1
|
Nepali S, Chen M, Karthikeyan B, Sonkawade SD, Mahajan SD, Spernyak J, Sharma UC, Pokharel S. Claudin 1 dysregulation disrupts coronary microvascular integrity and impairs cardiac function. Atherosclerosis 2025; 403:119149. [PMID: 40068507 DOI: 10.1016/j.atherosclerosis.2025.119149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND AND AIMS Claudin 1 (Cldn1) is a tight junction protein primarily known for its role in epithelial and endothelial barrier function. However, the role of Cldn1 in coronary microvascular barrier remain unclear. The aim of this study is to investigate the biological effects of Cldn1 dysregulation on coronary vascular permeability, inflammation, fibrosis, and left ventricular function. METHODS Cldn1 was silenced in human cardiac microvascular endothelial cells (HMVECs) and C57Bl/6 mice using oligonucleotide-based next generation siRNA duplex. Additionally, global transgenic mice with endothelial cell-specific overexpression of Cldn1 were created under the regulation of the CD144 (VE-cadherin) promoter. Permeability was assessed using FITC-dextran assay in vitro and Evans blue dye leakage (Mile's assay) in vivo. Cardiac morphology and function were measured by cardiac MRI, and myocardial pathology was analyzed by immunohistochemistry and Transmission Electron Microscopy (TEM). PCR and Western blotting confirmed Cldn1 expression changes. RESULTS Cldn1 knockdown reduced protein levels by 46% (p = 0.004) and significantly increased endothelial permeability in HMVEC (p = 0.0007). In mice, Cldn1 knockdown significantly increased Evans blue dye leakage (p = 0.025), macrophage infiltration (p = 0.018), and interstitial collagen (p = 0.048). TEM confirmed endothelial damage particularly affecting the basement membrane structure. Cardiac MRI showed reduced stroke volume (p = 0.004) and ejection fraction (p = 0.043). Cldn1 overexpression reduced vascular permeability (p = 0.002) without altering cardiac function under basal condition. CONCLUSION Cldn1 plays an important role in maintaining coronary microvascular barrier integrity. Its loss leads to increased permeability, inflammation, fibrosis, and impaired cardiac function, while overexpression enhances barrier function without affecting cardiac performance under baseline conditions.
Collapse
Affiliation(s)
- Sarmila Nepali
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Min Chen
- Department of Pediatrics Infectious Disease, University of Alabama, AL, USA
| | - Badri Karthikeyan
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Swati D Sonkawade
- Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Supriya D Mahajan
- Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Joseph Spernyak
- Translational Imaging Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Umesh C Sharma
- Department of Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saraswati Pokharel
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
2
|
Yang Z, Zheng Y, Ren K, Wang W, Li S. Hydroxy-selenomethionine helps cows to overcome heat stress by enhancing antioxidant capacity and alleviating blood-milk barrier damage. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:171-181. [PMID: 39967694 PMCID: PMC11833791 DOI: 10.1016/j.aninu.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/23/2024] [Accepted: 10/30/2024] [Indexed: 02/20/2025]
Abstract
Heat stress can lead to decreased feed intake, apoptosis of mammary epithelial cells, and decreased milk yield and quality. Selenium is an important element in the composition of at least 25 selenoproteins. Hydroxy-selenomethionine (HMSeBA) is a novel organic selenium that has been shown to have a better deposition effect. However, whether HMSeBA alleviates damage to the mammary gland blood-milk barrier caused by heat stress and how this affects the performance of dairy cows remain largely unexplored. Therefore, 32 healthy Holstein cows with similar gestation days (150.41 ± 20.07 d), milk yield (36.15 ± 3.02 kg) and parity (3.25 ± 0.51) were selected and randomly divided into two total mixed rations with different selenium (Se) sources: sodium selenite (SSe) and HMSeBA. This study evaluated the outcomes of HMSeBA on antioxidant capacity, immunity, and blood-milk barrier damage in dairy cows during heat stress by collecting the samples of blood, rumen fluid and mammary gland biopsy. The experiment was conducted over 35 d, including a 5-day pre-feeding period and a 30-day experimental period. The temperature and humidity index (THI) were all above 80 throughout the experiment period. The results showed that HMSeBA decreased the respiratory rate (P < 0.001) and the content of inflammatory cytokines in the serum and increased the content of immune factors and antioxidant capacity (P < 0.05). In addition, HMSeBA reduced the expression of inflammatory cytokines and heat shock proteins in mammary gland (P < 0.05). Hematoxylin-eosin-stained pathological sections showed massive thickening of acinar walls and severe destruction of glandular structures in the SSe group, but the structure of the acinar mammary gland in the HMSeBA group was intact. Furthermore, HMSeBA promoted the expression of the phosphatidylinositol 3-kinase (PI3K, P < 0.001)/protein kinase B (AKT, P = 0.011)/mammalian target of rapamycin (mTOR, P = 0.008) pathway and improved the expression of zonula occludens-1 (ZO-1, P = 0.014) and occluding (OCLN, P = 0.012) in the mammary gland, suggesting less damage caused by heat stress to the blood-milk barrier. Our results demonstrated that HMSeBA can improve the antioxidant capacity and immunity of dairy cows and the expression of tight junction proteins in mammary gland to help alleviate the blood-milk barrier damage by heat stress, which could reduce the damage of heat stress on milk yield.
Collapse
Affiliation(s)
- Zhantao Yang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuhui Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kai Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Almier N, Leibowitz K, Gower AC, To S, Keller MR, Connizzo BK, Roh DS, Alani RM, Collard M. Targeting the Epigenome Reduces Keloid Fibroblast Cell Proliferation, Migration, and Invasion. J Invest Dermatol 2025; 145:411-422.e7. [PMID: 39009280 PMCID: PMC11995714 DOI: 10.1016/j.jid.2024.06.1274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
Keloids are pathological fibroproliferative scars resulting from abnormal collagen deposition within and beyond the margins of the initial cutaneous insult. Keloids negatively impact QOL functionally and cosmetically, with current treatment modalities unsatisfactory. Recent studies indicate that epigenetic dysregulation is central to the development and progression of keloids. In this study, we evaluate the functional significance of epigenetic targeting strategies in vitro using patient-derived keloid fibroblasts treated with small-molecule inhibitors of histone deacetylases, LSD1, CoREST, and p300, as potential therapies for keloids. We find that both the dual-acting CoREST inhibitor corin and the histone deacetylase inhibitor entinostat reduce fibroblast proliferation more than the LSD1 inhibitor GSK-LSD1; in addition, corin was the most effective inhibitor of migration and invasion across keloid fibroblasts. RNA-sequencing analysis of keloid fibroblasts treated with corin demonstrates coordinate upregulation of many genes, including key mediators of cell adhesion such as claudins. Corin also downregulates gene sets involved in cell cycle progression, including reduced expression of cyclins A1 and B2 compared with that of DMSO. These results highlight a significant role for epigenetic regulation of pathologic mediators of keloidal scarring and suggest that inhibitors of the epigenetic CoREST repressor complex may prove beneficial in the prevention and/or treatment of keloidal scarring in patients.
Collapse
Affiliation(s)
- Nedaa Almier
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Kassidy Leibowitz
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Samantha To
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Madelyn R Keller
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, Massachusetts, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, Massachusetts, USA
| | - Daniel S Roh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rhoda M Alani
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
| | - Marianne Collard
- Department of Dermatology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
4
|
Zhang L, Wei X. The Lego hypothesis of tissue morphogenesis: stereotypic organization of parallel orientational cell adhesions for epithelial self-assembly. Biol Rev Camb Philos Soc 2025; 100:445-460. [PMID: 39308450 PMCID: PMC11718597 DOI: 10.1111/brv.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025]
Abstract
How tissues develop distinct structures remains poorly understood. We propose herein the Lego hypothesis of tissue morphogenesis, which states that during tissue morphogenesis, the topographical properties of cell surface adhesion molecules can be dynamically altered and polarised by regulating the spatiotemporal expression and localization of orientational cell adhesion (OCA) molecules cell-autonomously and non-cell-autonomously, thus modulating cells into unique Lego pieces for self-assembling into distinct cytoarchitectures. This concept can be exemplified by epithelial morphogenesis, in which cells are coalesced into a sheet by many types of adhesions. Among them, parallel OCAs (pOCAs) at the lateral cell membranes are essential for configuring cells in parallel. Major pOCAs include Na+/K+-ATPase-mediated adhesions, Crumbs-mediated adhesions, tight junctions, adherens junctions, and desmosomes. These pOCAs align in stereotypical orders along the apical-to-basal axis, and their absolute positioning is also regulated. Such spatial organization of pOCAs underlies proper epithelial morphogenesis. Thus, a key open question about tissue morphogenesis is how to regulate OCAs to make compatible adhesive cellular Lego pieces for tissue construction.
Collapse
Affiliation(s)
- Lili Zhang
- Department of PsychologyDalian Medical University9 Lvshun South Road WestDalian116044Liaoning ProvinceChina
| | - Xiangyun Wei
- Departments of Ophthalmology and Microbiology & Molecular GeneticsUniversity of Pittsburgh1622 Locust StreetPittsburgh15219PAUSA
| |
Collapse
|
5
|
Sugawara T, Sonoda K, Chompusri N, Noguchi K, Okada S, Furuse M, Wakayama T. Claudin-11 regulates immunological barrier formation and spermatogonial proliferation through stem cell factor. Commun Biol 2025; 8:148. [PMID: 39885308 PMCID: PMC11782696 DOI: 10.1038/s42003-025-07592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
Tight junctions (TJs) between adjacent Sertoli cells are believed to form immunological barriers that protect spermatogenic cells expressing autoantigens from autoimmune responses. However, there is no direct evidence that Sertoli cell TJs (SCTJs) do indeed form immunological barriers. Here, we analyzed male mice lacking claudin-11 (Cldn11), which encodes a SCTJ component, and found autoantibodies against antigens of spermatocytes/spermatids in their sera. Defective spermatogenesis in Cldn11-deficient mice was not restored on a recombination activating gene 2 (Rag2) knockout background lacking mature T and B lymphocytes. This suggests that adaptive immune responses to spermatogenic cells are not a cause of defective spermatogenesis in Cldn11-deficient mice. Further analyses showed that Cldn11 knockout impaired Sertoli cell polarization, localization of stem cell factor (SCF) (a key molecule for maintaining differentiating spermatogonia) to the basal compartment of seminiferous tubules, and also proliferation of differentiating spermatogonia. We propose that CLDN11 creates a microenvironment for SCF-mediated spermatogonial proliferation at the basal compartment via Sertoli cell polarization.
Collapse
Affiliation(s)
- Taichi Sugawara
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kayoko Sonoda
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Nattapran Chompusri
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Noguchi
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi, Japan
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Do TT, Nguyen VT, Nguyen NTN, Duong KTT, Nguyen TTM, Le DNT, Nguyen TH. A Review of a Breakdown in the Barrier: Tight Junction Dysfunction in Dental Diseases. Clin Cosmet Investig Dent 2024; 16:513-531. [PMID: 39758089 PMCID: PMC11697688 DOI: 10.2147/ccide.s492107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/15/2024] [Indexed: 01/07/2025] Open
Abstract
The tight junction (TJ), a type of cell-cell junction, regulates the permeability of solutes across epithelial and endothelial cellular sheets and is believed to maintain cell polarity. However, recent studies have provided conflicting views on the roles of TJs in epithelial polarity. Membrane proteins, including occludin, claudin, and the junction adhesion molecule, have been identified as TJ components. TJs are predominantly found at the stratum granulosum and stratum corneum. Although it remains unclear whether the disruption of TJs is the cause or consequence of certain dental diseases, evidence suggests that TJ dysfunction may be a crucial factor in gingival epithelial barrier impairment and the progression of oral diseases. Bacterial infection is among the most specific factors we found that may contribute to the breakdown of the epithelial barrier formed by TJs in dental diseases. Bacteria and their products may weaken the epithelial barrier by directly destroying intercellular junctions or altering the expression of junctional proteins. Additionally, they may induce the production of inflammatory cytokines, which could lead to the downregulation of TJ proteins and, consequently, impair the epithelial barrier. This review introduces a novel perspective by exploring, for the first time, the role of TJs dysfunction in the breakdown of the oral epithelial barrier and its potential link to the progression of dental diseases such as gingivitis, periodontitis, Sjӧgren syndrome, and oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Thao Thi Do
- Oral Diagnosis and Periodontology Department, Faculty of Odonto-Stomatology, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Vietnam
| | - Vy Thuy Nguyen
- Oral Diagnosis and Periodontology Department, Faculty of Odonto-Stomatology, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Vietnam
| | - Ngoc Tran Nhu Nguyen
- Oral Diagnosis and Periodontology Department, Faculty of Odonto-Stomatology, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Vietnam
| | - Kim Tran Thien Duong
- Oral Diagnosis and Periodontology Department, Faculty of Odonto-Stomatology, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Vietnam
| | - Tri Ta Minh Nguyen
- Oral Diagnosis and Periodontology Department, Faculty of Odonto-Stomatology, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Vietnam
| | - Duong Nguyen Thuy Le
- Oral Diagnosis and Periodontology Department, Faculty of Odonto-Stomatology, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Vietnam
| | - Tin Hoang Nguyen
- Department of Physiology, Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Vietnam
| |
Collapse
|
7
|
Das A, Giri S, Dey P. Cell-cell junctional proteins in cancer. Adv Clin Chem 2024; 125:93-142. [PMID: 39988409 DOI: 10.1016/bs.acc.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
A hallmark change during carcinogenesis is disruption or dysregulation of cell-cell junctions. It enables a transformed cell to adopt mesenchymal phenotype and acquire higher potential to migrate and invade. This ultimately leads to cancer metastasis. During this process, junctional proteins undergo remarkable changes in terms of their expressional pattern, localization, and activity. De-localized junctional proteins may adopt atypical roles which might act to either suppress tumorigenesis or facilitate cancer development, depending on several factors. In this chapter, the authors attempt to know the expression pattern of junctional proteins in different types of cancer, understand its significance, and gather knowledge about the mechanisms by which they regulate tumorigenesis and cancer development.
Collapse
Affiliation(s)
- Aparajita Das
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Sarbani Giri
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India.
| | - Pubali Dey
- Molecular and Cell Biology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
8
|
Kesaraju S, Li Y, Xing J, Tracy M, Wannemo K, Holder A, Zhao P, Khan MA, Kainov J, Rana N, Sidahmed M, Hyoju S, Smith L, Matthews J, Tay S, Khalili-Araghi F, Rana M, Oakes SA, Shen L, Weber CR. Inflammation-Induced Claudin-2 Upregulation Limits Pancreatitis Progression by Enhancing Tight Junction-Controlled Pancreatic Ductal Transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.01.555960. [PMID: 39605652 PMCID: PMC11601259 DOI: 10.1101/2023.09.01.555960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Pancreatitis is an inflammatory disease of the pancreas that can arise due to various factors, including environmental risks such as diet, alcohol, and smoking, as well as genetic predispositions. In some cases, pancreatitis may progress and become chronic, leading to irreversible damage and impaired pancreatic function. Genome-wide association studies (GWAS) have identified polymorphisms at the X-linked CLDN2 locus as risk factors for both sporadic and alcohol-related chronic pancreatitis. CLDN2 encodes claudin-2 (CLDN2), a paracellular cation-selective channel localized at tight junctions and expressed in the pancreas and other secretory organs. However, whether and how CLDN2 may modify pancreatitis susceptibility remains poorly understood. We aimed to clarify the potential role of CLDN2 in the onset and progression of pancreatitis. We employed multiple methodologies to examine the role of CLDN2 in human pancreatic tissue, caerulein-induced experimental pancreatitis mouse model, and pancreatic ductal epithelial organoids. In both human chronic pancreatitis tissues and caerulein-induced experimental pancreatitis, CLDN2 protein was significantly upregulated in pancreatic ductal epithelial cells. Our studies using pancreatic ductal epithelial organoids and mice demonstrated the inflammatory cytokine IFNγ upregulates claudin-2 expression at both RNA and protein levels. Following caerulein treatment, Ifng KO mice had diminished upregulation of CLDN2 relative to WT mice, indicating that caerulein-induced claudin-2 expression is partially driven by IFNγ. Functionally, Cldn2 knockout mice developed more severe caerulein-induced experimental pancreatitis, indicating CLDN2 plays a protective role in pancreatitis development. Pancreatic ductal epithelial organoid-based studies demonstrated that CLDN2 is critical for sodium-dependent water transport and necessary for cAMP-driven, CFTR-dependent fluid secretion. These findings suggest that functional crosstalk between CLDN2 and CFTR is essential for fluid transport in pancreatic ductal epithelium, which may protect against pancreatitis by adjusting pancreatic ductal secretion to prevent worsening autodigestion and inflammation. In conclusion, our studies suggest CLDN2 upregulation during pancreatitis may play a protective role in limiting disease development, and decreased CLDN2 function may increase pancreatitis severity. These results point to the possibility of modulating pancreatic ductal CLDN2 function as an approach for therapeutic intervention of pancreatitis.
Collapse
|
9
|
van der Veen RE, Piontek J, Bieck M, Saiti A, Gonschior H, Lehmann M. Claudin-4 polymerizes after a small extracellular claudin-3-like substitution. J Biol Chem 2024; 300:107693. [PMID: 39159821 PMCID: PMC11490706 DOI: 10.1016/j.jbc.2024.107693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/14/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Tight junctions play a pivotal role in the functional integrity of the human body by forming barriers that compartmentalize tissues and protect the body from external threats. Essential components of tight junctions are the transmembrane claudin proteins, which can polymerize into tight junction strands and meshworks. This study delves into the structural determinants of claudin polymerization, using the close homology yet strong difference in polymerization capacity between claudin-3 and claudin-4. Through a combination of sequence alignment and structural modeling, critical residues in the second extracellular segment are pinpointed. Molecular dynamics simulations provide insights into the interactions of and the conformational changes induced by the identified extracellular segment 2 residues. Live-stimulated emission depletion imaging demonstrates that introduction of these residues from claudin-3 into claudin-4 significantly enhances polymerization in nonepithelial cells. In tight junction-deficient epithelial cells, mutated claudin-4 not only influences tight junction morphology but also partially restores barrier function. Understanding the structural basis of claudin polymerization is crucial, as it offers insights into the dynamic nature of tight junctions. This knowledge could be applied to targeted therapeutic interventions, offer insight to repair or prevent barrier defects associated with pathological conditions, or introduce temporary barrier openings during drug delivery.
Collapse
Affiliation(s)
- Rozemarijn E van der Veen
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marie Bieck
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Arbesa Saiti
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Hannes Gonschior
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Martin Lehmann
- Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
10
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
11
|
Choi Y, Park H, Kim J, Lee H, Kim M. Heat Stress Induces Alterations in Gene Expression of Actin Cytoskeleton and Filament of Cellular Components Causing Gut Disruption in Growing-Finishing Pigs. Animals (Basel) 2024; 14:2476. [PMID: 39272260 PMCID: PMC11394201 DOI: 10.3390/ani14172476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
We aimed to investigate the impact of heat stress (HS) on the expression of tight junction (TJ) proteins and the interaction between genes affecting intestinal barrier function using transcriptomics in the porcine jejunum. Twenty-four barrows (crossbred Yorkshire × Landrace × Duroc; average initial body weight, 56.71 ± 1.74 kg) were placed in different temperatures (normal temperature [NT]; HS) and reared for 56 days. At the end of the experiment, jejunal samples were collected from three pigs per treatment for transcriptome and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses. We identified 43 differentially expressed genes, involving five Kyoto Encyclopedia of Genes and Genomes pathways, eight molecular functions, seven cellular components (CCs), and nine biological processes, using gene ontology enrichment analysis. Genes associated with the actin cytoskeleton, filament-binding pathways, and TJ proteins were selected and analyzed by RT-qPCR. Significant differences in relative mRNA expression showed that downregulated genes in the HS group included ZO1, CLDN1, OCLN, PCK1, and PCK2, whereas ACTG2, DES, MYL9, MYLK, TPM1, TPM2, CNN1, PDLIM3, and PCP4 were upregulated by HS (p < 0.05). These findings indicate that HS in growing-finishing pigs induces depression in gut integrity, which may be related to genes involved in the actin cytoskeleton and filaments of CC.
Collapse
Affiliation(s)
- Yohan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Hyunju Park
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Joeun Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Hyunseo Lee
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea
| | - Minju Kim
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Applied Humanimal Science, Hankyong National University, Anseong 17579, Republic of Korea
| |
Collapse
|
12
|
Marsch P, Rajagopal N, Nangia S. Biophysics of claudin proteins in tight junction architecture: Three decades of progress. Biophys J 2024; 123:2363-2378. [PMID: 38859584 PMCID: PMC11365114 DOI: 10.1016/j.bpj.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.
Collapse
Affiliation(s)
- Patrick Marsch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York.
| |
Collapse
|
13
|
Yu Z, Liu D, Wu C, Zhao W. Intestinal absorption of bioactive oligopeptides: paracellular transport and tight junction modulation. Food Funct 2024; 15:6274-6288. [PMID: 38787733 DOI: 10.1039/d4fo00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Bioactive oligopeptides have gained increasing attention due to their diverse physiological functions, and these can be transported into the vasculature via transcellular and paracellular pathways. Among these, paracellular transport through the intercellular space is a passive diffusion process without energy consumption. It is currently the most frequently reported absorption route for food-derived bioactive oligopeptides. Previous work has demonstrated that paracellular pathways are mainly controlled by tight junctions, but the mechanism by which they regulate paracellular absorption of bioactive oligopeptides remains unclear. In this review, we summarized the composition of paracellular pathways across the intercellular space and elaborated on the paracellular transport mechanism of bioactive oligopeptides in terms of the interaction between oligopeptides and tight junction proteins, the protein expression level of tight junctions, the signaling pathways regulating intestinal permeability, and the properties of oligopeptides themselves. These findings contribute to a more profound understanding of the paracellular absorption of bioactive oligopeptides.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Di Liu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China
| | - Chunjian Wu
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, P.R. China.
| |
Collapse
|
14
|
Higashi T, Saito AC, Chiba H. Damage control of epithelial barrier function in dynamic environments. Eur J Cell Biol 2024; 103:151410. [PMID: 38579602 DOI: 10.1016/j.ejcb.2024.151410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
15
|
Lan KC, Cheng YH, Chang YC, Wei KT, Weng PL, Kang HY. Interaction between Chromodomain Y-like Protein and Androgen Receptor Signaling in Sertoli Cells Accounts for Spermatogenesis. Cells 2024; 13:851. [PMID: 38786072 PMCID: PMC11120535 DOI: 10.3390/cells13100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Spermatogenesis is a highly regulated process dependent on androgen receptor (AR) signaling in Sertoli cells. However, the pathogenic mechanisms of spermatogenic failure, by which loss of AR impairs downstream target genes to affect Sertoli cell function, remain incompletely understood. By using microarray analysis, we identified several AR-regulated genes involved in the maturation of spermatogenesis, including chromodomain Y-like protein (CDYL) and transition proteins 1 (TNP-1), that were significantly decreased in ARKO mouse testes. AR and CDYL were found to co-localize and interact in Sertoli cells. The AR-CDYL complex bound to the promoter regions of TNP1 and modulated their transcriptional activity. CDYL acts as a co-regulator of AR transactivation, and its expression is decreased in the Sertoli cells of human testes from patients with azoospermia. The androgen receptor-chromodomain Y-like protein axis plays a crucial role in regulating a network of genes essential for spermatogenesis in Sertoli cells. Disruption of this AR-CDYL regulatory axis may contribute to spermatogenic failure. These findings provide insights into novel molecular mechanisms targeting the AR-CDYL signaling pathway, which may have implications for developing new therapeutic strategies for male infertility.
Collapse
Affiliation(s)
- Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung 412224, Taiwan
| | - Yin-Hua Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Yun-Chiao Chang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Kuo-Ting Wei
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Pei-Ling Weng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Hong-Yo Kang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| |
Collapse
|
16
|
Puzhankara L, Rajagopal A, Kedlaya MN, Karmakar S, Nayak N, Shanmugasundaram S. Cell Junctions in Periodontal Health and Disease: An Insight. Eur J Dent 2024; 18:448-457. [PMID: 38049123 PMCID: PMC11132765 DOI: 10.1055/s-0043-1775726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Cells are the building blocks of all living organisms. The presence of cell junctions such as tight junctions, gap junctions, and anchoring junctions between cells play a role in cell-to-cell communication in periodontal health and disease. A literature search was done in Scopus, PubMed, and Web of Science to gather information about the effect of cell junctions on periodontal health and disease. The presence of tight junction in the oral cavity helps in cell-to-cell adhesiveness and assists in the barrier function. The gap junctions help in controlling growth and development and in the cell signaling process. The presence of desmosomes and hemidesmosomes as anchoring junctions aid in mechanical strength and tissue integrity. Periodontitis is a biofilm-induced disease leading to the destruction of the supporting structures of the tooth. The structures of the periodontium possess multiple cell junctions that play a significant role in periodontal health and disease as well as periodontal tissue healing. This review article provides an insight into the role of cell junctions in periodontal disease and health, and offers concepts for development of therapeutic strategies through manipulation of cell junctions.
Collapse
Affiliation(s)
- Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N. Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
17
|
Wang J, Wang X, Xiu W, Zhou Z, Yu S, Yang M, Zhou K, Ma Y. The sweet corn cob selenium polysaccharide alleviates type 2 diabetes via modulation of LPS/IκBα/NFκB and the intestinal microbiota. FOOD BIOSCI 2024; 58:103742. [DOI: 10.1016/j.fbio.2024.103742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Park HY, Yu JH. Mitigation effect of hesperidin on X-ray radiation-induced intestinal barrier dysfunction in Caco-2 cell monolayers. Food Chem Toxicol 2024; 186:114549. [PMID: 38442786 DOI: 10.1016/j.fct.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The tight junctions (TJs) and barrier function of the intestinal epithelium are highly sensitive to radiation. However, polyphenols can be used to reverse the effects of radiation. Here, we investigated the effects of hesperidin (hesperetin-7-rhamnoglucoside) on X-ray-induced intestinal barrier dysfunction in human epithelial Caco-2 monolayers. To examine whether hesperidin mitigated the effects of X-ray exposure (2 Gy), cell survival was evaluated and intestinal barrier function was assessed by measuring the transepithelial flux, apparent permeability coefficient (Papp), and barrier integrity. Hesperidin improved the survival of Caco-2 cell monolayers and attenuated X-ray exposure-induced intestinal barrier dysfunction. For fluorescein transport experiments, transepithelial flux and Papp of fluorescein in control group were significantly elevated by X-ray, but were restored to near control by 10 μM hesperidin pretreatment. Further, X-ray exposure decreased the barrier integrity and TJ interruption by reducing TJ-related proteins occludin and claudin-4, whereas cell monolayers pretreated with hesperidin before X-ray exposure were reinstated to control level. It was concluded that hesperidin treatment before X-ray exposure alleviated X-ray-induced intestinal barrier dysfunction through regulation of TJ-related proteins. These results indicate that hesperidin prevents and mitigates X-ray-induced intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Ha-Young Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Jin-Hee Yu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| |
Collapse
|
19
|
Schiera G, Di Liegro CM, Schirò G, Sorbello G, Di Liegro I. Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood-Brain Barrier. Cells 2024; 13:150. [PMID: 38247841 PMCID: PMC10813980 DOI: 10.3390/cells13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The blood-brain barrier (BBB) is a fundamental structure that protects the composition of the brain by determining which ions, metabolites, and nutrients are allowed to enter the brain from the blood or to leave it towards the circulation. The BBB is structurally composed of a layer of brain capillary endothelial cells (BCECs) bound to each other through tight junctions (TJs). However, its development as well as maintenance and properties are controlled by the other brain cells that contact the BCECs: pericytes, glial cells, and even neurons themselves. Astrocytes seem, in particular, to have a very important role in determining and controlling most properties of the BBB. Here, we will focus on these latter cells, since the comprehension of their roles in brain physiology has been continuously expanding, even including the ability to participate in neurotransmission and in complex functions such as learning and memory. Accordingly, pathological conditions that alter astrocytic functions can alter the BBB's integrity, thus compromising many brain activities. In this review, we will also refer to different kinds of in vitro BBB models used to study the BBB's properties, evidencing its modifications under pathological conditions.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienzee Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienzee Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Gabriele Sorbello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
| |
Collapse
|
20
|
Kobayashi K, Mochizuki J, Yamazaki F, Sashihara T. Yogurt starter strains ameliorate intestinal barrier dysfunction via activating AMPK in Caco-2 cells. Tissue Barriers 2024; 12:2184157. [PMID: 36852963 PMCID: PMC10832913 DOI: 10.1080/21688370.2023.2184157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/19/2023] [Indexed: 03/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are commonly used probiotics that improve human health in various aspects. We previously reported that yogurt starter strains, Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, potentially enhance the intestinal epithelial barrier function by inducing the expression of antimicrobial peptides in the small intestine. However, their effects on physical barrier functions remain unknown. In this study, we found that both strains ameliorated the decreased trans-epithelial resistance and the increased permeability of fluorescein isothiocyanate-dextran induced by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in Caco-2 cells. We also demonstrated that LAB prevented a decrease in the expression and disassembly of tight junctions (TJs) induced by TNF-α and IFN-γ. To assess the repair activity of TJs, a calcium switch assay was performed. Both strains were found to promote the reassembly of TJs, and their activity was canceled by the inhibitor of AMP-activated protein kinase (AMPK). Moreover, these strains showed increased AMPK phosphorylation. These observations suggest that the strains ameliorated physical barrier dysfunction via the activation of AMPK. The activities preventing barrier destruction induced by TNF-α and IFN-γ were strain-dependent. Several strains containing L. bulgaricus 2038 and S. thermophilus 1131 significantly suppressed the barrier impairment, and L. bulgaricus 2038 showed the strongest activity among them. Our findings suggest that the intake of L. bulgaricus 2038 and S. thermophilus 1131 is a potential strategy for the prevention and repair of leaky gut.
Collapse
Affiliation(s)
- Kyosuke Kobayashi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Junko Mochizuki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Fuka Yamazaki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
21
|
Kamakura S, Hayase J, Kohda A, Iwakiri Y, Chishiki K, Izaki T, Sumimoto H. TMEM25 is a Par3-binding protein that attenuates claudin assembly during tight junction development. EMBO Rep 2024; 25:144-167. [PMID: 38177906 PMCID: PMC10897455 DOI: 10.1038/s44319-023-00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
The tight junction (TJ) in epithelial cells is formed by integral membrane proteins and cytoplasmic scaffolding proteins. The former contains the claudin family proteins with four transmembrane segments, while the latter includes Par3, a PDZ domain-containing adaptor that organizes TJ formation. Here we show the single membrane-spanning protein TMEM25 localizes to TJs in epithelial cells and binds to Par3 via a PDZ-mediated interaction with its C-terminal cytoplasmic tail. TJ development during epithelial cell polarization is accelerated by depletion of TMEM25, and delayed by overexpression of TMEM25 but not by that of a C-terminally deleted protein, indicating a regulatory role of TMEM25. TMEM25 associates via its N-terminal extracellular domain with claudin-1 and claudin-2 to suppress their cis- and trans-oligomerizations, both of which participate in TJ strand formation. Furthermore, Par3 attenuates TMEM25-claudin association via binding to TMEM25, implying its ability to affect claudin oligomerization. Thus, the TJ protein TMEM25 appears to negatively regulate claudin assembly in TJ formation, which regulation is modulated by its interaction with Par3.
Collapse
Affiliation(s)
- Sachiko Kamakura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Junya Hayase
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Akira Kohda
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuko Iwakiri
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kanako Chishiki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tomoko Izaki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
22
|
Perez-Hernandez D, Suarez-Artiles L, Jones MSO, Dittmar G. Using PrISMa to reveal the interactome of the human claudins family. STAR Protoc 2023; 4:102549. [PMID: 37756153 PMCID: PMC10542633 DOI: 10.1016/j.xpro.2023.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/26/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Here, we provide a protocol for the systematic screening of protein-protein interactions mediated by short linear motifs using the Protein Interaction Screen on a peptide Matrix (PrISMa) technique. We describe how to pull down interacting proteins in a parallelized manner and identify them by mass spectrometry. Finally, we describe a bioinformatic workflow necessary to identify highly probable interaction partners in the large-scale dataset. We describe the application of this method for the transient interactome of the claudin protein family. For complete details on the use and execution of this protocol, please refer to Suarez-Artiles et al.1.
Collapse
Affiliation(s)
- Daniel Perez-Hernandez
- Department of Infection and Immunity, Luxembourg Institute of Health, 1A Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Lorena Suarez-Artiles
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle Str. 10, 13125 Berlin, Germany
| | - Mattson S O Jones
- Department of Infection and Immunity, Luxembourg Institute of Health, 1A Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, 1A Rue Thomas Edison, 1445 Strassen, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, 2 avenue de l'Université, Campus Belval, 4365 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
23
|
Wibbe N, Ebnet K. Cell Adhesion at the Tight Junctions: New Aspects and New Functions. Cells 2023; 12:2701. [PMID: 38067129 PMCID: PMC10706136 DOI: 10.3390/cells12232701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Tight junctions (TJ) are cell-cell adhesive structures that define the permeability of barrier-forming epithelia and endothelia. In contrast to this seemingly static function, TJs display a surprisingly high molecular complexity and unexpected dynamic regulation, which allows the TJs to maintain a barrier in the presence of physiological forces and in response to perturbations. Cell-cell adhesion receptors play key roles during the dynamic regulation of TJs. They connect individual cells within cellular sheets and link sites of cell-cell contacts to the underlying actin cytoskeleton. Recent findings support the roles of adhesion receptors in transmitting mechanical forces and promoting phase separation. In this review, we discuss the newly discovered functions of cell adhesion receptors localized at the TJs and their role in the regulation of the barrier function.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, D-48419 Münster, Germany
| |
Collapse
|
24
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
25
|
Pan C, Xu A, Ma X, Yao Y, Zhao Y, Wang C, Chen C. Research progress of Claudin-low breast cancer. Front Oncol 2023; 13:1226118. [PMID: 37904877 PMCID: PMC10613467 DOI: 10.3389/fonc.2023.1226118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Claudin-low breast cancer (CLBC) is a subgroup of breast cancer discovered at the molecular level in 2007. Claudin is one of the primary proteins that make up tight junctions, and it plays crucial roles in anti-inflammatory and antitumor responses as well as the maintenance of water and electrolyte balance. Decreased expression of claudin results in the disruption of tight junction structures and the activation of downstream signaling pathways, which can lead to tumor formation. The origin of Claudin-low breast cancer is still in dispute. Claudin-low breast cancer is characterized by low expression of Claudin3, 4, 7, E-cadherin, and HER2 and high expression of Vimentin, Snai 1/2, Twist 1/2, Zeb 1/2, and ALDH1, as well as stem cell characteristics. The clinical onset of claudin-low breast cancer is at menopause age, and its histological grade is higher. This subtype of breast cancer is more likely to spread to lymph nodes than other subtypes. Claudin-low breast cancer is frequently accompanied by increased invasiveness and a poor prognosis. According to a clinical retrospective analysis, claudin-low breast cancer can achieve low pathological complete remission. At present, although several therapeutic targets of claudin-low breast cancer have been identified, the effective treatment remains in basic research stages, and no animal studies or clinical trials have been designed. The origin, molecular biological characteristics, pathological characteristics, treatment, and prognosis of CLBC are extensively discussed in this article. This will contribute to a comprehensive understanding of CLBC and serve as the foundation for the individualization of breast cancer treatment.
Collapse
Affiliation(s)
- Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Anqi Xu
- Kunming Medical University, Kunming, Yunnan, China
- Department of Anesthesia, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoling Ma
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Yanfei Yao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Youmei Zhao
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Kunming Medical University, Kunming, Yunnan, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan, China
- The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
26
|
Imafuku K, Iwata H, Natsuga K, Okumura M, Kobayashi Y, Kitahata H, Kubo A, Nagayama M, Ujiie H. Zonula occludens-1 distribution and barrier functions are affected by epithelial proliferation and turnover rates. Cell Prolif 2023; 56:e13441. [PMID: 36919255 PMCID: PMC10472521 DOI: 10.1111/cpr.13441] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
Zonula occludens-1 (ZO-1) is a scaffolding protein of tight junctions, which seal adjacent epithelial cells, that is also expressed in adherens junctions. The distribution pattern of ZO-1 differs among stratified squamous epithelia, including that between skin and oral buccal mucosa. However, the causes for this difference, and the mechanisms underlying ZO-1 spatial regulation, have yet to be elucidated. In this study, we showed that epithelial turnover and proliferation are associated with ZO-1 distribution in squamous epithelia. We tried to verify the regulation of ZO-1 by comparing normal skin and psoriasis, known as inflammatory skin disease with rapid turnover. We as well compared buccal mucosa and oral lichen planus, known as an inflammatory oral disease with a longer turnover interval. The imiquimod (IMQ) mouse model, often used as a psoriasis model, can promote cell proliferation. On the contrary, we peritoneally injected mice mitomycin C, which reduces cell proliferation. We examined whether IMQ and mitomycin C cause changes in the distribution and appearance of ZO-1. Human samples and mouse pharmacological models revealed that slower epithelial turnover/proliferation led to the confinement of ZO-1 to the uppermost part of squamous epithelia. In contrast, ZO-1 was widely distributed under conditions of faster cell turnover/proliferation. Cell culture experiments and mathematical modelling corroborated these ZO-1 distribution patterns. These findings demonstrate that ZO-1 distribution is affected by epithelial cell dynamics.
Collapse
Affiliation(s)
- Keisuke Imafuku
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
- Department of DermatologyGifu University Graduate School of MedicineGifuJapan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | - Makoto Okumura
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Yasuaki Kobayashi
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of ScienceChiba UniversityChibaJapan
| | - Akiharu Kubo
- Division of Dermatology, Department of Internal RelatedKobe University Graduate School of MedicineKobeJapan
- Department of DermatologyKeio University School of MedicineTokyoJapan
| | - Masaharu Nagayama
- Research Institute for Electronic ScienceHokkaido UniversitySapporoJapan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
27
|
Ramirez-Velez I, Belardi B. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Adv Drug Deliv Rev 2023; 199:114905. [PMID: 37271282 PMCID: PMC10999255 DOI: 10.1016/j.addr.2023.114905] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
28
|
Waldow A, Beier LS, Arndt J, Schallenberg S, Vollbrecht C, Bischoff P, Farrera-Sal M, Loch FN, Bojarski C, Schumann M, Winkler L, Kamphues C, Ehlen L, Piontek J. cCPE Fusion Proteins as Molecular Probes to Detect Claudins and Tight Junction Dysregulation in Gastrointestinal Cell Lines, Tissue Explants and Patient-Derived Organoids. Pharmaceutics 2023; 15:1980. [PMID: 37514167 PMCID: PMC10385049 DOI: 10.3390/pharmaceutics15071980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Claudins regulate paracellular permeability, contribute to epithelial polarization and are dysregulated during inflammation and carcinogenesis. Variants of the claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) are highly sensitive protein ligands for generic detection of a broad spectrum of claudins. Here, we investigated the preferential binding of YFP- or GST-cCPE fusion proteins to non-junctional claudin molecules. Plate reader assays, flow cytometry and microscopy were used to assess the binding of YFP- or GST-cCPE to non-junctional claudins in multiple in vitro and ex vivo models of human and rat gastrointestinal epithelia and to monitor formation of a tight junction barrier. Furthermore, YFP-cCPE was used to probe expression, polar localization and dysregulation of claudins in patient-derived organoids generated from gastric dysplasia and gastric cancer. Live-cell imaging and immunocytochemistry revealed cell polarity and presence of tight junctions in glandular organoids (originating from intestinal-type gastric cancer and gastric dysplasia) and, in contrast, a disrupted diffusion barrier for granular organoids (originating from discohesive tumor areas). In sum, we report the use of cCPE fusion proteins as molecular probes to specifically and efficiently detect claudin expression, localization and tight junction dysregulation in cell lines, tissue explants and patient-derived organoids of the gastrointestinal tract.
Collapse
Affiliation(s)
- Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Laura-Sophie Beier
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Arndt
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Simon Schallenberg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Claudia Vollbrecht
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Philip Bischoff
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martí Farrera-Sal
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| | - Florian N Loch
- Department of General and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Christian Bojarski
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Michael Schumann
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Lars Winkler
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin, Germany
| | - Carsten Kamphues
- Park-Klinik Weißensee, Department of General-Visceral and Minimally-Invasive Surgery, 13086 Berlin, Germany
| | - Lukas Ehlen
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| |
Collapse
|
29
|
Capaldo CT. Claudin Barriers on the Brink: How Conflicting Tissue and Cellular Priorities Drive IBD Pathogenesis. Int J Mol Sci 2023; 24:8562. [PMID: 37239907 PMCID: PMC10218714 DOI: 10.3390/ijms24108562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by acute or chronic recurring inflammation of the intestinal mucosa, often with increasing severity over time. Life-long morbidities and diminishing quality of life for IBD patients compel a search for a better understanding of the molecular contributors to disease progression. One unifying feature of IBDs is the failure of the gut to form an effective barrier, a core role for intercellular complexes called tight junctions. In this review, the claudin family of tight junction proteins are discussed as they are a fundamental component of intestinal barriers. Importantly, claudin expression and/or protein localization is altered in IBD, leading to the supposition that intestinal barrier dysfunction exacerbates immune hyperactivity and disease. Claudins are a large family of transmembrane structural proteins that constrain the passage of ions, water, or substances between cells. However, growing evidence suggests non-canonical claudin functions during mucosal homeostasis and healing after injury. Therefore, whether claudins participate in adaptive or pathological IBD responses remains an open question. By reviewing current studies, the possibility is assessed that with claudins, a jack-of-all-trades is master of none. Potentially, a robust claudin barrier and wound restitution involve conflicting biophysical phenomena, exposing barrier vulnerabilities and a tissue-wide frailty during healing in IBD.
Collapse
Affiliation(s)
- Christopher T Capaldo
- College of Natural and Computer Sciences, Hawai'i Pacific University, Honolulu, HI 96813, USA
| |
Collapse
|
30
|
Erlmeier F, Zschäbitz S, Mikuteit M, Autenrieth M, Weichert W, Hartmann A, Steffens S. The role of claudin-6 in chromophobe renal cell carcinoma. Histol Histopathol 2023; 38:403-407. [PMID: 36128931 DOI: 10.14670/hh-18-520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
BACKGROUND The prognostic value of Claudin-6 (CLDN6) in non clear cell renal cell carcinoma (RCC) is still unclear. AIM To evaluate the prognostic impact of CLDN6 expression in a large cohort of chromophobe RCC (chRCC). MATERIAL AND METHODS Patients who underwent renal surgery due to chRCC were recruited. Clinical data were retrospectively evaluated. Tumor specimens were analyzed for CLDN6 expression by immunohistochemistry. RESULTS 81 chRCC patients were eligible for analysis, thereof 10 (12.3%) patients were positive for CLDN6. No significant associations were found for CLDN6 expression and clinical attributes in patients with chRCC. Kaplan-Meier analysis revealed no differences in overall survival (OS) for patients with CLDN6⁻ compared to CLDN6⁺ tumors (87.0% versus 62.5%; p=0.174). CONCLUSION In chRCC CLDN6 expression is not associated with parameters of aggressiveness or survival. Due to the rare incidence of chRCC further studies with larger cohorts are warranted.
Collapse
Affiliation(s)
- Franziska Erlmeier
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany.
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Marie Mikuteit
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Michael Autenrieth
- Department of Urology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Wilko Weichert
- Institute for Pathology and Pathological Anatomy, Technical University Munich, Munich, Germany
- Member of the German Cancer Consortium (DKTK), Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Sandra Steffens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Department of Urology, University Hospital Münster, Münster, Germany
| |
Collapse
|
31
|
Wei W, Li W, Yang L, Weeramantry S, Ma L, Fu P, Zhao Y. Tight junctions and acute kidney injury. J Cell Physiol 2023; 238:727-741. [PMID: 36815285 DOI: 10.1002/jcp.30976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Acute kidney injury (AKI) is characterized by a rapid reduction in kidney function caused by various etiologies. Tubular epithelial cell dysregulation plays a pivotal role in the pathogenesis of AKI. Tight junction (TJ) is the major molecular structure that connects adjacent epithelial cells and is critical in maintaining barrier function and determining the permeability of epithelia. TJ proteins are dysregulated in various types of AKI, and some reno-protective drugs can reverse TJ changes caused by insult. An in-depth understanding of TJ regulation and its causality with AKI will provide more insight to the disease pathogenesis and will shed light on the potential role of TJs to serve as novel therapeutic targets in AKI.
Collapse
Affiliation(s)
- Wei Wei
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiying Li
- Department of Internal Medicine, Florida Hospital/AdventHealth, Orlando, Florida, USA
| | - Letian Yang
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Savidya Weeramantry
- Department of Internal Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Liang Ma
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fu
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuliang Zhao
- Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Furuse M, Nakatsu D, Hempstock W, Sugioka S, Ishizuka N, Furuse K, Sugawara T, Fukazawa Y, Hayashi H. Reconstitution of functional tight junctions with individual claudin subtypes in epithelial cells. Cell Struct Funct 2023; 48:1-17. [PMID: 36504093 PMCID: PMC10721951 DOI: 10.1247/csf.22068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
The claudin family of membrane proteins is responsible for the backbone structure and function of tight junctions (TJs), which regulate the paracellular permeability of epithelia. It is thought that each claudin subtype has its own unique function and the combination of expressed subtypes determines the permeability property of each epithelium. However, many issues remain unsolved in regard to claudin functions, including the detailed functional differences between claudin subtypes and the effect of the combinations of specific claudin subtypes on the structure and function of TJs. To address these issues, it would be useful to have a way of reconstituting TJs containing only the claudin subtype(s) of interest in epithelial cells. In this study, we attempted to reconstitute TJs of individual claudin subtypes in TJ-deficient MDCK cells, designated as claudin quinKO cells, which were previously established from MDCK II cells by deleting the genes of claudin-1, -2, -3, -4, and -7. Exogenous expression of each of claudin-1, -2, -3, -4, and -7 in claudin quinKO cells resulted in the reconstitution of functional TJs. These TJs did not contain claudin-12 and -16, which are endogenously expressed in claudin quinKO cells. Furthermore, overexpression of neither claudin-12 nor claudin-16 resulted in the reconstitution of TJs, demonstrating the existence of claudin subtypes lacking TJ-forming activity in epithelial cells. Exogenous expression of the channel-forming claudin-2, -10a, -10b, and -15 reconstituted TJs with reported paracellular channel properties, demonstrating that these claudin subtypes form paracellular channels by themselves without interaction with other subtypes. Thus, the reconstitution of TJs in claudin quinKO cells is advantageous for further investigation of claudin functions.Key words: tight junction, claudin, paracellular permeability, epithelial barrier.
Collapse
Affiliation(s)
- Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Aichi, Japan
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daiki Nakatsu
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Wendy Hempstock
- Department of Nursing, School of Nursing, University of Shizuoka, Shizuoka, Japan
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shiori Sugioka
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Noriko Ishizuka
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Taichi Sugawara
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Life Science Innovation Center, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
33
|
Garcia-Flores AE, Gross CM, Zemskov EA, Lu Q, Tieu K, Wang T, Black SM. Loss of SOX18/CLAUDIN5 disrupts the pulmonary endothelial barrier in ventilator-induced lung injury. Front Physiol 2022; 13:1066515. [PMID: 36620216 PMCID: PMC9813411 DOI: 10.3389/fphys.2022.1066515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mechanical strain contributes to ventilator-induced lung injury (VILI) through multi-factorial and complex mechanisms that remain unresolved. Prevailing evidence suggests that the loss of pulmonary endothelial tight junctions (TJs) plays a critical role. TJs are dynamically regulated by physiologic and hemodynamic forces to stabilize the endothelial barrier. The transcription factor sex-determining region Y-box (SOX)-18 is important in regulating blood vessel development and vascular permeability through its ability to regulate the transcription of Claudin-5, an endothelial TJ protein. Previously, we demonstrated that SOX18 expression is increased by shear stress in the pulmonary endothelium. Therefore, in this study, we investigated how mechanical strain mediated through cyclic stretch affects the SOX18/Claudin-5 regulatory axis. Our data demonstrate that SOX18 and Claudin-5 are downregulated in human lung microvascular endothelial cells (HLMVEC) exposed to cyclic stretch and the mouse lung exposed to high tidal mechanical ventilation. Overexpression of SOX18 reduced the loss of Claudin-5 expression in HLMVEC with cyclic stretch and preserved endothelial barrier function. Additionally, overexpression of Claudin-5 in HLMVEC ameliorated barrier dysfunction in HLMVEC exposed to cyclic stretch, although SOX18 expression was not enhanced. Finally, we found that the targeted overexpression of SOX18 in the pulmonary vasculature preserved Claudin-5 expression in the lungs of mice exposed to HTV. This, in turn reduced lung vascular leak, attenuated inflammatory lung injury, and preserved lung function. Together, these data suggest that enhancing SOX18 expression may prove a useful therapy to treat patients with ventilator-induced lung injury.
Collapse
Affiliation(s)
| | - Christine M. Gross
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine at Washington Hospital Center, Washington, DC, United States
| | - Evgeny A. Zemskov
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States
| | - Qing Lu
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States
| | - Ting Wang
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States
| | - Stephen M. Black
- Florida International University, Center for Translational Science, Miami, FL, United States,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine Florida International University, Miami, FL, United States,Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work Florida International University, Miami, FL, United States,*Correspondence: Stephen M. Black,
| |
Collapse
|
34
|
Zheng Y, Zhao Y, He W, Wang Y, Cao Z, Yang H, Wang W, Li S. Novel organic selenium source hydroxy-selenomethionine counteracts the blood-milk barrier disruption and inflammatory response of mice under heat stress. Front Immunol 2022; 13:1054128. [PMID: 36532046 PMCID: PMC9757697 DOI: 10.3389/fimmu.2022.1054128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Heat stress (HS) in summer has caused huge economic losses to animal husbandry production recently. When mammary gland is exposed to high temperatures, it will cause blood-milk barrier damage. Hydroxy-selenomethionine (HMSeBA) is a new selenium source with better guarantee of animals' production performance under stress, but whether it has protective effect on heat stress-induced blood-milk damage is still unclear. We established mammary epithelial cells and mice heat stress injury models to fill this research gap, and hope to provide theoretical basis for using HMSeBA to alleviate heat stress damage mammary gland. The results showed that (1) Heat stress significantly decreases in vitro transepithelial electrical resistance (TEER) and cell viability (P < 0.01), and significantly decreases clinical score, histological score, and total alveoli area of mice mammary gland tissue (P < 0.01). (2) HMSeBA significantly increases TEER and fluorescein sodium leakage of HS-induced monolayer BMECs (P < 0.01), significantly improves the milk production and total area of alveoli (P < 0.01), and reduces clinical score, histological score, mRNA expression of heat stress-related proteins, and inflammatory cytokines release of heat-stressed mice (P < 0.01). (3) HMSeBA significantly improves tight junction structure damage, and significantly up-regulated the expression of tight junction proteins (ZO-1, claudin 1, and occludin) as well as signal molecules PI3K, AKT, and mTOR (P < 0.01) in heat-stressed mammary tissue. (4) HMSeBA significantly increases glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and superoxide dismutase release (SOD) (P < 0.01) and significantly reduce malondialdehyde (MDA) expression (P < 0.01) in heat-stressed mammary tissue. In conclusion, this study implemented heat-stressed cell and mice model and showed that HMSeBA significantly regulate antioxidant capacity, inhibited inflammation, and regulate tight junction proteins expression in blood-milk barrier via PI3K/AKT/mTOR signaling pathway, so as to alleviate mammary gland damage and ensure its structure and function integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Wang
- *Correspondence: Wei Wang, ; Shengli Li,
| | - Shengli Li
- *Correspondence: Wei Wang, ; Shengli Li,
| |
Collapse
|
35
|
Higashi T, Saito AC, Fukazawa Y, Furuse M, Higashi AY, Ono M, Chiba H. EpCAM proteolysis and release of complexed claudin-7 repair and maintain the tight junction barrier. J Cell Biol 2022; 222:213688. [PMID: 36378161 PMCID: PMC9671161 DOI: 10.1083/jcb.202204079] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
TJs maintain the epithelial barrier by regulating paracellular permeability. Since TJs are under dynamically fluctuating intercellular tension, cells must continuously survey and repair any damage. However, the underlying mechanisms allowing cells to sense TJ damage and repair the barrier are not yet fully understood. Here, we showed that proteinases play an important role in the maintenance of the epithelial barrier. At TJ break sites, EpCAM-claudin-7 complexes on the basolateral membrane become accessible to apical membrane-anchored serine proteinases (MASPs) and the MASPs cleave EpCAM. Biochemical data and imaging analysis suggest that claudin-7 released from EpCAM contributes to the rapid repair of damaged TJs. Knockout (KO) of MASPs drastically reduced barrier function and live-imaging of TJ permeability showed that MASPs-KO cells exhibited increased size, duration, and frequency of leaks. Together, our results reveal a novel mechanism of TJ maintenance through the localized proteolysis of EpCAM at TJ leaks, and provide a better understanding of the dynamic regulation of epithelial permeability.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan,Correspondence to Tomohito Higashi:
| | - Akira C. Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan,Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Atsuko Y. Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Masahiro Ono
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
36
|
Ahmad US, Uttagomol J, Wan H. The Regulation of the Hippo Pathway by Intercellular Junction Proteins. Life (Basel) 2022; 12:1792. [PMID: 36362947 PMCID: PMC9696951 DOI: 10.3390/life12111792] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved pathway that serves to promote cell death and differentiation while inhibiting cellular proliferation across species. The downstream effectors of this pathway, yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), are considered vital in promoting the output of the Hippo pathway, with activation of upstream kinases negatively regulating YAP/TAZ activity. The upstream regulation of the Hippo pathway is not entirely understood on a molecular level. However, several studies have shown that numerous cellular and non-cellular mechanisms such as cell polarity, contact inhibition, soluble factors, mechanical forces, and metabolism can convey external stimuli to the intracellular kinase cascade, promoting the activation of key components of the Hippo pathway and therefore regulating the subcellular localisation and protein activity of YAP/TAZ. This review will summarise what we have learnt about the role of intercellular junction-associated proteins in the activation of this pathway, including adherens junctions and tight junctions, and in particular our latest findings about the desmosomal components, including desmoglein-3 (DSG3), in the regulation of YAP signalling, phosphorylation, and subcellular translocation.
Collapse
Affiliation(s)
- Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jutamas Uttagomol
- Oral Diagnosis Department, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
37
|
Fuladi S, McGuinness S, Shen L, Weber CR, Khalili-Araghi F. Molecular mechanism of claudin-15 strand flexibility: A computational study. J Gen Physiol 2022; 154:213632. [PMID: 36318156 PMCID: PMC9629798 DOI: 10.1085/jgp.202213116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Claudins are one of the major components of tight junctions that play a key role in the formation and maintenance of the epithelial barrier function. Tight junction strands are dynamic and capable of adapting their structure in response to large-scale tissue rearrangement and cellular movement. Here, we present molecular dynamics simulations of claudin-15 strands of up to 225 nm in length in two parallel lipid membranes and characterize their mechanical properties. The persistence length of claudin-15 strands is comparable with those obtained from analyses of freeze-fracture electron microscopy. Our results indicate that lateral flexibility of claudin strands is due to an interplay of three sets of interfacial interaction networks between two antiparallel double rows of claudins in the membranes. In this model, claudins are assembled into interlocking tetrameric ion channels along the strand that slide with respect to each other as the strands curve over submicrometer-length scales. These results suggest a novel molecular mechanism underlying claudin-15 strand flexibility. It also sheds light on intermolecular interactions and their role in maintaining epithelial barrier function.
Collapse
Affiliation(s)
- Shadi Fuladi
- Department of Physics, University of Illinois, Chicago, IL
| | - Sarah McGuinness
- Department of Bioengineering, University of Illinois, Chicago, IL
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL
| | | | - Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois, Chicago, IL,Correspondence to Fatemeh Khalili-Araghi:
| |
Collapse
|
38
|
Goncalves A, Antonetti DA. Transgenic animal models to explore and modulate the blood brain and blood retinal barriers of the CNS. Fluids Barriers CNS 2022; 19:86. [PMID: 36320068 PMCID: PMC9628113 DOI: 10.1186/s12987-022-00386-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
The unique environment of the brain and retina is tightly regulated by blood-brain barrier and the blood-retinal barrier, respectively, to ensure proper neuronal function. Endothelial cells within these tissues possess distinct properties that allow for controlled passage of solutes and fluids. Pericytes, glia cells and neurons signal to endothelial cells (ECs) to form and maintain the barriers and control blood flow, helping to create the neurovascular unit. This barrier is lost in a wide range of diseases affecting the central nervous system (CNS) and retina such as brain tumors, stroke, dementia, and in the eye, diabetic retinopathy, retinal vein occlusions and age-related macular degeneration to name prominent examples. Recent studies directly link barrier changes to promotion of disease pathology and degradation of neuronal function. Understanding how these barriers form and how to restore these barriers in disease provides an important point for therapeutic intervention. This review aims to describe the fundamentals of the blood-tissue barriers of the CNS and how the use of transgenic animal models led to our current understanding of the molecular framework of these barriers. The review also highlights examples of targeting barrier properties to protect neuronal function in disease states.
Collapse
Affiliation(s)
- Andreia Goncalves
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St Rm, Ann Arbor, MI, 7317, USA
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St Rm, Ann Arbor, MI, 7317, USA.
| |
Collapse
|
39
|
Lemesle M, Geoffroy M, Alpy F, Tomasetto CL, Kuntz S, Grillier-Vuissoz I. CLDN1 Sensitizes Triple-Negative Breast Cancer Cells to Chemotherapy. Cancers (Basel) 2022; 14:cancers14205026. [PMID: 36291810 PMCID: PMC9599637 DOI: 10.3390/cancers14205026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) treatment represents a major challenge in oncology. TNBC evolves into chemotherapy resistance for 60 to 70% of the patients. About 77% of the TNBC displays a lack of claudin-1 (CLDN1), a major tight junction component. We demonstrated that CLDN1 increased the sensitivity of TNBC cell lines to the main chemotherapeutic agents commonly used for breast cancer treatment. Our data support the idea that CLDN1 may be a good predictive chemotherapy response marker to help therapeutic management of TNBC patients. In longer terms, this study could allow new treatment protocols creation aimed to induce CLDN1 expression in TNBCs to increase their sensitivity to chemotherapy. Abstract Triple-negative breast cancer (TNBC) is an aggressive subtype that constitutes 15–20% of breast cancer cases worldwide. Current therapies often evolve into chemoresistance and lead to treatment failure. About 77% of the TNBC lacks claudin-1 (CLDN1) expression, a major tight junction component, and this absence is correlated with poorer prognostic. Little is known about CLDN1 role on the chemosensitivity of breast cancer. Our clinical data analysis reveals that CLDN1 low expression is correlated to a poor prognostic in TNBC patients. Next, the sensitivity of various TNBC “claudin-1-high” or “claudin-1-low” cells to three compounds belonging to the main class of chemotherapeutic agents commonly used for the treatment of TNBC patients: 5-fluorouracil (5-FU), paclitaxel (PTX) and doxorubicin (DOX). Using RNA interference and stable overexpressing models, we demonstrated that CLDN1 expression increased the sensitivity of TNBC cell lines to these chemotherapeutic agents. Taken together, our data established the important role of CLDN1 in TNBC cells chemosensitivity and supported the hypothesis that CLDN1 could be a chemotherapy response predictive marker for TNBC patients. This study could allow new treatment protocols creation aimed to induce CLDN1 expression in TNBCs to increase their sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Marine Lemesle
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Marine Geoffroy
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Centre National de la Recherche Scientifique (CNRS), UMR7104 and Université de Strasbourg, 67400 Illkirch, France
| | - Catherine-Laure Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Centre National de la Recherche Scientifique (CNRS), UMR7104 and Université de Strasbourg, 67400 Illkirch, France
| | - Sandra Kuntz
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
| | - Isabelle Grillier-Vuissoz
- CRAN, UMR 7039, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy, France
- Correspondence: ; Tel.: +33-(0)3-72-74-51-84
| |
Collapse
|
40
|
Berselli A, Benfenati F, Maragliano L, Alberini G. Multiscale modelling of claudin-based assemblies: a magnifying glass for novel structures of biological interfaces. Comput Struct Biotechnol J 2022; 20:5984-6010. [DOI: 10.1016/j.csbj.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/03/2022] Open
|
41
|
Berselli A, Alberini G, Benfenati F, Maragliano L. Computational study of ion permeation through claudin-4 paracellular channels. Ann N Y Acad Sci 2022; 1516:162-174. [PMID: 35811406 PMCID: PMC9796105 DOI: 10.1111/nyas.14856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Claudins (Cldns) form a large family of protein homologs that are essential for the assembly of paracellular tight junctions (TJs), where they form channels or barriers with tissue-specific selectivity for permeants. In contrast to several family members whose physiological role has been identified, the function of claudin 4 (Cldn4) remains elusive, despite experimental evidence suggesting that it can form anion-selective TJ channels in the renal epithelium. Computational approaches have recently been employed to elucidate the molecular basis of Cldns' function, and hence could help in clarifying the role of Cldn4. In this work, we use structural modeling and all-atom molecular dynamics simulations to transfer two previously introduced structural models of Cldn-based paracellular complexes to Cldn4 to reproduce a paracellular anion channel. Free energy calculations for ionic transport through the pores allow us to establish the thermodynamic properties driving the ion-selectivity of the structures. While one model shows a cavity permeable to chloride and repulsive to cations, the other forms barrier to the passage of all the major physiological ions. Furthermore, our results confirm the charge selectivity role of the residue Lys65 in the first extracellular loop of the protein, rationalizing Cldn4 control of paracellular permeability.
Collapse
Affiliation(s)
- Alessandro Berselli
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- Department of Experimental MedicineUniversità degli Studi di GenovaGenovaItaly
| | - Giulio Alberini
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| |
Collapse
|
42
|
Fujiwara S, Nguyen TP, Furuse K, Fukazawa Y, Otani T, Furuse M. Tight junction formation by a claudin mutant lacking the COOH-terminal PDZ domain-binding motif. Ann N Y Acad Sci 2022; 1516:85-94. [PMID: 35945631 DOI: 10.1111/nyas.14881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Claudin-based tight junctions (TJs) are formed at the most apical part of cell-cell contacts in epithelial cells. Previous studies suggest that scaffolding proteins ZO-1 and ZO-2 (ZO proteins) determine the location of TJs by interacting with claudins, but this idea is not conclusive. To address the role of the ZO proteins binding to claudins at TJs, a COOH-terminal PDZ domain binding motif-deleted claudin-3 mutant, which lacks the ZO protein binding, was stably expressed in claudin-deficient MDCK cells. The COOH-terminus-deleted claudin-3 was localized at the apicolateral region similar to full-length claudin-3. Consistently, freeze-fracture electron microscopy revealed that the COOH-terminus-deleted claudin-3-expressing cells reconstituted belts of TJs at the most apical region of the lateral membrane and restored functional epithelial barriers. These results suggest that the interaction of claudins with ZO proteins is not a prerequisite for TJ formation at the most apical part of cell-cell contacts.
Collapse
Affiliation(s)
- Sachiko Fujiwara
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Thanh Phuong Nguyen
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI, The Graduate University for Advanced Studies, Okazaki, Japan
- Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
43
|
Hohman LS, Osborne LC. A gut-centric view of aging: Do intestinal epithelial cells contribute to age-associated microbiota changes, inflammaging, and immunosenescence? Aging Cell 2022; 21:e13700. [PMID: 36000805 PMCID: PMC9470900 DOI: 10.1111/acel.13700] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023] Open
Abstract
Intestinal epithelial cells (IECs) serve as both a physical and an antimicrobial barrier against the microbiota, as well as a conduit for signaling between the microbiota and systemic host immunity. As individuals age, the balance between these systems undergoes a myriad of changes due to age-associated changes to the microbiota, IECs themselves, immunosenescence, and inflammaging. In this review, we discuss emerging data related to age-associated loss of intestinal barrier integrity and posit that IEC dysfunction may play a central role in propagating age-associated alterations in microbiota composition and immune homeostasis.
Collapse
Affiliation(s)
- Leah S. Hohman
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Lisa C. Osborne
- Department of Microbiology & Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
44
|
Chang JW, Seo ST, Im MA, Won HR, Liu L, Oh C, Jin YL, Piao Y, Kim HJ, Kim JT, Jung SN, Koo BS. Claudin-1 mediates progression by regulating EMT through AMPK/TGF-β signaling in head and neck squamous cell carcinoma. Transl Res 2022; 247:58-78. [PMID: 35462077 DOI: 10.1016/j.trsl.2022.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/14/2022] [Accepted: 04/12/2022] [Indexed: 01/14/2023]
Abstract
Claudin-1 (CLDN1), a major component of tight junction complexes in the epithelium, maintains cellular polarity, and plays a critical role in cell-to-cell communication as well as epithelial cell homeostasis. Although the role of CLDN1 has been widely studied in cancer, its role in the progression and the exact regulatory mechanisms, remain controversial. Using next-generation sequencing, we first analyzed the expression profiles of tumor/non-tumor paired tissue in patients with head and neck squamous cell carcinoma (HNSC) from public and local cohorts and found out that CLDN1 is upregulated in tumors compared to normal tissues. Next, its correlation with lymph node metastasis and poor prognosis was validated in the retrospective cohort, which collectively suggests CLDN1 as an oncogene in HNSC. As expected, the knockdown of CLDN1 inhibited invasive phenotypes by downregulating epithelial-to-mesenchymal transition (EMT) in vitro. To ascertain the regulatory mechanism of CLDN1 in HNSC analysis of GO term enrichment, KEGG pathways, and curated gene sets were used. As a result, CLDN1 was negatively associated with AMP-activated protein kinase (AMPK) and positively associated with transforming growth factor-β (TGF-β) signaling. In vitro mechanistic assay showed that CLDN1 inhibited AMPK phosphorylation by regulating AMPK upstream phosphatases, which led to inhibition of Smad2 activity. Intriguingly, the invasive phenotype of cancer cells increased by CLDN1 overexpression was rescued by AMPK activation, indicating a role of the CLDN1/AMPK/TGF-β/EMT cascade in HNSC. Consistently in vivo, CLDN1 suppression significantly inhibited the tumor growth, with elevated AMPK expression, suggesting the novel observation of oncogenic CLDN1-AMPK signaling in HNSC.
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Sung Tae Seo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Mi Ae Im
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Lihua Liu
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Chan Oh
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Yan Li Jin
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Yudan Piao
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Hae Jong Kim
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Jung Tae Kim
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
45
|
Lu D, Hu W, Tian T, Wang M, Zhou M, Wu C. The Mechanism of Lipopolysaccharide's Effect on Secretion of Endometrial Mucins in Female Mice during Pregnancy. Int J Mol Sci 2022; 23:9972. [PMID: 36077364 PMCID: PMC9456203 DOI: 10.3390/ijms23179972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The main toxic component of endotoxins released from the death or dissolution of Gram-negative bacteria is lipopolysaccharide (LPS), which exists widely in the natural environment, and a large amount of endotoxin can significantly inhibit the reproductive performance of animals. A previous study showed that endotoxins mainly damaged the physiological function of mucins in the endometrium, but the mechanism is not clear. In this study, the PI3K/Akt signaling pathway was not activated, and the NF-κB signaling pathway was inhibited by LPS treatment; the expression of occludin and E-cadherin proteins were decreased and ZO-1 protein expression was increased, because LPS can lead to the mucous layer becoming thinner, so that the embryonic survival rate is significantly reduced in early pregnancy. In middle and late pregnancy, LPS translocated to the epithelial cells of the uterus and the expression of claudin-1, JAMA, and E-cadherin proteins were decreased; at this time, a large number of glycosaminoglycan particles were secreted by endometrial gland cells through the PI3K/Akt/NF-κB signaling pathway that was activated after LPS treatment, However, there was no significant difference between the survival rates of fetal mice in the LPS (+) and LPS (-) groups. Glycosaminoglycan particles and mucins are secreted by gland cells, which can protect and maintain the pregnancy in the middle and late gestational periods.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenchen Wu
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang 712100, China
| |
Collapse
|
46
|
Sakakibara S, Sakane A, Sasaki T, Shinohara M, Maruo T, Miyata M, Mizutani K, Takai Y. Identification of lysophosphatidic acid in serum as a factor that promotes epithelial apical junctional complex organization. J Biol Chem 2022; 298:102426. [PMID: 36030821 PMCID: PMC9520027 DOI: 10.1016/j.jbc.2022.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
The apical junctional complex (AJC) consists of adherens junctions (AJs) and tight junctions and regulates epithelial integrity and remodeling. However, it is unclear how AJC organization is regulated based on environmental cues. We found here using cultured EpH4 mouse mammary epithelial cells that fetal bovine serum (FBS) in a culture medium showed an activity to promote AJC organization and that FBS showed an activity to promote tight junction formation even in the absence of AJ proteins, such as E-cadherin, αE-catenin, and afadin. Furthermore, we purified the individual factor responsible for these functions from FBS and identified this molecule as lysophosphatidic acid (LPA). In validation experiments, purified LPA elicited the same activity as FBS. In addition, we found that the AJC organization–promoting activity of LPA was mediated through the LPA receptor 1/5 via diacylglycerol–novel PKC and Rho–ROCK pathway activation in a mutually independent, but complementary, manner. We demonstrated that the Rho–ROCK pathway activation–mediated AJC organization was independent of myosin II-induced actomyosin contraction, although this signaling pathway was previously shown to induce myosin II activation. These findings are in contrast to the literature, as previous results suggested an AJC organization–disrupting activity of LPA. The present results indicate that LPA in serum has an AJC organization–promoting activity in a manner dependent on or independent of AJ proteins.
Collapse
Affiliation(s)
- Shotaro Sakakibara
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima 770-8503, Japan.
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Masakazu Shinohara
- Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan; The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomohiko Maruo
- Department of Biochemistry, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Muneaki Miyata
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Kiyohito Mizutani
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan.
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan.
| |
Collapse
|
47
|
Gonschior H, Schmied C, Van der Veen RE, Eichhorst J, Himmerkus N, Piontek J, Günzel D, Bleich M, Furuse M, Haucke V, Lehmann M. Nanoscale segregation of channel and barrier claudins enables paracellular ion flux. Nat Commun 2022; 13:4985. [PMID: 36008380 PMCID: PMC9411157 DOI: 10.1038/s41467-022-32533-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
The paracellular passage of ions and small molecules across epithelia is controlled by tight junctions, complex meshworks of claudin polymers that form tight seals between neighboring cells. How the nanoscale architecture of tight junction meshworks enables paracellular passage of specific ions or small molecules without compromising barrier function is unknown. Here we combine super-resolution stimulated emission depletion microscopy in live and fixed cells and tissues, multivariate classification of super-resolution images and fluorescence resonance energy transfer to reveal the nanoscale organization of tight junctions formed by mammalian claudins. We show that only a subset of claudins can assemble into characteristic homotypic meshworks, whereas tight junctions formed by multiple claudins display nanoscale organization principles of intermixing, integration, induction, segregation, and exclusion of strand assemblies. Interestingly, channel-forming claudins are spatially segregated from barrier-forming claudins via determinants mainly encoded in their extracellular domains also known to harbor mutations leading to human diseases. Electrophysiological analysis of claudins in epithelial cells suggests that nanoscale segregation of distinct channel-forming claudins enables barrier function combined with specific paracellular ion flux across tight junctions. Meshworks of claudin polymers control the paracellular transport and barrier properties of epithelial tight junctions. Here, the authors show different claudin nanoscale organization principles, finding that claudin segregation enables barrier formation and paracellular ion flux across tight junctions.
Collapse
Affiliation(s)
- Hannes Gonschior
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | | | - Jenny Eichhorst
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.,Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
| |
Collapse
|
48
|
Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed Pharmacother 2022; 154:113591. [PMID: 36007276 DOI: 10.1016/j.biopha.2022.113591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Methamphetamine (MA) is a extremely addictive psychostimulant drug with a significant abuse potential. Long-term MA exposure can induce neurotoxic effects through oxidative stress, mitochondrial functional impairment, endoplasmic reticulum stress, the activation of astrocytes and microglial cells, axonal transport barriers, autophagy, and apoptosis. However, the molecular and cellular mechanisms underlying MA-induced neurotoxicity remain unclear. MA abuse increases the chances of developing neurotoxic conditions such as Parkinson's disease (PD), Alzheimer's disease (AD) and other neurotoxic diseases. MA increases the risk of PD by increasing the expression of alpha-synuclein (ASYN). Furthermore, MA abuse is linked to high chances of developing AD and subsequent neurodegeneration due to biological variations in the brain region or genetic and epigenetic variations. To date, there is no Food and Drug Administration (FDA)-approved therapy for MA-induced neurotoxicity, although many studies are being conducted to develop effective therapeutic strategies. Most current studies are now focused on developing therapies to diminish the neurotoxic effects of MA, based on the underlying mechanism of neurotoxicity. This review article highlights current research on several therapeutic techniques targeting multiple pathways to reduce the neurotoxic effects of MA in the brain, as well as the putative mechanism of MA-induced neurotoxicity.
Collapse
|
49
|
Stein L, Brunner N, Amasheh S. Functional Analysis of Gastric Tight Junction Proteins in Xenopus laevis Oocytes. MEMBRANES 2022; 12:membranes12080731. [PMID: 35893449 PMCID: PMC9330571 DOI: 10.3390/membranes12080731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
The epithelial barrier is crucial for proper gastrointestinal function, preventing the unwanted passage of solutes and therefore representing a prerequisite for vectorial transport. Claudin-4 and claudin-18.2, two critical tight junction proteins of the gastric epithelium, seal neighboring cells in a physically and mechanically challenging environment. As the Xenopus laevis oocyte allows the functional and molecular analyses of claudin interaction, we have addressed the hypothesis that this interaction is not only dependent on mechanical force but also on pH. We expressed human claudin-4 and claudin-18 in Xenopus oocytes, and analyzed them in a two-cell model approach. Cells were clustered in pairs to form contact areas expressing CLDN18 + CLDN18, CLDN4/18 + CLDN4/18, and compared to controls, respectively. Contact areas in cells incubated in medium at pH 5.5 and 7.4 were quantified by employing transmitted light microscopy. After 24 h at pH 5.5, clustering of CLDN18 + CLDN18 and CLDN4/18 + CLDN4/18-expressing oocytes revealed a contact area reduced by 45% and 32%, compared with controls, respectively. A further approach, high-pressure impulse assay, revealed a stronger tight junction interaction at pH 5.5 in oocyte pairs expressing CLDN18 + CLDN18 or CLDN4/18 + CLDN4/18 indicating a protective role of claudin-18 for tight junction integrity during pH challenge. Thus, our current analysis of gastric tight junction proteins further establishes oocytes as an expression and two-cell screening model for tight junction integrity analysis of organ- and tissue-specific claudins by the characterization of homo- and heterophilic trans-interaction dependent on barrier effectors.
Collapse
Affiliation(s)
| | | | - Salah Amasheh
- Correspondence: ; Tel.: +49-30-838-62602; Fax: +49-30-838-462602
| |
Collapse
|
50
|
Berselli A, Alberini G, Benfenati F, Maragliano L. Computational Assessment of Different Structural Models for Claudin-5 Complexes in Blood-Brain Barrier Tight Junctions. ACS Chem Neurosci 2022; 13:2140-2153. [PMID: 35816296 PMCID: PMC9976285 DOI: 10.1021/acschemneuro.2c00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) strictly regulates the exchange of ions and molecules between the blood and the central nervous system. Tight junctions (TJs) are multimeric structures that control the transport through the paracellular spaces between the adjacent brain endothelial cells of the BBB. Claudin-5 (Cldn5) proteins are essential for TJ formation and assemble into multiprotein complexes via cis-interactions within the same cell membrane and trans-interactions across two contiguous cells. Despite the relevant biological function of Cldn5 proteins and their role as targets of brain drug delivery strategies, the molecular details of their assembly within TJs are still unclear. Two different structural models have been recently introduced, in which Cldn5 dimers belonging to opposite cells join to generate paracellular pores. However, a comparison of these models in terms of ionic transport features is still lacking. In this work, we used molecular dynamics simulations and free energy (FE) calculations to assess the two Cldn5 pore models and investigate the thermodynamic properties of water and physiological ions permeating through them. Despite different FE profiles, both structures present single/multiple FE barriers to ionic permeation, while being permissive to water flux. These results reveal that both models are compatible with the physiological role of Cldn5 TJ strands. By identifying the protein-protein surface at the core of TJ Cldn5 assemblies, our computational investigation provides a basis for the rational design of synthetic peptides and other molecules capable of opening paracellular pores in the BBB.
Collapse
Affiliation(s)
- Alessandro Berselli
- Center
for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, Genova 16132, Italy
- Department
of Experimental Medicine, Università
Degli Studi di Genova, Viale Benedetto XV, 3, Genova 16132, Italy
| | - Giulio Alberini
- Center
for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, Genova 16132, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genova 16132, Italy
| | - Fabio Benfenati
- Center
for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, Genova 16132, Italy
- IRCCS
Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genova 16132, Italy
| | - Luca Maragliano
- Center
for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, Genova 16132, Italy
- Department
of Life and Environmental Sciences, Polytechnic
University of Marche, Via Brecce Bianche, Ancona 60131, Italy
| |
Collapse
|