1
|
Wang W, Wang XM, Zhang HL, Zhao R, Wang Y, Zhang HL, Song ZJ. Molecular and metabolic landscape of adenosine triphosphate-induced cell death in cardiovascular disease. World J Cardiol 2024; 16:689-706. [PMID: 39734818 PMCID: PMC11669974 DOI: 10.4330/wjc.v16.i12.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
The maintenance of intracellular and extracellular adenosine triphosphate (ATP) levels plays a pivotal role in cardiac function. In recent years, burgeoning attention has been directed towards ATP-induced cell death (AICD), revealing it as a distinct cellular demise pathway triggered by heightened extracellular ATP concentrations, distinguishing it from other forms of cell death such as apoptosis and necrosis. AICD is increasingly acknowledged as a critical mechanism mediating the pathogenesis and progression of various cardiovascular maladies, encompassing myocardial ischemia-reperfusion injury, sepsis-induced cardiomyopathy, hypertrophic cardiomyopathy, arrhythmia, and diabetic cardiomyopathy. Consequently, a comprehensive understanding of the molecular and metabolic underpinnings of AICD in cardiac tissue holds promise for the prevention and amelioration of cardiovascular diseases. This review first elucidates the vital physiological roles of ATP in the cardiovascular system, subsequently delving into the intricate molecular mechanisms and metabolic signatures governing AICD. Furthermore, it addresses the potential therapeutic targets implicated in mitigating AICD for treating cardiovascular diseases, while also delineating the current constraints and future avenues for these innovative therapeutic targets, thereby furnishing novel insights and strategies for the prevention and management of cardiovascular disorders.
Collapse
Affiliation(s)
- Wei Wang
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Xue-Mei Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 73000, Gansu Province, China
| | - Hao-Long Zhang
- University Sains Malaysia, Advanced Medical and Dental Institute, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Yong Wang
- Department of Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
2
|
Cross AJ, King DA, Shackelford SD, Wheeler TL, Nonneman DJ, Keel BN, Rohrer GA. Genome-Wide Association of Myoglobin Concentrations in Pork Loins. MEAT AND MUSCLE BIOLOGY 2018. [DOI: 10.22175/mmb2017.08.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Lean color is a major focus for identifying pork loins for export markets, and myoglobin is the primary pigment driving pork color. Thus, increasing myoglobin concentration should increase redness of pork products and the number of loins acceptable for exportation. Therefore, understanding genetic variation and parameters affecting myoglobin concentration is critical for improving pork color. The objective of this study was to identify genetic markers associated with myoglobin concentration in pork loin muscle. Ultimate pH and myoglobin concentrations were measured in longissimus thoracis et lumborum samples of pigs (n = 599) from two different commercial finishing swine facilities. A Bayes-C model implemented in GenSel identified regions within 7 chromosomes that explained greater than 63% of the genetic variance in myoglobin concentration. Chromosome 7 had 1 significant region which accounted for 37% of the genetic variance, while chromosome 14 had 4 significant regions accounting for 9.8% of the genetic variance. Candidate genes in the region on chromosome 7 were involved in iron homeostasis, and genes in the significant regions on chromosome 14 were involved in calcium regulation. Genes identified in this study represent potential biomarkers that could be used to select for higher myoglobin concentrations in pork, which may improve lean meat color.
Collapse
Affiliation(s)
| | - David A. King
- U.S. Department of Agriculture U.S. Meat Animal Research Center, Agricultural Research Service
| | - Steven D. Shackelford
- U.S. Department of Agriculture U.S. Meat Animal Research Center, Agricultural Research Service
| | - Tommy L. Wheeler
- U.S. Department of Agriculture U.S. Meat Animal Research Center, Agricultural Research Service
| | - Dan J. Nonneman
- U.S. Department of Agriculture U.S. Meat Animal Research Center, Agricultural Research Service
| | - Brittney N. Keel
- U.S. Department of Agriculture U.S. Meat Animal Research Center, Agricultural Research Service
| | - Gary A. Rohrer
- U.S. Department of Agriculture U.S. Meat Animal Research Center, Agricultural Research Service
| |
Collapse
|
3
|
Chai X, Frotscher M. How does Reelin signaling regulate the neuronal cytoskeleton during migration? NEUROGENESIS 2016; 3:e1242455. [PMID: 28265585 DOI: 10.1080/23262133.2016.1242455] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 01/17/2023]
Abstract
Neuronal migration is an essential step in the formation of laminated brain structures. In the developing cerebral cortex, pyramidal neurons migrate toward the Reelin-containing marginal zone. Reelin is an extracellular matrix protein synthesized by Cajal-Retzius cells. In this review, we summarize our recent results and hypotheses on how Reelin might regulate neuronal migration by acting on the actin and microtubule cytoskeleton. By binding to ApoER2 receptors on the migrating neurons, Reelin induces stabilization of the leading processes extending toward the marginal zone, which involves Dab1 phosphorylation, adhesion molecule expression, cofilin phosphorylation and inhibition of tau phosphorylation. By binding to VLDLR and integrin receptors, Reelin interacts with Lis1 and induces nuclear translocation, accompanied by the ubiquitination of phosphorylated Dab1. Eventually Reelin induces clustering of its receptors resulting in the endocytosis of a Reelin/receptor complex (particularly VLDLR). The resulting decrease in Reelin contributes to neuronal arrest at the marginal zone.
Collapse
Affiliation(s)
- Xuejun Chai
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH) , Hamburg, Germany
| | - Michael Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH) , Hamburg, Germany
| |
Collapse
|
4
|
Chernyshova ES, Zaikina YS, Tsvetovskaya GA, Strokotov DI, Yurkin MA, Serebrennikova ES, Volkov L, Maltsev VP, Chernyshev AV. Influence of magnesium sulfate on HCO3/Cl transmembrane exchange rate in human erythrocytes. J Theor Biol 2016; 393:194-202. [PMID: 26780645 DOI: 10.1016/j.jtbi.2015.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
Abstract
Magnesium sulfate (MgSO4) is widely used in medicine but molecular mechanisms of its protection through influence on erythrocytes are not fully understood and are considerably controversial. Using scanning flow cytometry, in this work for the first time we observed experimentally (both in situ and in vitro) a significant increase of HCO3(-)/Cl(-) transmembrane exchange rate of human erythrocytes in the presence of MgSO4 in blood. For a quantitative analysis of the obtained experimental data, we introduced and verified a molecular kinetic model, which describes activation of major anion exchanger Band 3 (or AE1) by its complexation with free intracellular Mg(2+) (taking into account Mg(2+) membrane transport and intracellular buffering). Fitting the model to our in vitro experimental data, we observed a good correspondence between theoretical and experimental kinetic curves that allowed us to evaluate the model parameters and to estimate for the first time the association constant of Mg(2+) with Band 3 as KB~0.07mM, which is in agreement with known values of the apparent Mg(2+) dissociation constant (from 0.01 to 0.1mM) that reflects experiments on enrichment of Mg(2+) at the inner erythrocyte membrane (Gunther, 2007). Results of this work partly clarify the molecular mechanisms of MgSO4 action in human erythrocytes. The method developed allows one to estimate quantitatively a perspective of MgSO4 treatment for a patient. It should be particularly helpful in prenatal medicine for early detection of pathologies associated with the risk of fetal hypoxia.
Collapse
Affiliation(s)
- Ekaterina S Chernyshova
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Yulia S Zaikina
- Medical Centre of Siberian Branch of the Russian Academy of Science, Pirogova 25, 630090 Novosibirsk, Russia
| | - Galina A Tsvetovskaya
- ANO "Center of New Medical Technologies in Akademgorodok", Pirogova 25/4, 630090 Novosibirsk, Russia; Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia
| | - Dmitry I Strokotov
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia; Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia
| | - Maxim A Yurkin
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Elena S Serebrennikova
- Medical Centre of Siberian Branch of the Russian Academy of Science, Pirogova 25, 630090 Novosibirsk, Russia
| | - Leonid Volkov
- Centre de Recherches Cliniques Etienne-Le Bel, 3001 12 Av. Nord Sherbrooke loc. # 4867, Quebec, Canada J1H 5N4
| | - Valeri P Maltsev
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia; Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia
| | - Andrei V Chernyshev
- Voevodsky Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia.
| |
Collapse
|
5
|
Mikles DC, Bhat V, Schuchardt BJ, Deegan BJ, Seldeen KL, McDonald CB, Farooq A. pH modulates the binding of early growth response protein 1 transcription factor to DNA. FEBS J 2013; 280:3669-84. [PMID: 23718776 DOI: 10.1111/febs.12360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 11/29/2022]
Abstract
The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment.
Collapse
Affiliation(s)
- David C Mikles
- Department of Biochemistry & Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Receptor-independent effects of 2'(3')-O-(4-benzoylbenzoyl)ATP triethylammonium salt on cytosolic pH. Purinergic Signal 2013; 9:687-93. [PMID: 23689980 DOI: 10.1007/s11302-013-9365-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022] Open
Abstract
The effect of the relatively potent P2X7 receptor agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP-TEA) on cytosolic pH (pHi) was studied using MC3T3-E1 osteoblast-like cells, which endogenously express P2X7 receptors. pHi was measured fluorimetrically using the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. BzATP-TEA (0.3-1.5 mM) elicited fast-onset alkalinization responses. In contrast, adenosine 5'-triphosphate disodium salt (5 mM) failed to reproduce the BzATP-TEA-induced responses, indicating a P2 receptor-independent mechanism. We speculated that triethylamine, which is present in solutions of BzATP-TEA, permeates the plasma membrane, and is protonated intracellularly, leading to an increase in pHi. Consistent with this hypothesis, triethylammonium (TEA) chloride mimicked the effects of BzATP-TEA on pHi. Moreover, measurements using a Cytosensor microphysiometer revealed that TEA chloride transiently suppressed proton efflux from cells, whereas washout of TEA transiently enhanced proton efflux. BzATP-TEA also elicited a sustained increase in proton efflux that was blocked specifically by the P2X7 antagonist A-438079. Taken together, we conclude that BzATP-TEA-induced alkalinization is unrelated to P2X7 activation, but is due to the presence of TEA. This effect may confound assessment of the outcomes of P2X7 activation by BzATP-TEA in other systems. Thus, control experiments using TEA chloride are recommended to distinguish between receptor-mediated and nonspecific effects of this widely used agonist. We performed such a control and confirmed that BzATP-TEA, but not TEA chloride, caused the elevation of cytosolic free Ca(2+) in MC3T3-E1 cells, ruling out the possibility that receptor-independent effects on pHi underlie BzATP-TEA-induced Ca(2+) signaling.
Collapse
|
7
|
Zang QS, Martinez B, Yao X, Maass DL, Ma L, Wolf SE, Minei JP. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2. PLoS One 2012; 7:e43424. [PMID: 22952679 PMCID: PMC3428365 DOI: 10.1371/journal.pone.0043424] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022] Open
Abstract
Our previous research demonstrated that sepsis produces mitochondrial dysfunction with increased mitochondrial oxidative stress in the heart. The present study investigated the role of mitochondria-localized signaling molecules, tyrosine kinase Src and tyrosine phosphatase SHP2, in sepsis-induced cardiac mitochondrial dysfunction using a rat pneumonia-related sepsis model. SD rats were given an intratracheal injection of Streptococcus pneumoniae, 4×10(6) CFU per rat, (or vehicle for shams); heart tissues were then harvested and subcellular fractions were prepared. By Western blot, we detected a gradual and significant decrease in Src and an increase in SHP2 in cardiac mitochondria within 24 hours post-inoculation. Furthermore, at 24 hours post-inoculation, sepsis caused a near 70% reduction in tyrosine phosphorylation of all cardiac mitochondrial proteins. Decreased tyrosine phosphorylation of certain mitochondrial structural proteins (porin, cyclophilin D and cytochrome C) and functional proteins (complex II subunit 30kD and complex I subunit NDUFB8) were evident in the hearts of septic rats. In vitro, pre-treatment of mitochondrial fractions with recombinant active Src kinase elevated OXPHOS complex I and II-III activity, whereas the effect of SHP2 phosphatase was opposite. Neither Src nor SHP2 affected complex IV and V activity under the same conditions. By immunoprecipitation, we showed that Src and SHP2 consistently interacted with complex I and III in the heart, suggesting that complex I and III contain putative substrates of Src and SHP2. In addition, in vitro treatment of mitochondrial fractions with active Src suppressed sepsis-associated mtROS production and protected aconitase activity, an indirect marker of mitochondrial oxidative stress. On the contrary, active SHP2 phosphatase overproduced mtROS and deactivated aconitase under the same in vitro conditions. In conclusion, our data suggest that changes in mitochondria-localized signaling molecules Src and SHP2 constitute a potential signaling pathway to affect mitochondrial dysfunction in the heart during sepsis.
Collapse
Affiliation(s)
- Qun S Zang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
8
|
De Giusti VC, Orlowski A, Villa-Abrille MC, de Cingolani GEC, Casey JR, Alvarez BV, Aiello EA. Antibodies against the cardiac sodium/bicarbonate co-transporter (NBCe1) as pharmacological tools. Br J Pharmacol 2012; 164:1976-89. [PMID: 21595652 DOI: 10.1111/j.1476-5381.2011.01496.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Na(+) /HCO(3) (-) co-transport (NBC) regulates intracellular pH (pH(i) ) in the heart. We have studied the electrogenic NBC isoform NBCe1 by examining the effect of functional antibodies to this protein. EXPERIMENTAL APPROACH We generated two antibodies against putative extracellular loop domains 3 (a-L3) and 4 (a-L4) of NBCe1 which recognized NBCe1 on immunoblots and immunostaining experiments. pH(i) was monitored using epi-fluorescence measurements in cat ventricular myocytes. Transport activity of total NBC and of NBCe1 in isolation were evaluated after an ammonium ion-induced acidosis (expressed as H(+) flux, J(H) , in mmol·L(-1) min(-1) at pH(i) 6.8) and during membrane depolarization with high extracellular potassium (potassium pulse, expressed as ΔpH(i) ) respectively. KEY RESULTS The potassium pulse produced a pH(i) increase of 0.18 ± 0.006 (n= 5), which was reduced by the a-L3 antibody (0.016 ± 0.019). The a-L-3 also decreased J(H) by 50%. Surprisingly, during the potassium pulse, a-L4 induced a higher pH(i) increase than control,(0.25 ± 0.018) whereas the recovery of pH(i) from acidosis was faster (J(H) was almost double the control value). In perforated-patch experiments, a-L3 prolonged and a-L4 shortened action potential duration, consistent with blockade and stimulation of NBCe1-carried anionic current respectively. CONCLUSIONS AND IMPLICATIONS Both antibodies recognized NBCe1, but they had opposing effects on the function of this transporter, as the a-L3 was inhibitory and the a-L4 was excitatory. These antibodies could be valuable in studies on the pathophysiology of NBCe1 in cardiac tissue, opening a path for their potential clinical use.
Collapse
Affiliation(s)
- Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
9
|
Bogdelis A, Treinys R, Stankevičius E, Jurevičius J, Skeberdis VA. Src family protein tyrosine kinases modulate L-type calcium current in human atrial myocytes. Biochem Biophys Res Commun 2011; 413:116-21. [PMID: 21872572 DOI: 10.1016/j.bbrc.2011.08.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
In the heart, L-type voltage dependent calcium channels (L-VDCC) provide Ca(2+) for the activation of contractile apparatus. The best described pathway for L-type Ca(2+) current (I(Ca,L)) modulation is the phosphorylation of calcium channels by cAMP-dependent protein kinase A (PKA), the activity of which is predominantly regulated in opposite manner by β-adrenergic (β-ARs) and muscarinic receptors. The role of other kinases is controversial and often depends on tissues and species used in the studies. In different studies the inhibitors of tyrosine kinases have been shown either to stimulate or inhibit, or even have a biphasic effect on I(Ca,L). Moreover, there is no clear picture about the route of activation and the site of action of cardiac Src family nonreceptor tyrosine kinases (Src-nPTKs). In the present study we used PP1, a selective inhibitor of Src-nPTKs, alone and together with different activators of I(Ca,L), and demonstrated that in human atrial myocytes (HAMs): (i) Src-nPTKs are activated concomitantly with activation of cAMP-signaling cascade; (ii) Src-nPTKs attenuate PKA-dependent stimulation of I(Ca,L) by inhibiting PKA activity; (iii) Gα(s) are not involved in the direct activation of Src-nPTKs. In this way, Src-nPTKs may provide a protecting mechanism against myocardial overload under conditions of increased sympathetic activity.
Collapse
Affiliation(s)
- Andrius Bogdelis
- Lithuanian University of Health Sciences, Institute of Cardiology, 50009 Kaunas, Lithuania
| | | | | | | | | |
Collapse
|
10
|
Deegan BJ, Seldeen KL, McDonald CB, Bhat V, Farooq A. Binding of the ERalpha nuclear receptor to DNA is coupled to proton uptake. Biochemistry 2010; 49:5978-88. [PMID: 20593765 DOI: 10.1021/bi1004359] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear receptors act as ligand-modulated transcription factors and orchestrate a plethora of cellular functions central to health and disease. Although studied for more than half a century, many mysteries surrounding the mechanism of action of nuclear receptors remain unresolved. Herein, using isothermal titration calorimetry (ITC) in conjunction with macromolecular modeling (MM), we provide evidence that the binding of the ERalpha nuclear receptor to its DNA response element is coupled to proton uptake by two ionizable residues, H196 and E203, located at the protein-DNA interface. Alanine substitution of these ionizable residues decouples protonation and hampers the binding of ERalpha to DNA by nearly 1 order of magnitude. Remarkably, H196 and E203 are predominantly conserved across approximately 50 members of the nuclear receptor family, implying that proton-coupled equilibrium may serve as a key regulatory switch for modulating protein-DNA interactions central to nuclear receptor function and regulation. Taken together, our findings unearth an unexpected but critical step in the molecular action of nuclear receptors and suggest that they may act as sensors of intracellular pH.
Collapse
Affiliation(s)
- Brian J Deegan
- Department of Biochemistry and Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
11
|
Stefanovic S, Abboud N, Désilets S, Nury D, Cowan C, Pucéat M. Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. ACTA ACUST UNITED AC 2009; 186:665-73. [PMID: 19736317 PMCID: PMC2742180 DOI: 10.1083/jcb.200901040] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Embryonic stem cell pluripotency, once achieved, triggers a switch in promoter affinity for Oct4, which leads to cardiogenesis. Oct4 exerts a dose-dependent dual action, as both a gatekeeper for stem cell pluripotency and in driving cells toward specific lineages. Here, we identify the molecular mechanism underlying this dual function. BMP2- or transgene-induced Oct4 up-regulation drives human embryonic and induced pluripotent stem cells to become cardiac progenitors. When embryonic stem cell pluripotency is achieved, Oct4 switches from the Sox2 to the Sox17 promoter. This switch allows the cells to turn off the pluripotency Oct4-Sox2 loop and to turn on the Sox17 promoter. This powerful process generates a subset of endoderm-expressing Sox17 and Hex, both regulators of paracrine signals for cardiogenesis (i.e., Wnt, BMP2) released into the medium surrounding colonies of embryonic stem cells. Our data thus reveal a novel molecular Oct4- and Sox17-mediated mechanism that disrupts the stem cell microenvironment favoring pluripotency to provide a novel paracrine endodermal environment in which cell lineage is determined and commits the cells to a cardiogenic fate.
Collapse
Affiliation(s)
- Sonia Stefanovic
- Institut National de la Santé et de la Recherche Médicale (INSERM), Avenir Team, Stem Cells and Cardiogenesis, Evry 91058, France
| | | | | | | | | | | |
Collapse
|
12
|
Löber K, Alfonso A, Escribano L, Botana LM. STI571 (Glivec) affects histamine release and intracellular pH after alkalinisation in HMC-1560, 816. J Cell Biochem 2008; 103:865-76. [PMID: 17615556 DOI: 10.1002/jcb.21458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human mast cell line (HMC-1(560, 816)) was used to study the effect of the tyrosine kinase inhibitor STI571 (Glivec) on exocytosis, intracellular Ca(2+) and pH changes, because STI571 inhibits the proliferation of HMC-1(560) and induces its apoptosis. This drug does not have these effects on HMC-1(560, 816). Exocytosis in HMC-1(560, 816) cells can be stimulated by alkalinisation with NH(4)Cl as well as with ionomycin. Surprisingly 24-h pre-incubation with STI571 decreases spontaneous histamine release of HMC-1(560, 816) cells, but increases the histamine response after alkalinisation and not after ionomycin-stimulation. After addition of NH(4)Cl, pH(i) has a higher increase in STI571 pre-incubated cells, without changing intracellular Ca(2+) concentration. Activation of PKC in combination with tyrosine kinase inhibition increases also histamine release in HMC-1(560, 816) cells. Strangely, STI571 pre-incubated cells with PKC inhibited by rottlerin show the same effects. In these cells, cytosolic pH increases more than in control cells. This is the first report of STI571 effect in HMC-1(560, 816) cells. It seems that different pathways modulate signals for proliferation and exocytosis. STI571 does not only inhibit KIT TyrK, but may also influence cytosolic pH after alkalinisation in both cell lines, HMC-1(560) and HMC-1(560, 816), and this ends in induced histamine release. This work is important since HMC-1(560, 816) cells are reported in 80% of aggressive systemic mastocytosis cases and the understanding of some signalling pathways involved in mast cell response could facilitate drug targeting.
Collapse
Affiliation(s)
- Kristin Löber
- Departamento de Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | | | | | | |
Collapse
|
13
|
Löber K, Alfonso A, Escribano L, Botana LM. Influence of the tyrosine kinase inhibitors STI571 (Glivec), lavendustin A and genistein on human mast cell line (HMC-1(560)) activation. J Cell Biochem 2008; 103:1076-88. [PMID: 17661356 DOI: 10.1002/jcb.21480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human mast cell line (HMC-1(560)) was used to study the effects of tyrosine kinase (TyrK) inhibition on histamine release in consequence of intracellular Ca2+ or pH changes. This is important since the TyrK inhibitor STI571 (Glivec) inhibits proliferation and induces apoptosis in HMC-1(560). HMC-1(560) cells have a mutation in c-kit, which leads to a permanent phosphorylation of the KIT protein and their ligand-independent proliferation. The TyrK inhibitors STI571, lavendustin A and genistein decrease spontaneous histamine release in 24-h pre-incubated cells. Results are compared with those of the mast cell stabiliser cromoglycic acid, which also drops spontaneous histamine release. When exocytosis is stimulated by alkalinisation, STI571 pre-incubated cells release more histamine than non-pre-incubated cells. Alkalinisation-induced histamine release reaches still higher levels in STI571 cells with activated protein kinase C (PKC) by PMA. We do not observe modifications on histamine release in cells, treated with PKC inhibitors (rottlerin, Gf109203 or Gö6976). Lavendustin A- and genistein 24-h incubated cells behave similar to STI571 cells, whereas cromoglycic acid does not show effects after stimulation with alkalinisation. Stimulation of exocytosis with the Ca2+ ionophore ionomycin does not modify histamine response in TyrK inhibited cells. Ca2+ and pH changes are observed after long-time incubation with STI571. Results show that pH is still higher in STI571 pre-incubated cells after alkalinisation with NH4Cl, whereas intracellular Ca2+ concentration remains stable. This work further strength the importance of pHi as a cell signal and suggest that STI571 has transduction pathways in common with other TyrKs.
Collapse
Affiliation(s)
- Kristin Löber
- Departamento de Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | | | | | | |
Collapse
|
14
|
Abstract
Src family non-receptor tyrosine kinases are involved in signaling pathways which mediate cell growth, differentiation, transformation and tissue remodeling in various organs. In an effort to elucidate functional involvement of p60c-Src (c-Src) in spermatogenesis, the postnatal changes in c-src mRNA and c-Src protein together with kinase activity and subcellular localization were examined in mouse testes. c-src mRNA levels in testes increased during the first 2 weeks of postnatal development (PND). Following a decrease at puberty (PND 28), the c-src mRNA levels re-increased at adulthood (PND 50). Src kinase activity of testes was low at PND 7 but sharply increased prepubertally (PND 15) and highest at adulthood. Upon Western blotting, the level of c-Src protein was the highest in prepubertal testes but rather decreased in adult testes at PND 50. In adult testes, ubiquitination of c-Src proteins was apparent compared with immature one at PND 7, suggesting active turnover of c-Src by ubiquitination. In immature testes, c-Src immunoreactivity was largely found in the cytoplasm of the Sertoli cells. By contrast, in pubertal and adult testes intense immunoreactivity was localized at the adluminal and basal cytoplasm of Sertoli cells bearing elongated spermatids and early germ cells, respectively. The immunoreactivity of c-Src in the Leydig cells was increased during pubertal development, suggesting the functional involvement of c-Src in differentiated adult Leydig cells. Throughout postnatal development, some spermatogonia and spermatocytes showed intensive c-Src immunoreactivity compared with other germ cells, suggesting a possible role of c-Src in germ cell death. Taken together, it is suggested that c-Src may participate in the remodeling of the seminiferous epithelia and functional differentiation of Leydig cells during the postnatal development of mouse testes.
Collapse
Affiliation(s)
- Myung Chan Gye
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Korea.
| | | | | | | |
Collapse
|
15
|
Papadimou E, Ménard C, Grey C, Pucéat M. Interplay between the retinoblastoma protein and LEK1 specifies stem cells toward the cardiac lineage. EMBO J 2005; 24:1750-61. [PMID: 15861132 PMCID: PMC1142583 DOI: 10.1038/sj.emboj.7600652] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 03/30/2005] [Indexed: 11/09/2022] Open
Abstract
The molecular mechanisms governing early cardiogenesis are still largely unknown. Interestingly, the retinoblastoma protein (Rb), a regulator of cell cycle, has recently emerged as a new candidate regulating cell differentiation. Rb-/- mice die at midgestation and mice lacking E2f1/E2f3, downstream components of the Rb-dependent transcriptional pathway, die of heart failure. To gain insight into the function of Rb pathway in early cardiogenesis, we used Rb-/- embryonic stem (ES) cells differentiating into cardiomyocytes. Rb-/- cells displayed a dramatic delay in expression of cardiac-specific transcription factors and in turn in the whole process of cardiac differentiation. The phenotype of Rb-/- ES cell-derived cardiomyocytes was rescued by reintroducing Rb in cardiac progenitors, by stimulating the BMP-dependent cardiogenic pathway or by overexpression of Nkx2.5. ES cells deficient in the recently identified factor LEK1, a murine homolog of the cardiomyogenic factor 1, or specific disruption of Rb-LEK1 interaction into the nucleus of differentiating ES cells recapitulated the delay in cardiac differentiation of Rb-/- ES cells. Thus, we provide evidence for a novel Rb/LEK1-dependent and BMP-independent transcriptional program, which plays a pivotal role in priming ES cells toward a cardiac fate.
Collapse
Affiliation(s)
| | | | | | - Michel Pucéat
- CRBM, CNRS FRE 2593, Montpellier, France
- CRBM, CNRS FRE 2593, 1919, route de Mende, 34293 Montpellier, France. Tel.: +33 467 61 34 32; Fax: +33 467 52 15 59; E-mail:
| |
Collapse
|
16
|
Gye MC, Choi JK, Ahn HS, Kim YS. Expression of p50 C-terminal Src kinase (Csk) in mouse testis. ACTA ACUST UNITED AC 2005; 50:287-93. [PMID: 15277007 DOI: 10.1080/01485010490448714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
C-terminal Src Kinase (Csk) is a cytoplasmic tyrosine kinase that phosphorylates a critical tyrosine residue in each of the Src family kinases to inhibit their activities. To investigate the possible regulation of spermatogenesis by Src-Csk loop, the postnatal changes in the expression of Csk were examined in mouse testes. Semiquantitative RT-PCR analysis revealed that Csk mRNA increased during neonatal development and peaked at 2 weeks of age. Following the decrease during pubertal development, Csk expression re-increased in adult testes. In Western blot, immature testes showed higher expression of Csk protein than the pubertal or adult testes. In immature testis, Csk immunoreactivity was largely found in the Sertoli cell and there was no visible difference in the Csk immunoreactivity among the seminiferous tubules. In adult testis, however, a differential Csk immunoreactivity was found among the seminiferous tubules. Intense signal was found in the adluminal cytoplasm of the Sertoli cells bearing the post-meiotic differentiating germ cells, suggesting that Csk may participate in the remodeling of seminiferous tubule during late phase of spermatogenesis. Csk immunoreactivity was also found in the Leydig cells, suggesting the possible regulation of Leydig cell function. Src-Csk loop may participate in the differentiation of the seminiferous epithelia and Leydig cells in mouse testis.
Collapse
Affiliation(s)
- M C Gye
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea.
| | | | | | | |
Collapse
|
17
|
Abstract
SRC family kinases are a group of nine cytoplasmic protein tyrosine kinases essential for many cell functions. Some appear to be ubiquitously expressed, whereas others are highly tissue specific. The ability of members of the SRC family to influence ion transport has been recognized for several years. Mounting evidence suggests a broad role for SRC family kinases in the cell response to both hypertonic and hypotonic stress, and in the ensuing regulatory volume increase or decrease. In addition, members of this tyrosine kinase family participate in the mechanotransduction that accompanies cell membrane deformation. Finally, at least one SRC family member operates in concert with the p38 MAPK to regulate tonicity-dependent gene transcription.
Collapse
Affiliation(s)
- David M Cohen
- Division of Nephrology, Mailcode PP262, Oregon Health and Science Univ. 3314 SW US Veterans Hospital Rd., Portland, OR 97239, USA.
| |
Collapse
|
18
|
Sellers ZM, Childs D, Chow JYC, Smith AJ, Hogan DL, Isenberg JI, Dong H, Barrett KE, Pratha VS. Heat-stable enterotoxin of Escherichia coli stimulates a non-CFTR-mediated duodenal bicarbonate secretory pathway. Am J Physiol Gastrointest Liver Physiol 2005; 288:G654-63. [PMID: 15513951 DOI: 10.1152/ajpgi.00386.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is an important pathway for duodenal mucosal bicarbonate secretion. Duodenal biopsies from CF patients secrete bicarbonate in response to heat-stable enterotoxin from Escherichia coli (STa) but not cAMP. To explore the mechanism of STa-induced bicarbonate secretion in CF more fully, we examined the role of CFTR in STa-stimulated duodenal bicarbonate secretion in mice. In vivo, the duodenum of CFTR (-/-) or control mice was perfused with forskolin (10(-4) M), STa (10(-7) M), uroguanylin (10(-7) M), 8-bromoguanosine 3',5'-cGMP (8-Br-cGMP) (10(-3) M), genistein (10(-6) M) plus STa, or herbimycin A (10(-6) M) plus STa. In vitro, duodenal mucosae were voltage-clamped in Ussing chambers, and bicarbonate secretion was measured by pH-stat. The effect of genistein, DIDS (10(-4) M), and chloride removal was also studied in vitro. Control, but not CF, mice produced a significant increase in duodenal bicarbonate secretion after perfusion with forskolin, uroguanylin, or 8-Br-cGMP. However, both control and CF animals responded to STa with significant increases in bicarbonate output. Genistein and herbimycin A abolished this response in CF mice but not in controls. In vitro, STa-stimulated bicarbonate secretion in CF tissues was inhibited by genistein, DIDS, and chloride-free conditions, whereas bicarbonate secretion persisted in control mice. In the CF duodenum, STa can stimulate bicarbonate secretion via tyrosine kinase activity resulting in apical Cl(-)/HCO(3)(-) exchange. Further studies elucidating the intracellular mechanisms responsible for such non-CFTR mediated bicarbonate secretion may lead to important therapies for CF.
Collapse
Affiliation(s)
- Zachary M Sellers
- Div. of Gastroenterology (8414 University of California San Diego Medical Center, 200 West Arbor Dr., San Diego, CA 92103-8414, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Humez S, Monet M, van Coppenolle F, Delcourt P, Prevarskaya N. The role of intracellular pH in cell growth arrest induced by ATP. Am J Physiol Cell Physiol 2004; 287:C1733-46. [PMID: 15355852 DOI: 10.1152/ajpcell.00578.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated ionic mechanisms involved in growth arrest induced by extracellular ATP in androgen-independent prostate cancer cells. Extracellular ATP reversibly induced a rapid and sustained intracellular pH (pH(i)) decrease from 7.41 to 7.11. Inhibition of Ca(2+) influx, lowering extracellular Ca(2+), and buffering cytoplasmic Ca(2+) inhibited ATP-induced acidification, thereby demonstrating that acidification is a consequence of Ca(2+) entry. We show that ATP induced reuptake of Ca(2+) by the mitochondria and a transient depolarization of the inner mitochondrial membrane. ATP-induced acidification was reduced after the dissipation of the mitochondrial proton gradient by rotenone and carbonyl cyanide p-trifluoromethoxyphenylhydrazone, after inhibition of Ca(2+) uptake into the mitochondria by ruthenium red, and after inhibition of the F(0)F(1)-ATPase with oligomycin. ATP-induced acidification was not induced by either stimulation of the Cl(-)/HCO(3)(-) exchanger or inhibition of the Na(+)/H(+) exchanger. In addition, intracellular acidification, induced by an ammonium prepulse method, reduced the amount of releasable Ca(2+) from the endoplasmic reticulum, assessed by measuring change in cytosolic Ca(2+) induced by thapsigargin or ATP in a Ca(2+)-free medium. This latter finding reveals cross talk between pH(i) and Ca(2+) homeostasis in which the Ca(2+)-induced intracellular acidification can in turn regulate the amount of Ca(2+) that can be released from the endoplasmic reticulum. Furthermore, pH(i) decrease was capable of reducing cell growth. Taken together, our results suggest that ATP-induced acidification in DU-145 cells results from specific effect of mitochondrial function and is one of the major mechanisms leading to growth arrest induced by ATP.
Collapse
Affiliation(s)
- Sandrine Humez
- Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, Université des Sciences et Technologies de Lille, Bât. SN3, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
20
|
Baker MA, Hetherington L, Ecroyd H, Roman SD, Aitken RJ. Analysis of the mechanism by which calcium negatively regulates the tyrosine phosphorylation cascade associated with sperm capacitation. J Cell Sci 2004; 117:211-22. [PMID: 14676274 DOI: 10.1242/jcs.00842] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacitation of mammalian spermatozoa involves the activation of a cAMP-mediated signal transduction pathway that drives tyrosine phosphorylation via mechanisms that are unique to this cell type. Controversy surrounds the impact of extracellular calcium on this process, with positive and negative effects being recorded in independent publications. We clearly demonstrate that the presence of calcium in the external medium decreases tyrosine phosphorylation in both human and mouse spermatozoa. Under these conditions, a rise in intracellular pH was recorded, however, this event was not responsible for the observed changes in phosphotyrosine expression. Rather, the impact of calcium on tyrosine phosphorylation in these cells was associated with an unexpected change in the intracellular availability of ATP. Thus, the ATP content of both human and mouse spermatozoa fell significantly when these cells were incubated in the presence of external calcium. Furthermore, the removal of glucose, or addition of 2-deoxyglucose, decreased ATP levels within human spermatozoon populations and induced a corresponding decline in phosphotyrosine expression. In contrast, the mitochondrial inhibitor rotenone had no effect on either ATP levels or tyrosine phosphorylation. Addition of the affinity-labeling probe 8-N3 ATP confirmed our prediction that spermatozoa have many calcium-dependent ATPases. Moreover, addition of the ATPase inhibitor thapsigargin, increased intracellular calcium levels, decreased ATP and suppressed tyrosine phosphorylation. Based on these findings, the present study indicates that extracellular calcium suppresses tyrosine phosphorylation by decreasing the availability of intracellular ATP, and not by activating tyrosine phosphatases or inhibiting tyrosine kinases as has been previously suggested.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Science, and Hunter Medical Research Institute, University of Newcastle, NSW, Australia
| | | | | | | | | |
Collapse
|
21
|
Rohra DK, Saito SY, Ohizumi Y. Functional role of ryanodine-sensitive Ca2+ stores in acidic pH-induced contraction in Wistar Kyoto rat aorta. Life Sci 2003; 72:1259-69. [PMID: 12570926 DOI: 10.1016/s0024-3205(02)02370-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acidic pH induced a contraction in the isolated aorta from Wistar Kyoto rat. The magnitude of contraction was dependent upon the degree of extracellular acidification. The maximum level of contraction observed at pH 6.5 was 84.6 +/- 3.4% of the 64.8 mM KCl-induced contraction. To investigate the role of extracellular as well as intracellular Ca(2+) in acidic pH-induced contraction (APIC), we changed the extracellular pH in the presence of EGTA. Sustained contraction induced by acidic pH in the presence of extracellular Ca(2+) was completely abolished in the presence of EGTA, while a transient but significant contraction was still observed. Ryanodine, a selective ryanodine receptor blocker and cyclopiazonic acid (CPA), an inhibitor of sarco-/endoplasmic reticulum Ca(2+) ATPase, abolished the transient contraction, when pH was decreased in Ca(2+)-free solution. On the other hand, neither xestospongin C, a selective inositol-1,4,5-trisphosphate receptor antagonist nor U-73122, a phospholipase C inhibitor showed this effect. These results suggest the involvement of Ca(2+) release from ryanodine-/CPA-sensitive store of sarcoplasmic reticulum (SR). In normal Ca(2+)-containing solution, ryanodine and CPA did not alter the maximum level of APIC. However, they significantly decreased the rate of rise of APIC. U-73122, suppressed the maximum contraction induced by acidic pH without affecting the rate of rise of APIC, while xestospongin C and U-73343, an inactive analogue of U-73122, had no effect on both parameters of APIC. From these results, it is concluded that acidic pH induces Ca(2+) release from the ryanodine-/CPA-sensitive store of SR and that release provides supportive effect on initiating rapid transient contraction, but not on the sustained contraction, which is entirely due to Ca(2+) influx.
Collapse
Affiliation(s)
- Dileep Kumar Rohra
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aoba-ku, Aramaki, Sendai, 980-8578, Japan
| | | | | |
Collapse
|
22
|
Markou T, Vassort G, Lazou A. Regulation of MAPK pathways in response to purinergic stimulation of adult rat cardiac myocytes. Mol Cell Biochem 2003; 242:163-71. [PMID: 12619879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
We investigated the activation of mitogen-activated protein kinases (MAPKs) pathways by purinergic stimulation in cardiac myocytes from adult rat hearts. ATPgammaS increased the phosphorylation (activation) of the extracellular signal regulated kinase 1 and 2 (ERK1/2) and p38 MAPK. ERK1/2 and p38 MAPK activation was differential, ERK1/2 being rapid and transient while that of p38 MAPK slow and sustained. Using selective inhibitors, activation of ERK1/2 was shown to involve protein kinase C and MEK1/2 while that of p38 MAPK was regulated by both protein kinase C and protein kinase A. Furthermore, we show that purinergic stimulation induces the phosphorylation of the MAPK downstream target, mitogen- and stress-activated protein kinase 1 (MSK1), in cardiac myocytes. The time course of MSK1 phosphorylation closely follows that of ERK activation. Inhibitors of the ERK and p38 MAPK pathways were tested on the phosphorylation of MSK1 at two different time points. The results suggest that ERKs initiate the response but both ERKs and p38 MAPK are required for the maintenance of the complete phosphorylation of MSK1. The temporal relationship of MSK1 phosphorylation and cPLA2 translocation induced by purinergic stimulation, taken together with previous findings, is an indication that cPLA2 may be a downstream target of MSK1.
Collapse
Affiliation(s)
- Thomais Markou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | |
Collapse
|
23
|
Brett CL, Kelly T, Sheldon C, Church J. Regulation of Cl--HCO3- exchangers by cAMP-dependent protein kinase in adult rat hippocampal CA1 neurons. J Physiol 2002; 545:837-53. [PMID: 12482890 PMCID: PMC2290728 DOI: 10.1113/jphysiol.2002.027235] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The contributions of HCO(3)(-)-dependent, DIDS-sensitive mechanisms to the maintenance of steady-state pH(i), and the regulation of their activities by cAMP-dependent protein kinase (PKA), were investigated in CA1 neurons with the H(+)-sensitive fluorophore, BCECF. The addition of HCO(3)(-)/CO(2) to neurons with "low" (pH(i) < or = 7.20) and "high" (pH(i) > 7.20) initial pH(i) values under Hepes-buffered conditions, increased and decreased steady-state pH(i), respectively. Conversely, under HCO(3)(-)/CO(2)-buffered conditions, DIDS caused pH(i) to decrease and increase in neurons with low and high initial pH(i) values, respectively. In the presence, but not the absence, of HCO(3)(-), the PKA inhibitor Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPS; 50 microM) evoked DIDS-sensitive increases and decreases in pH(i) in neurons with low and high initial pH(i) values, respectively. In contrast, in neurons with low initial pH(i) values, activation of PKA with the Sp isomer of cAMPS (Sp-cAMPS; 25 microM) elicited increases in pH(i) that were smaller in the presence than in the absence of HCO(3)(-), whereas in neurons with high initial pH(i) values, Sp-cAMPS-evoked rises in pH(i) were larger in the presence than in the absence of HCO(3)(-); the differences between the effects of Sp-cAMPS on pH(i) under the different buffering conditions were attenuated by DIDS. Consistent with the possibility that changes in the activities of HCO(3)(-)-dependent, DIDS-sensitive mechanisms contribute to the steady-state pH(i) changes evoked by the PKA modulators, in neurons with initial pH(i) values < or = 7.20, Rp-cAMPS concurrently inhibited Na(+)-independent Cl(-)-HCO(3)(-) exchange and stimulated Na(+)-dependent Cl(-)-HCO(3)(-) exchange; in contrast, Sp-cAMPS concurrently stimulated Na(+)-independent Cl(-)-HCO(3)(-) exchange and inhibited Na(+)-dependent Cl(-)-HCO(3)(-) exchange. Data from a limited number of neurons with initial pH(i) values > 7.20 suggested that the directions of the reciprocal changes in anion exchange activities (inhibition or stimulation) evoked by Rp- and Sp-cAMPS may be opposite in cells with low vs. high resting pH(i) values. Taken together, the results indicate that the effects of modulating PKA activity on steady-state pH(i) in rat CA1 neurons under HCO(3)(-)/CO(2)-buffered conditions reflect not only changes in Na(+)-H(+) exchange activity but also changes in Na(+)-dependent and Na(+)-independent Cl(-)-HCO(3)(-) exchange activity that, in turn, may be dependent upon the initial pH(i).
Collapse
Affiliation(s)
- Christopher L Brett
- Department of Physiology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | |
Collapse
|
24
|
Melero S, Spirlì C, Zsembery A, Medina JF, Joplin RE, Duner E, Zuin M, Neuberger JM, Prieto J, Strazzabosco M. Defective regulation of cholangiocyte Cl-/HCO3(-) and Na+/H+ exchanger activities in primary biliary cirrhosis. Hepatology 2002; 35:1513-21. [PMID: 12029638 DOI: 10.1053/jhep.2002.33634] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Primary biliary cirrhosis (PBC) is a disorder of unknown origin with autoimmune features. Recently, impaired biliary secretion of bicarbonate has been shown in patients with PBC. Here we have investigated whether bile duct epithelial cells isolated from PBC patients exhibit defects in transepithelial bicarbonate transport by analyzing the activities of 2 ion exchangers, Cl(-)/HCO3(-) anion exchanger 2 (AE2) and Na(+)/H(+) exchanger (NHE) in isolated cholangiocytes. AE2 and NHE activities were studied in basal conditions and after stimulation with cyclic adenosine monophosphate (cAMP) and extracellular adenosine triphosphate (ATP), respectively. Cholangiocytes were grown from needle liver biopsies from 12 PBC patients, 8 normal controls, and 9 patients with other liver diseases. Also, intrahepatic cholangiocytes were cultured after immunomagnetic isolation from normal liver tissue (n = 6), and from recipients undergoing liver transplantation for end-stage PBC (n = 9) and other forms of liver disease (n = 8). In needle-biopsy cholangiocytes, basal AE2 activity was significantly decreased in PBC as compared with normal livers and disease controls. In addition, we observed that though cAMP increased AE2 activity in cholangiocytes from both normal and non-PBC livers, this effect was absent in PBC cholangiocytes. Similarly, though in cholangiocytes from normal and disease control livers extracellular ATP induced a marked enhancement of NHE activity, cholangiocytes from PBC patients failed to respond to purinergic stimulation. In conclusion, our findings provide functional evidence that PBC cholangiocytes exhibit a widespread failure in the regulation of carriers involved in transepithelial H(+)/HCO3(-) transport, thus, providing a molecular basis for the impaired bicarbonate secretion in this cholestatic syndrome.
Collapse
Affiliation(s)
- Saida Melero
- Division of Hepatology and Gene Therapy, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Alvarez BV, Fujinaga J, Casey JR. Molecular basis for angiotensin II-induced increase of chloride/bicarbonate exchange in the myocardium. Circ Res 2001; 89:1246-53. [PMID: 11739292 DOI: 10.1161/hh2401.101907] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasma membrane anion exchangers (AEs) regulate myocardial intracellular pH (pH(i)) by Na(+)-independent Cl(-)/HCO(3)(-) exchange. Angiotensin II (Ang II) activates protein kinase C (PKC) and increases anion exchange activity in the myocardium. Elevated anion exchange activity has been proposed to contribute to the development of cardiac hypertrophy. Our Northern blots showed that adult rat heart expresses AE1, AE2, AE3fl, and AE3c. Activity of each AE isoform was individually measured by following changes of pH(i), associated with bicarbonate transport, in transfected HEK293 cells. Exposure to the PKC activator, PMA (150 nmol/L), increased the transport activity of only the AE3fl isoform by 50+/-11% (P<0.05, n=6), consistent with the increase observed in intact myocardium. Cotransfection of HEK293 cells with AE3fl and AT1(a)-Ang II receptors conferred sensitivity of anion transport to Ang II (500 nmol/L), increasing the transport activity by 39+/-3% (P<0.05, n=4). PKC inhibition by chelerythrine (10 micromol/L) blocked the PMA effect. To identify the PKC-responsive site, 7 consensus PKC phosphorylation sites of AE3fl were individually mutated to alanine. Mutation of serine 67 of AE3 prevented the PMA-induced increase of anion transport activity. Inhibition of MEK1/2 by PD98059 (50 micromol/L) did not affect the response of AE3fl to Ang II, indicating that PKC directly phosphorylates AE3fl. We conclude that following Ang II stimulation of cells, PKCepsilon phosphorylates serine 67 of the AE3 cytoplasmic domain, inducing the Ang II-induced increase in anion transport observed in the hypertrophic myocardium.
Collapse
Affiliation(s)
- B V Alvarez
- Department of Physiology, Canadian Institutes of Health Research (CIHR) Group in Molecular Biology of Membrane Proteins, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
26
|
Shmukler BE, Wilhelm S, Alper SL. Short sequence repeat polymorphism in the mouse slc4al gene encoding the AE1 Cl-/HCO3-exchanger. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 11:447-50. [PMID: 11328653 DOI: 10.3109/10425170009033995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human AE1 anion exchanger gene SLC4A1 encodes the Cl-/HCO3-exchangers of the erythrocyte and the Type Acid-secreting intercalated cell basolateral membrane. Mutations in SLC4A1 have been correspondingly linked with autosomal dominant hereditary spherocytotic anemia and with both dominant and recessive forms of distal renal tubular acidosis. Murine knockouts in the slc4a1Ae1 gene have also been generated, and lack erythroid and renal expression. However, intragenic polymorphic markers for the slc4a1 gene have been unavailable. Here we report that a previously identified CA repeat element of intron 13 of the murine Ae1 gene exhibits strain-specific length polymorphism.
Collapse
Affiliation(s)
- B E Shmukler
- Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center; Departments of Medicine and Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
27
|
Abstract
ATP, besides an intracellular energy source, is an agonist when applied to a variety of different cells including cardiomyocytes. Sources of ATP in the extracellular milieu are multiple. Extracellular ATP is rapidly degraded by ectonucleotidases. Today ionotropic P2X(1--7) receptors and metabotropic P2Y(1,2,4,6,11) receptors have been cloned and their mRNA found in cardiomyocytes. On a single cardiomyocyte, micromolar ATP induces nonspecific cationic and Cl(-) currents that depolarize the cells. ATP both increases directly via a G(s) protein and decreases Ca(2+) current. ATP activates the inward-rectifying currents (ACh- and ATP-activated K(+) currents) and outward K(+) currents. P2-purinergic stimulation increases cAMP by activating adenylyl cyclase isoform V. It also involves tyrosine kinases to activate phospholipase C-gamma to produce inositol 1,4,5-trisphosphate and Cl(-)/HCO(3)(-) exchange to induce a large transient acidosis. No clear correlation is presently possible between an effect and the activation of a given P2-receptor subtype in cardiomyocytes. ATP itself is generally a positive inotropic agent. Upon rapid application to cells, ATP induces various forms of arrhythmia. At the tissue level, arrhythmia could be due to slowing of electrical spread after both Na(+) current decrease and cell-to-cell uncoupling as well as cell depolarization and Ca(2+) current increase. In as much as the information is available, this review also reports analog effects of UTP and diadenosine polyphosphates.
Collapse
Affiliation(s)
- G Vassort
- Institut National de la Santé et de la Recherche Médicale U. 390, Centre Hospitalier Universitaire Arnaud de Villeneuve, Montpellier, France.
| |
Collapse
|
28
|
Papageorgiou P, Shmukler BE, Stuart-Tilley AK, Jiang L, Alper SL. AE anion exchangers in atrial tumor cells. Am J Physiol Heart Circ Physiol 2001; 280:H937-45. [PMID: 11179033 DOI: 10.1152/ajpheart.2001.280.3.h937] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular pH homeostasis and intracellular Cl(-) concentration in cardiac myocytes are regulated by anion exchange mechanisms. In physiological extracellular Cl(-) concentrations, Cl(-)/HCO(3)(-) exchange promotes intracellular acidification and Cl(-) loading sensitive to inhibition by stilbene disulfonates. We investigated the expression of AE anion exchangers in the AT-1 mouse atrial tumor cell line. Cultured AT-1 cells exhibited a substantial basal Na(+)-independent Cl(-)/HCO(3)(-) (but not Cl(-)/OH(-)) exchange activity that was inhibited by DIDS but not by dibenzamidostilbene disulfonic acid (DBDS). AT-1 cell Cl(-)/HCO(3)(-) activity was stimulated two- to threefold by extracellular ATP and ANG II. AE mRNAs detected by RT-PCR in AT-1 cells included brain AE3 (bAE3), cardiac AE3 (cAE3), AE2a, AE2b, AE2c1, AE2c2, and erythroid AE1 (eAE1), but not kidney AE1 (kAE1). Cultured AT-1 cells expressed AE2, cAE3, and bAE3 polypeptides, which were detected by immunoblot and immunocytochemistry. An AE1-like epitope was detected by immunocytochemistry but not by immunoblot. Both bAE3 and cAE3 were present in intact AT-1 tumors. Cultured AT-1 cells provide a useful system for the study of mediators and regulators of Cl(-)/HCO(3)(-) exchange activity in an atrial cell type.
Collapse
Affiliation(s)
- P Papageorgiou
- Harvard-Thorndike Institute of Electrophysiology, Cardiovascular Division, Molecular Medicine and Renal Units, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
29
|
Bony C, Roche S, Shuichi U, Sasaki T, Crackower MA, Penninger J, Mano H, Pucéat M. A specific role of phosphatidylinositol 3-kinase gamma. A regulation of autonomic Ca(2)+ oscillations in cardiac cells. J Cell Biol 2001; 152:717-28. [PMID: 11266463 PMCID: PMC2195768 DOI: 10.1083/jcb.152.4.717] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purinergic stimulation of cardiomyocytes turns on a Src family tyrosine kinase-dependent pathway that stimulates PLCgamma and generates IP(3), a breakdown product of phosphatidylinositol 4,5-bisphosphate (PIP2). This signaling pathway closely regulates cardiac cell autonomic activity (i.e., spontaneous cell Ca(2+) spiking). PIP2 is phosphorylated on 3' by phosphoinositide 3-kinases (PI3Ks) that belong to a broad family of kinase isoforms. The product of PI3K, phosphatidylinositol 3,4,5-trisphosphate, regulates activity of PLCgamma. PI3Ks have emerged as crucial regulators of many cell functions including cell division, cell migration, cell secretion, and, via PLCgamma, Ca(2+) homeostasis. However, although PI3Kalpha and -beta have been shown to mediate specific cell functions in nonhematopoietic cells, such a role has not been found yet for PI3Kgamma. We report that neonatal rat cardiac cells in culture express PI3Kalpha, -beta, and -gamma. The purinergic agonist predominantly activates PI3Kgamma. Both wortmannin and LY294002 prevent tyrosine phosphorylation, and membrane translocation of PLCgamma as well as IP(3) generation in ATP-stimulated cells. Furthermore, an anti-PI3Kgamma, but not an anti-PI3Kbeta, injected in the cells prevents the effect of ATP on cell Ca(2+) spiking. A dominant negative mutant of PI3Kgamma transfected in the cells also exerts the same action. The effect of ATP was observed on spontaneous Ca(2+) spiking of wild-type but not of PI3Kgamma(2/2) embryonic stem cell-derived cardiomyocytes. ATP activates the Btk tyrosine kinase, Tec, and induces its association with PLCgamma. A dominant negative mutant of Tec blocks the purinergic effect on cell Ca(2+) spiking. Tec is translocated to the T-tubes upon ATP stimulation of cardiac cells. Both an anti-PI3Kgamma antibody and a dominant negative mutant of PI3Kgamma injected or transfected into cells prevent the latter event. We conclude that PI3Kgamma activation is a crucial step in the purinergic regulation of cardiac cell spontaneous Ca(2+) spiking. Our data further suggest that Tec works in concert with a Src family kinase and PI3Kgamma to fully activate PLCgamma in ATP-stimulated cardiac cells. This cluster of kinases provides the cardiomyocyte with a tight regulation of IP(3) generation and thus cardiac autonomic activity.
Collapse
Affiliation(s)
- Claire Bony
- The French Institute of Health and Medical Research, CNRS UPR1086 Montpellier 34293, France
| | - Serge Roche
- the Center for Research of Macromolecular Biochemistry, CNRS UPR1086 Montpellier 34293, France
| | - Ueno Shuichi
- Division of Functional Genomics, Jichi Medical School, Tochigi, 329-04 Japan
| | - Takehiko Sasaki
- Amgen Institute, Ontario Cancer Institute, Department of Medical Biophysics and Immunology, Toronto, Ontario, MSG 2C1 Canada
| | - Michael A. Crackower
- Amgen Institute, Ontario Cancer Institute, Department of Medical Biophysics and Immunology, Toronto, Ontario, MSG 2C1 Canada
| | - Josef Penninger
- Amgen Institute, Ontario Cancer Institute, Department of Medical Biophysics and Immunology, Toronto, Ontario, MSG 2C1 Canada
| | - Hiroyuki Mano
- Division of Functional Genomics, Jichi Medical School, Tochigi, 329-04 Japan
| | - Michel Pucéat
- the Center for Research of Macromolecular Biochemistry, CNRS UPR1086 Montpellier 34293, France
| |
Collapse
|
30
|
Aimond F, Rauzier JM, Bony C, Vassort G. Simultaneous activation of p38 MAPK and p42/44 MAPK by ATP stimulates the K+ current ITREK in cardiomyocytes. J Biol Chem 2000; 275:39110-6. [PMID: 10993907 DOI: 10.1074/jbc.m008192200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Living cells exhibit multiple K(+) channel proteins; among these is the recently reported atypical two-pore domain K(+) channel protein TREK-1. Most K(+) currents are modulated by neurohormones and under various pathological conditions. Here, in rat ventricular cardiomyocytes using the whole-cell patch-clamp technique, we characterize for the first time a native TREK-1-like current (I(TREK)) that is activated by ATP, a purine agonist applied at a micromolar range. This current is sensitive to arachidonic acid, intracellular acidosis, and various K(+) current inhibitors. Reverse transcription-polymerase chain reaction reveals the presence of a TREK-1-like mRNA in rat cardiomyocytes that shows 93% identity with mouse TREK-1. ATP effects are greatly attenuated in the presence of arachidonic acid or HCO(-)(3)-induced intracellular acidosis. Using a series of inhibitors, we further demonstrate that the ATP-induced stimulation of I(TREK) implies the activation of cytosolic phospholipase A(2) and the release of arachidonic acid. These events require the simultaneous involvement of p38 MAPK and p42/44 MAPK, respectively, via a cAMP-dependent protein kinase and a tyrosine kinase pathway, whereas the two MAPKs conjugate to activate a mitogen- and stress-activated protein kinase (MSK-1). Our results thus demonstrate the occurrence of a TREK-1-like current in cardiac cells whose activation by purine agonists implies a dual-MAPK cytosolic pathway.
Collapse
Affiliation(s)
- F Aimond
- INSERM U-390, Physiopathologie cardiovasculaire, IFR N degrees 3, CHU Arnaud de Villeneuve, F-34295 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
31
|
Franchini KG, Torsoni AS, Soares PH, Saad MJ. Early activation of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overload in the rat heart. Circ Res 2000; 87:558-65. [PMID: 11009560 DOI: 10.1161/01.res.87.7.558] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mechanical overload elicits functional and structural adaptive mechanisms in cardiac muscle. Signaling pathways linked to integrin/cytoskeleton complexes may have a function in mediation of the effects of mechanical stimulus in myocardial cells. We investigated the tyrosine phosphorylation and the assembly of the multicomponent signaling complex associated with focal adhesion kinase (Fak) and the actin cytoskeleton in the overloaded myocardium of rats. Pressure overload induced a 3-fold increase in Fak tyrosine phosphorylation within 3 minutes after a 60-mm Hg rise in aortic pressure. A pressure stimulus that lasted for 60 minutes was accompanied by a 5-fold increase in the amount of tyrosine-phosphorylated Fak, and a stimulus as low as 10 mm Hg doubled the amount of tyrosine-phosphorylated Fak in the myocardium within 10 minutes. Pressure overload also induced a time-dependent association of actin with Fak and an increase in the amount of Fak detected in the cytoskeletal fraction of the myocardium. These events were paralleled by c-Src activation and binding to Fak and by an association of Grb2 and p85 subunit of phosphatidylinositol 3-kinase with Fak. Erk1/2 and Akt, two possible downstream effectors of Fak via Grb2 and phosphatidylinositol 3-kinase, were also shown to be activated in parallel with Fak. These findings show that pressure overload induced a rapid activation of the Fak multiple signaling complex in the myocardium of rats, which suggests that this mechanism may have a role in mechanotransduction in the myocardium.
Collapse
Affiliation(s)
- K G Franchini
- Department of Internal Medicine, School of Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | | | | | | |
Collapse
|
32
|
Wittstein IS, Qiu W, Ziegelstein RC, Hu Q, Kass DA. Opposite effects of pressurized steady versus pulsatile perfusion on vascular endothelial cell cytosolic pH: role of tyrosine kinase and mitogen-activated protein kinase signaling. Circ Res 2000; 86:1230-6. [PMID: 10864913 DOI: 10.1161/01.res.86.12.1230] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelial cytosolic pH (pH(i)) modulates ion channel function, vascular tone, and cell proliferation. Steady shear induces rapid acidification in bicarbonate buffer. However, in vivo shear is typically pulsatile, potentially altering this response. We tested effects and mechanisms of pH(i) modulation by flow pulsatility, comparing pressurized steady versus pulse-flow responses in bovine aortic endothelial cells cultured within glass capillary tubes. Cells were loaded with the fluorescent pH(i) indicator carboxy seminaphthorhodafluor-1 and perfused with physiological pulsatile pressure and flow generated by a custom servo-control system. Raising mean pressure from 0 to 90 mm Hg at 0.5 mL/min steady flow in bicarbonate buffer induced sustained acidification (-0.33+/-0.09 pH units, P<0.01). A subsequent increase in steady flow resulted in further acidification. In contrast, if mean pressure and flow were unchanged but perfusion made pulsatile, pH(i) rose +0.3+/-0.03 (P<0. 0001) over 30 to 60 minutes. HCO(3)(-) removal and use of acid/base exchange inhibitors 5-(N-ethyl-N-isopropyl)amiloride or diisothiocyanato stilbene disulfonic acid identified both extracellular Na(+)-independent Cl(-)-HCO(3)(-) and Na(+)-H(+) exchangers as activated by static pressure, whereas pulsatility activated extracellular Na(+)-dependent Cl(-)-HCO(3)(-) and Na(+)-H(+) exchangers to raise pH(i). Pulse-perfusion alkalinization occurred with or without flow reversal and increased 1.6-fold in Ca(2+)-free buffer. Inhibition of c-Src tyrosine kinase (4-amino-5-[4-chlorophenyl]-7-[t-butyl]pyrazolo [3,4-d]pyrimidine; PP2) or MEK-1 (mitogen-activated protein kinase [MAP]/extracellular signal-regulated kinase [ERK]-1) (PD98059, blocking ERK1/2) blocked or reversed the pulsatile-flow pH(i) change to acidification. In contrast, PP2 had no effect on steady flow acidification, whereas MEK-1 inhibition converted it to alkalinization. Thus, pulsatile and steady flow trigger opposite effects on endothelial pH(i) by differential activation of acid/base exchangers linked to c-Src and MAP kinase phosphorylation, but not to Ca(2+). These data highlight specific signaling responses triggered by phasic shear profiles.
Collapse
Affiliation(s)
- I S Wittstein
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
33
|
Jaconi M, Bony C, Richards SM, Terzic A, Arnaudeau S, Vassort G, Pucéat M. Inositol 1,4,5-trisphosphate directs Ca(2+) flow between mitochondria and the Endoplasmic/Sarcoplasmic reticulum: a role in regulating cardiac autonomic Ca(2+) spiking. Mol Biol Cell 2000; 11:1845-58. [PMID: 10793156 PMCID: PMC14888 DOI: 10.1091/mbc.11.5.1845] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The signaling role of the Ca(2+) releaser inositol 1,4, 5-trisphosphate (IP(3)) has been associated with diverse cell functions. Yet, the physiological significance of IP(3) in tissues that feature a ryanodine-sensitive sarcoplasmic reticulum has remained elusive. IP(3) generated by photolysis of caged IP(3) or by purinergic activation of phospholipase Cgamma slowed down or abolished autonomic Ca(2+) spiking in neonatal rat cardiomyocytes. Microinjection of heparin, blocking dominant-negative fusion protein, or anti-phospholipase Cgamma antibody prevented the IP(3)-mediated purinergic effect. IP(3) triggered a ryanodine- and caffeine-insensitive Ca(2+) release restricted to the perinuclear region. In cells loaded with Rhod2 or expressing a mitochondria-targeted cameleon and TMRM to monitor mitochondrial Ca(2+) and potential, IP(3) induced transient Ca(2+) loading and depolarization of the organelles. These mitochondrial changes were associated with Ca(2+) depletion of the sarcoplasmic reticulum and preceded the arrest of cellular Ca(2+) spiking. Thus, IP(3) acting within a restricted cellular region regulates the dynamic of calcium flow between mitochondria and the endoplasmic/sarcoplasmic reticulum. We have thus uncovered a novel role for IP(3) in excitable cells, the regulation of cardiac autonomic activity.
Collapse
Affiliation(s)
- M Jaconi
- Institut National de la Santé et de la Recherche Médicale U-390, CHU Arnaud de Villeneuve, Montpellier, 34295 France
| | | | | | | | | | | | | |
Collapse
|
34
|
Mockridge JW, Marber MS, Heads RJ. Activation of Akt during simulated ischemia/reperfusion in cardiac myocytes. Biochem Biophys Res Commun 2000; 270:947-52. [PMID: 10772931 DOI: 10.1006/bbrc.2000.2522] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study we have investigated whether Akt was activated during simulated ischemia (SI) and simulated ischemia/reperfusion (SI/R) in neonatal rat cardiomyocytes. Akt was phosphorylated on both S473 and T308 residues after 10 min of simulated SI/R and remained elevated for 60 min before returning to basal levels after 2 h. No phosphorylation was observed during SI alone. SI/R-stimulated Akt activation was inhibited by the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin, the tyrosine kinase inhibitor genistein and the Src tyrosine kinase inhibitor PP2, indicating a requirement for tyrosine kinase activity in Akt activation. Furthermore, SB203580, a p38 MAPK inhibitor, partially inhibited Akt activation. SI/R also induced the phosphorylation of PHAS-I, a downstream Akt target, in a wortmannin-dependent manner. These results demonstrate for the first time that SI/R stimulates Akt activation via PI3-K-and Src tyrosine kinase-dependent pathways, whereas p38 MAPK appears to be involved in maintaining Akt activation.
Collapse
Affiliation(s)
- J W Mockridge
- Department of Cardiology, Rayne Institute, King's College London, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, United Kingdom
| | | | | |
Collapse
|
35
|
Abe J, Okuda M, Huang Q, Yoshizumi M, Berk BC. Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. J Biol Chem 2000; 275:1739-48. [PMID: 10636870 DOI: 10.1074/jbc.275.3.1739] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species and growth factors stimulate similar intracellular signal transduction events including activation of Src kinase family members and extracellular signal-regulated kinases (ERK1/2). A potentially important downstream effector of Src and ERK1/2 is p90 ribosomal S6 kinase (p90RSK), which plays an important role in cell growth by activating several transcription factors as well as the Na(+)/H(+) exchanger. In the present study, we determined whether H(2)O(2) activates p90RSK to gain insight into signal transduction mechanisms activated by reactive oxygen species. H(2)O(2) (200 microM) stimulated ERK1/2 and p90RSK activity in lymphocytes, endothelial cells, and fibroblasts. The MEK-1 inhibitor, PD98059 (30 microM), inhibited H(2)O(2)-mediated activation of ERK1/2 but not of p90RSK. An essential role for Fyn and Ras in p90RSK activation was suggested by five findings. 1) The tyrosine kinase inhibitor, herbimycin A, and the specific Src kinase family inhibitor, PP1, blocked p90RSK activation by H(2)O(2) in a concentration-dependent manner. 2) p90RSK activation by H(2)O(2) was significantly reduced in fibroblasts derived from transgenic mice deficient in Fyn, but not c-Src. 3) H(2)O(2) rapidly activated Ras (peak at 2-5 min), which preceded p90RSK activation (peak at 20 min). 4) Dominant negative Ras completely blocked H(2)O(2)-induced activation of p90RSK. 5) In Fyn-/- fibroblasts, activation of Ras by H(2)O(2) was significantly attenuated. These results show essential roles for Fyn and Ras in H(2)O(2)-mediated activation of p90RSK and establish redox-sensitive regulation of Ras and p90RSK as a new function for Fyn.
Collapse
Affiliation(s)
- J Abe
- Center for Cardiovascular Research, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
36
|
Sterling D, Casey JR. Transport activity of AE3 chloride/bicarbonate anion-exchange proteins and their regulation by intracellular pH. Biochem J 1999; 344 Pt 1:221-9. [PMID: 10548554 PMCID: PMC1220634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Plasma membrane Cl(-)/HCO(3)(-) anion-exchange (AE) proteins contribute to regulation of intracellular pH (pH(i)). We characterized the transport activity and regulation by pH(i) of full-length AE3 and the cardiac isoform, AE3c, both of which are expressed in the heart. AE3c is an N-terminal variant of AE3. We also characterized AE1, AE2 and a deletion construct (AE3tr) coding for the common region of AE3 and AE3c. AE proteins were expressed by transient transfection of HEK-293 cells, and transport activity was monitored by following changes of intracellular pH or intracellular chloride concentration associated with anion exchange. Transport activities, measured as proton flux (mM H(+).min(-1)), were as follows: AE1, 24; AE2, 32; full-length AE3, 9; AE3c, 4 and AE3tr, 4. The wide range of transport activities is not explained by variation of cell surface processing since approx. 30% of each isoform was expressed on the cell surface. pH(i) was clamped at a range of values from 6.0-9.0 to examine regulation of AE proteins by pH(i). Whereas AE2 was steeply inhibited by acid pH(i), AE1, AE3 and AE3c were essentially insensitive to changes of pH(i). We conclude that AE3 and AE3c can contribute to pH(i) recovery after cellular-acid loading.
Collapse
Affiliation(s)
- D Sterling
- Department of Physiology, Membrane Transport Group, MRC Group in Molecular Biology of Membranes, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
37
|
Ping P, Zhang J, Zheng YT, Li RC, Dawn B, Tang XL, Takano H, Balafanova Z, Bolli R. Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ Res 1999; 85:542-50. [PMID: 10488057 DOI: 10.1161/01.res.85.6.542] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Src tyrosine kinases have been shown to mediate cellular responses to stress in noncardiac cells. However, the effect of myocardial ischemia on Src tyrosine kinases is unknown. Furthermore, the identity of the tyrosine kinase(s) involved in the genesis of ischemic preconditioning (PC) remains obscure. Here, we present the first evidence that ischemic PC (6 cycles of 4-minute coronary occlusion and 4-minute reperfusion) induces selective activation of 2 members of the Src family of tyrosine kinases, Src and Lck, in the heart of conscious rabbits. The activation of Src in the particulate fraction was not evident at 5 minutes after ischemic PC but became apparent at 30 minutes (+119% versus control), whereas the activation of Lck in the particulate fraction was apparent both at 5 minutes (+103% versus control) and at 30 minutes (+89%) after ischemic PC. The activity of the other 5 members of the Src tyrosine kinases expressed in the rabbit heart (Fyn, Fgr, Yes, Lyn, and Blk) was not affected by ischemic PC. Ischemic PC had no effect on the activity of epidermal growth factor receptor kinases, either at 5 or at 30 minutes. The activation of Src and Lck was completely abrogated by the tyrosine kinase inhibitor lavendustin A, given at doses that have previously been shown to block the protective effect of ischemic PC in this same conscious rabbit model, suggesting that Src and Lck kinases are essential for the development of ischemic PC. The activity of the epsilon isoform of protein kinase C (PKC) in the particulate fraction increased at 5 minutes (+72%) and at 30 minutes (+67%) after ischemic PC. Pretreatment with lavendustin A had no effect on the activation of PKCepsilon, whereas pretreatment with the PKC inhibitor chelerythrine (given at doses that have previously been shown to block ischemic PC) blocked not only the activation of PKCepsilon but also that of Src and Lck, indicating that Src and Lck are downstream of PKCepsilon in the signaling cascade of ischemic PC. This study identifies a new component of the signaling mechanism of ischemic PC. The results support the concept that, in conscious rabbits, 2 specific members of the Src family of tyrosine kinases, Src and Lck, play an important role in the genesis of late PC by serving as downstream elements of PKC-mediated signal transduction.
Collapse
Affiliation(s)
- P Ping
- Experimental Research Laboratory, Division of Cardiology and the Department of Physiology and Biophysics, University of Louisville and Jewish Hospital Heart and Lung Institute, KY 40202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Barbul A, Zipser Y, Nachles A, Korenstein R. Deoxygenation and elevation of intracellular magnesium induce tyrosine phosphorylation of band 3 in human erythrocytes. FEBS Lett 1999; 455:87-91. [PMID: 10428478 DOI: 10.1016/s0014-5793(99)00822-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Deoxygenation increases the level of tyrosine phosphorylation of band 3 by approximately 25% in human red blood cells (RBCs), as determined by Western blotting. The effect is much more pronounced in osmotically shrunken RBCs or in the presence of vanadate. When the rise in intracellular free Mg2+ concentration in deoxygenated RBCs is simulated via clamping of the intracellular magnesium in oxygenated RBCs by ionomycin, band 3 phosphorylation is elevated by up to 10-fold. Phosphorylated band 3 is preferentially retained by RBC skeletons, after mild extraction with Triton X-100. Elevation of intracellular free Mg2+ leads to band 3 phosphorylation and is accompanied by rigidification of the membrane skeleton as determined by analysis of RBC membrane mechanical fluctuations. These findings suggest that the visco-elastic properties of human erythrocytes may be regulated by band 3 tyrosine phosphorylation.
Collapse
Affiliation(s)
- A Barbul
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | | | | | |
Collapse
|
39
|
Girault JA, Costa A, Derkinderen P, Studler JM, Toutant M. FAK and PYK2/CAKbeta in the nervous system: a link between neuronal activity, plasticity and survival? Trends Neurosci 1999; 22:257-63. [PMID: 10354603 DOI: 10.1016/s0166-2236(98)01358-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A major aim of neurobiology today is to improve understanding of the signaling pathways that couple rapid events, such as the action potential and neurotransmitter release, to long-lasting changes in synaptic strength and increased neuronal survival. These adaptations involve interactions of neurons with other cells and with the extracellular matrix. They use, in part, the same molecular machinery that controls adhesion, motility or survival in non-neuronal cells. This machinery includes two homologous non-receptor tyrosine kinases, FAK and PYK2/CAKbeta, and the associated SRC-family tyrosine kinases. Specific brain isoforms of FAK with distinct properties are regulated by neurotransmitters, whereas PYK2/CAKbeta is highly sensitive to depolarization. The multiplicity of the pathways that can be activated by these tyrosine kinases indicates their importance in signal transduction in the adult brain.
Collapse
Affiliation(s)
- J A Girault
- INSERM U114, Collège de France, 75005 Paris, France
| | | | | | | | | |
Collapse
|
40
|
Richards SM, Jaconi ME, Vassort G, Pucéat M. A spliced variant of AE1 gene encodes a truncated form of Band 3 in heart: the predominant anion exchanger in ventricular myocytes. J Cell Sci 1999; 112 ( Pt 10):1519-28. [PMID: 10212146 DOI: 10.1242/jcs.112.10.1519] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anion exchangers (AE) are encoded by a multigenic family that comprises at least three genes, AE1, AE2 and AE3, and numerous splicoforms. Besides regulating intracellular pH (pHi) via the Cl-/HCO3- exchange, the AEs exert various cellular functions including generation of a senescent antigen, anchorage of the cytoskeleton to the membrane and regulation of metabolism. Most cells express several AE isoforms. Despite the key role of this family of proteins, little is known about the function of specific AE isoforms in any tissue, including the heart. We therefore chose isolated cardiac cells, in which a tight control of pHi is mandatory for the excitation-contraction coupling process, to thoroughly investigate the expression of the AE genes at both the mRNA and protein levels. RT-PCR revealed the presence of AE1, AE2 and AE3 mRNAs in both neonatal and adult rat cardiomyocytes. AE1 is expressed both as the erythroid form (Band 3 or eAE1) and a novel alternate transcript (nAE1), which was more specifically characterized using a PCR mapping strategy. Two variants of AE2 (AE2a and AE2c) were found at the mRNA level. Cardiac as well as brain AE3 mRNAs were expressed in both neonatal and adult rat cardiomyocytes. Several AE protein isoforms were found, including a truncated form of AE1 and two AE3s, but there was no evidence of AE2 protein in adult rat cardiomyocytes. In cardiomyocytes transfected with an AE3 oligodeoxynucleotide antisense, AE3 immunoreactivity was dramatically decreased but the activity of the Cl-/HCO3- exchange was unchanged. In contrast, intracellular microinjection of blocking anti-AE1 antibodies inhibited the AE activity. Altogether, our findings suggest that a specific and novel AE1 splicoform (nAE1) mediates the cardiac Cl-/HCO3- exchange. The multiple gene and protein expression within the same cell type suggest numerous functions for this protein family.
Collapse
Affiliation(s)
- S M Richards
- INSERM U-390, Laboratoire de Physiopathologie Cardiovasculaire, CHU Arnaud de Villeneuve, Montpellier, France
| | | | | | | |
Collapse
|
41
|
|