times of the day. Entering and exiting worker bees were sampled in the front of three hives at three times during the day, morning, midday, and afternoon to evaluate HSP70 gene expression by real-time PCR. The results showed that the flight behavior was influenced by the inside and outside hive temperatures, which was lower and higher in the midday and at the end of the day, respectively. The peak amount of HSP70 gene transcription at the midday was associated with the lowest bee flight activity and highest inside and outside the hive temperatures. In addition, the peak of flight activity was associated with intermediate levels of HSP70 gene expression in the afternoon.
Collapse
Affiliation(s)
- Salim Morammazi
- Department of Animal Science, Faculty of Agricultural and Natural Resources, Persian Gulf University, Bushehr, Iran.
| | - Borhan Shokrollahi
- Department of Animal Science, Faculty of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Kurdistan province, Iran
| |
Collapse
|
7
|
de Oliveira AA, Webb RC, Nunes KP. Toll-Like Receptor 4 and Heat-Shock Protein 70: Is it a New Target Pathway for Diabetic Vasculopathies? Curr Drug Targets 2020; 20:51-59. [PMID: 30129410 DOI: 10.2174/1389450119666180821105544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
Diabetes is one of the most concerning diseases in modern times. Despite considerable advances in therapeutic management, the prevalence of diabetes and its contribution to death and disability continue to be a major health problem. Diabetic vasculopathies are the leading cause of mortality and morbidity in diabetic patients. Its pathophysiology includes oxidative stress, advanced glycation end products, and a low-grade inflammatory state. Lately, actions of the innate immune system via Toll-like receptors (TLRs) have been suggested as a new insight in this field. TLRs are pattern recognition receptors activated by highly conserved structural motifs of exogenous or endogenous ligands. Heat-shock proteins (HSPs), normally known for their ability to protect cells during stressful conditions, when released from injured cells bind to TLR4 and trigger the release of pro-inflammatory cytokines in a MyD88-dependent pathway. This pathway had been investigated in pancreatic beta cells and skeletal muscle, but it has not yet been explored in the vascular system and deserves investigation. In this work, the interplay between TLR4 and HSP70 in the vasculature during diabetes is reviewed and discussed. The current literature and preliminary results from our laboratory led us to hypothesize that hyperglycemia-associated HSP70 plays an important role in the pathophysiology of diabetic vasculopathies via the TLR4 pathway and might be a new target for therapeutic intervention.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Department of Biological Sciences, College of Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - R Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Kenia Pedrosa Nunes
- Department of Biological Sciences, College of Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
8
|
Jin S, Hu Y, Fu H, Sun S, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. Analysis of testis metabolome and transcriptome from the oriental river prawn (Macrobrachium nipponense) in response to different temperatures and illumination times. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100662. [PMID: 32114312 DOI: 10.1016/j.cbd.2020.100662] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/15/2023]
Abstract
A better understanding of the mechanisms underlying the male sexual differentiation of Macrobrachium nipponense is urgently needed in order to maintain sustainable development of the M. nipponense industry. Environmental factors, especially temperature and illumination, have dramatic effects on gonadal development. The aim of the present study was to identify key genes and metabolites involved in the male sexual differentiation and development of M. nipponense through integrated metabolomics and transcriptome analyses of the testis in response to different temperatures and illumination times. A total of 268 differentially abundant metabolites and 11,832 differentially expressed genes (DEGs) were identified. According to integrated metabolomics and transcriptome analyses, glycerophospholipid and sphingolipid metabolism was predicted to have dramatic effects on the male sexual differentiation and development of M. nipponense. According to the KEGG enrichment analysis of DEGs, oxidative phosphorylation, glycolysis/gluconeogenesis, the HIF-1 signaling pathway, the citrate cycle, steroid hormone synthesis, and the spliceosome complex were predicted to promote male differentiation and development by providing adenosine triphosphate, promoting the synthesis of steroid hormones, and providing correct gene products. Quantitative polymerase chain reaction analysis and in situ hybridization showed that the SDHB, PDE1, HSDL1, CYP81F2, SRSF, and SNRNP40 genes were differentially expressed, suggesting roles in the male sexual differentiation and development of M. nipponense. Strong candidate sex-related metabolic pathways and genes in M. nipponense were identified by integrated metabolomics and transcriptome analyses of the testis in response to different temperatures and illumination times, as confirmed by PCR analysis and in situ hybridization.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
9
|
Lopes FG, da Costa EP, Queiroz-Castro VLD, Pereira ECM, Guimarães JD, Alves SVP, Fernandes CAC, Camargo LSA, Benjamim LDA. Use of two new formulations as bovine embryo manipulation solution. Anim Reprod 2019; 16:348-355. [PMID: 33224297 PMCID: PMC7673593 DOI: 10.21451/1984-3143-ar2018-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study aimed to evaluate the effect of two Embryo Manipulation Solutions (EMS and EMS supplemented) in maintenance of the viability of embryos, initially using structures derived from mice (first phase). Next, the efficiency of these solutions in routines of bovine embryo transfer was evaluated (second stage). Mice embryos were used in the stages of early blastocyst, and compact morula grades I and II. These embryos were initially randomly distributed and maintained for four hours in three solutions: Modified phosphate buffered saline (PBS; Control); EMS (treatment 1), and EMS supplemented (treatment 2). Subsequently, they were cultured in TCM 199 medium and evaluated in terms of total number of cells, morphometric characteristics, ultra structural aspects, detection of cell apoptosis, and quantification of Hsp70.3 gene expression. In the second phase, these same solutions were tested in the transfer of quality I and II bovine embryos (excellent and good). These embryos were transferred fresh to 58 recipients. The results showed that the total number of cells in embryos expanded blastocyst (ExB), the number of apoptotic cells, the cell, nuclear, nucleolar diameter and the nucleus/nucleolus ratio was similar among the treatments. The pregnancy rate shown on second phase was also similar. However, the EMS supplemented expressed more Hsp70.3 than EMS. The expression of Hsp70.3 was also greater for embryos in EMS than that of EMS supplemented. The McII embryos, EMS and EMS supplemented samples also expressed more Hsp70.3 compared to control embryos. In conclusion, the tested solutions can be used in routine embryo transfer techniques, replacing modified PBS solution as an effective media in maintaining embryo viability.
Collapse
Affiliation(s)
- Flavio Guisseli Lopes
- Veterinary Department, Federal University of Vicosa, Peter Henry Rolfs Avenue, Viçosa, Minas Gerais, Brazil
| | - Eduardo Paulino da Costa
- Veterinary Department, Federal University of Vicosa, Peter Henry Rolfs Avenue, Viçosa, Minas Gerais, Brazil
| | | | | | - José Domingos Guimarães
- Veterinary Department, Federal University of Vicosa, Peter Henry Rolfs Avenue, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Laercio Dos Anjos Benjamim
- Veterinary Department, Federal University of Vicosa, Peter Henry Rolfs Avenue, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
10
|
Trussardi Fayh AP, de Carvalho Gomes C, Schroeder HT, Henrique de Lemos Muller C, Maria de Araújo Moura Lemos T, Krause M. Induction chemotherapy reduces extracellular heat shock protein 72 levels, inflammation, lipoperoxidation and changes insulin sensitivity in children and adolescents newly diagnosed with acute lymphoblastic leukemia. Oncotarget 2018; 9:28784-28795. [PMID: 29983896 PMCID: PMC6033368 DOI: 10.18632/oncotarget.25609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/19/2018] [Indexed: 02/03/2023] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is associated with higher levels of pro-inflammatory cytokines and oxidative stress. Recently, the levels of extracellular heat shock protein 72 (eHSP72) were found to be elevated in ALL, and its elevation associated with poor prognosis. Therefore, considering the possible role of eHSP72 as a modulator of the immunological system and metabolism, the aim of this study was to describe the response of eHSP72 to the induction phase of chemotherapy, along with metabolic, inflammatory and oxidative stress markers, in children and adolescents newly diagnosed with ALL. Methods Nineteen patients were recruited and analysed before and after the induction phase of chemotherapy (with 28 days of duration). Blood samples were taken for the analysis of C-reactive protein (CRP), levels of lipoperoxidation, insulin (and HOMA-IR), cortisol, glucose, lipid profile and eHSP72. Results We found that induction phase of chemotherapy leads to a drop in glucose levels (from 101.79±19 to 75.8±9.7 mg/dL), improvements on inflammation (CRP levels, p<0.01) and oxidative stress (TBARS levels, p<0.01), reduction on eHSP72 (p=0.03) and improved insulin sensitivity (HOMA-IR, p=0.02). Conclusion Our results indicate that eHSP72 may have an immune and metabolic role and could be used as a marker of the treatment success and metabolic changes in children with ALL.
Collapse
Affiliation(s)
- Ana Paula Trussardi Fayh
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Camila de Carvalho Gomes
- Departamento de Nutrição, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Helena Trevisan Schroeder
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Telma Maria de Araújo Moura Lemos
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Cloning and characterization of a heat shock protein 70 gene from the yellowstripe goby, Mugilogobius chulae : Evidence for its significance in biomonitoring of environmental pollution. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Tuttle JA, Chrismas BCR, Gibson OR, Barrington JH, Hughes DC, Castle PC, Metcalfe AJ, Midgley AW, Pearce O, Kabir C, Rayanmarakar F, Al-Ali S, Lewis MP, Taylor L. The Hsp72 and Hsp90α mRNA Responses to Hot Downhill Running Are Reduced Following a Prior Bout of Hot Downhill Running, and Occur Concurrently within Leukocytes and the Vastus Lateralis. Front Physiol 2017; 8:473. [PMID: 28747888 PMCID: PMC5506191 DOI: 10.3389/fphys.2017.00473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
The leukocyte heat shock response (HSR) is used to determine individual's thermotolerance. The HSR and thermotolerance are enhanced following interventions such as preconditioning and/or acclimation/acclimatization. However, it is unclear whether the leukocyte HSR is an appropriate surrogate for the HSR in other tissues implicated within the pathophysiology of exertional heat illnesses (e.g., skeletal muscle), and whether an acute preconditioning strategy (e.g., downhill running) can improve subsequent thermotolerance. Physically active, non-heat acclimated participants were split into two groups to investigate the benefits of hot downhill running as preconditioning strategy. A hot preconditioning group (HPC; n = 6) completed two trials (HPC1HOTDOWN and HPC2HOTDOWN) of 30 min running at lactate threshold (LT) on -10% gradient in 30°C and 50% relative humidity (RH) separated by 7 d. A temperate preconditioning group (TPC; n = 5) completed 30 min running at LT on a -1% gradient in 20°C and 50% (TPC1TEMPFLAT) and 7 d later completed 30 min running at LT on -10% gradient in 30°C and 50% RH (TPC2HOTDOWN). Venous blood samples and muscle biopsies (vastus lateralis; VL) were obtained before, immediately after, 3, 24, and 48 h after each trial. Leukocyte and VL Hsp72, Hsp90α, and Grp78 mRNA relative expression was determined via RT-QPCR. Attenuated leukocyte and VL Hsp72 (2.8 to 1.8 fold and 5.9 to 2.4 fold; p < 0.05) and Hsp90α mRNA (2.9 to 2.4 fold and 5.2 to 2.4 fold; p < 0.05) responses accompanied reductions (p < 0.05) in physiological strain [exercising rectal temperature (-0.3°C) and perceived muscle soreness (~ -14%)] during HPC2HOTDOWN compared to HPC1HOTDOWN (i.e., a preconditioning effect). Both VL and leukocyte Hsp72 and Hsp90α mRNA increased (p < 0.05) simultaneously following downhill runs and demonstrated a strong relationship (p < 0.01) of similar magnitudes with one another. Hot downhill running is an effective preconditioning strategy which ameliorates physiological strain, soreness and Hsp72 and Hsp90α mRNA responses to a subsequent bout. Leukocyte and VL analyses are appropriate tissues to infer the extent to which the HSR has been augmented.
Collapse
Affiliation(s)
- James A Tuttle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar UniversityDoha, Qatar
| | - Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University LondonLondon, United Kingdom
| | - James H Barrington
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavis, CA, United States
| | - Paul C Castle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Alan J Metcalfe
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom.,School of Exercise and Health Sciences, Edith Cowan UniversityPerth, WA, Australia
| | - Adrian W Midgley
- Department of Sport and Physical Activity, Edgehill UniversityOrmskirk, United Kingdom
| | - Oliver Pearce
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Chindu Kabir
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | | | - Sami Al-Ali
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,ASPETAR, Qatar Orthopedic and Sports Medicine HospitalDoha, Qatar
| |
Collapse
|
13
|
Lopez-Romero G, Garzon T, Rascon R, Valdez A, Quintero J, Arvizu-Flores AA, Garibay-Escobar A, Rascon L, Astiazarán-García H, Velazquez C. Characterization of BIP protein of G. lamblia as a potential immunogen in a mouse infection model. Immunobiology 2017; 222:884-891. [PMID: 28552268 DOI: 10.1016/j.imbio.2017.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/25/2017] [Accepted: 05/14/2017] [Indexed: 12/11/2022]
Abstract
Giardia lamblia is a protozoan parasite that causes one of the most common gastrointestinal diseases worldwide. To eliminate the parasite from the host intestine, it is necessary the activation of B-cell and T-cell dependent mechanisms. The knowledge about Giardia antigens that can stimulate the host immune response is limited. Recently, it has been described the Binding Immunoglobulin Protein (BIP) of G. lamblia (71kDa) as a potential immunogen. Additionally, our group has identified a highly immunogenic antigen (5G8 protein) of G. lamblia with a relative molecular mass of approximately 70kDa. There is some evidence suggesting that the 5G8 protein may activate both humoral and cellular immune responses. Based on these observations and preliminary mass spectrometry analyses, we hypothesized that the antigen 5G8 could be the BIP protein. In the present study, we characterize immunochemically the BIP protein of Giardia. Flow cytometric assays and western blotting were used to determine the expression profile of BIP and 5G8 antigens in Giardia trophozoites. The differences in expression profile indicated that BIP and 5G8 are not the same molecule. ELISA and Western blotting assays revealed that BIP protein was recognized by antibodies produced during G. lamblia infection in C3H/HeN mice. MTT assays did not reveal the activation of cellular immune response induced by BIP protein in vitro. In addition, we identified the potential B-cell and T-cell epitopes of G. lamblia BIP protein. This molecule is a conserved protein among Giardia strains and other pathogens. The complete immunological characterization of this antigen will contribute to a better understanding of the host-parasite interactions in Giardia infection.
Collapse
Affiliation(s)
- Gloria Lopez-Romero
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C. Hermosillo, Sonora, Mexico
| | - Thania Garzon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico
| | - Raul Rascon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico
| | - Alejandra Valdez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico
| | - Jael Quintero
- Health Science Department, University of Sonora, Blvd Bordo Nuevo s/n, Ejido Providencia, 85199 Cd. Obregon, Sonora, Mexico
| | - Aldo A Arvizu-Flores
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico
| | | | - Lucila Rascon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico
| | - Humberto Astiazarán-García
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C. Hermosillo, Sonora, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, Mexico.
| |
Collapse
|
14
|
Leite JSM, Cruzat VF, Krause M, Homem de Bittencourt PI. Physiological regulation of the heat shock response by glutamine: implications for chronic low-grade inflammatory diseases in age-related conditions. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s41110-016-0021-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Emery SM, Dobrowsky RT. Promoting Neuronal Tolerance of Diabetic Stress: Modulating Molecular Chaperones. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:181-210. [PMID: 27133150 DOI: 10.1016/bs.irn.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The etiology of diabetic peripheral neuropathy (DPN) involves an interrelated series of metabolic and vascular insults that ultimately contribute to sensory neuron degeneration. In the quest to pharmacologically manage DPN, small-molecule inhibitors have targeted proteins and pathways regarded as "diabetes specific" as well as others whose activity are altered in numerous disease states. These efforts have not yielded any significant therapies, due in part to the complicating issue that the biochemical contribution of these targets/pathways to the progression of DPN does not occur with temporal and/or biochemical uniformity between individuals. In a complex, chronic neurodegenerative disease such as DPN, it is increasingly appreciated that effective disease management may not necessarily require targeting a pathway or protein considered to contribute to disease progression. Alternatively, it may prove sufficiently beneficial to pharmacologically enhance the activity of endogenous cytoprotective pathways to aid neuronal tolerance to and recovery from glucotoxic stress. In pursuing this paradigm shift, we have shown that modulating the activity and expression of molecular chaperones such as heat shock protein 70 (Hsp70) may provide translational potential for the effective medical management of insensate DPN. Considerable evidence supports that modulating Hsp70 has beneficial effects in improving inflammation, oxidative stress, and glucose sensitivity. Given the emerging potential of modulating Hsp70 to manage DPN, the current review discusses efforts to characterize the cytoprotective effects of this protein and the benefits and limitations that may arise in drug development efforts that exploit its cytoprotective activity.
Collapse
Affiliation(s)
- S M Emery
- The University of Kansas, Lawrence, KS, United States
| | - R T Dobrowsky
- The University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
16
|
Gibson OR, Turner G, Tuttle JA, Taylor L, Watt PW, Maxwell NS. Heat acclimation attenuates physiological strain and the HSP72, but not HSP90α, mRNA response to acute normobaric hypoxia. J Appl Physiol (1985) 2015. [DOI: 10.1152/japplphysiol.00332.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heat acclimation (HA) attenuates physiological strain in hot conditions via phenotypic and cellular adaptation. The aim of this study was to determine whether HA reduced physiological strain, and heat shock protein (HSP) 72 and HSP90α mRNA responses in acute normobaric hypoxia. Sixteen male participants completed ten 90-min sessions of isothermic HA (40°C/40% relative humidity) or exercise training [control (CON); 20°C/40% relative humidity]. HA or CON were preceded (HYP1) and proceeded (HYP2) by a 30-min normobaric hypoxic exposure [inspired O2 fraction = 0.12; 10-min rest, 10-min cycling at 40% peak O2 uptake (V̇o2 peak), 10-min cycling at 65% V̇o2 peak]. HA induced greater rectal temperatures, sweat rate, and heart rates (HR) than CON during the training sessions. HA, but not CON, reduced resting rectal temperatures and resting HR and increased sweat rate and plasma volume. Hemoglobin mass did not change following HA nor CON. HSP72 and HSP90α mRNA increased in response to each HA session, but did not change with CON. HR during HYP2 was lower and O2 saturation higher at 65% V̇o2 peak following HA, but not CON. O2 uptake/HR was greater at rest and 65% V̇o2 peak in HYP2 following HA, but was unchanged after CON. At rest, the respiratory exchange ratio was reduced during HYP2 following HA, but not CON. The increase in HSP72 mRNA during HYP1 did not occur in HYP2 following HA. In CON, HSP72 mRNA expression was unchanged during HYP1 and HYP2. In HA and CON, increases in HSP90α mRNA during HYP1 were maintained in HYP2. HA reduces physiological strain, and the transcription of HSP72, but not HSP90α mRNA in acute normobaric hypoxia.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
| | - Gareth Turner
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
- English Institute of Sport, EIS Performance Centre, Loughborough University, Loughborough, United Kingdom; and
| | - James A. Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedfordshire, United Kingdom
| | - Lee Taylor
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedfordshire, United Kingdom
| | - Peter W. Watt
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
| | - Neil S. Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, University of Brighton, Welkin Human Performance Laboratories, Eastbourne, United Kingdom
| |
Collapse
|
17
|
The chaperone balance hypothesis: the importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediators Inflamm 2015; 2015:249205. [PMID: 25814786 PMCID: PMC4357135 DOI: 10.1155/2015/249205] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/12/2015] [Indexed: 01/01/2023] Open
Abstract
Recent evidence shows divergence between the concentrations of extracellular 70 kDa heat shock protein [eHSP70] and its intracellular concentrations [iHSP70] in people with type 2 diabetes (T2DM). A vital aspect regarding HSP70 physiology is its versatility to induce antagonistic actions, depending on the location of the protein. For example, iHSP70 exerts a powerful anti-inflammatory effect, while eHSP70 activates proinflammatory pathways. Increased eHSP70 is associated with inflammatory and oxidative stress conditions, whereas decreased iHSP70 levels are related to insulin resistance in skeletal muscle. Serum eHSP70 concentrations are positively correlated with markers of inflammation, such as C-reactive protein, monocyte count, and TNF-α, while strategies to enhance iHSP70 (e.g., heat treatment, chemical HSP70 inducers or coinducers, and physical exercise) are capable of reducing the inflammatory profile and the insulin resistance state. Here, we present recent findings suggesting that imbalances in the HSP70 status, described by the [eHSP70]/[iHSP70] ratio, may be determinant to trigger a chronic proinflammatory state that leads to insulin resistance and T2DM development. This led us to hypothesize that changes in this ratio value could be used as a biomarker for the management of the inflammatory response in insulin resistance and diabetes.
Collapse
|
18
|
Tuttle JA, Castle PC, Metcalfe AJ, Midgley AW, Taylor L, Lewis MP. Downhill running and exercise in hot environments increase leukocyte Hsp72 (HSPA1A) and Hsp90α (HSPC1) gene transcripts. J Appl Physiol (1985) 2015; 118:996-1005. [PMID: 25722377 DOI: 10.1152/japplphysiol.00387.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 02/18/2015] [Indexed: 12/15/2022] Open
Abstract
Stressors within humans and other species activate Hsp72 and Hsp90α mRNA transcription, although it is unclear which environmental temperature or treadmill gradient induces the largest increase. To determine the optimal stressor for priming the Hsp system, physically active but not heat-acclimated participants (19.8 ± 1.9 and 20.9 ± 3.6 yr) exercised at lactate threshold in either temperate (20°C, 50% relative humidity; RH) or hot (30°C, 50% RH) environmental conditions. Within each condition, participants completed a flat running (temperate flat or hot flat) and a downhill running (temperate downhill or hot downhill) experimental trial in a randomized counterbalanced order separated by at least 7 days. Venous blood samples were taken immediately before (basal), immediately after exercise, and 3 and 24 h postexercise. RNA was extracted from leukocytes and RT-quantitative PCR conducted to determine Hsp72 and Hsp90α mRNA relative expression. Leukocyte Hsp72 mRNA was increased immediately after exercise following downhill running (1.9 ± 0.9-fold) compared with flat running (1.3 ± 0.4-fold; P = 0.001) and in hot (1.9 ± 0.6-fold) compared with temperate conditions (1.1 ± 0.5-fold; P = 0.003). Leukocyte Hsp90α mRNA increased immediately after exercise following downhill running (1.4 ± 0.8-fold) compared with flat running (0.9 ± 0.6-fold; P = 0.002) and in hot (1.6 ± 1.0-fold) compared with temperate conditions (0.9 ± 0.6-fold; P = 0.003). Downhill running and exercise in hot conditions induced the largest stimuli for leukocyte Hsp72 and Hsp90α mRNA increases.
Collapse
Affiliation(s)
- James A Tuttle
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom;
| | - Paul C Castle
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom
| | - Alan J Metcalfe
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom; School of Exercise and Health Sciences, Edith Cowan University, Perth, Australia
| | - Adrian W Midgley
- Department of Sport and Physical Activity, Edgehill University, Ormskirk, United Kingdom; and
| | - Lee Taylor
- Muscle Cellular and Molecular Physiology Research Group, Institute of Sport and Physical Activity Research, Department of Sport Science and Physical Activity, University of Bedfordshire, Bedford, United Kingdom
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
19
|
Elevated levels of extracellular heat-shock protein 72 (eHSP72) are positively correlated with insulin resistance in vivo and cause pancreatic β-cell dysfunction and death in vitro. Clin Sci (Lond) 2014; 126:739-52. [PMID: 24325467 DOI: 10.1042/cs20130678] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
eHSP72 (extracellular heat-shock protein 72) is increased in the plasma of both types of diabetes and is positively correlated with inflammatory markers. Since aging is associated with a low-grade inflammation and IR (insulin resistance), we aimed to: (i) analyse the concentration of eHSP72 in elderly people and determine correlation with insulin resistance, and (ii) determine the effects of eHSP72 on β-cell function and viability in human and rodent pancreatic β-cells. Fasting blood samples were collected from 50 older people [27 females and 23 males; 63.4±4.4 years of age; BMI (body mass index)=25.5±2.7 kg/m2]. Plasma samples were analysed for eHSP72, insulin, TNF (tumour necrosis factor)-α, leptin, adiponectin and cortisol, and glycaemic and lipid profile. In vitro studies were conducted using rodent islets and clonal rat and human pancreatic β-cell lines (BRIN-BD11 and 1.1B4 respectively). Cells/islets were incubated for 24 h with eHSP72 (0, 0.2, 4, 8 and 40 ng/ml). Cell viability was measured using three different methods. The impact of HSP72 on β-cell metabolic status was determined using Seahorse Bioscience XFe96 technology. To assess whether the effects of eHSP72 were mediated by Toll-like receptors (TLR2/TLR4), we co-incubated rodent islets with eHSP72 and the TLR2/TLR4 inhibitor OxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; 30 μg/ml). We found a positive correlation between plasma eHSP72 and HOMA-IR (homoeostasis model assessment of IR) (r=0.528, P<0.001), TNF-α (r=0.389, P<0.014), cortisol (r=0.348, P<0.03) and leptin/adiponectin (r=0.334, P<0.03). In the in vitro studies, insulin secretion was decreased in an eHSP72 dose-dependent manner in BRIN-BD11 cells (from 257.7±33 to 84.1±10.2 μg/mg of protein per 24 h with 40 ng/ml eHSP72), and in islets in the presence of 40 ng/ml eHSP72 (from 0.48±0.07 to 0.33±0.009 μg/20 islets per 24 h). Similarly, eHSP72 reduced β-cell viability (at least 30% for BRIN-BD11 and 10% for 1.1B4 cells). Bioenergetic studies revealed that eHSP72 altered pancreatic β-cell metabolism. OxPAPC restored insulin secretion in islets incubated with 40 ng/ml eHSP72. In conclusion, we have demonstrated a positive correlation between eHSP72 and IR. In addition, we suggest that chronic eHSP72 exposure may mediate β-cell failure.
Collapse
|
20
|
Feng MJ, Zhang L, Liu Z, Zhou P, Lu X. The expression and release of Hsp60 in 6-OHDA induced in vivo and in vitro models of Parkinson's disease. Neurochem Res 2013; 38:2180-9. [PMID: 23943523 DOI: 10.1007/s11064-013-1127-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022]
Abstract
In Parkinson's disease, dopaminergic neuron damage/death causes the release of soluble substances that are selectively toxic to neighboring/additional dopaminergic neurons through the activation of microglia. Hsp60 can be released from injured cells of central nervous system to activate microglia. However, its expression and role in Parkinson's disease has not been well understood. Here, we performed a 6-OHDA treated Parkinson's disease model in adult rats. Western blot analysis showed a time-course expression of Hsp60, which decreased gradually and then rose back. Immunofluorescence staining showed that Hsp60 was decreased in dopaminergic neuron, and most Hsp60 located on the surface of activated microglia. Furthermore, in cellular Parkinson's disease model, Hsp60 was obviously detected in the culture supernatants after 6-OHDA treatment, and a concomitant decrease in cell extracts. Taken together, our results suggested that Hsp60 could be released extracellularly to activate microglia in Parkinson's disease model.
Collapse
Affiliation(s)
- Mei jiang Feng
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, People's Republic of China,
| | | | | | | | | |
Collapse
|
21
|
Shen LJ, Chen FY, Zhang Y, Cao LF, Kuang Y, Zhong M, Wang T, Zhong H. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis. PLoS One 2013; 8:e59070. [PMID: 23554972 PMCID: PMC3598662 DOI: 10.1371/journal.pone.0059070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/11/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Amplification of MYCN (N-Myc) oncogene has been reported as a frequent event and a poor prognostic marker in human acute myeloid leukemia (AML). The molecular mechanisms and transcriptional networks by which MYCN exerts its influence in AML are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS We introduced murine MYCN gene into embryonic zebrafish through a heat-shock promoter and established the stable germline Tg(MYCN:HSE:EGFP) zebrafish. N-Myc downstream regulated gene 1 (NDRG1), negatively controlled by MYCN in human and functionally involved in neutrophil maturation, was significantly under-expressed in this model. Using peripheral blood smear detection, histological section and flow cytometric analysis of single cell suspension from kidney and spleen, we found that MYCN overexpression promoted cell proliferation, enhanced the repopulating activity of myeloid cells and the accumulation of immature hematopoietic blast cells. MYCN enhanced primitive hematopoiesis by upregulating scl and lmo2 expression and promoted myelopoiesis by inhibiting gata1 expression and inducing pu.1, mpo expression. Microarray analysis identified that cell cycle, glycolysis/gluconeogenesis, MAPK/Ras, and p53-mediated apoptosis pathways were upregulated. In addition, mismatch repair, transforming and growth factor β (TGFβ) were downregulated in MYCN-overexpressing blood cells (p<0.01). All of these signaling pathways are critical in the proliferation and malignant transformation of blood cells. CONCLUSION/SIGNIFICANCE The above results induced by overexpression of MYCN closely resemble the main aspects of human AML, suggesting that MYCN plays a role in the etiology of AML. MYCN reprograms hematopoietic cell fate by regulating NDRG1 and several lineage-specific hematopoietic transcription factors. Therefore, this MYCN transgenic zebrafish model facilitates dissection of MYCN-mediated signaling in vivo, and enables high-throughput scale screens to identify the potential therapeutic targets.
Collapse
Affiliation(s)
- Li-Jing Shen
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang-Yuan Chen
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| | - Yong Zhang
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan-Fang Cao
- Department of Pediatric, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Kuang
- Shanghai Research Center for Biomodel Organisms, Shanghai, China
| | - Min Zhong
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Wang
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Zhong
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Stachulski AV, Baillie TA, Kevin Park B, Scott Obach R, Dalvie DK, Williams DP, Srivastava A, Regan SL, Antoine DJ, Goldring CEP, Chia AJL, Kitteringham NR, Randle LE, Callan H, Castrejon JL, Farrell J, Naisbitt DJ, Lennard MS. The Generation, Detection, and Effects of Reactive Drug Metabolites. Med Res Rev 2012; 33:985-1080. [DOI: 10.1002/med.21273] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew V. Stachulski
- Department of Chemistry, Robert Robinson Laboratories; University of Liverpool; Liverpool; L69 7ZD; UK
| | - Thomas A. Baillie
- School of Pharmacy; University of Washington; Box 357631; Seattle; Washington; 98195-7631
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - R. Scott Obach
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; Groton; Connecticut 06340
| | - Deepak K. Dalvie
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; La Jolla; California 94121
| | - Dominic P. Williams
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Abhishek Srivastava
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Sophie L. Regan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Daniel J. Antoine
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Christopher E. P. Goldring
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Alvin J. L. Chia
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Neil R. Kitteringham
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Laura E. Randle
- School of Pharmacy and Biomolecular Sciences, Faculty of Science; Liverpool John Moores University; James Parsons Building, Byrom Street; Liverpool L3 3AF; UK
| | - Hayley Callan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - J. Luis Castrejon
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - John Farrell
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Martin S. Lennard
- Academic Unit of Medical Education; University of Sheffield; 85 Wilkinson Street; Sheffield S10 2GJ; UK
| |
Collapse
|
23
|
Abstract
The alpha-beta tubulin heterodimer is the subunit from which microtubules are assembled. The pathway leading to correctly folded alpha- and beta-tubulins is unusually complex: it involves cycles of ATP-dependent interaction of newly synthesized tubulin subunits with cytosolic chaperonin, resulting in the production of quasi-native folding intermediates, which must then be acted upon by additional protein cofactors. These cofactors form a supercomplex containing both alpha- and beta-tubulin polypeptides, from which native heterodimer is released in a GTP-dependent reaction. Here, we discuss the current state of our understanding of the function of cytosolic chaperonin and cofactors in tubulin folding.
Collapse
|
24
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
25
|
Rodrigues-Krause J, Krause M, O’Hagan C, De Vito G, Boreham C, Murphy C, Newsholme P, Colleran G. Divergence of intracellular and extracellular HSP72 in type 2 diabetes: does fat matter? Cell Stress Chaperones 2012; 17:293-302. [PMID: 22215518 PMCID: PMC3312959 DOI: 10.1007/s12192-011-0319-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 12/21/2022] Open
Affiliation(s)
- Josianne Rodrigues-Krause
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, Conway Institute, Dublin, Ireland
| | - Mauricio Krause
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Conway Institute, Dublin, Ireland
| | - C. O’Hagan
- Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Giuseppe De Vito
- Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Colin Boreham
- Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Colin Murphy
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
| | - Philip Newsholme
- UCD School of Biomolecular and Biomedical Science, Conway Institute, Dublin, Ireland
- School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Gerard Colleran
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Belgard Road, Tallaght, Dublin 24, Dublin, Ireland
| |
Collapse
|
26
|
Padmini E, Usha Rani M. Mitochondrial membrane potential is a suitable candidate for assessing pollution toxicity in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3687-3700. [PMID: 21741679 DOI: 10.1016/j.scitotenv.2011.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 06/01/2011] [Accepted: 06/07/2011] [Indexed: 05/31/2023]
Abstract
Fish inhabiting polluted estuaries are highly exposed to severe stress characterized by an oxidant-antioxidant imbalance. The aim of the study was to explore the use of stress parameters such as adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio, mitochondrial membrane potential (∆ψm) and total protein expression patterns as biomarkers against oxidant exposures in hepatocytes of Mugil cephalus living in either a contaminated (Test; Ennore) or uncontaminated (Control; Kovalam) estuary. Earlier, the pollutant stress impact was determined through light and electron microscopy studies. The ATP/ADP ratio was measured using high performance liquid chromatography; ∆ψm by fluorescent probe 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethyl benzimidazolcarbocyanine iodide (JC-1) dye and total protein expression patterns by protein profiling. The preponderance of stress impact was confirmed through microscopy studies that featured cytological alterations, disturbances in the surface morphology and in the cell organelles at the ultrastructural levels. Hepatocytes of test fish demonstrated a decrease in ATP and an increase in ADP and thereby alteration in ATP/ADP ratio (p<0.05; 20.75%). A significant disturbance (p<0.05; 26.57%) in ∆ψm with a ratio of J-aggregates/JC-1 monomer of 1 was observed for test fish hepatocytes compared to control group with a J-aggregates/JC-1 monomer ratio of 1.5. Quantitative assessment of protein expression levels also revealed enhanced induction of both low and high molecular weight proteins in test fish hepatocytes. The findings highlight the use of these parameters as the highly sensitive biomarkers in response to contaminant exposure compared to the routinely used antioxidant and oxidant stress parameters in biomonitoring programs. Among the measured parameters, the determination of ∆ψm may be suggested as a novel candidate as a biomarker because of its greater specificity and rapid quantitative risk assessment of pollutant exposures.
Collapse
Affiliation(s)
- Ekambaram Padmini
- Department of Biochemistry, Bharathi Women's College, Chennai-108, Tamilnadu, India.
| | | |
Collapse
|
27
|
Abstract
Original experimental studies in nonhuman primate models of focal ischemia showed flow-related changes in evoked potentials that suggested a circumferential zone of low regional cerebral blood flow with normal K(+) homeostasis, around a core of permanent injury in the striatum or the cortex. This became the basis for the definition of the ischemic penumbra. Imaging techniques of the time suggested a homogeneous core of injury, while positing a surrounding 'penumbral' region that could be salvaged. However, both molecular studies and observations of vascular integrity indicate a more complex and dynamic situation in the ischemic core that also changes with time. The microvascular, cellular, and molecular events in the acute setting are compatible with heterogeneity of the injury within the injury center, which at early time points can be described as multiple 'mini-cores' associated with multiple 'mini-penumbras'. These observations suggest the progression of injury from many small foci to a homogeneous defect over time after the onset of ischemia. Recent observations with updated imaging techniques and data processing support these dynamic changes within the core and the penumbra in humans following focal ischemia.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- Department of Medicine (Division of Hematology), University of Washington School of Medicine, Seattle, Washington 98104, USA.
| | | | | | | |
Collapse
|
28
|
Krause M, Rodrigues-Krause JDC. Extracellular heat shock proteins (eHSP70) in exercise: Possible targets outside the immune system and their role for neurodegenerative disorders treatment. Med Hypotheses 2010; 76:286-90. [PMID: 21071151 DOI: 10.1016/j.mehy.2010.10.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 11/18/2022]
Abstract
The intracellular heat shock protein 70kDa (iHSP70) is a universal marker of stress protein whose expression is induced by different cell stressors, such as heat, metabolite deprivation, redox imbalances and also during physical exercise. The activation of the iHSP70 is sine qua non for the promotion of tissue repair, since the expression of this chaperone confers cytoprotection and also exerts anti-inflammatory effects. On the other hand, exercise also induces the appearance of HSP70 in the extracellular medium (eHSP70) but, so far, the eHSP70 function has been mainly attributed to the activation of the immune system, seeming to perform an opposite function from the iHSP70. Since a moderate intensity exercise bout induces a general anti-inflammatory response even in the presence of an elevated eHSP70, this protein could carry out other functions rather than immune activation. Because exercise generates heat and metabolic challenges (especially on glucose metabolism) we suggests that the motoneurons, a very active (possibly one of the most stressed cells during exercise) and also very sensitive cells to heat and glucose metabolism imbalances, could be the major sites for the eHSP70 function. Due to the importance of the iHSP70 for repair and stress adaptation, this protein must be present in abundance on the site of stress and, because of its intrinsic inability response to stress [low heat shock factor 1 (HSF-1) activation] and the structure of the motoneurons (very long cells), the iHSP70, produced on the very far nucleus, is not appropriately transported through the axon to the axon terminal, were it is required. Then, during the exercise, the released eHSP70 can be internalized by the motoneurons and act as intracellular chaperons, protecting this cell against oxidative damage, protein denaturation and many others. Since a decreased iHSP70 expression capacity is associated with neurodegeneration diseases (such as Parkinson, polyglutamine, Amyotrophic lateral sclerosis, Alzheimer's, Huntington's and many others), the understanding of the physiological function of the extracellular HSP70 could be helpful on the treatment of neurodegenerative and other neuronal diseases. Besides that, it could explain some of the beneficial effects of the pharmacological HSP70 activators and also the beneficial effects of the exercise among neuronal cells during neurodegenerative-inducing diseases.
Collapse
Affiliation(s)
- Mauricio Krause
- Biomedical Research Group, Department of Science, Institute of Technology Tallaght, Dublin, Ireland.
| | | |
Collapse
|
29
|
Langer-Jaesrich M, Köhler HR, Gerhardt A. Assessing toxicity of the insecticide thiacloprid on Chironomus riparius (Insecta: Diptera) using multiple end points. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 58:963-72. [PMID: 19937322 DOI: 10.1007/s00244-009-9420-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 11/03/2009] [Indexed: 05/21/2023]
Abstract
Since data documentation on neonicotinic toxicity to nontarget organisms should be enhanced, we investigate the effects of thiacloprid, a novel neonicotinoid insecticide, on the sediment-dwelling nontarget insect Chironomus riparius. Further, we wanted to validate the sensitivity of end points on different biological levels and obtain the greatest amount of information regarding the effects of this compound by using a battery of several end points such as larval mortality, behavior, body weight gain, emergence rate, time of development, gender ratio, Hsp70 stress protein level, and larval mouthpart deformities after exposure at a concentration range of 0.1 to 1000 microg/L thiacloprid. C. riparius was impacted starting at concentrations of 0.5 microg/L, a concentration that can be considered environmentally relevant. Larval mortality, behavior, emergence, and Hsp70 protein level were sensitive indicators for the toxic effect of thiacloprid, whereas gender ratio and mouthpart morphology were not affected. In our case life-cycle end points like survival rate (LC(50): 1.57 microg/L) and emergence rate (EC(50): 0.54 microg/L) proved to be more sensitive than tested physiological end points for the neurotoxic insecticide.
Collapse
Affiliation(s)
- Miriam Langer-Jaesrich
- Animal Physiological Ecology Department, University of Tübingen, Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany.
| | | | | |
Collapse
|
30
|
|
31
|
Reuter S, Bangen P, Edemir B, Hillebrand U, Pavenstädt H, Heidenreich S, Lang D. The HSP72 stress response of monocytes from patients on haemodialysis is impaired. Nephrol Dial Transplant 2009; 24:2838-46. [PMID: 19339340 PMCID: PMC7107957 DOI: 10.1093/ndt/gfp142] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Induction of heat shock proteins (HSP), i.e. of the major family member HSP70, is an important cytoprotective-resistance mechanism for monocytes/ macrophages (Mphi). Patients on haemodialysis present with a high infectious morbidity and enhanced carcinoma incidence. Renal insufficiency-related alteration of microbicidal and tumoricidal functions of Mphi, major effectors of the immune system, might promote these diseases. METHODS Freshly isolated Mphi from Sprague-Dawley rats 2 weeks after 5/6-nephrectomy and from patients on intermittent haemodialysis (IHD) were stimulated by heat shock (HS) and compared to stimulated Mphi of control rats or healthy volunteers (CTR). Expression of HSP72 (inducible HSP70) was assessed by RT-PCR, and/or flow cytometry. Apoptosis of Mphi was detected by flow cytometry (CD14/annexin V-labelling). RESULTS In rat Mphi, baseline HSP72 expression was similar in both groups, but its induction was significantly impaired in renal insufficiency (214 +/- 68% less HSP70-mRNA versus CTR, n = 6). In patients, HSF-1-mRNA and HSP72-mRNA/protein response to HS was significantly lower, but not affected by dialysis session itself. In parallel, apoptosis of Mphi of patients was enhanced (+83 +/- 29% constitutive apoptotic Mphi versus CTR, n = 8), and HS-dependent protection from apoptosis with and without serum depletion (48 h depletion: HS, +275 +/- 37% apoptotic Mphi versus CTR, n = 6; full medium: +166 +/- 62% versus CTR, n = 8, P < 0.05) was inferior. CONCLUSIONS Impaired HSP72 stress response of Mphi in patients on haemodialysis might contribute to the observed immune dysfunction and, therefore, to the increased susceptibility to infection and malignancy. Stress impairment is not restricted to uraemia but is already present in a rat model of chronic kidney disease.
Collapse
Affiliation(s)
- Stefan Reuter
- Department of Medicine D, University of Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Boswell BA, Le ACN, Musil LS. Upregulation and maintenance of gap junctional communication in lens cells. Exp Eye Res 2008; 88:919-27. [PMID: 19103198 DOI: 10.1016/j.exer.2008.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/08/2008] [Accepted: 11/26/2008] [Indexed: 01/20/2023]
Abstract
The cells of the lens are joined by an extensive network of gap junction intercellular channels consisting of connexins 43, 46, and 50. We have proposed, and experimentally supported, the hypothesis that fibroblast growth factor (FGF) signaling is required for upregulation of gap junction-mediated intercellular coupling (GJIC) at the lens equator. The ability of FGF to increase GJIC in cultured lens cells requires sustained activation of extracellular signal-regulated kinase (ERK). In other cell types, activation of ERK has been shown to block GJIC mediated by connexin43 (Cx43). Why ERK signaling does not block lens cell coupling is not known. Another unresolved issue in lens gap junction regulation is how connexins, synthesized before the loss of biosynthetic organelles in mature lens fiber cells, avoid degradation during formation of the organelle-free zone. We have addressed these questions using serum-free cultures (termed DCDMLs) of primary embryonic chick lens epithelial cells. We show that FGF stimulates ERK in DCDMLs via the canonical Ras/Raf1 pathway, and that the reason that neither basal nor growth factor-stimulated GJIC is blocked by activation of ERK is because it is not mediated by Cx43. In fibroblastic cells, the normally rapid rate of degradation of Cx43 after its transport to the plasma membrane is reduced by treatments that either directly (ALLN; epoxomicin) or indirectly (generation of oxidatively un/mis-folded proteins by arsenic compounds) prevent the ubiquitin/proteasome system (UPS) from acting on its normal substrates. We show here that Cx45.6 and Cx56, the chick orthologs of mammalian Cx50 and Cx46, behave similarly in DCDMLs. When organelles lyse during the maturation of fiber cells, they release into the cytosol a large amount of new proteins that have the potential to saturate the capacity, and/or compromise the function, of the UPS. This would serve to spare gap junctions from degradation during formation of the organelle-free zone, thereby preserving GJIC between mature fiber cells despite the lack of de novo connexin synthesis.
Collapse
Affiliation(s)
- Bruce A Boswell
- Department of Biochemistry and Molecular Biology L224, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
33
|
Sukumaran K, Pal AK, Sahu NP, Dalvi RS, Debnath D. Haemato-biochemical responses and induction of HSP70 to dietary phosphorus in Catla catla (Hamilton) fingerlings. FISH PHYSIOLOGY AND BIOCHEMISTRY 2008; 34:299-306. [PMID: 18958586 DOI: 10.1007/s10695-007-9188-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 10/04/2007] [Indexed: 05/27/2023]
Abstract
A feeding trial of 120 days was conducted to study the effect of graded levels of dietary phosphorus on haematology, serum protein concentrations and HSP70 expression in fingerlings of the Indian major carp, Catla (Catla catla). Eight isonitrogenous and isoenergetic purified diets were formulated to contain graded levels of dietary phosphorus (dP), i.e., T(1), 0.1%; T(2), 0.3%; T(3), 0.5%; T(4), 0.7%; T(5), 0.9%; T(6), 1.1%; T(7), 1.3%; or T(8), 1.5%. Four hundred and eighty fish (average weight 4.23 +/- 0.016 g) were equally distributed into 24 tanks forming eight treatments with three replicates each. The fish were fed daily at the rate of 3.5% body weight in two instalments. At the end of feeding trial fish were sampled to study total RBC and WBC count, haemoglobin, serum lysozyme activity, serum total protein, albumin (A), globulin (G) concentration and HSP70 expression. Total RBC count, haemoglobin concentration and serum lysozyme activity did not vary significantly in response to different dietary phosphorus concentrations. Total WBC count was found to be significantly (P < 0.05) higher in T(1 )relative to all other treatments. Serum albumin and A/G ratio was found to be significantly lower in fish of T(1) and T(2) in relation to T(7) group (P < 0.05). Serum globulin and total protein levels remained unaffected by variations in dietary phosphorus. HSP70 expression was observed in T(1) group (0.1% dP) in gills and brain tissue, but not in liver and muscle tissues. No HSP70 expression was observed in fish of T(4) (0.7% dP) and T(8) (1.5% dP) treatments. These prima facie results suggest that dietary phosphorus had only minor influence on the haemato-biochemical parameters studied; however dietary phosphorus deficiency caused organ specific induction of HSP70 in catla fingerlings.
Collapse
Affiliation(s)
- K Sukumaran
- Fish Biochemistry Laboratory, Central Institute of Fisheries Education, Fisheries University Road, Versova, Mumbai 400 061, India
| | | | | | | | | |
Collapse
|
34
|
Grôsvik BE, Goksôyr A. Biomarker protein expression in primary cultures of salmon (Salmo salar L.) hepatocytes exposed to environmental pollutants. Biomarkers 2008; 1:45-53. [DOI: 10.3109/13547509609079346] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Kalmar B, Novoselov S, Gray A, Cheetham ME, Margulis B, Greensmith L. Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. J Neurochem 2008; 107:339-50. [PMID: 18673445 DOI: 10.1111/j.1471-4159.2008.05595.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by motoneuron degeneration, resulting in muscle paralysis and death, typically within 1-5 years of diagnosis. Although the pathogenesis of ALS remains unclear, there is evidence for the involvement of proteasome dysfunction and heat shock proteins in the disease. We have previously shown that treatment with a co-inducer of the heat shock response called arimoclomol is effective in the SOD(G93A) mouse model of ALS, delaying disease progression and extending the lifespan of SOD(G93A) mice (Kieran et al. 2004). However, this previous study only examined the effects arimoclomol when treatment was initiated in pre- or early symptomatic stages of the disease. Clearly, to be of benefit to the majority of ALS patients, any therapy must be effective after symptom onset. In order to establish whether post-symptomatic treatment with arimoclomol is effective, in this study we carried out a systematic assessment of different treatment regimes in SOD(G93A) mice. Treatment with arimoclomol from early (75 days) or late (90 days) symptomatic stages significantly improved muscle function. Treatment from 75 days also significantly increased the lifespan of SOD(G93A) mice, although treatment from 90 days has no significant effect on lifespan. The mechanism of action of arimoclomol involves potentiation of the heat shock response, and treatment with arimoclomol increased Hsp70 expression. Interestingly, this up-regulation in Hsp70 was accompanied by a decrease in the number of ubiquitin-positive aggregates in the spinal cord of treated SOD(G93A) mice, suggesting that arimoclomol directly effects protein aggregation and degradation.
Collapse
Affiliation(s)
- Bernadett Kalmar
- Institute of Neurology, University College London, Queen Square, London, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Changes in immunoreactivity of HSP60 and its neuroprotective effects in the gerbil hippocampal CA1 region induced by transient ischemia. Exp Neurol 2007; 208:247-56. [DOI: 10.1016/j.expneurol.2007.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 08/16/2007] [Accepted: 08/22/2007] [Indexed: 12/31/2022]
|
37
|
|
38
|
Noble EG, Ho R, Dzialoszynski T. Exercise is the primary factor associated with Hsp70 induction in muscle of treadmill running rats. Acta Physiol (Oxf) 2006; 187:495-501. [PMID: 16866780 DOI: 10.1111/j.1748-1716.2006.01591.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM The cytoprotective, inducible stress protein, Hsp70, increases in muscles of rodents subjected to strenuous treadmill running. Most treadmill running protocols employ negative reinforcement to encourage animals to exercise. As these stimuli may themselves activate stress responses, the present investigation was conducted to determine their contribution to the exercise-induced expression of Hsp70. METHODS Twenty-one male Sprague-Dawley rats were randomly divided into three equal groups including an exercise group (EX), which ran on a treadmill at 30 m min(-1) for 60 min; a stimulation group (STIM), which was not allowed to run, but was stimulated with compressed air and mild electric shock concurrently with their exercising cohort; and a control group (CON), which was housed in the treadmill room during the exercise period. Animals were killed 24 h post-experiment and hearts (H), soleii (SOL) and white gastrocnemii (WG) were harvested and analysed for Hsp70 content (mean% +/- SEM of standard). RESULTS Significant increases in Hsp70 (as a % of standard) were noted in H and WG (H = 77.4 +/- 8.5; WG = 93.9 +/- 18.4) of EX but not in STIM (H = 32.5 +/- 4.6; WG = 32.0 +/- 3.4) or CON (H = 20.5 +/- 3.7; WG = 32.4 +/- 7.4). In SOL, Hsp70 expression in EX (126.7 +/- 6.2) was different from STIM (98.3 +/- 10.9) only. This occurred, despite the fact that all groups were exposed to a stressful environment and exhibited elevated (P < 0.001) temperatures (EX -41.2 +/- 0.1 degrees C > STIM -40.5 +/- 0.2 degrees C > CON -39.0 +/- 0.1 degrees C) indicative of a general stress response. CONCLUSIONS These data suggest that exercise per se, rather than environmental conditions or noxious stimuli, are responsible for the induction of Hsp70 in rat muscle during treadmill running.
Collapse
Affiliation(s)
- E G Noble
- Faculty of Health Sciences, School of Kinesiology, The University of Western Ontario, London, ON, Canada.
| | | | | |
Collapse
|
39
|
Abstract
Oxidative folding in the endoplasmic reticulum is accomplished by a group of oxidoreductases where the protein disulfide isomerase (PDI) plays a key role. Structurally, redox-active PDI domains, like many other enzymes utilizing cysteine chemistry, adopt characteristic thioredoxin folds. However, this structural unit is not necessarily associated with the redox function and the current review focuses on the interesting example of a loss-of-function PDI-like protein from the endoplasmic reticulum, ERp29. ERp29 shares a common predecessor with PDI; however in the course of divergent evolution it has lost a hallmark active site motif of redox enzymes but retained the characteristic structural fold in one of its domains. Although the functional characterization of ERp29 is far from completion, all available data point to its important role in the early secretory pathway and allow tentative categorization as a secretion factor/escort protein of a broad profile.
Collapse
Affiliation(s)
- Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
40
|
Tolson JK, Dix DJ, Voellmy RW, Roberts SM. Increased hepatotoxicity of acetaminophen in Hsp70i knockout mice. Toxicol Appl Pharmacol 2005; 210:157-62. [PMID: 16280147 DOI: 10.1016/j.taap.2005.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 09/30/2005] [Accepted: 10/06/2005] [Indexed: 12/30/2022]
Abstract
The effect of the inducible forms of 70 kDa heat shock protein (Hsp70i) on acetaminophen (APAP) hepatotoxicity was assessed in an Hsp70i knockout mouse model. Absence of the Hsp70i protein in liver was verified by monitoring Hsp levels in knockout and control mice after heat stress (41.5 degrees C water bath immersion for 30 min). Hsp70i knockout mice were more susceptible to APAP-induced hepatotoxicity than controls, as indicated by elevated serum alanine aminotransferase activities 24 and 48 h after the APAP dose. Increased APAP hepatotoxicity in knockout mice was verified by morphological evaluation of liver sections. The difference in toxic response to APAP between knockout and control strain mice could not be attributed to differences in APAP bioactivation, assessed by measurement of CYP2E1 and glutathione S-transferase activities, hepatic nonprotein sulfhydryl content, or covalent binding of reactive APAP metabolites to proteins. Pretreatment with transient hyperthermia to produce a general upregulation of Hsps resulted in decreased APAP hepatotoxicity in both the knockout and control strains. Among thermally-pretreated mice, hepatotoxicity of APAP was greater in the knockouts compared with the control strain. These observations suggest that increased Hsp70i expression in response to APAP acts to limit the extent of tissue injury. Results further suggest that other factors related to heat stress can also contribute to protection against APAP toxicity.
Collapse
Affiliation(s)
- J Keith Tolson
- J. Hillis Miller Health Science Center, Department of Pharmacology and Therapeutics, University of Florida, Gainesville 32611, USA
| | | | | | | |
Collapse
|
41
|
VanSlyke JK, Musil LS. Cytosolic stress reduces degradation of connexin43 internalized from the cell surface and enhances gap junction formation and function. Mol Biol Cell 2005; 16:5247-57. [PMID: 16135529 PMCID: PMC1266423 DOI: 10.1091/mbc.e05-05-0415] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The protein constituents of gap junctions, connexins, have a rapid basal rate of degradation even after transport to the cell surface. We have used cell surface biotinylation to label gap junction-unassembled plasma membrane pools of connexin43 (Cx43) and show that their degradation is inhibited by mild hyperthermia, oxidative stress, and proteasome inhibitors. Cytosolic stress does not perturb endocytosis of biotinylated Cx43, but instead it seems to interfere with its targeting and/or transport to the lysosome, possibly by increasing the level of unfolded protein in the cytosol. This allows more Cx43 molecules to recycle to the cell surface, where they are assembled into long-lived, functional gap junctions in otherwise gap junction assembly-inefficient cells. Cytosolic stress also slowed degradation of biotinylated Cx43 in gap junction assembly-efficient normal rat kidney fibroblasts, and reduced the rate at which gap junctions disappeared from cell interfaces under conditions that blocked transport of nascent connexin molecules to the plasma membrane. These data demonstrate that degradation from the cell surface can be down-regulated by physiologically relevant forms of stress. For connexins, this may serve to enhance or preserve gap junction-mediated intercellular communication even under conditions in which protein synthesis and/or intracellular transport are compromised.
Collapse
Affiliation(s)
- Judy K VanSlyke
- Division of Molecular Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
42
|
Afanas'ev SA, Pavlyukova EN, Akhmedov SD, Karpov RS. Initiation of stress protein synthesis in the myocardium of coronary patients. Bull Exp Biol Med 2005; 138:365-8. [PMID: 15665946 DOI: 10.1007/s10517-005-0043-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied myocardial biopsy specimens from the right atrium of cardiological patients with different degree of cardiac ischemia obtained during surgery. No inducible HSP70 stress proteins were detected in atrial cardiomyocytes of patients with the WPW syndrome without signs of ischemic injuries of the heart. These proteins were detected in the myocardium of coronary patients. Their expression was more intense in patients with coronary disease paralleled by the development of myocardial dyskinesia. Two-dimensional electrophoresis showed only acid HSP70 but no alkaline isoforms in coronary patients even with pronounced dyskinesia. Presumably, alkaline HSP70 isoforms are present in the myocardium directly involved in the dyskinesia zone.
Collapse
Affiliation(s)
- S A Afanas'ev
- Institute of Cardiology, Tomsk Research Center, Siberian Division, Russian Academy of Medical Sciences
| | | | | | | |
Collapse
|
43
|
Pedersen ME, Øzdas ØB, Farstad W, Tverdal A, Olsaker I. Effects of bovine oviduct epithelial cells, fetal calf serum and bovine serum albumin on gene expression in single bovine embryos produced in the synthetic oviduct fluid culture system. Reprod Fertil Dev 2005; 17:751-7. [PMID: 16476201 DOI: 10.1071/rd05048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 09/27/2005] [Indexed: 11/23/2022] Open
Abstract
In this study the synthetic oviduct fluid (SOF) system with bovine oviduct epithelial cell (BOEC) co-culture is compared with an SOF system with common protein supplements. One thousand six hundred bovine embryos were cultured in SOF media supplemented with BOEC, fetal calf serum (FCS) and bovine serum albumin (BSA). Eight different culture groups were assigned according to the different supplementation factors. Developmental competence and the expression levels of five genes, namely glucose transporter-1 (Glut-1), heat shock protein 70 (HSP), connexin43 (Cx43), β-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), analysed as mRNA by using reverse transcription–polymerase chain reaction, were measured on bovine embryos cultured for 9 days. Gene expression of these in vitro-produced embryos was compared with the gene expression of in vivo-produced embryos. There was no significant difference found in embryo developmental competence between the Day 9 embryos in BOEC co-culture, FCS and BSA supplements in SOF media. However, differences in gene expression were observed. With respect to gene expression in in vivo and in vitro embryos, BOEC co-culture affected the same genes as did supplementation with FCS and BSA. HSP was the only gene that differed significantly between in vitro and in vivo embryos. When the different in vitro groups were compared, a significant difference between the BOEC co-culture and the FCS supplementation groups due to Glut-1 expression was observed.
Collapse
|
44
|
Zhong B, Zhou Q, Toivola DM, Tao GZ, Resurreccion EZ, Omary MB. Organ-specific stress induces mouse pancreatic keratin overexpression in association with NF-kappaB activation. J Cell Sci 2004; 117:1709-19. [PMID: 15075232 DOI: 10.1242/jcs.01016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Keratin polypeptides 8 and 18 (K8/K18) are the major intermediate filament proteins of pancreatic acinar cells and hepatocytes. Pancreatic keratin function is unknown, whereas hepatocyte keratins protect from mechanical and non-mechanical forms of stress. We characterized steady-state pancreatic keratin expression in Balb/c mice after caerulein and choline-deficient ethionine-supplemented diet (CDD), or on exposure to the generalized stresses of heat and water immersion. Keratins were studied at the protein, RNA and organizational levels. Isolated acini were used to study the role of nuclear factor (NF)-kappaB using selective inhibitors. Keratins were found to be abundant proteins making up 0.2%, 0.3% and 0.5% of the total cellular protein of pancreas, liver and small intestine, respectively. Caerulein and CDD caused a threefold transcription-mediated overall increase in K8/K18/K19/K20 proteins. Keratin overexpression begins on tissue recovery, peaks 2 days after caerulein injection, or 1 day after CDD discontinuation, and returns to basal levels after 10 days. K19/K20-containing cytoplasmic filaments are nearly absent pre-injury but form post-injury then return to their original membrane-proximal distribution after 10 days. By contrast, generalized stresses of heat or water-immersion stress do not alter keratin expression levels. Caerulein-induced keratin overexpression is associated with NF-kappaB activation when tested using ex vivo acinar cell cultures. In conclusion, keratins are abundant proteins that can behave as stress proteins in response to tissue-specific but not generalized forms of injury. Pancreatic keratin overexpression is associated with NF-kappaB activation and may serve unique functions in acinar or ductal cell response to injury.
Collapse
Affiliation(s)
- Bihui Zhong
- VA Palo Alto Health Care System, Department of Medicine, 3801 Miranda Avenue, 154J, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
45
|
Initiation of stress protein synthesis in the myocardium of coronary patients. Bull Exp Biol Med 2004. [DOI: 10.1007/s10517-004-0013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Bajoghli B, Aghaallaei N, Heimbucher T, Czerny T. An artificial promoter construct for heat-inducible misexpression during fish embryogenesis. Dev Biol 2004; 271:416-30. [PMID: 15223344 DOI: 10.1016/j.ydbio.2004.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Revised: 04/13/2004] [Accepted: 04/15/2004] [Indexed: 11/21/2022]
Abstract
Beside spatial distribution, timing of gene expression is a key parameter controlling gene function during embryonic development. Gain-of-function experiments can therefore have quite opposing results, depending on the time of gene activation. Induction techniques are necessary to control timing in these experiments from outside of the organism. Natural heat shock promoters constitute a simple inducible misexpression system, the main disadvantage is a high background level of expression. We present here a new heat stress-inducible bidirectional promoter consisting of multimerized heat shock elements (HSE). The simplified architecture of this promoter largely improves the properties needed for an efficient induction system: dramatically reduced background activity, improved inducibility, and loss of all tissue specific components. Based on this new artificial promoter, we present a transient induction system for fish embryos. Application of this new induction system for Fgf8 misexpression during embryonic development reveals different windows of competence during eye development. A dramatic early phenotype resulting in loss of the eyes is observed for conventional mRNA injection. Later activation, by using our inducible promoter, uncovers different eye phenotypes like cyclopic eyes. Even after 14 days, an efficient heat stress response could be evoked in the injected embryos. The HSE promoter therefore represents a new artificial heat shock promoter with superior properties, making possible transient experiments with inducible misexpression at various stages of development.
Collapse
Affiliation(s)
- Baubak Bajoghli
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | | | | | | |
Collapse
|
47
|
McMillan Carr V, Ring G, Youngentob SL, Schwob JE, Farbman AI. Altered epithelial density and expansion of bulbar projections of a discrete HSP70 immunoreactive subpopulation of rat olfactory receptor neurons in reconstituting olfactory epithelium following exposure to methyl bromide. J Comp Neurol 2004; 469:475-93. [PMID: 14755530 DOI: 10.1002/cne.11020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A previously described subpopulation of rat olfactory receptor neurons, the 2A4(+)ORNs, is 1) distinguished by intense constitutive cytoplasmic immunoreactivity to antibodies to the 70-kD heat shock protein (HSP70); 2) occurs sparsely but consistently through ventral and lateral olfactory epithelium (OE); and 3) projects to just two to three consistently located glomeruli in each olfactory bulb (OB) (Carr et al. [1994] J Comp Neurol 348:150-160). Immunoreactivity appears not to be stress-related. To examine the persistence of these features following destruction and reconstitution of the OE, rats were subjected to methyl bromide-induced OE lesion (Schwob et al. [1995] J Comp Neurol 59:15-37; Schwob et al. [1999] J Comp Neurol 412:439-457] and their OE and OBs examined with antibodies to HSP70 6-10.5 weeks postlesion. Lesioned OE showed significantly increased 2A4(+)ORN densities but no alteration of 2A4(+)ORN zonal distribution. The OBs of lesioned animals showed marked expansions of 2A4(+)ORN bulbar projections, with 2-15-fold increases in numbers of glomeruli showing 2A4(+)axons, and projection expansions were greater in animals maintained on chronic food restriction prior to lesioning. Examination of archival 5-month post-MeBr lesion material indicates that altered projection patterns are maintained.
Collapse
Affiliation(s)
- Virginia McMillan Carr
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | |
Collapse
|
48
|
Tamura S, Kinouchi H, Izaki K, Okubo A, Sugawara T, Kunizuka H, Mizoi K. Induction of heat shock protein 40 and GrpE mRNAs following transient focal cerebral ischemia in the rat. Brain Res 2003; 960:277-81. [PMID: 12505684 DOI: 10.1016/s0006-8993(02)03887-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cerebral ischemia is associated with the induction of several heat shock proteins (HSPs), but the effects on HSP40 and GrpE are less clear. The present study investigated the induction of Hsp40 and GrpE mRNAs following 30 min of middle cerebral artery occlusion in the rat model. Reverse transcription-polymerase chain reaction (PCR) and in situ hybridization analyses showed significant induction of both mRNAs in the ischemic cortex. These results demonstrate the synergic induction of HSP70 molecular chaperone machinery in cerebral ischemia.
Collapse
Affiliation(s)
- Shin'ya Tamura
- Department of Neurosurgery, Akita University School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Kato K, Ito H, Inaguma Y. Expression and phosphorylation of mammalian small heat shock proteins. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 28:129-50. [PMID: 11908056 DOI: 10.1007/978-3-642-56348-5_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Kanefusa Kato
- Department of Biochemistry, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai, Aichi 480-0392, Japan
| | | | | |
Collapse
|
50
|
Kabakov AE, Budagova KR, Latchman DS, Kampinga HH. Stressful preconditioning and HSP70 overexpression attenuate proteotoxicity of cellular ATP depletion. Am J Physiol Cell Physiol 2002; 283:C521-34. [PMID: 12107062 DOI: 10.1152/ajpcell.00503.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat H9c2 myoblasts were preconditioned by heat or metabolic stress followed by recovery under normal conditions. Cells were then subjected to severe ATP depletion, and stress-associated proteotoxicity was assessed on 1) the increase in a Triton X-100-insoluble component of total cellular protein and 2) the rate of inactivation and insolubilization of transfected luciferase with cytoplasmic or nuclear localization. Both heat and metabolic preconditioning elevated the intracellular heat shock protein 70 (HSP70) level and reduced cell death after sustained ATP depletion without affecting the rate and extent of ATP decrease. Each preconditioning attenuated the stress-induced insolubility among total cellular protein as well as the inactivation and insolubilization of cytoplasmic and nuclear luciferase. Transient overexpression of human HSP70 in cells also attenuated both the cytotoxic and proteotoxic effects of ATP depletion. Quercetin, a blocker of stress-responsive HSP expression, abolished the effects of stressful preconditioning but did not influence the effects of overexpressed HSP70. Analyses of the cellular fractions revealed that both the stress-preconditioned and HSP70-overexpressing cells retain the soluble pool of HSP70 longer during ATP depletion. Larger amounts of other proteins coimmunoprecipitated with excess HSP70 compared with control cells deprived of ATP. This is the first demonstration of positive correlation between chaperone activity within cells and their viability in the context of ischemia-like stress.
Collapse
|