1
|
Ceddia RP, Zurawski Z, Thompson Gray A, Adegboye F, McDonald-Boyer A, Shi F, Liu D, Maldonado J, Feng J, Li Y, Alford S, Ayala JE, McGuinness OP, Collins S, Hamm HE. Gβγ-SNAP25 exocytotic brake removal enhances insulin action, promotes adipocyte browning, and protects against diet-induced obesity. J Clin Invest 2023; 133:e160617. [PMID: 37561580 PMCID: PMC10541194 DOI: 10.1172/jci160617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gβγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gβγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gβγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gβγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gβγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.
Collapse
Affiliation(s)
- Ryan P. Ceddia
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dianxin Liu
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Sheila Collins
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Zhao G, Xu H, Li H, Zhang J, Gao J, Cai M, Wang H, Shi Y, Wang H. Regulatory Mechanisms of SNAP-25-Associated Insulin Release Revealed by Live-Cell Confocal and Single-Molecule Localization Imaging. Anal Chem 2022; 94:15307-15314. [DOI: 10.1021/acs.analchem.2c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guanfang Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
3
|
Hao X, Zhu B, Yang P, Dong D, Sahbaie P, Oliver PL, Shen WJ, Azhar S, Kraemer FB. SNAP25 mutation disrupts metabolic homeostasis, steroid hormone production and central neurobehavior. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166304. [PMID: 34826585 PMCID: PMC8759409 DOI: 10.1016/j.bbadis.2021.166304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE SNAP-25 is one of the key proteins involved in formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes that are at the core of hormonal secretion and synaptic transmission. Altered expression or function of SNAP-25 can contribute to the development of neuropsychiatric and metabolic disease. A dominant negative (DN) I67T missense mutation in the b-isoform of SNAP-25 (DN-SNAP25mut) mice leads to abnormal interactions within the SNARE complex and impaired exocytotic vesicle recycling, yet the significance of this mutation to any association between the central nervous system and metabolic homeostasis is unknown. METHODS Here we explored aspects of metabolism, steroid hormone production and neurobehavior of DN-SNAP25mut mice. RESULTS DN-SNAP25mut mice displayed enhanced insulin function through increased Akt phosphorylation, alongside increased adrenal and gonadal hormone production. In addition, increased anxiety behavior and beigeing of white adipose tissue with increased energy expenditure were observed in mutants. CONCLUSIONS Our results show that SNAP25 plays an important role in bridging central neurological systems with peripheral metabolic homeostasis, and provide potential insights between metabolic disease and neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Xiao Hao
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Endocrinology, First Affiliated Hospital of the Medical College of Zhengzhou University, Zhengzhou, China
| | - Bing Zhu
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pinglin Yang
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Orthopedics, Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, Shaanxi, China
| | - Dachuan Dong
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peyman Sahbaie
- Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States
| | - Peter L Oliver
- Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, United Kingdom
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States.
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States.
| |
Collapse
|
4
|
Oppenländer L, Palit S, Stemmer K, Greisle T, Sterr M, Salinno C, Bastidas-Ponce A, Feuchtinger A, Böttcher A, Ansarullah, Theis FJ, Lickert H. Vertical sleeve gastrectomy triggers fast β-cell recovery upon overt diabetes. Mol Metab 2021; 54:101330. [PMID: 34500108 PMCID: PMC8487975 DOI: 10.1016/j.molmet.2021.101330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The effectiveness of bariatric surgery in restoring β-cell function has been described in type-2 diabetes (T2D) patients and animal models for years, whereas the mechanistic underpinnings are largely unknown. The possibility of vertical sleeve gastrectomy (VSG) to rescue far-progressed, clinically-relevant T2D and to promote β-cell recovery has not been investigated on a single-cell level. Nevertheless, characterization of the heterogeneity and functional states of β-cells after VSG is a fundamental step to understand mechanisms of glycaemic recovery and to ultimately develop alternative, less-invasive therapies. METHODS We performed VSG in late-stage diabetic db/db mice and analyzed the islet transcriptome using single-cell RNA sequencing (scRNA-seq). Immunohistochemical analyses and quantification of β-cell area and proliferation complement our findings from scRNA-seq. RESULTS We report that VSG was superior to calorie restriction in late-stage T2D and rapidly restored normoglycaemia in morbidly obese and overt diabetic db/db mice. Single-cell profiling of islets of Langerhans showed that VSG induced distinct, intrinsic changes in the β-cell transcriptome, but not in that of α-, δ-, and PP-cells. VSG triggered fast β-cell redifferentiation and functional improvement within only two weeks of intervention, which is not seen upon calorie restriction. Furthermore, VSG expanded β-cell area by means of redifferentiation and by creating a proliferation competent β-cell state. CONCLUSION Collectively, our study reveals the superiority of VSG in the remission of far-progressed T2D and presents paths of β-cell regeneration and molecular pathways underlying the glycaemic benefits of VSG.
Collapse
Affiliation(s)
- Lena Oppenländer
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Subarna Palit
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany
| | - Kerstin Stemmer
- Institute of Diabetes and Obesity, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, 35392, Giessen, Germany
| | - Tobias Greisle
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Annette Feuchtinger
- Core Facility Pathology and Tissue Analytics, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Ansarullah
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, 85748, Garching, Germany; Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, 85764, Neuherberg, Germany; Technical University of Munich, School of Medicine, 81675, Munich, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany; Department of Medicine, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
5
|
Dudek KD, Osipovich AB, Cartailler JP, Gu G, Magnuson MA. Insm1, Neurod1, and Pax6 promote murine pancreatic endocrine cell development through overlapping yet distinct RNA transcription and splicing programs. G3-GENES GENOMES GENETICS 2021; 11:6358139. [PMID: 34534285 PMCID: PMC8527475 DOI: 10.1093/g3journal/jkab303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022]
Abstract
Insm1, Neurod1, and Pax6 are essential for the formation and function of pancreatic endocrine cells. Here, we report comparative immunohistochemical, transcriptomic, functional enrichment, and RNA splicing analyses of these genes using gene knock-out mice. Quantitative immunohistochemical analysis confirmed that elimination of each of these three factors variably impairs the proliferation, survival, and differentiation of endocrine cells. Transcriptomic analysis revealed that each factor contributes uniquely to the transcriptome although their effects were overlapping. Functional enrichment analysis revealed that genes downregulated by the elimination of Insm1, Neurod1, and Pax6 are commonly involved in mRNA metabolism, chromatin organization, secretion, and cell cycle regulation, and upregulated genes are associated with protein degradation, autophagy, and apoptotic process. Elimination of Insm1, Neurod1, and Pax6 impaired expression of many RNA-binding proteins thereby altering RNA splicing events, including for Syt14 and Snap25, two genes required for insulin secretion. All three factors are necessary for normal splicing of Syt14, and both Insm1 and Pax6 are necessary for the processing of Snap25. Collectively, these data provide new insights into how Insm1, Neurod1, and Pax6 contribute to the formation of functional pancreatic endocrine cells.
Collapse
Affiliation(s)
- Karrie D Dudek
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Guoquing Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Veluthakal R, Oh E, Ahn M, Chatterjee Bhowmick D, Thurmond DC. Syntaxin 4 Mediates NF-κB Signaling and Chemokine Ligand Expression via Specific Interaction With IκBβ. Diabetes 2021; 70:889-902. [PMID: 33526588 PMCID: PMC7980198 DOI: 10.2337/db20-0868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Enrichment of human islets with syntaxin 4 (STX4) improves functional β-cell mass through a nuclear factor-κB (NF-κB)-dependent mechanism. However, the detailed mechanisms underlying the protective effect of STX4 are unknown. For determination of the signaling events linking STX4 enrichment and downregulation of NF-κB activity, STX4 was overexpressed in human islets, EndoC-βH1 and INS-1 832/13 cells in culture, and the cells were challenged with the proinflammatory cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ individually and in combination. STX4 expression suppressed cytokine-induced proteasomal degradation of IκBβ but not IκBα. Inhibition of IKKβ prevented IκBβ degradation, suggesting that IKKβ phosphorylates IκBβ. Moreover, the IKKβ inhibitor, as well as a proteosomal degradation inhibitor, prevented the loss of STX4 caused by cytokines. This suggests that STX4 may be phosphorylated by IKKβ in response to cytokines, targeting STX4 for proteosomal degradation. Expression of a stabilized form of STX4 further protected IκBβ from proteasomal degradation, and like wild-type STX4, stabilized STX4 coimmunoprecipitated with IκBβ and the p50-NF-κB. This work proposes a novel pathway wherein STX4 regulates cytokine-induced NF-κB signaling in β-cells via associating with and preventing IκBβ degradation, suppressing chemokine expression, and protecting islet β-cells from cytokine-mediated dysfunction and demise.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Diti Chatterjee Bhowmick
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, Duarte, CA
| |
Collapse
|
7
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Liang T, Qin T, Kang F, Kang Y, Xie L, Zhu D, Dolai S, Greitzer-Antes D, Baker RK, Feng D, Tuduri E, Ostenson CG, Kieffer TJ, Banks K, Pessin JE, Gaisano HY. SNAP23 depletion enables more SNAP25/calcium channel excitosome formation to increase insulin exocytosis in type 2 diabetes. JCI Insight 2020; 5:129694. [PMID: 32051343 PMCID: PMC7098801 DOI: 10.1172/jci.insight.129694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 01/15/2020] [Indexed: 01/05/2023] Open
Abstract
SNAP23 is the ubiquitous SNAP25 isoform that mediates secretion in non-neuronal cells, similar to SNAP25 in neurons. However, some secretory cells like pancreatic islet β cells contain an abundance of both SNAP25 and SNAP23, where SNAP23 is believed to play a redundant role to SNAP25. We show that SNAP23, when depleted in mouse β cells in vivo and human β cells (normal and type 2 diabetes [T2D] patients) in vitro, paradoxically increased biphasic glucose-stimulated insulin secretion corresponding to increased exocytosis of predocked and newcomer insulin granules. Such effects on T2D Goto-Kakizaki rats improved glucose homeostasis that was superior to conventional treatment with sulfonylurea glybenclamide. SNAP23, although fusion competent in slower secretory cells, in the context of β cells acts as a weak partial fusion agonist or inhibitory SNARE. Here, SNAP23 depletion promotes SNAP25 to bind calcium channels more quickly and longer where granule fusion occurs to increase exocytosis efficiency. β Cell SNAP23 antagonism is a strategy to treat diabetes.
Collapse
Affiliation(s)
- Tao Liang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tairan Qin
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fei Kang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Youhou Kang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Xie
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dan Zhu
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Subhankar Dolai
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dafna Greitzer-Antes
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Robert K. Baker
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daorong Feng
- Michael F. Price Center for Genetic and Translational Medicine, Department of Medicine and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eva Tuduri
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claes-Goran Ostenson
- Department of Molecular Medicine and,Department of Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kate Banks
- Division of Comparative Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey E. Pessin
- Michael F. Price Center for Genetic and Translational Medicine, Department of Medicine and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert Y. Gaisano
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Ferreira SM, Costa-Júnior JM, Kurauti MA, Leite NC, Ortis F, Rezende LF, Barbosa HC, Boschero AC, Santos GJ. ARHGAP21 Acts as an Inhibitor of the Glucose-Stimulated Insulin Secretion Process. Front Endocrinol (Lausanne) 2020; 11:599165. [PMID: 33324349 PMCID: PMC7726208 DOI: 10.3389/fendo.2020.599165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
ARHGAP21 is a RhoGAP protein implicated in the modulation of insulin secretion and energy metabolism. ARHGAP21 transient-inhibition increase glucose-stimulated insulin secretion (GSIS) in neonatal islets; however, ARHGAP21 heterozygote mice have a reduced insulin secretion. These discrepancies are not totally understood, and it might be related to functional maturation of beta cells and peripheral sensitivity. Here, we investigated the real ARHGAP21 role in the insulin secretion process using an adult mouse model of acute ARHGAP21 inhibition, induced by antisense. After ARHGAP21 knockdown induction by antisense injection in 60-day old male mice, we investigated glucose and insulin tolerance test, glucose-induced insulin secretion, glucose-induced intracellular calcium dynamics, and gene expression. Our results showed that ARHGAP21 acts negatively in the GSIS of adult islet. This effect seems to be due to the modulation of important points of insulin secretion process, such as the energy metabolism (PGC1α), Ca2+ signalization (SYTVII), granule-extrusion (SNAP25), and cell-cell interaction (CX36). Therefore, based on these finds, ARHGAP21 may be an important target in Diabetes Mellitus (DM) treatment.
Collapse
Affiliation(s)
- Sandra M. Ferreira
- Obestity and Comorbidities Research Center/Biology Institute, University State of Campinas (UNICAMP), Campinas, Brazil
| | - José M. Costa-Júnior
- Obestity and Comorbidities Research Center/Biology Institute, University State of Campinas (UNICAMP), Campinas, Brazil
| | - Mirian A. Kurauti
- Departament Physiological Sciences, University State of Maringá (UEM), Maringá, Brazil
| | - Nayara C. Leite
- Obestity and Comorbidities Research Center/Biology Institute, University State of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Ortis
- Department of Cellular Biology and Development, Institute of Biomedical Sciences, University State of São Paulo (USP), São Paulo, Brazil
| | - Luiz F. Rezende
- Departament of Physiopathology, University State of Montes Claros (UNIMONTES), Montes Claros, Brazil
| | - Helena C. Barbosa
- Obestity and Comorbidities Research Center/Biology Institute, University State of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C. Boschero
- Obestity and Comorbidities Research Center/Biology Institute, University State of Campinas (UNICAMP), Campinas, Brazil
| | - Gustavo J. Santos
- Departament of Physiological Sciences, Center for Biological Sciences, University Federal of Santa Catarina (UFSC), Florianópolis, Brazil
- *Correspondence: Gustavo J. Santos,
| |
Collapse
|
10
|
Guan F, Zhang T, Han W, Zhu L, Ni T, Lin H, Liu D, Chen G, Xiao J, Li T. Relationship of SNAP25 variants with schizophrenia and antipsychotic-induced weight change in large-scale schizophrenia patients. Schizophr Res 2020; 215:250-255. [PMID: 31653583 DOI: 10.1016/j.schres.2019.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/19/2019] [Accepted: 09/23/2019] [Indexed: 01/16/2023]
Abstract
The SNAP25 gene is involved in the development of antipsychotic-induced weight gain (AIWG) or metabolic syndrome during antipsychotics use in Americans and Europeans, but its role in Asians remains unknown. To identify common variants in SNAP25 associated with schizophrenia and evaluate their effects on AIWG and antipsychotic responses in Han Chinese individuals with schizophrenia, we conducted a two-stage case-control study of 3,243 patients and 6,154 healthy controls. 2128 inpatients in the replication stage have received conventional treatment with an antipsychotic monotherapy (Haloperidol, Olanzapine or Risperidone) for 10 weeks at least. Weight change, antipsychotic responses and metabolic indices change were assessed during treatments. Three SNPs were significantly associated with schizophrenia in samples (rs6039769, P = 6.64 × 10-7; rs3787283, P = 0.004283; rs3746544, P = 2.51 × 10-6). Of these, rs6039769 is a novel schizophrenia-associated SNP and is uncorrelated with the other two variants, which have previously been associated with schizophrenia in European-ancestry samples. Rs6039769 was significantly associated with AIWG (P < 0.001), but not with antipsychotic responses or metabolic indices. Another two SNPs were not associated with AIWG or antipsychotic responses or metabolic indices. Overall, there were significant differences in antipsychotic responses and metabolic indices among the three treatment groups. Our findings suggest that SNAP25 gene may contribute to the susceptibility of AIWG and even metabolic disturbances. A prior identification of high-risk of patients with rs6039769 would contribute to a better precision of the pharmacological treatment.
Collapse
Affiliation(s)
- Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Wei Han
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Li Zhu
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Tong Ni
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Huali Lin
- Xi'an Mental Health Center, 15 Yanyin Road, Xi'an, Shaanxi, 710086, China
| | - Dan Liu
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Gang Chen
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Department of Forensic Pathology, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jing Xiao
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Department of Forensic Pathology, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Tao Li
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China; Department of Forensic Pathology, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
11
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
12
|
SNAP-25 in Major Psychiatric Disorders: A Review. Neuroscience 2019; 420:79-85. [PMID: 30790667 DOI: 10.1016/j.neuroscience.2019.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 01/10/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Synaptosomal Associated Protein-25 kilodaltons (SNAP-25) is an integral member of the SNARE complex. This complex is essential for calcium-triggered synaptic vesicular fusion and release of neurotransmitters into the synaptic cleft. In addition to neurotransmission, SNAP-25 is associated with insulin release, the regulation of intracellular calcium, and neuroplasticity. Because of SNAP-25's varied and crucial biological roles, the consequences of changes in this protein can be seen in both the central nervous system and the periphery. In this review, we will look at the published literature from human genetic, postmortem, and animal studies involving SNAP-25. The accumulated data indicate that SNAP-25 may be linked with some symptoms associated with a variety of psychiatric disorders. These disorders include bipolar disorder, schizophrenia, major depressive disorder, attention deficit hyperactivity disorder, autism, alcohol use disorder, and dementia. There are also data suggesting SNAP-25 may be involved with non-psychiatric seizures and metabolic disorders. We believe investigation of SNAP-25 is important for understanding both normal behavior and some aspects of the pathophysiology of behavior seen with psychiatric disorders. The wealth of information from both animal and human studies on SNAP-25 offers an excellent opportunity to use a bi-directional research approach. Hypotheses generated from genetically manipulated mice can be directly tested in human postmortem tissue, and, conversely, human genetic and postmortem findings can improve and validate animal models for psychiatric disorders.
Collapse
|
13
|
Oh E, Ahn M, Afelik S, Becker TC, Roep BO, Thurmond DC. Syntaxin 4 Expression in Pancreatic β-Cells Promotes Islet Function and Protects Functional β-Cell Mass. Diabetes 2018; 67:2626-2639. [PMID: 30305365 PMCID: PMC6245223 DOI: 10.2337/db18-0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
Syntaxin 4 (Stx4) enrichment in human and mouse islet grafts improves the success of transplants in reversing streptozotocin (STZ)-induced diabetes in mice, although the underlying molecular mechanisms remain elusive. Toward a further understanding of this, human islets and inducible transgenic mice that selectively overexpress Stx4 in islet β-cells (βTG-Stx4) were challenged with proinflammatory stressors in vitro and in vivo. Remarkably, βTG-Stx4 mice resisted the loss of β-cell mass and the glucose intolerance that multiple low doses of STZ induce. Under standard conditions, glucose tolerance was enhanced and mice maintained normal fasting glycemia and insulinemia. Conversely, Stx4 heterozygous knockout mice succumbed rapidly to STZ-induced glucose intolerance compared with their wild-type littermates. Human islet β-cells overexpressing Stx4 exhibited enhanced insulin secretory capability; resilience against proinflammatory cytokine-induced apoptosis; and reduced expression of the CXCL9, CXCL10, and CXCL11 genes coordinate with decreased activation/nuclear localization of nuclear factor-κB. Finding ways to boost Stx4 expression presents a novel potential therapeutic avenue for promoting islet function and preserving β-cell mass.
Collapse
Affiliation(s)
- Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA
| | - Solomon Afelik
- Department of Surgery/Division of Transplantation, University of Illinois at Chicago, Chicago, IL
| | - Thomas C Becker
- Department of Internal Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
14
|
Kuwano N, Kato TA, Mitsuhashi M, Sato-Kasai M, Shimokawa N, Hayakawa K, Ohgidani M, Sagata N, Kubo H, Sakurai T, Kanba S. Neuron-related blood inflammatory markers as an objective evaluation tool for major depressive disorder: An exploratory pilot case-control study. J Affect Disord 2018; 240:88-98. [PMID: 30059939 DOI: 10.1016/j.jad.2018.07.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/31/2018] [Accepted: 07/14/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Neuroinflammation is suggested to be a crucial factor in the pathophysiology of major depressive disorder (MDD). Analysis of neuron-derived exosomes (NDE) in peripheral blood has recently been highlighted to reveal the pathophysiology of brain diseases without using brain biopsy. Currently, human NDE studies require a considerable amount of peripheral blood to measure multiple substances inside exosomes. Previously, NDE-based clinical studies focusing on MDD have not been reported. METHODS As an exploratory pilot case-control study between healthy controls (HC) and drug-free MDD patients (each; N = 34), we searched for NDE-related blood biomarkers with a small amount of peripheral blood using a novel sandwich immunoassay between anti-neuron antibody and antibodies against CD81 (an exosome marker) and against other proteins related to neuroinflammation and synaptic functions. RESULTS Most neuron-related blood biomarkers had moderately to strongly positive correlation with CD81 (NDE), thus we normalized the above biomarkers by CD81 (quantity of each biomarker/CD81) to predict NDE-related blood substances. Interleukin 34 (IL34)/CD81 levels were significantly higher in MDD group compared to HC group. Synaptophysin (SYP), SYP/CD81, and tumor necrosis factor receptor 1 (TNFR1)/CD81 were positively correlated with severities of depression and/or various sub-symptoms. LIMITATIONS We did not actually extract NDE from peripheral blood. CONCLUSIONS Using a small amount of peripheral blood, we have successfully detected possible NDE-related blood biomarkers. This is the first study to suggest that not only SYP and TNFR1 but also IL34 are important blood biomarkers for patients with MDD. Further studies are warranted to evaluate the present study.
Collapse
Affiliation(s)
- Nobuki Kuwano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | - Mina Sato-Kasai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Norihiro Shimokawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kohei Hayakawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroaki Kubo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Sakurai
- Faculty of Medicine/International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
15
|
Hussain S, Ringsevjen H, Schupp M, Hvalby Ø, Sørensen JB, Jensen V, Davanger S. A possible postsynaptic role for SNAP-25 in hippocampal synapses. Brain Struct Funct 2018; 224:521-532. [PMID: 30377802 DOI: 10.1007/s00429-018-1782-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022]
Abstract
The SNARE protein SNAP-25 is well documented as regulator of presynaptic vesicle exocytosis. Increasing evidence suggests roles for SNARE proteins in postsynaptic trafficking of glutamate receptors as a basic mechanism in synaptic plasticity. Despite these indications, detailed quantitative subsynaptic localization studies of SNAP-25 have never been performed. Here, we provide novel electron microscopic data of SNAP-25 localization in postsynaptic spines. In addition to its expected presynaptic localization, we show that the protein is also present in the postsynaptic density (PSD), the postsynaptic lateral membrane and on small vesicles in the postsynaptic cytoplasm. We further investigated possible changes in synaptic SNAP-25 protein expression after hippocampal long-term potentiation (LTP). Quantitative analysis of immunogold-labeled electron microscopy sections did not show statistically significant changes of SNAP-25 gold particle densities 1 h after LTP induction, indicating that local trafficking of SNAP-25 does not play a role in the early phases of LTP. However, the strong expression of SNAP-25 in postsynaptic plasma membranes suggests a function of the protein in postsynaptic vesicle exocytosis and a possible role in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- S Hussain
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - H Ringsevjen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - M Schupp
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ø Hvalby
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - J B Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - V Jensen
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - S Davanger
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway. .,Laboratory of Synaptic Plasticity, Division of Anatomy, Institute of Basic Medical Sciences, P.O.Box 1105, Blindern, 0317, Oslo, Norway.
| |
Collapse
|
16
|
Hastoy B, Clark A, Rorsman P, Lang J. Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium 2017; 68:45-61. [PMID: 29129207 DOI: 10.1016/j.ceca.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Secretory vesicle exocytosis is a fundamental biological event and the process by which hormones (like insulin) are released into the blood. Considerable progress has been made in understanding this precisely orchestrated sequence of events from secretory vesicle docked at the cell membrane, hemifusion, to the opening of a membrane fusion pore. The exact biophysical and physiological regulation of these events implies a close interaction between membrane proteins and lipids in a confined space and constrained geometry to ensure appropriate delivery of cargo. We consider some of the still open questions such as the nature of the initiation of the fusion pore, the structure and the role of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (SNARE) transmembrane domains and their influence on the dynamics and regulation of exocytosis. We discuss how the membrane composition and protein-lipid interactions influence the likelihood of the nascent fusion pore forming. We relate these factors to the hypothesis that fusion pore expansion could be affected in type-2 diabetes via changes in disease-related gene transcription and alterations in the circulating lipid profile. Detailed characterisation of the dynamics of the fusion pore in vitro will contribute to understanding the larger issue of insulin secretory defects in diabetes.
Collapse
Affiliation(s)
- Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Metabolic Research, Institute of Neuroscience and Physiology, University of Goteborg, Medicinaregatan 11, S-41309 Göteborg, Sweden
| | - Jochen Lang
- Laboratoire de Chimie et Biologie des Membranes et Nano-objets (CBMN), CNRS UMR 5248, Université de Bordeaux, Allée de Geoffrey St Hilaire, 33600 Pessac, France.
| |
Collapse
|
17
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
18
|
Aslamy A, Thurmond DC. Exocytosis proteins as novel targets for diabetes prevention and/or remediation? Am J Physiol Regul Integr Comp Physiol 2017; 312:R739-R752. [PMID: 28356294 DOI: 10.1152/ajpregu.00002.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Diabetes remains one of the leading causes of morbidity and mortality worldwide, affecting an estimated 422 million adults. In the US, it is predicted that one in every three children born as of 2000 will suffer from diabetes in their lifetime. Type 2 diabetes results from combinatorial defects in pancreatic β-cell glucose-stimulated insulin secretion and in peripheral glucose uptake. Both processes, insulin secretion and glucose uptake, are mediated by exocytosis proteins, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes, Sec1/Munc18 (SM), and double C2-domain protein B (DOC2B). Increasing evidence links deficiencies in these exocytosis proteins to diabetes in rodents and humans. Given this, emerging studies aimed at restoring and/or enhancing cellular levels of certain exocytosis proteins point to promising outcomes in maintaining functional β-cell mass and enhancing insulin sensitivity. In doing so, new evidence also shows that enhancing exocytosis protein levels may promote health span and longevity and may also harbor anti-cancer and anti-Alzheimer's disease capabilities. Herein, we present a comprehensive review of the described capabilities of certain exocytosis proteins and how these might be targeted for improving metabolic dysregulation.
Collapse
Affiliation(s)
- Arianne Aslamy
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Debbie C Thurmond
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and .,Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
19
|
Juan-Mateu J, Rech TH, Villate O, Lizarraga-Mollinedo E, Wendt A, Turatsinze JV, Brondani LA, Nardelli TR, Nogueira TC, Esguerra JLS, Alvelos MI, Marchetti P, Eliasson L, Eizirik DL. Neuron-enriched RNA-binding Proteins Regulate Pancreatic Beta Cell Function and Survival. J Biol Chem 2017; 292:3466-3480. [PMID: 28077579 PMCID: PMC5336178 DOI: 10.1074/jbc.m116.748335] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/10/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic beta cell failure is the central event leading to diabetes. Beta cells share many phenotypic traits with neurons, and proper beta cell function relies on the activation of several neuron-like transcription programs. Regulation of gene expression by alternative splicing plays a pivotal role in brain, where it affects neuronal development, function, and disease. The role of alternative splicing in beta cells remains unclear, but recent data indicate that splicing alterations modulated by both inflammation and susceptibility genes for diabetes contribute to beta cell dysfunction and death. Here we used RNA sequencing to compare the expression of splicing-regulatory RNA-binding proteins in human islets, brain, and other human tissues, and we identified a cluster of splicing regulators that are expressed in both beta cells and brain. Four of them, namely Elavl4, Nova2, Rbox1, and Rbfox2, were selected for subsequent functional studies in insulin-producing rat INS-1E, human EndoC-βH1 cells, and in primary rat beta cells. Silencing of Elavl4 and Nova2 increased beta cell apoptosis, whereas silencing of Rbfox1 and Rbfox2 increased insulin content and secretion. Interestingly, Rbfox1 silencing modulates the splicing of the actin-remodeling protein gelsolin, increasing gelsolin expression and leading to faster glucose-induced actin depolymerization and increased insulin release. Taken together, these findings indicate that beta cells share common splicing regulators and programs with neurons. These splicing regulators play key roles in insulin release and beta cell survival, and their dysfunction may contribute to the loss of functional beta cell mass in diabetes.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Tatiana H Rech
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Anna Wendt
- Lund University Diabetes Center, Unit of Islets Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, SE 205 02 Malmö, Sweden
| | | | - Letícia A Brondani
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Tarlliza R Nardelli
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Jonathan L S Esguerra
- Lund University Diabetes Center, Unit of Islets Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, SE 205 02 Malmö, Sweden
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy
| | - Lena Eliasson
- Lund University Diabetes Center, Unit of Islets Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, SE 205 02 Malmö, Sweden
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 1070 Brussels, Belgium; Welbio, Université Libre de Bruxelles, 808 Route de Lennik, CP618, 1070 Brussels, Belgium.
| |
Collapse
|
20
|
Kunii M, Ohara-Imaizumi M, Takahashi N, Kobayashi M, Kawakami R, Kondoh Y, Shimizu T, Simizu S, Lin B, Nunomura K, Aoyagi K, Ohno M, Ohmuraya M, Sato T, Yoshimura SI, Sato K, Harada R, Kim YJ, Osada H, Nemoto T, Kasai H, Kitamura T, Nagamatsu S, Harada A. Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells. J Cell Biol 2016; 215:121-138. [PMID: 27697926 PMCID: PMC5057288 DOI: 10.1083/jcb.201604030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
Kunii et al. reveal that the SNARE protein SNAP23 plays distinct roles in the secretion of amylase in exocrine cells and of insulin in endocrine cells the pancreas and show that MF286, a novel inhibitor of SNAP23, may be a new drug candidate for diabetes. The membrane fusion of secretory granules with plasma membranes is crucial for the exocytosis of hormones and enzymes. Secretion disorders can cause various diseases such as diabetes or pancreatitis. Synaptosomal-associated protein 23 (SNAP23), a soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) molecule, is essential for secretory granule fusion in several cell lines. However, the in vivo functions of SNAP23 in endocrine and exocrine tissues remain unclear. In this study, we show opposing roles for SNAP23 in secretion in pancreatic exocrine and endocrine cells. The loss of SNAP23 in the exocrine and endocrine pancreas resulted in decreased and increased fusion of granules to the plasma membrane after stimulation, respectively. Furthermore, we identified a low molecular weight compound, MF286, that binds specifically to SNAP23 and promotes insulin secretion in mice. Our results demonstrate opposing roles for SNAP23 in the secretion mechanisms of the endocrine and exocrine pancreas and reveal that the SNAP23-binding compound MF286 may be a promising drug for diabetes treatment.
Collapse
Affiliation(s)
- Masataka Kunii
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Ryosuke Kawakami
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Hokkaido 001-0020, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kanagawa 223-8522, Japan
| | - Bangzhong Lin
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Kazuto Nunomura
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Kyota Aoyagi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Mitsuyo Ohno
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaki Ohmuraya
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takashi Sato
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Reiko Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan Department of Judo Therapy, Takarazuka University of Medical and Health Care, Hyogo 666-0152, Japan
| | - Yoon-Jeong Kim
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Tomomi Nemoto
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Hokkaido 001-0020, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Shinya Nagamatsu
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Akihiro Harada
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Al-Daghri NM, Costa AS, Alokail MS, Zanzottera M, Alenad AM, Mohammed AK, Clerici M, Guerini FR. Synaptosomal Protein of 25 kDa (Snap25) Polymorphisms Associated with Glycemic Parameters in Type 2 Diabetes Patients. J Diabetes Res 2016; 2016:8943092. [PMID: 26779543 PMCID: PMC4686705 DOI: 10.1155/2016/8943092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 11/22/2022] Open
Abstract
A possible role of Snap25 polymorphisms in type 2 diabetes mellitus (T2DM) was evaluated by analyzing three SNPs within intron 1 in a region known to affect the gene expression in vitro. Genomic DNA from 1019 Saudi individuals (489 confirmed T2DM and 530 controls) was genotyped for SNPs rs363039, rs363043, and rs363050 in Snap25 using the TaqMan Genotyping Assay. Significantly higher levels of fasting glucose and HbA1c were detected in T2DM patients carrying the rs363050 (AG/GG) genotypes compared to the (AA) genotype (f = 4.41, df = 1, and p = 0.03 and f = 5.31, df = 1, and p = 0.03, resp.). In these same patients, insulin levels were significantly decreased compared to the (AA) individuals (f = 7.29, df = 1, and p = 0.009). Significant associations were detected between rs363050 (AG/GG) genotypes and increasing fasting glucose levels (p = 0.01 and OR: 1.05), HbA1c levels (OR: 5.06 and p = 0.02), and lower insulinemia (p = 0.03 and OR: 0.95) in T2DM patients. The minor Snap25 rs363050 (G) allele, which results in a reduced expression of Snap25, is associated with altered glycemic parameters in T2DM possibly because of reduced functionality in the exocytotic machinery leading to suboptimal release of insulin.
Collapse
Affiliation(s)
- Nasser M. Al-Daghri
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- *Nasser M. Al-Daghri:
| | | | - Majed S. Alokail
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Amal M. Alenad
- School of Biological Sciences, University of Southampton, Southampton SO17 1 BJ, UK
| | - Abdul Khader Mohammed
- Biomarkers Research Program, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mario Clerici
- Fondazione Don C Gnocchi, IRCCS, 20148 Milano, Italy
- Università degli Studi di Milano, 20122 Milano, Italy
| | | |
Collapse
|
22
|
Arous C, Halban PA. The skeleton in the closet: actin cytoskeletal remodeling in β-cell function. Am J Physiol Endocrinol Metab 2015; 309:E611-20. [PMID: 26286869 DOI: 10.1152/ajpendo.00268.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/11/2015] [Indexed: 01/13/2023]
Abstract
Over the last few decades, biomedical research has considered not only the function of single cells but also the importance of the physical environment within a whole tissue, including cell-cell and cell-extracellular matrix interactions. Cytoskeleton organization and focal adhesions are crucial sensors for cells that enable them to rapidly communicate with the physical extracellular environment in response to extracellular stimuli, ensuring proper function and adaptation. The involvement of the microtubular-microfilamentous cytoskeleton in secretion mechanisms was proposed almost 50 years ago, since when the evolution of ever more sensitive and sophisticated methods in microscopy and in cell and molecular biology have led us to become aware of the importance of cytoskeleton remodeling for cell shape regulation and its crucial link with signaling pathways leading to β-cell function. Emerging evidence suggests that dysfunction of cytoskeletal components or extracellular matrix modification influences a number of disorders through potential actin cytoskeleton disruption that could be involved in the initiation of multiple cellular functions. Perturbation of β-cell actin cytoskeleton remodeling could arise secondarily to islet inflammation and fibrosis, possibly accounting in part for impaired β-cell function in type 2 diabetes. This review focuses on the role of actin remodeling in insulin secretion mechanisms and its close relationship with focal adhesions and myosin II.
Collapse
Affiliation(s)
- Caroline Arous
- Department of Genetic Medicine and Development, University of Geneva Medical Center, Geneva, Switzerland
| | - Philippe A Halban
- Department of Genetic Medicine and Development, University of Geneva Medical Center, Geneva, Switzerland
| |
Collapse
|
23
|
Iorio V, Festa M, Rosati A, Hahne M, Tiberti C, Capunzo M, De Laurenzi V, Turco MC. BAG3 regulates formation of the SNARE complex and insulin secretion. Cell Death Dis 2015; 6:e1684. [PMID: 25766323 PMCID: PMC4385931 DOI: 10.1038/cddis.2015.53] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 01/07/2023]
Abstract
Insulin release in response to glucose stimulation requires exocytosis of insulin-containing granules. Glucose stimulation of beta cells leads to focal adhesion kinase (FAK) phosphorylation, which acts on the Rho family proteins (Rho, Rac and Cdc42) that direct F-actin remodeling. This process requires docking and fusion of secretory vesicles to the release sites at the plasma membrane and is a complex mechanism that is mediated by SNAREs. This transiently disrupts the F-actin barrier and allows the redistribution of the insulin-containing granules to more peripheral regions of the β cell, hence facilitating insulin secretion. In this manuscript, we show for the first time that BAG3 plays an important role in this process. We show that BAG3 downregulation results in increased insulin secretion in response to glucose stimulation and in disruption of the F-actin network. Moreover, we show that BAG3 binds to SNAP-25 and syntaxin-1, two components of the t-SNARE complex preventing the interaction between SNAP-25 and syntaxin-1. Upon glucose stimulation BAG3 is phosphorylated by FAK and dissociates from SNAP-25 allowing the formation of the SNARE complex, destabilization of the F-actin network and insulin release.
Collapse
Affiliation(s)
- V Iorio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy
| | - M Festa
- 1] Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy
| | - A Rosati
- 1] Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy
| | - M Hahne
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Montpellier, France
| | - C Tiberti
- Department of Clinical Sciences, University of Rome Sapienza, Rome, Italy
| | - M Capunzo
- Department of Medicine and Surgery, University of Salerno, Via S. Allende, Baronissi, SA, Italy
| | - V De Laurenzi
- 1] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] Department of Experimental and Clinical Sciences, University G. D'Annunzio and Fondazione G. D'Annunzio, Ce.S.I., Chieti, Italy
| | - M C Turco
- 1] BIOUNIVERSA S.r.l., University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA, Italy [2] Department of Medicine and Surgery, University of Salerno, Via S. Allende, Baronissi, SA, Italy
| |
Collapse
|
24
|
Geron E, Boura-Halfon S, Schejter ED, Shilo BZ. The Edges of Pancreatic Islet β Cells Constitute Adhesive and Signaling Microdomains. Cell Rep 2015; 10:317-325. [PMID: 25600867 DOI: 10.1016/j.celrep.2014.12.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/11/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022] Open
Abstract
Pancreatic islet β cells are organized in rosette-like structures around blood vessels and exhibit an artery-to-vein orientation, but they do not display the typical epithelial polarity. It is unclear whether these cells present a functional asymmetry related to their spatial organization. Here, we identify murine β cell edges, the sites at which adjacent cell faces meet at a sharp angle, as surface microdomains of cell-cell adhesion and signaling. The edges are marked by enrichment of F-actin and E-cadherin and are aligned between neighboring cells. The edge organization is E-cadherin contact dependent and correlates with insulin secretion capacity. Edges display elevated levels of glucose transporters and SNAP25 and extend numerous F-actin-rich filopodia. A similar β cell edge organization was observed in human islets. When stimulated, β cell edges exhibit high calcium levels. In view of the functional importance of intra-islet communication, the spatial architecture of their edges may prove fundamental for coordinating physiological insulin secretion.
Collapse
Affiliation(s)
- Erez Geron
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sigalit Boura-Halfon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
25
|
Villate O, Turatsinze JV, Mascali LG, Grieco FA, Nogueira TC, Cunha DA, Nardelli TR, Sammeth M, Salunkhe VA, Esguerra JLS, Eliasson L, Marselli L, Marchetti P, Eizirik DL. Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Res 2014; 42:11818-30. [PMID: 25249621 PMCID: PMC4191425 DOI: 10.1093/nar/gku861] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) is a fundamental mechanism for the regulation of gene expression. It affects more than 90% of human genes but its role in the regulation of pancreatic beta cells, the producers of insulin, remains unknown. Our recently published data indicated that the ‘neuron-specific’ Nova1 splicing factor is expressed in pancreatic beta cells. We have presently coupled specific knockdown (KD) of Nova1 with RNA-sequencing to determine all splice variants and downstream pathways regulated by this protein in beta cells. Nova1 KD altered the splicing of nearly 5000 transcripts. Pathway analysis indicated that these genes are involved in exocytosis, apoptosis, insulin receptor signaling, splicing and transcription. In line with these findings, Nova1 silencing inhibited insulin secretion and induced apoptosis basally and after cytokine treatment in rodent and human beta cells. These observations identify a novel layer of regulation of beta cell function, namely AS controlled by key splicing regulators such as Nova1.
Collapse
Affiliation(s)
- Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Jean-Valery Turatsinze
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Loriana G Mascali
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Fabio A Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Daniel A Cunha
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Tarlliza R Nardelli
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| | - Michael Sammeth
- Laboratório Nacional de Computação Científica (LNCC), Petrópolis Rio de Janeiro, 25651-076, Brazil
| | - Vishal A Salunkhe
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Jonathan L S Esguerra
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Lena Eliasson
- Lund University Diabetes Centre, Unit of Islet cell Exocytosis, Department of Clinical Sciences Malmö, Lund University, CRC 91-11, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Pancreatic Islet Cell Laboratory, University of Pisa, Pisa, 56126, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Pancreatic Islet Cell Laboratory, University of Pisa, Pisa, 56126, Italy
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels (ULB) B-1070, Belgium
| |
Collapse
|
26
|
Pedrazzi M, Nash B, Meucci O, Brandimarti R. Molecular features contributing to virus-independent intracellular localization and dynamic behavior of the herpesvirus transport protein US9. PLoS One 2014; 9:e104634. [PMID: 25133647 PMCID: PMC4136771 DOI: 10.1371/journal.pone.0104634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Reaching the right destination is of vital importance for molecules, proteins, organelles, and cargoes. Thus, intracellular traffic is continuously controlled and regulated by several proteins taking part in the process. Viruses exploit this machinery, and viral proteins regulating intracellular transport have been identified as they represent valuable tools to understand and possibly direct molecules targeting and delivery. Deciphering the molecular features of viral proteins contributing to (or determining) this dynamic phenotype can eventually lead to a virus-independent approach to control cellular transport and delivery. From this virus-independent perspective we looked at US9, a virion component of Herpes Simplex Virus involved in anterograde transport of the virus inside neurons of the infected host. As the natural cargo of US9-related vesicles is the virus (or its parts), defining its autonomous, virus-independent role in vesicles transport represents a prerequisite to make US9 a valuable molecular tool to study and possibly direct cellular transport. To assess the extent of this autonomous role in vesicles transport, we analyzed US9 behavior in the absence of viral infection. Based on our studies, Us9 behavior appears similar in different cell types; however, as expected, the data we obtained in neurons best represent the virus-independent properties of US9. In these primary cells, transfected US9 mostly recapitulates the behavior of US9 expressed from the viral genome. Additionally, ablation of two major phosphorylation sites (i.e. Y32Y33 and S34ES36) have no effect on protein incorporation on vesicles and on its localization on both proximal and distal regions of the cells. These results support the idea that, while US9 post-translational modification may be important to regulate cargo loading and, consequently, virion export and delivery, no additional viral functions are required for US9 role in intracellular transport.
Collapse
Affiliation(s)
- Manuela Pedrazzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (OM); (RB)
| | - Renato Brandimarti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (OM); (RB)
| |
Collapse
|
27
|
Cazares VA, Subramani A, Saldate JJ, Hoerauf W, Stuenkel EL. Distinct actions of Rab3 and Rab27 GTPases on late stages of exocytosis of insulin. Traffic 2014; 15:997-1015. [PMID: 24909540 DOI: 10.1111/tra.12182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Abstract
Rab GTPases associated with insulin-containing secretory granules (SGs) are key in targeting, docking and assembly of molecular complexes governing pancreatic β-cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase-activating protein overexpression in β-cells from wild-type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP-bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool (IRP) and central to regulating the size of the readily releasable pool (RRP). By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the RRP with SGs. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release-ready SGs in β-cells, they also direct unique kinetic and functional properties of the exocytotic pathway.
Collapse
Affiliation(s)
- Victor A Cazares
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | | | |
Collapse
|
28
|
Hanna-Mitchell AT, Wolf-Johnston AS, Barrick SR, Kanai AJ, Chancellor MB, de Groat WC, Birder LA. Effect of botulinum toxin A on urothelial-release of ATP and expression of SNARE targets within the urothelium. Neurourol Urodyn 2013; 34:79-84. [PMID: 24167028 DOI: 10.1002/nau.22508] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/13/2013] [Indexed: 11/11/2022]
Abstract
AIMS Botulinum neurotoxin serotype A (BoNT/A) has emerged as an effective treatment of urinary bladder overactivity. Intravesical lipotoxin (BoNT/A delivery using liposomes), which may target the urothelium, is effective in blocking acetic acid induced hyperactivity in animals. The objective of this study was to assess the possible site of toxin action within the urothelium. METHODS We examined expression of the toxin receptor (SV2) and its cleavage targets (SNAP-25 and SNAP-23) within urothelium as well as effects of the toxin on mechanically evoked release of ATP from cultured rat urothelial cells. ATP release was measured using the luciferin-luciferase assay; we examined expression of SNAP-23 and -25 in urothelial cells and mucosa of rat and human bladders. RESULTS BoNT/A (1.5 U; 1-3 hr) blocked hypotonic evoked release of urothelial ATP, without affecting morphology. The expression of protein targets for BoNT/A binding (SV2) was detected in human and rat bladder mucosa and catalytic action (SNAP-23, -25) in urothelial cells and mucosa (differed in intensity) from rat and human bladder. Incubation of cultured (rat) urothelial cells with BoNT/A decreased expression levels of both SNAP-23 (44%) and SNAP-25 (80%). CONCLUSIONS Our findings reveal that the bladder urothelium expresses the intracellular targets and the binding protein for cellular uptake of BoNT/A; and that the toxin is able to suppress the levels of these targets as well as hypotonic-evoked ATP release. These data raise the possibility that intravesical treatment with BoNT/A suppresses bladder reflex and sensory mechanisms by affecting a number of urothelial functions including release of transmitters.
Collapse
Affiliation(s)
- Ann T Hanna-Mitchell
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
29
|
Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet β cells. Exp Mol Med 2013; 45:e37. [PMID: 23969997 PMCID: PMC3789261 DOI: 10.1038/emm.2013.73] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 12/12/2022] Open
Abstract
The maintenance of whole-body glucose homeostasis is critical for survival, and is controlled by the coordination of multiple organs and endocrine systems. Pancreatic islet β cells secrete insulin in response to nutrient stimuli, and insulin then travels through the circulation promoting glucose uptake into insulin-responsive tissues such as liver, skeletal muscle and adipose. Many of the genes identified in human genome-wide association studies of diabetic individuals are directly associated with β cell survival and function, giving credence to the idea that β-cell dysfunction is central to the development of type 2 diabetes. As such, investigations into the mechanisms by which β cells sense glucose and secrete insulin in a regulated manner are a major focus of current diabetes research. In particular, recent discoveries of the detailed role and requirements for reorganization/remodeling of filamentous actin (F-actin) in the regulation of insulin release from the β cell have appeared at the forefront of islet function research, having lapsed in prior years due to technical limitations. Recent advances in live-cell imaging and specialized reagents have revealed localized F-actin remodeling to be a requisite for the normal biphasic pattern of nutrient-stimulated insulin secretion. This review will provide an historical look at the emergent focus on the role of the actin cytoskeleton and its regulation of insulin secretion, leading up to the cutting-edge research in progress in the field today.
Collapse
|
30
|
|
31
|
Lett TAP, Wallace TJM, Chowdhury NI, Tiwari AK, Kennedy JL, Müller DJ. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry 2012; 17:242-66. [PMID: 21894153 DOI: 10.1038/mp.2011.109] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Second-generation antipsychotics (SGAs), such as risperidone, clozapine and olanzapine, are the most common drug treatments for schizophrenia. SGAs presented an advantage over first-generation antipsychotics (FGAs), particularly regarding avoidance of extrapyramidal symptoms. However, most SGAs, and to a lesser degree FGAs, are linked to substantial weight gain. This substantial weight gain is a leading factor in patient non-compliance and poses significant risk of diabetes, lipid abnormalities (that is, metabolic syndrome) and cardiovascular events including sudden death. The purpose of this article is to review the advances made in the field of pharmacogenetics of antipsychotic-induced weight gain (AIWG). We included all published association studies in AIWG from December 2006 to date using the Medline and ISI web of knowledge databases. There has been considerable progress reaffirming previous findings and discovery of novel genetic factors. The HTR2C and leptin genes are among the most promising, and new evidence suggests that the DRD2, TNF, SNAP-25 and MC4R genes are also prominent risk factors. Further promising findings have been reported in novel susceptibility genes, such as CNR1, MDR1, ADRA1A and INSIG2. More research is required before genetically informed, personalized medicine can be applied to antipsychotic treatment; nevertheless, inroads have been made towards assessing genetic liability and plausible clinical application.
Collapse
Affiliation(s)
- T A P Lett
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Gong Z, Muzumdar RH. Pancreatic function, type 2 diabetes, and metabolism in aging. Int J Endocrinol 2012; 2012:320482. [PMID: 22675349 PMCID: PMC3362843 DOI: 10.1155/2012/320482] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/15/2012] [Accepted: 03/02/2012] [Indexed: 12/21/2022] Open
Abstract
Aging is a risk factor for impaired glucose tolerance and diabetes. Of the reported 25.8 million Americans estimated to have diabetes, 26.9% are over the age of 65. In certain ethnic groups, the proportion is even higher; almost 1 in 3 older Hispanics and African Americans and 3 out of 4 Pima Indian elders have diabetes. As per the NHANES III (Third National Health and Nutrition Examination) survey, the percentage of physician-diagnosed diabetes increased from 3.9% in middle-aged adults (40-49 years) to 13.2% in elderly adults (≥75 years). The higher incidence of diabetes is especially alarming considering that diabetes in itself increases the risk for multiple other age-related diseases such as cancer, stroke, cardiovascular diseases, Parkinson's disease, and Alzheimer's disease (AD). In this review, we summarize the current evidence on how aging affects pancreatic β cell function, β cell mass, insulin secretion and insulin sensitivity. We also review the effects of aging on the relationship between insulin sensitivity and insulin secretion. Understanding the mechanisms that lead to impaired glucose homeostasis and T2D in the elderly will lead to development of novel treatments that will prevent or delay diabetes, substantially improve quality of life and ultimately increase overall life span.
Collapse
Affiliation(s)
- Zhenwei Gong
- Department of Pediatrics, Divisions of Endocrinology and Geriatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Radhika H. Muzumdar
- Department of Pediatrics, Divisions of Endocrinology and Geriatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Divisions of Endocrinology and Geriatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- *Radhika H. Muzumdar:
| |
Collapse
|
33
|
Rondas D, Tomas A, Soto-Ribeiro M, Wehrle-Haller B, Halban PA. Novel mechanistic link between focal adhesion remodeling and glucose-stimulated insulin secretion. J Biol Chem 2011; 287:2423-36. [PMID: 22139838 DOI: 10.1074/jbc.m111.279885] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin cytoskeleton remodeling is well known to be positively involved in glucose-stimulated pancreatic β cell insulin secretion. We have observed glucose-stimulated focal adhesion remodeling at the β cell surface and have shown this to be crucial for glucose-stimulated insulin secretion. However, the mechanistic link between such remodeling and the insulin secretory machinery remained unknown and was the major aim of this study. MIN6B1 cells, a previously validated model of primary β cell function, were used for all experiments. Total internal reflection fluorescence microscopy revealed the glucose-responsive co-localization of focal adhesion kinase (FAK) and paxillin with integrin β1 at the basal cell surface after short term stimulation. In addition, blockade of the interaction between β1 integrins and the extracellular matrix with an anti-β1 integrin antibody (Ha2/5) inhibited short term glucose-induced phosphorylation of FAK (Tyr-397), paxillin (Tyr-118), and ERK1/2 (Thr-202/Tyr-204). Pharmacological inhibition of FAK activity blocked glucose-induced actin cytoskeleton remodeling and glucose-induced disruption of the F-actin/SNAP-25 association at the plasma membrane as well as the distribution of insulin granules to regions in close proximity to the plasma membrane. Furthermore, FAK inhibition also completely blocked short term glucose-induced activation of the Akt/AS160 signaling pathway. In conclusion, these results indicate 1) that glucose-induced activation of FAK, paxillin, and ERK1/2 is mediated by β1 integrin intracellular signaling, 2) a mechanism whereby FAK mediates glucose-induced actin cytoskeleton remodeling, hence allowing docking and fusion of insulin granules to the plasma membrane, and 3) a possible functional role for the Akt/AS160 signaling pathway in the FAK-mediated regulation of glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Dieter Rondas
- Department of Genetic Medicine and Development, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
34
|
Kalwat MA, Wiseman DA, Luo W, Wang Z, Thurmond DC. Gelsolin associates with the N terminus of syntaxin 4 to regulate insulin granule exocytosis. Mol Endocrinol 2011; 26:128-41. [PMID: 22108804 DOI: 10.1210/me.2011-1112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) protein syntaxin (Syn)4 is required for biphasic insulin secretion, although how it regulates each phase remains unclear. In a screen to identify new Syn4-interacting factors, the calcium-activated F-actin-severing protein gelsolin was revealed. Gelsolin has been previously implicated as a positive effector of insulin secretion, although a molecular mechanism to underlie this function is lacking. Toward this, our in vitro binding studies showed the Syn4-gelsolin interaction to be direct and mediated by the N-terminal Ha domain (amino acid residues 39-70) of Syn4. Syn4-gelsolin complexes formed under basal conditions and dissociated upon acute glucose or KCl stimulation; nifedipine blocked dissociation. The dissociating action of secretagogues could be mimicked by expression of the N-terminal Ha domain of Syn4 fused to green fluorescent protein (GFP) (GFP-39-70). Furthermore, GFP-39-70 expression in isolated mouse islet and clonal MIN6 β-cells initiated insulin release in the absence of appropriate stimuli. Consistent with this, the inhibitory GFP-39-70 peptide also initiated Syn4 activation in the absence of stimuli. Moreover, although MIN6 β-cells expressing the GFP-39-70 peptide maintained normal calcium influx in response to KCl, KCl-stimulated insulin secretion and the triggering pathway of insulin secretion were significantly impaired. Taken together, these data support a mechanistic model for gelsolin's role in insulin exocytosis: gelsolin clamps unsolicited soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE)-regulated exocytosis through direct association with Syn4 in the absence of appropriate stimuli, which is relieved upon stimulus-induced calcium influx to activate gelsolin and induce its dissociation from Syn4 to facilitate insulin exocytosis.
Collapse
Affiliation(s)
- Michael A Kalwat
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
35
|
Torrejón-Escribano B, Escoriza J, Montanya E, Blasi J. Glucose-dependent changes in SNARE protein levels in pancreatic β-cells. Endocrinology 2011; 152:1290-9. [PMID: 21285315 DOI: 10.1210/en.2010-0898] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prolonged exposure to high glucose concentration alters the expression of a set of proteins in pancreatic β-cells and impairs their capacity to secrete insulin. The cellular and molecular mechanisms that lie behind this effect are poorly understood. In this study, three either in vitro or in vivo models (cultured rat pancreatic islets incubated in high glucose media, partially pancreatectomized rats, and islets transplanted to streptozotozin-induced diabetic mice) were used to evaluate the dependence of the biological model and the treatment, together with the cell location (insulin granule or plasma membrane) of the affected proteins and the possible effect of sustained insulin secretion, on the glucose-induced changes in protein expression. In all three models, islets exposed to high glucose concentrations showed a reduced expression of secretory granule-associated vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins synaptobrevin/vesicle-associated membrane protein 2 and cellubrevin but minor or no significant changes in the expression of the membrane-associated target-SNARE proteins syntaxin1 and synaptosomal-associated protein-25 and a marked increase in the expression of synaptosomal-associated protein-23 protein. The inhibition of insulin secretion by the L-type voltage-dependent calcium channel nifedipine or the potassium channel activator diazoxide prevented the glucose-induced reduction in islet insulin content but not in vesicle-SNARE proteins, indicating that the granule depletion due to sustained exocytosis was not involved in the changes of protein expression induced by high glucose concentration. Altogether, the results suggest that high glucose has a direct toxic effect on the secretory pathway by decreasing the expression of insulin granule SNARE-associated proteins.
Collapse
Affiliation(s)
- Benjamín Torrejón-Escribano
- Departamento de Patologia i Terapèutica Experimental, Institut d'Investigació Biomèdica de Bellvitge-Universitat de Barcelona, Laboratori 4145, Campus de Bellvitge, Edifici del Pavelló de Govern, C/Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | |
Collapse
|
36
|
Rondas D, Tomas A, Halban PA. Focal adhesion remodeling is crucial for glucose-stimulated insulin secretion and involves activation of focal adhesion kinase and paxillin. Diabetes 2011; 60:1146-57. [PMID: 21357465 PMCID: PMC3064088 DOI: 10.2337/db10-0946] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Actin cytoskeleton remodeling is known to be involved in glucose-stimulated insulin secretion (GSIS). We have observed glucose-stimulated changes at the β-cell basal membrane similar to focal adhesion remodeling in cell migration. This led us to study the role of two key focal adhesion proteins, focal adhesion kinase (FAK) and paxillin, in GSIS. RESEARCH DESIGN AND METHODS All studies were performed using rat primary β-cells or isolated islets. Protein phosphorylation and subcellular localization were determined by Western blotting and confocal immunofluorescence, respectively. Insulin was measured by radioimmunoassay. Both siRNA and pharmacological approaches were used to assess the role of FAK and paxillin in glucose-stimulated focal adhesion remodeling and insulin secretion. RESULTS Glucose stimulation of β-cells in monolayer significantly increased phosphorylation of FAK and paxillin as well as cell surface area. This coincided with the appearance at the basal membrane of numerous shorter actin filopodial extensions, containing not only phosphorylated paxillin, FAK, and extracellular signal-related kinase 1/2 but also two SNARE proteins, synaptosomal-associated protein 25 and syntaxin 1, indicating involvement in exocytosis. SR7037 completely inhibited this sequence of events, indicating the requirement of increased cytosolic Ca²(+). Furthermore, knockdown of paxillin significantly decreased GSIS, as did inhibition of glucose-induced FAK phosphorylation by compound Y15. Key findings were confirmed in β-cells within the natural setting of islets. CONCLUSIONS Glucose-stimulated remodeling of focal adhesions and phosphorylation of FAK and paxillin are involved in full development of GSIS, indicating a previously unknown role for focal adhesion remodeling in pancreatic β-cell function.
Collapse
Affiliation(s)
- Dieter Rondas
- Department of Genetic Medicine and Development, University Medical Center, University of Geneva, Geneva, Switzerland.
| | | | | |
Collapse
|
37
|
Greaves J, Chamberlain LH. Differential palmitoylation regulates intracellular patterning of SNAP25. J Cell Sci 2011; 124:1351-60. [PMID: 21429935 DOI: 10.1242/jcs.079095] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SNAP25 regulates membrane fusion events at the plasma membrane and in the endosomal system, and a functional pool of the protein is delivered to recycling endosomes (REs) and the trans Golgi network (TGN) through an ARF6-dependent cycling pathway. SNAP25 is a peripheral membrane protein, and palmitoylation of a cluster of four cysteine residues mediates its stable association with the membrane. Here, we report that palmitoylation also determines the precise intracellular distribution of SNAP25, and that mutating single palmitoylation sites enhances the amount of SNAP25 at the RE and TGN. The farnesylated CAAX motif from Hras was ligated onto a SNAP25 mutant truncated immediately distal to the cysteine-rich domain. This construct displayed the same intracellular distribution as full-length SNAP25, and decreasing the number of cysteine residues in this construct increased its association with the RE and TGN, confirming the dominant role of the cysteine-rich domain in directing the intracellular distribution of SNAP25. Marked differences in the localisations of SNAP25-CAAX and Hras constructs, each with two palmitoylation sites, were observed, showing that subtle differences in palmitoylated sequences can have a major impact upon intracellular targeting. We propose that the cysteine-rich domain of SNAP25 is designed to facilitate the dual function of this SNARE protein at the plasma membrane and endosomes, and that dynamic palmitoylation acts as a mechanism to regulate the precise intracellular patterning of SNAP25.
Collapse
Affiliation(s)
- Jennifer Greaves
- Centre for Integrative Physiology, School of Biomedical Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
38
|
Zheng YL, Hu YF, Zhang A, Wang W, Li B, Amin N, Grant P, Pant HC. Overexpression of p35 in Min6 pancreatic beta cells induces a stressed neuron-like apoptosis. J Neurol Sci 2011; 299:101-7. [PMID: 20926102 DOI: 10.1016/j.jns.2010.08.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 08/27/2010] [Accepted: 08/27/2010] [Indexed: 01/01/2023]
Abstract
Cdk5 activity has been implicated in brain development and the regulation of many neuronal processes. Recently, the expression of p35 and Cdk5 activity has been reported in pancreatic beta cells. Decreased Cdk5 activity enhanced glucose-stimulated insulin secretion. This suggests that Cdk5 may play an important role in the regulation of insulin secretion. To further understand how Cdk5 regulates insulin secretion in glucose-stimulated pancreatic β cells, we first confirmed the presence of a low level of p35 in pancreatic Min6 cells. Next, in a time-course experiment in high glucose (25 mM) we showed that endogenous p35 increased gradually accompanied by a 3-fold increase in Cdk5 activity by 16 h. Insulin secretion, however, doubled after 2 h followed by progressive downregulation, negatively correlated with Cdk5 activity. On the other hand, overexpression of p35 in these cells resulted in more than a three-fold increase in Cdk5 activity within 2 h coupled to a 50% reduction in insulin secretion in both high and low (3 mM) glucose. Most significantly, cells overexpressing p35, treated with high glucose for 4 h, showed induction of p25, the p35-derived truncated fragment which hyperactivates Cdk5 in neurons. As a result, insulin secretion was inhibited and cells became apoptotic. Roscovitine or co-infection of dominant negative Cdk5 (dnCdk5) with p35 increased insulin secretion and inhibited apoptosis. These results suggest that the model for deregulation and hyperactivation of Cdk5 in neurodegeneration may apply to the pathology seen in type 2 diabetes (T2DM). It is consistent with the view that Alzheimer's disease and T2DM are linked metabolically and pathologically by Cdk5 in a number of ways.
Collapse
Affiliation(s)
- Ya-Li Zheng
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lebeda FJ, Singh BR. Membrane Channel activity and Translocation of Tetanus and Botulinum Neurotoxins. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/15569549909036017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Greaves J, Gorleku OA, Salaun C, Chamberlain LH. Palmitoylation of the SNAP25 protein family: specificity and regulation by DHHC palmitoyl transferases. J Biol Chem 2010; 285:24629-38. [PMID: 20519516 DOI: 10.1074/jbc.m110.119289] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SNAP25 plays an essential role in neuronal exocytosis pathways. SNAP25a and SNAP25b are alternatively spliced isoforms differing by only nine amino acids, three of which occur within the palmitoylated cysteine-rich domain. SNAP23 is 60% identical to SNAP25 and has a distinct cysteine-rich domain to both SNAP25a and SNAP25b. Despite the conspicuous differences within the palmitoylated domains of these secretory proteins, there is no information on their comparative interactions with palmitoyl transferases. We report that membrane association of all SNAP25/23 proteins is enhanced by Golgi-localized DHHC3, DHHC7, and DHHC17. In contrast, DHHC15 promoted a statistically significant increase in membrane association of only SNAP25b. To investigate the underlying cause of this differential specificity, we examined a SNAP23 point mutant (C79F) designed to mimic the cysteine-rich domain of SNAP25b. DHHC15 promoted a marked increase in membrane binding and palmitoylation of this SNAP23 mutant, demonstrating that the distinct cysteine-rich domains of SNAP25/23 contribute to differential interactions with DHHC15. The lack of activity of DHHC15 toward wild-type SNAP23 was not overcome by replacing its DHHC domain with that from DHHC3, suggesting that substrate specificity is not determined by the DHHC domain alone. Interestingly, DHHC2, which is closely related to DHHC15, associates with the plasma membrane in PC12 cells and can palmitoylate all SNAP25 isoforms. DHHC2 is, thus, a candidate enzyme to regulate SNAP25/23 palmitoylation dynamics at the plasma membrane. Finally, we demonstrate that overexpression of specific Golgi-localized DHHC proteins active against SNAP25/23 proteins perturbs the normal secretion of human growth hormone from PC12 cells.
Collapse
Affiliation(s)
- Jennifer Greaves
- Centre for Integrative Physiology, School of Biomedical Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | | | | | | |
Collapse
|
41
|
Jewell JL, Oh E, Thurmond DC. Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am J Physiol Regul Integr Comp Physiol 2010; 298:R517-31. [PMID: 20053958 DOI: 10.1152/ajpregu.00597.2009] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes has been coined "a two-hit disease," as it involves specific defects of glucose-stimulated insulin secretion from the pancreatic beta cells in addition to defects in peripheral tissue insulin action required for glucose uptake. Both of these processes, insulin secretion and glucose uptake, are mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein core complexes composed of syntaxin, SNAP-23/25, and VAMP proteins. The SNARE core complex is regulated by the Sec1/Munc18 (SM) family of proteins, which selectively bind to their cognate syntaxin isoforms with high affinity. The process of insulin secretion uses multiple Munc18-syntaxin isoform pairs, whereas insulin action in the peripheral tissues appears to use only the Munc18c-syntaxin 4 pair. Importantly, recent reports have linked obesity and Type 2 diabetes in humans with changes in protein levels and single nucleotide polymorphisms (SNPs) of Munc18 and syntaxin isoforms relevant to these exocytotic processes, although the molecular mechanisms underlying the observed phenotypes remain incomplete (5, 104, 144). Given the conservation of these proteins in two seemingly disparate processes and the need to design and implement novel and more effective clinical interventions, it will be vitally important to delineate the mechanisms governing these conserved SNARE-mediated exocytosis events. Thus, we provide here an up-to-date historical review of advancements in defining the roles and molecular mechanisms of Munc18-syntaxin complexes in the pathophysiology of Type 2 diabetes.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
42
|
Vikman J, Svensson H, Huang YC, Kang Y, Andersson SA, Gaisano HY, Eliasson L. Truncation of SNAP-25 reduces the stimulatory action of cAMP on rapid exocytosis in insulin-secreting cells. Am J Physiol Endocrinol Metab 2009; 297:E452-61. [PMID: 19509185 DOI: 10.1152/ajpendo.90585.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synaptosomal protein of 25 kDa (SNAP-25) is important for Ca(2+)-dependent fusion of large dense core vesicles (LDCVs) in insulin-secreting cells. Exocytosis is further enhanced by cAMP-increasing agents such as glucagon-like peptide-1 (GLP-1), and this augmentation includes interaction with both PKA and cAMP-GEFII. To investigate the coupling between SNAP-25- and cAMP-dependent stimulation of insulin exocytosis, we have used capacitance measurements, protein-binding assays, and Western blot analysis. In insulin-secreting INS-1 cells overexpressing wild-type SNAP-25 (SNAP-25(WT)), rapid exocytosis was stimulated more than threefold by cAMP, similar to the situation in nontransfected cells. However, cAMP failed to potentiate rapid exocytosis in INS-1 cells overexpressing a truncated form of SNAP-25 (SNAP-25(1-197)) or Botulinum neurotoxin A (BoNT/A). Close dissection of the exocytotic response revealed that the inability of cAMP to stimulate exocytosis in the presence of a truncated SNAP-25 was confined to the release of primed LDCVs within the readily releasable pool, especially from the immediately releasable pool, whereas cAMP enhanced mobilization of granules from the reserve pool in both SNAP-25(1-197) (P < 0.01) and SNAP-25(WT) (P < 0.05) cells. This was supported by hormone release measurements. Augmentation of the immediately releasable pool by cAMP has been suggested to act through the cAMP-GEFII-dependent, PKA-independent pathway. Indeed, we were able to verify an interaction between SNAP-25 with both cAMP-GEFII and RIM2, two proteins involved in the PKA-independent pathway. Thus we hypothesize that SNAP-25 is a necessary partner in the complex mediating cAMP-enhanced rapid exocytosis in insulin-secreting cells.
Collapse
Affiliation(s)
- Jenny Vikman
- Department of Clinical Sciences Lund, Biomedical Center, Lund University Diabetes Centre, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Insulin granule biogenesis, trafficking and exocytosis. VITAMINS AND HORMONES 2009; 80:473-506. [PMID: 19251047 DOI: 10.1016/s0083-6729(08)00616-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is becoming increasingly apparent that beta cell dysfunction resulting in abnormal insulin secretion is the essential element in the progression of patients from a state of impaired glucose tolerance to frank type 2 diabetes (Del Prato, 2003; Del Prato and Tiengo, 2001). Although extensive studies have examined the molecular, cellular and physiologic mechanisms of insulin granule biogenesis, sorting, and exocytosis the precise mechanisms controlling these processes and their dysregulation in the developed of diabetes remains an area of important investigation. We now know that insulin biogenesis initiates with the synthesis of preproinsulin in rough endoplastic reticulum and conversion of preproinsulin to proinsulin. Proinsulin begins to be packaged in the Trans-Golgi Network and is sorting into immature secretory granules. These immature granules become acidic via ATP-dependent proton pump and proinsulin undergoes proteolytic cleavage resulting the formation of insulin and C-peptide. During the granule maturation process, insulin is crystallized with zinc and calcium in the form of dense-core granules and unwanted cargo and membrane proteins undergo selective retrograde trafficking to either the constitutive trafficking pathway for secretion or to degradative pathways. The newly formed mature dense-core insulin granules populate two different intracellular pools, the readily releasable pools (RRP) and the reserved pool. These two distinct populations are thought to be responsible for the biphasic nature of insulin release in which the RRP granules are associated with the plasma membrane and undergo an acute calcium-dependent release accounting for first phase insulin secretion. In contrast, second phase insulin secretion requires the trafficking of the reserved granule pool to the plasma membrane. The initial trigger for insulin granule fusion with the plasma membrane is a rise in intracellular calcium and in the case of glucose stimulation results from increased production of ATP, closure of the ATP-sensitive potassium channel and cellular depolarization. In turn, this opens voltage-dependent calcium channels allowing increased influx of extracellular calcium. Calcium is thought to bind to members of the fusion regulatory proteins synaptogamin that functionally repressors the fusion inhibitory protein complexin. Both complexin and synaptogamin interact as well as several other regulatory proteins interact with the core fusion machinery composed of the Q- or t-SNARE proteins syntaxin 1 and SNAP25 in the plasma membrane that assembles with the R- or v-SNARE protein VAMP2 in insulin granules. In this chapter we will review the current progress of insulin granule biogenesis, sorting, trafficking, exocytosis and signaling pathways that comprise the molecular basis of glucose-dependent insulin secretion.
Collapse
|
44
|
Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 2009; 122:893-903. [PMID: 19295123 DOI: 10.1242/jcs.034355] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The release of insulin from pancreatic islets requires negative regulation to ensure low levels of insulin release under resting conditions, as well as positive regulation to facilitate robust responsiveness to conditions of elevated fuel or glucose. The first phase of release involves the plasma-membrane fusion of a small pool of granules, termed the readily releasable pool; these granules are already at the membrane under basal conditions, and discharge their cargo in response to nutrient and also non-nutrient secretagogues. By contrast, second-phase secretion is evoked exclusively by nutrients, and involves the mobilization of intracellular granules to t-SNARE sites at the plasma membrane to enable the distal docking and fusion steps of insulin exocytosis. Nearly 40 years ago, the actin cytoskeleton was first recognized as a key mediator of biphasic insulin release, and was originally presumed to act as a barrier to block granule docking at the cell periphery. More recently, however, the discovery of cycling GTPases that are involved in F-actin reorganization in the islet beta-cell, combined with the availability of reagents that are more specific and tools with which to study the mechanisms that underlie granule movement, have contributed greatly to our understanding of the role of the cytoskeleton in regulating biphasic insulin secretion. Herein, we provide historical perspective and review recent progress that has been made towards integrating cytoskeletal reorganization and cycling of small Rho-, Rab- and Ras-family GTPases into our current models of stimulus-secretion coupling and second-phase insulin release.
Collapse
Affiliation(s)
- Zhanxiang Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
45
|
|
46
|
Krivova YS, Barabanov VM, Savel'eva ES, Savel'ev SV. Immunohistochemical detection of SNAP-25, NCAM, and insulin in the pancreas of nutria (Myocastor coypus). Bull Exp Biol Med 2008; 144:737-40. [PMID: 18683511 DOI: 10.1007/s10517-007-0420-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immunohistochemical study revealed three types of neuroendocrine contacts in nutria pancreas. In most cases, the pancreatic islets and individual endocrine cells were associated with a diffuse neural network. Integration of neural ganglia with the islets and innervation of endocrine cells by projections of ganglionic cells were detected. It is hypothesized that the structure of neuroendocrine interactions plays different roles in the regulation of endocrine secretion.
Collapse
Affiliation(s)
- Yu S Krivova
- State Research Institute of Human Morphology, Russian Academy of Medical Sciences, Moscow
| | | | | | | |
Collapse
|
47
|
Knight JF, Shepherd CJ, Rizzo S, Brewer D, Jhavar S, Dodson AR, Cooper CS, Eeles R, Falconer A, Kovacs G, Garrett MD, Norman AR, Shipley J, Hudson DL. TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer. Br J Cancer 2008; 99:1849-58. [PMID: 19002168 PMCID: PMC2600693 DOI: 10.1038/sj.bjc.6604774] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is the most frequently diagnosed male cancer, and its clinical outcome is difficult to predict. The disease may involve the inappropriate expression of genes that normally control the proliferation of epithelial cells in the basal layer and their differentiation into luminal cells. Our aim was to identify novel basal cell markers and assess their prognostic and functional significance in prostate cancer. RNA from basal and luminal cells isolated from benign tissue by immunoguided laser-capture microdissection was subjected to expression profiling. We identified 112 and 267 genes defining basal and luminal populations, respectively. The transcription factor TEAD1 and the ubiquitin ligase c-Cbl were identified as novel basal cell markers. Knockdown of either marker using siRNA in prostate cell lines led to decreased cell growth in PC3 and disrupted acinar formation in a 3D culture system of RWPE1. Analyses of prostate cancer tissue microarray staining established that increased protein levels of either marker were associated with decreased patient survival independent of other clinicopathological metrics. These data are consistent with basal features impacting on the development and clinical course of prostate cancers.
Collapse
Affiliation(s)
- J F Knight
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - C J Shepherd
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - S Rizzo
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - D Brewer
- Department of Molecular Carcinogenesis, Cell Transformation Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - S Jhavar
- Department of Molecular Carcinogenesis, Cell Transformation Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
- Translational Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - A R Dodson
- Department of Pathology and Molecular Genetics, University of Liverpool, Duncan Building, Liverpool, UK
| | - C S Cooper
- Department of Molecular Carcinogenesis, Cell Transformation Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - R Eeles
- Translational Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - A Falconer
- Translational Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
- Department of Oncology, Charing Cross Hospital, London W6 8RF, UK
| | - G Kovacs
- Ruprecht-Karls-Universitat, Heidelberg Klinikum, Molekular Onkologie, Im Neuenheimer Feld 365, Heidelberg 69120, Germany
| | - M D Garrett
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - A R Norman
- Department of Medical Statistics, Royal Marsden NHS Trust, Sutton, Surrey SM2 5NG, UK
| | - J Shipley
- Department of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | - D L Hudson
- Department of Molecular Carcinogenesis, The Bob Champion Prostate Stem Cell Team, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
48
|
Suckow AT, Comoletti D, Waldrop MA, Mosedale M, Egodage S, Taylor P, Chessler SD. Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic beta-cells and the involvement of neuroligin in insulin secretion. Endocrinology 2008; 149:6006-17. [PMID: 18755801 PMCID: PMC2613060 DOI: 10.1210/en.2008-0274] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The composition of the beta-cell exocytic machinery is very similar to that of neuronal synapses, and the developmental pathway of beta-cells and neurons substantially overlap. beta-Cells secrete gamma-aminobutyric acid and express proteins that, in the brain, are specific markers of inhibitory synapses. Recently, neuronal coculture experiments have identified three families of synaptic cell-surface molecules (neurexins, neuroligins, and SynCAM) that drive synapse formation in vitro and that control the differentiation of nascent synapses into either excitatory or inhibitory fully mature nerve terminals. The inhibitory synapse-like character of the beta-cells led us to hypothesize that members of these families of synapse-inducing adhesion molecules would be expressed in beta-cells and that the pattern of expression would resemble that associated with neuronal inhibitory synaptogenesis. Here, we describe beta-cell expression of the neuroligins, neurexins, and SynCAM, and show that neuroligin expression affects insulin secretion in INS-1 beta-cells and rat islet cells. Our findings demonstrate that neuroligins and neurexins are expressed outside the central nervous system and help confer an inhibitory synaptic-like phenotype onto the beta-cell surface. Analogous to their role in synaptic neurotransmission, neurexin-neuroligin interactions may play a role in the formation of the submembrane insulin secretory apparatus.
Collapse
Affiliation(s)
- Arthur T Suckow
- Department of Medicine, Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Martin D, Allagnat F, Chaffard G, Caille D, Fukuda M, Regazzi R, Abderrahmani A, Waeber G, Meda P, Maechler P, Haefliger JA. Functional significance of repressor element 1 silencing transcription factor (REST) target genes in pancreatic beta cells. Diabetologia 2008; 51:1429-39. [PMID: 18385973 DOI: 10.1007/s00125-008-0984-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 02/19/2008] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS The expression of several neuronal genes in pancreatic beta cells is due to the absence of the transcription factor repressor element 1 (RE-1) silencing transcription factor (REST). The identification of these traits and their functional significance in beta cells has only been partly elucidated. Herein, we investigated the biological consequences of a repression of REST target genes by expressing REST in beta cells. METHODS The effect of REST expression on glucose homeostasis, insulin content and release, and beta cell mass was analysed in transgenic mice selectively expressing REST in beta cells. Relevant target genes were identified in INS-1E and primary beta cells expressing REST. RESULTS Transgenic mice featuring a beta cell-targeted expression of REST exhibited glucose intolerance and reduced beta cell mass. In primary beta cells, REST repressed several proteins of the exocytotic machinery, including synaptosomal-associated protein (SNAP) 25, synaptotagmin (SYT) IV, SYT VII, SYT IX and complexin II; it impaired first and second phases of insulin secretion. Using RNA interference in INS-1E cells, we showed that SYT IV and SYT VII were implicated in the control of insulin release. CONCLUSIONS/INTERPRETATION The data document the critical role of REST target genes in pancreatic beta cells. Specifically, we provide evidence that the downregulation of these genes is detrimental for the exocytosis of large dense core vesicles, thus contributing to beta cell dysfunction and impaired glucose homeostasis.
Collapse
Affiliation(s)
- D Martin
- Department of Medicine, University Hospital, CHUV, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tomas A, Meda P, Regazzi R, Pessin JE, Halban PA. Munc 18-1 and granuphilin collaborate during insulin granule exocytosis. Traffic 2008; 9:813-32. [PMID: 18208509 DOI: 10.1111/j.1600-0854.2008.00709.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Munc 18-1 is a member of the Sec/Munc family of syntaxin-binding proteins known to bind to the plasma membrane Q-SNARE syntaxin1 and whose precise role in regulated exocytosis remains controversial. Here, we show that Munc 18-1 plays a positive role in regulated insulin secretion from pancreatic beta cells. Munc 18-1 depletion caused a loss in the secretory capacity of both transiently transfected INS 1E cells and a stable clone with tetracycline-regulated Munc 18-1 RNA interference. In addition, Munc 18-1-depleted cells exhibited defective docking of insulin granules to the plasma membrane and accumulated insulin in the trans Golgi network. Furthermore, glucose stimulation after Munc 18-1 depletion resulted in the rapid formation of autophagosomes. In contrast, overexpression of Munc 18-1 had no effect on insulin secretion. Although there was no detectable interaction between Munc 18-1 and Munc-18-interacting protein 1 or calcium/calmodulin-dependent serine protein kinase, Munc 18-1 associated with the granular protein granuphilin. This association was regulated by glucose and was required for the specific interaction of insulin granules with syntaxin1. We conclude that Munc 18-1 and granuphilin collaborate in the docking of insulin granules to the plasma membrane in an initial fusion-incompetent state, with Munc 18-1 subsequently playing a positive role in a later stage of insulin granule exocytosis.
Collapse
Affiliation(s)
- Alejandra Tomas
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|