1
|
Wu T, Jiang J, Zhang H, Liu J, Ruan H. Transcending membrane barriers: advances in membrane engineering to enhance the production capacity of microbial cell factories. Microb Cell Fact 2024; 23:154. [PMID: 38796463 PMCID: PMC11128114 DOI: 10.1186/s12934-024-02436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
Microbial cell factories serve as pivotal platforms for the production of high-value natural products, which tend to accumulate on the cell membrane due to their hydrophobic properties. However, the limited space of the cell membrane presents a bottleneck for the accumulation of these products. To enhance the production of intracellular natural products and alleviate the burden on the cell membrane caused by product accumulation, researchers have implemented various membrane engineering strategies. These strategies involve modifying the membrane components and structures of microbial cell factories to achieve efficient accumulation of target products. This review summarizes recent advances in the application of membrane engineering technologies in microbial cell factories, providing case studies involving Escherichia coli and yeast. Through these strategies, researchers have not only improved the tolerance of cells but also optimized intracellular storage space, significantly enhancing the production efficiency of natural products. This article aims to provide scientific evidence and references for further enhancing the efficiency of similar cell factories.
Collapse
Affiliation(s)
- Tao Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
| | - Jingjing Jiang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hongyang Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Jiazhi Liu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.
| |
Collapse
|
2
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Ferrara S, Brignoli T, Bertoni G. Little reason to call them small noncoding RNAs. Front Microbiol 2023; 14:1191166. [PMID: 37455713 PMCID: PMC10339803 DOI: 10.3389/fmicb.2023.1191166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Hundreds of different species of small RNAs can populate a bacterial cell. This small transcriptome contains important information for the adaptation of cellular physiology to environmental changes. Underlying cellular networks involving small RNAs are RNA-RNA and RNA-protein interactions, which are often intertwined. In addition, small RNAs can function as mRNAs. In general, small RNAs are referred to as noncoding because very few are known to contain translated open reading frames. In this article, we intend to highlight that the number of small RNAs that fall within the set of translated RNAs is bound to increase. In addition, we aim to emphasize that the dynamics of the small transcriptome involve different functional codes, not just the genetic code. Therefore, since the role of small RNAs is always code-driven, we believe that there is little reason to continue calling them small noncoding RNAs.
Collapse
|
4
|
Mayer M, Winer L, Karniel A, Pinner E, Yardeni EH, Morgenstern D, Bibi E. Co-translational membrane targeting and holo-translocon docking of ribosomes translating the SRP receptor. J Mol Biol 2022; 434:167459. [DOI: 10.1016/j.jmb.2022.167459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
|
5
|
Tanaka M, Ueno Y, Miyake T, Sakuma T, Okochi M. Enrichment of membrane curvature-sensing proteins from Escherichia coli using spherical supported lipid bilayers. J Biosci Bioeng 2021; 133:98-104. [PMID: 34776361 DOI: 10.1016/j.jbiosc.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Bacteria display dynamically organized curved membrane structures, especially during cell division. The importance of membrane curvature-sensing (MCS) proteins for the recognition and regulation of biological membrane morphologies has predominately been investigated in eukaryotic cells. Recently, a technique for screening MCS proteins from solutions that contain peripheral membrane proteins was developed, and MCS protein candidates were identified from mammalian cells. The technique uses differently sized spherical supported lipid bilayers (SSLBs), which consist of spherical SiO2 particles covered with a lipid bilayer. To discriminate between proteins possessing the MCS property, SSLBs with the same surface area were used in a comparative sedimentation assay with shotgun proteome analysis. In this study, to prove that the technique could be applied to other samples, MCS proteins in Escherichia coli were investigated. Through a comparative proteomic study, 35 and 47 proteins were enriched as candidate MCS proteins preferentially bound to SSLBs of 100 nm and 1000 nm, respectively. Among the identified MCS candidate proteins, FtsZ and SecA were further examined for their MCS properties using the two SSLB sizes, which revealed a high binding affinity for the low membrane curvature (large SSLB). This is the first study to explore MCS proteins in prokaryotic cells and the MCS property of the SecA protein. The results demonstrate a method to enrich MCS proteins that could be utilized to better elucidate membrane dynamics and protein function expression on curved membrane structures in prokaryotic cells.
Collapse
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yu Ueno
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takahiro Miyake
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takahiro Sakuma
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
6
|
Steinberg R, Koch HG. The largely unexplored biology of small proteins in pro- and eukaryotes. FEBS J 2021; 288:7002-7024. [PMID: 33780127 DOI: 10.1111/febs.15845] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022]
Abstract
The large abundance of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes and the plethora of smORF-encoded small proteins became only apparent with the constant advancements in bioinformatic, genomic, proteomic, and biochemical tools. Small proteins are typically defined as proteins of < 50 amino acids in prokaryotes and of less than 100 amino acids in eukaryotes, and their importance for cell physiology and cellular adaptation is only beginning to emerge. In contrast to antimicrobial peptides, which are secreted by prokaryotic and eukaryotic cells for combatting pathogens and competitors, small proteins act within the producing cell mainly by stabilizing protein assemblies and by modifying the activity of larger proteins. Production of small proteins is frequently linked to stress conditions or environmental changes, and therefore, cells seem to use small proteins as intracellular modifiers for adjusting cell metabolism to different intra- and extracellular cues. However, the size of small proteins imposes a major challenge for the cellular machinery required for protein folding and intracellular trafficking and recent data indicate that small proteins can engage distinct trafficking pathways. In the current review, we describe the diversity of small proteins in prokaryotes and eukaryotes, highlight distinct and common features, and illustrate how they are handled by the protein trafficking machineries in prokaryotic and eukaryotic cells. Finally, we also discuss future topics of research on this fascinating but largely unexplored group of proteins.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
7
|
Xie Q, Li S, Zhao D, Ye L, Li Q, Zhang X, Zhu L, Bi C. Manipulating the position of DNA expression cassettes using location tags fused to dCas9 (Cas9-Lag) to improve metabolic pathway efficiency. Microb Cell Fact 2020; 19:229. [PMID: 33317552 PMCID: PMC7737257 DOI: 10.1186/s12934-020-01496-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/05/2020] [Indexed: 02/02/2023] Open
Abstract
Background Deactivated Cas9 (dCas9) led to significant improvement of CRISPR/Cas9-based techniques because it can be fused with a variety of functional groups to form diverse molecular devices, which can manipulate or modify target DNA cassettes. One important metabolic engineering strategy is to localize the enzymes in proximity of their substrates for improved catalytic efficiency. In this work, we developed a novel molecular device to manipulate the cellular location of specific DNA cassettes either on plasmids or on the chromosome, by fusing location tags to dCas9 (Cas9-Lag), and applied the technique for synthetic biology applications. Carotenoids like β-carotene serve as common intermediates for the synthesis of derivative compounds, which are hydrophobic and usually accumulate in the membrane compartment. Results Carotenoids like β-carotene serve as common intermediates for the synthesis of derivative compounds, which are hydrophobic and usually accumulate in the membrane components. To improve the functional expression of membrane-bound enzymes and localize them in proximity to the substrates, Cas9-Lag was used to pull plasmids or chromosomal DNA expressing carotenoid enzymes onto the cell membrane. For this purpose, dCas9 was fused to the E. coli membrane docking tag GlpF, and gRNA was designed to direct this fusion protein to the DNA expression cassettes. With Cas9-Lag, the zeaxanthin and astaxanthin titer increased by 29.0% and 26.7% respectively. Due to experimental limitations, the electron microscopy images of cells expressing Cas9-Lag vaguely indicated that GlpF-Cas9 might have pulled the target DNA cassettes in close proximity to membrane. Similarly, protein mass spectrometry analysis of membrane proteins suggested an increased expression of carotenoid-converting enzymes in the membrane components. Conclusion This work therefore provides a novel molecular device, Cas9-Lag, which was proved to increase zeaxanthin and astaxanthin production and might be used to manipulate DNA cassette location.
Collapse
Affiliation(s)
- Qianwen Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lijun Ye
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Qingyan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
8
|
Steinberg R, Knüpffer L, Origi A, Asti R, Koch HG. Co-translational protein targeting in bacteria. FEMS Microbiol Lett 2019; 365:4966980. [PMID: 29790984 DOI: 10.1093/femsle/fny095] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and have to be transported into or across the cytoplasmic membrane. Bacteria use multiple protein transport systems in parallel, but the majority of proteins engage two distinct targeting systems. One is the co-translational targeting by two universally conserved GTPases, the signal recognition particle (SRP) and its receptor FtsY, which deliver inner membrane proteins to either the SecYEG translocon or the YidC insertase for membrane insertion. The other targeting system depends on the ATPase SecA, which targets secretory proteins, i.e. periplasmic and outer membrane proteins, to SecYEG for their subsequent ATP-dependent translocation. While SRP selects its substrates already very early during their synthesis, the recognition of secretory proteins by SecA is believed to occur primarily after translation termination, i.e. post-translationally. In this review we highlight recent progress on how SRP recognizes its substrates at the ribosome and how the fidelity of the targeting reaction to SecYEG is maintained. We furthermore discuss similarities and differences in the SRP-dependent targeting to either SecYEG or YidC and summarize recent results that suggest that some membrane proteins are co-translationally targeted by SecA.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Lara Knüpffer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, Freiburg D-79104, Germany
| | - Rossella Asti
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| |
Collapse
|
9
|
Wu T, Li S, Ye L, Zhao D, Fan F, Li Q, Zhang B, Bi C, Zhang X. Engineering an Artificial Membrane Vesicle Trafficking System (AMVTS) for the Excretion of β-Carotene in Escherichia coli. ACS Synth Biol 2019; 8:1037-1046. [PMID: 30990999 DOI: 10.1021/acssynbio.8b00472] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Large hydrophobic molecules, such as carotenoids, cannot be effectively excreted from cells by natural transportation systems. These products accumulate inside the cells and affect normal cellular physiological functions, which hinders further improvement of carotenoid production by microbial cell factories. In this study, we proposed to construct a novel artificial transport system utilizing membrane lipids to carry and transport hydrophobic molecules. Membrane lipids allow the physiological mechanism of membrane dispersion to be reconstructed and amplified to establish a novel artificial membrane vesicle transport system (AMVTS). Specifically, a few proteins in E. coli were reported or proposed to be related to the formation mechanism of outer membrane vesicles, and were individually knocked out or overexpressed to test their physiological functions. The effects on tolR and nlpI were the most significant. Knocking out both tolR and nlpI resulted in a 13.7% increase of secreted β-carotene with a 35.6% increase of specific production. To supplement the loss of membrane components of the cells due to the increased membrane vesicle dispersion, the synthesis pathway of phosphatidylethanolamine was engineered. While overexpression of AccABCD and PlsBC in TW-013 led to 15% and 17% increases of secreted β-carotene, respectively, the overexpression of both had a synergistic effect and caused a 53-fold increase of secreted β-carotene, from 0.2 to 10.7 mg/g dry cell weight (DCW). At the same time, the specific production of β-carotene increased from 6.9 to 21.9 mg/g DCW, a 3.2-fold increase. The AMVTS was also applied to a β-carotene hyperproducing strain, CAR025, which led to a 24-fold increase of secreted β-carotene, from 0.5 to 12.7 mg/g DCW, and a 61% increase of the specific production, from 27.7 to 44.8 mg/g DCW in shake flask fermentation. The AMVTS built in this study establishes a novel artificial transport mechanism different from natural protein-based cellular transport systems, which has great potential to be applied to various cell factories for the excretion of a wide range of hydrophobic compounds.
Collapse
Affiliation(s)
- Tao Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300314, PR China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Lijun Ye
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Qinyan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Bolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| |
Collapse
|
10
|
Jamin N, Garrigos M, Jaxel C, Frelet-Barrand A, Orlowski S. Ectopic Neo-Formed Intracellular Membranes in Escherichia coli: A Response to Membrane Protein-Induced Stress Involving Membrane Curvature and Domains. Biomolecules 2018; 8:biom8030088. [PMID: 30181516 PMCID: PMC6163855 DOI: 10.3390/biom8030088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
Bacterial cytoplasmic membrane stress induced by the overexpression of membrane proteins at high levels can lead to formation of ectopic intracellular membranes. In this review, we report the various observations of such membranes in Escherichia coli, compare their morphological and biochemical characterizations, and we analyze the underlying molecular processes leading to their formation. Actually, these membranes display either vesicular or tubular structures, are separated or connected to the cytoplasmic membrane, present mono- or polydispersed sizes and shapes, and possess ordered or disordered arrangements. Moreover, their composition differs from that of the cytoplasmic membrane, with high amounts of the overexpressed membrane protein and altered lipid-to-protein ratio and cardiolipin content. These data reveal the importance of membrane domains, based on local specific lipid⁻protein and protein⁻protein interactions, with both being crucial for local membrane curvature generation, and they highlight the strong influence of protein structure. Indeed, whether the cylindrically or spherically curvature-active proteins are actively curvogenic or passively curvophilic, the underlying molecular scenarios are different and can be correlated with the morphological features of the neo-formed internal membranes. Delineating these molecular mechanisms is highly desirable for a better understanding of protein⁻lipid interactions within membrane domains, and for optimization of high-level membrane protein production in E. coli.
Collapse
Affiliation(s)
- Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Manuel Garrigos
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Annie Frelet-Barrand
- Institut FEMTO-ST, UMR CNRS 6174, Université Bourgogne Franche-Comté, 15B avenue des Montboucons, 25030 Besançon CEDEX, France.
| | - Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| |
Collapse
|
11
|
Shahin K, Thompson KD, Inglis NF, Mclean K, Ramirez-Paredes JG, Monaghan SJ, Hoare R, Fontaine M, Metselaar M, Adams A. Characterization of the outer membrane proteome of Francisella noatunensis subsp. orientalis. J Appl Microbiol 2018; 125:686-699. [PMID: 29777634 DOI: 10.1111/jam.13918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/03/2018] [Accepted: 05/11/2018] [Indexed: 11/28/2022]
Abstract
AIMS The aims of the current study were to characterize the outer membrane proteins (OMPs) of Francisella noatunensis subsp. orientalis (Fno) STIR-GUS-F2f7, and identify proteins recognized by sera from tilapia, Oreochromis niloticus, (L) that survived experimental challenge with Fno. METHODS AND RESULTS The composition of the OMPs of a virulent strain of Fno (STIR-GUS-F2f7), isolated from diseased red Nile tilapia in the United Kingdom, was examined. The sarcosine-insoluble OMPs fraction was screened with tilapia hyperimmune sera by western blot analysis following separation of the proteins by 1D SDS-PAGE. Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used to identify the various proteins present in the OMP profile. Two hundred and thirty-nine proteins were identified, of which 44 were found in the immunogenic band recognized by the tilapia hyperimmune serum. In silico analysis was performed to predict the function and location of the OMPs identified by MS. CONCLUSIONS Using a powerful proteomic-based approach in conjugation with western immunoblotting, proteins comprising the outer membrane fraction of Fno STIR-GUS-F2f7 were identified, catalogued and screened for immune recognition by tilapia sera. SIGNIFICANCE AND IMPACT OF THE STUDY The current study is the first report on the characterization of Fno-OMPs. The findings here provide preliminary data on bacterial surface proteins that exist in direct contact with the host's immune defences during infection and offer an insight into the pathogenesis of Fno.
Collapse
Affiliation(s)
- K Shahin
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK.,Aquatic Animals Diseases Lab, Aquaculture Division, National Institute of Oceanography and Fisheries, Suez, Egypt
| | - K D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, UK
| | - N F Inglis
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, UK
| | - K Mclean
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian, UK
| | - J G Ramirez-Paredes
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - S J Monaghan
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - R Hoare
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - M Fontaine
- Benchmark Animal Health, Bush House, Edinburgh Technopole, Edinburgh, Midlothian, UK
| | - M Metselaar
- Benchmark Animal Health, Bush House, Edinburgh Technopole, Edinburgh, Midlothian, UK
| | - A Adams
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| |
Collapse
|
12
|
Wu T, Ye L, Zhao D, Li S, Li Q, Zhang B, Bi C. Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories. 3 Biotech 2018; 8:269. [PMID: 29868307 DOI: 10.1007/s13205-018-1298-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/20/2018] [Indexed: 02/05/2023] Open
Abstract
The goal of this work was to improve the lycopene storage capacity of the E. coli membrane by engineering both morphological and biosynthetic aspects. First, Almgs, a protein from Acholeplasma laidlawii that is involved in membrane bending is overexpressed to expand the storage space for lycopene, which resulted in a 12% increase of specific lycopene production. Second, several genes related to the membrane-synthesis pathway in E. coli, including plsb, plsc, and dgka, were also overexpressed, which led to a further 13% increase. In addition, membrane separation and component analysis confirmed that the increased amount of lycopene was mainly accumulated within the cell membranes. Finally, by integrating both aforementioned modification strategies, a synergistic effect could be observed which caused a 1.32-fold increase of specific lycopene production, from the 27.5 mg/g of the parent to 36.4 mg/g DCW in the engineered strain. This work demonstrates that membrane engineering is a feasible strategy for increasing the production and accumulation of lycopene in E. coli.
Collapse
Affiliation(s)
- Tao Wu
- 1College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People's Republic of China
- 2Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People's Republic of China
| | - Lijun Ye
- 2Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People's Republic of China
| | - Dongdong Zhao
- 2Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People's Republic of China
| | - Siwei Li
- 2Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People's Republic of China
| | - Qingyan Li
- 2Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People's Republic of China
| | - Bolin Zhang
- 1College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People's Republic of China
| | - Changhao Bi
- 2Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People's Republic of China
| |
Collapse
|
13
|
Co-translational Folding Intermediate Dictates Membrane Targeting of the Signal Recognition Particle Receptor. J Mol Biol 2018; 430:1607-1620. [PMID: 29704493 DOI: 10.1016/j.jmb.2018.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/22/2022]
Abstract
Much of our knowledge on the function of proteins is deduced from their mature, folded states. However, it is unknown whether partially synthesized nascent protein segments can execute biological functions during translation and whether their premature folding states matter. A recent observation that a nascent chain performs a distinct function, co-translational targeting in vivo, has been made with the Escherichia coli signal recognition particle receptor FtsY, a major player in the conserved pathway of membrane protein biogenesis. FtsY functions as a membrane-associated entity, but very little is known about the mode of its targeting to the membrane. Here we investigated the underlying structural mechanism of the co-translational FtsY targeting to the membrane. Our results show that helices N2-4, which mediate membrane targeting, form a stable folding intermediate co-translationally that greatly differs from its fold in the mature FtsY. These results thus resolve a long-standing mystery of how the receptor targets the membrane even when deleted of its alleged membrane targeting sequence. The structurally distinct targeting determinant of FtsY exists only co-translationally. Our studies will facilitate further efforts to seek cellular factors required for proper targeting and association of FtsY with the membrane. Moreover, the results offer a hallmark example for how co-translational nascent intermediates may dictate biological functions.
Collapse
|
14
|
The bacterial Sec system is required for the organization and function of the MreB cytoskeleton. PLoS Genet 2017; 13:e1007017. [PMID: 28945742 PMCID: PMC5629013 DOI: 10.1371/journal.pgen.1007017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/05/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
The Sec system is responsible for protein insertion, translocation and secretion across membranes in all cells. The bacterial actin homolog MreB controls various processes, including cell wall synthesis, membrane organization and polarity establishment. Here we show that the two systems genetically interact and that components of the Sec system, especially the SecA motor protein, are essential for spatiotemporal organization of MreB in E. coli, as evidenced by the accumulation of MreB at irregular sites in Sec-impaired cells. MreB mislocalization in SecA-defective cells significantly affects MreB-coordinated processes, such as cell wall synthesis, and induce formation of membrane invaginations enriched in high fluidity domains. Additionally, MreB is not recruited to the FtsZ ring in secA mutant cells, contributing to division arrest and cell filamentation. Our results show that all these faults are due to improper targeting of MreB to the membrane in the absence of SecA. Thus, when we reroute RodZ, MreB membrane-anchor, by fusing it to a SecA-independent integral membrane protein and overproducing it, MreB localization is restored and the defect in cell division is corrected. Notably, the RodZ moiety is not properly inserted into the membrane, strongly suggesting that it only serves as a bait for placing MreB around the cell circumference. Finally, we show that MreB localization depends on SecA also in C. crescentus, suggesting that regulation of MreB by the Sec system is conserved in bacteria. Taken together, our data reveal that the secretion system plays an important role in determining the organization and functioning of the cytoskeletal system in bacteria. The notion that bacterial cells have intricate spatial organization, which affects many vital processes, is relatively new and, hence, the underlying mechanisms are largely unknown. The general secretion system and the cytoskeleton are central systems, each known to organize functions associated with certain cellular domains, in both eukaryotes and prokaryotes. While the role of the Sec system in membrane protein translocation and secretion has been largely explored, not much in known about its role in inner cell organization. We show that the Sec system is important for the localization pattern and functionality of the bacterial cytoskeletal system, which controls cell shape, cell division and polarity. Our findings highlight the Sec system as a central coordinator that controls cellular functions on both sides of the membrane.
Collapse
|
15
|
Membrane engineering - A novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli. Metab Eng 2017; 43:85-91. [DOI: 10.1016/j.ymben.2017.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022]
|
16
|
Benhalevy D, Biran I, Bochkareva ES, Sorek R, Bibi E. Evidence for a cytoplasmic pool of ribosome-free mRNAs encoding inner membrane proteins in Escherichia coli. PLoS One 2017; 12:e0183862. [PMID: 28841711 PMCID: PMC5571963 DOI: 10.1371/journal.pone.0183862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Translation-independent mRNA localization represents an emerging concept in cell biology. In Escherichia coli, mRNAs encoding integral membrane proteins (MPRs) are targeted to the membrane where they are translated by membrane associated ribosomes and the produced proteins are inserted into the membrane co-translationally. In order to better understand aspects of the biogenesis and localization of MPRs, we investigated their subcellular distribution using cell fractionation, RNA-seq and qPCR. The results show that MPRs are overrepresented in the membrane fraction, as expected, and depletion of the signal recognition particle-receptor, FtsY reduced the amounts of all mRNAs on the membrane. Surprisingly, however, MPRs were also found relatively abundant in the soluble ribosome-free fraction and their amount in this fraction is increased upon overexpression of CspE, which was recently shown to interact with MPRs. CspE also conferred a positive effect on the membrane-expression of integral membrane proteins. We discuss the possibility that the effects of CspE overexpression may link the intriguing subcellular localization of MPRs to the cytosolic ribosome-free fraction with their translation into membrane proteins and that the ribosome-free pool of MPRs may represent a stage during their targeting to the membrane, which precedes translation.
Collapse
Affiliation(s)
- Daniel Benhalevy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Biran
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Elena S. Bochkareva
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Keren R, Mayzel B, Lavy A, Polishchuk I, Levy D, Fakra SC, Pokroy B, Ilan M. Sponge-associated bacteria mineralize arsenic and barium on intracellular vesicles. Nat Commun 2017; 8:14393. [PMID: 28233852 PMCID: PMC5333131 DOI: 10.1038/ncomms14393] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Arsenic and barium are ubiquitous environmental toxins that accumulate in higher trophic-level organisms. Whereas metazoans have detoxifying organs to cope with toxic metals, sponges lack organs but harbour a symbiotic microbiome performing various functions. Here we examine the potential roles of microorganisms in arsenic and barium cycles in the sponge Theonella swinhoei, known to accumulate high levels of these metals. We show that a single sponge symbiotic bacterium, Entotheonella sp., constitutes the arsenic- and barium-accumulating entity within the host. These bacteria mineralize both arsenic and barium on intracellular vesicles. Our results indicate that Entotheonella sp. may act as a detoxifying organ for its host. The marine sponge Theonella swinhoei accumulates toxic arsenic and barium. Here the authors show that these toxic elements are actually accumulated and mineralized within vesicles inside bacteria that live within the sponge tissues.
Collapse
Affiliation(s)
- Ray Keren
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Mayzel
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adi Lavy
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Iryna Polishchuk
- Faculty of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Davide Levy
- Faculty of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| | - Boaz Pokroy
- Faculty of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Micha Ilan
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
18
|
Moumène A, Marcelino I, Ventosa M, Gros O, Lefrançois T, Vachiéry N, Meyer DF, Coelho AV. Proteomic profiling of the outer membrane fraction of the obligate intracellular bacterial pathogen Ehrlichia ruminantium. PLoS One 2015; 10:e0116758. [PMID: 25710494 PMCID: PMC4339577 DOI: 10.1371/journal.pone.0116758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/13/2014] [Indexed: 01/27/2023] Open
Abstract
The outer membrane proteins (OMPs) of Gram-negative bacteria play a crucial role in virulence and pathogenesis. Identification of these proteins represents an important goal for bacterial proteomics, because it aids in vaccine development. Here, we have developed such an approach for Ehrlichia ruminantium, the obligate intracellular bacterium that causes heartwater. A preliminary whole proteome analysis of elementary bodies, the extracellular infectious form of the bacterium, had been performed previously, but information is limited about OMPs in this organism and about their role in the protective immune response. Identification of OMPs is also essential for understanding Ehrlichia's OM architecture, and how the bacterium interacts with the host cell environment. First, we developed an OMP extraction method using the ionic detergent sarkosyl, which enriched the OM fraction. Second, proteins were separated via one-dimensional electrophoresis, and digested peptides were analyzed via nano-liquid chromatographic separation coupled with mass spectrometry (LC-MALDI-TOF/TOF). Of 46 unique proteins identified in the OM fraction, 18 (39%) were OMPs, including 8 proteins involved in cell structure and biogenesis, 4 in transport/virulence, 1 porin, and 5 proteins of unknown function. These experimental data were compared to the predicted subcellular localization of the entire E. ruminantium proteome, using three different algorithms. This work represents the most complete proteome characterization of the OM fraction in Ehrlichia spp. The study indicates that suitable subcellular fractionation experiments combined with straightforward computational analysis approaches are powerful for determining the predominant subcellular localization of the experimentally observed proteins. We identified proteins potentially involved in E. ruminantium pathogenesis, which are good novel targets for candidate vaccines. Thus, combining bioinformatics and proteomics, we discovered new OMPs for E. ruminantium that are valuable data for those investigating new vaccines against this organism. In summary, we provide both pioneering data and novel insights into the pathogenesis of this obligate intracellular bacterium.
Collapse
Affiliation(s)
- Amal Moumène
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
- Université des Antilles et de la Guyane, 97159, Pointe-à-Pitre cedex, Guadeloupe, France
| | - Isabel Marcelino
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel Ventosa
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Olivier Gros
- Université des Antilles et de la Guyane, Institut de Biologie Paris Seine, UMR7138 UPMC-CNRS, Equipe Biologie de la Mangrove, UFR des Sciences Exactes et Naturelles, Département de Biologie, BP 592, 97159, Pointe-à-Pitre cedex, Guadeloupe, France
| | | | - Nathalie Vachiéry
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
| | - Damien F. Meyer
- CIRAD, UMR CMAEE, Site de Duclos, Prise d’eau, F-97170, Petit-Bourg, Guadeloupe, France
- INRA, UMR1309 CMAEE, F-34398, Montpellier, France
- * E-mail:
| | - Ana V. Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
19
|
Kinori A, Bibi E. Co-translational membrane association of the Escherichia coli SRP receptor. J Cell Sci 2015; 128:1444-52. [DOI: 10.1242/jcs.166116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal recognition particle (SRP) receptor is a major player in the pathway of membrane protein biogenesis in all organisms. The receptor functions as a membrane bound entity but very little is known about its targeting to the membrane. Here we demonstrate in vivo that the Escherichia coli SRP receptor targets the membrane co-translationally. This requires emergence from the ribosome of the 4 helix-long N-domain of the receptor of which only helices 2–4 are required for co-translational membrane attachment. The results also suggest that the targeting might be regulated co-translationally. Together, our in vivo studies shed light on the biogenesis of the SRP receptor and its hypothetical role in targeting ribosomes to the Escherichia coli membrane.
Collapse
|
20
|
Linhartová M, Bučinská L, Halada P, Ječmen T, Setlík J, Komenda J, Sobotka R. Accumulation of the Type IV prepilin triggers degradation of SecY and YidC and inhibits synthesis of Photosystem II proteins in the cyanobacterium Synechocystis PCC 6803. Mol Microbiol 2014; 93:1207-23. [PMID: 25060824 DOI: 10.1111/mmi.12730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 11/30/2022]
Abstract
Type IV pilins are bacterial proteins that are small in size but have a broad range of functions, including motility, transformation competence and secretion. Although pilins vary in sequence, they possess a characteristic signal peptide that has to be removed by the prepilin peptidase PilD during pilin maturation. We generated a pilD (slr1120) null mutant of the cyanobacterium Synechocystis 6803 that accumulates an unprocessed form of the major pilin PilA1 (pPilA1) and its non-glycosylated derivative (NpPilA1). Notably, the pilD strain had aberrant membrane ultrastructure and did not grow photoautotrophically because the synthesis of Photosystem II subunits was abolished. However, other membrane components such as Photosystem I and ATP synthase were synthesized at levels comparable to the control strain. Proliferation of the pilD strain was rescued by elimination of the pilA1 gene, demonstrating that PilA1 prepilin inhibited the synthesis of Photosystem II. Furthermore, NpPilA1 co-immunoprecipitated with the SecY translocase and the YidC insertase, and both of these essential translocon components were degraded in the mutant. We propose that unprocessed prepilins inactivate an identical pool of translocons that function in the synthesis of both pilins and the core subunits of Photosystem II.
Collapse
Affiliation(s)
- Markéta Linhartová
- Institute of Microbiology, Academy of Sciences, Opatovický mlýn, 37981, Třeboň, Czech Republic; Faculty of Sciences, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
21
|
Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 2014; 31:58-84. [DOI: 10.3109/09687688.2014.907455] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 2013; 449:25-37. [PMID: 23216251 DOI: 10.1042/bj20121227] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are sorted from cytoplasmic ones initially due to characteristic signal peptides. Then they are targeted to the plasma membrane by chaperones/pilots. The translocase, a dynamic nanomachine, lies at the centre of this process and acts as a protein-conducting channel with a unique property; allowing both forward transfer of secretory proteins but also lateral release into the lipid bilayer with high fidelity and efficiency. This process, tightly orchestrated at the expense of energy, ensures fundamental cell processes such as membrane biogenesis, cell division, motility, nutrient uptake and environmental sensing. In the present review, we examine this fascinating process, summarizing current knowledge on the structure, function and mechanics of the Sec pathway.
Collapse
|
23
|
Bibi E. Is there a twist in the Escherichia coli signal recognition particle pathway? Trends Biochem Sci 2011; 37:1-6. [PMID: 22088262 DOI: 10.1016/j.tibs.2011.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 11/28/2022]
Abstract
Integral membrane proteins (IMPs) are usually synthesized by membrane-bound ribosomes, and this process requires proper localization of ribosomes and IMP-encoding transcripts. However, the underlying molecular mechanism of the pathway has not yet been fully established in vivo. The prevailing hypothesis is that ribosomes and transcripts are delivered to the membrane together during IMP translation by the signal recognition particle (SRP) and its receptor. Here, I discuss an alternative hypothesis that posits that ribosomes and transcripts are targeted separately. Ribosome targeting to the membrane might be mediated by the SRP receptor, rather than by SRP, and IMP-encoding transcripts might be targeted to the membrane in a translation-independent manner. According to this scenario, the SRP executes its essential function on the membrane at a later stage of the targeting pathway.
Collapse
Affiliation(s)
- Eitan Bibi
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
24
|
Erez E, Stjepanovic G, Zelazny AM, Brugger B, Sinning I, Bibi E. Genetic evidence for functional interaction of the Escherichia coli signal recognition particle receptor with acidic lipids in vivo. J Biol Chem 2010; 285:40508-14. [PMID: 20956528 DOI: 10.1074/jbc.m110.140921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism underlying the interaction of the Escherichia coli signal recognition particle receptor FtsY with the cytoplasmic membrane has been studied in detail. Recently, we proposed that FtsY requires functional interaction with inner membrane lipids at a late stage of the signal recognition particle pathway. In addition, an essential lipid-binding α-helix was identified in FtsY of various origins. Theoretical considerations and in vitro studies have suggested that it interacts with acidic lipids, but this notion is not yet fully supported by in vivo experimental evidence. Here, we present an unbiased genetic clue, obtained by serendipity, supporting the involvement of acidic lipids. Utilizing a dominant negative mutant of FtsY (termed NG), which is defective in its functional interaction with lipids, we screened for E. coli genes that suppress the negative dominant phenotype. In addition to several unrelated phenotype-suppressor genes, we identified pgsA, which encodes the enzyme phosphatidylglycerophosphate synthase (PgsA). PgsA is an integral membrane protein that catalyzes the committed step to acidic phospholipid synthesis, and we show that its overexpression increases the contents of cardiolipin and phosphatidylglycerol. Remarkably, expression of PgsA also stabilizes NG and restores its biological function. Collectively, our results strongly support the notion that FtsY functionally interacts with acidic lipids.
Collapse
Affiliation(s)
- Elinor Erez
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
25
|
Wickström D, Wagner S, Baars L, Ytterberg AJ, Klepsch M, van Wijk KJ, Luirink J, de Gier JW. Consequences of depletion of the signal recognition particle in Escherichia coli. J Biol Chem 2010; 286:4598-609. [PMID: 20923772 DOI: 10.1074/jbc.m109.081935] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thus far, the role of the Escherichia coli signal recognition particle (SRP) has only been studied using targeted approaches. It has been shown for a handful of cytoplasmic membrane proteins that their insertion into the cytoplasmic membrane is at least partially SRP-dependent. Furthermore, it has been proposed that the SRP plays a role in preventing toxic accumulation of mistargeted cytoplasmic membrane proteins in the cytoplasm. To complement the targeted studies on SRP, we have studied the consequences of the depletion of the SRP component Fifty-four homologue (Ffh) in E. coli using a global approach. The steady-state proteomes and the proteome dynamics were evaluated using one- and two-dimensional gel analysis, followed by mass spectrometry-based protein identification and immunoblotting. Our analysis showed that depletion of Ffh led to the following: (i) impaired kinetics of the biogenesis of the cytoplasmic membrane proteome; (ii) lowered steady-state levels of the respiratory complexes NADH dehydrogenase, succinate dehydrogenase, and cytochrome bo(3) oxidase and lowered oxygen consumption rates; (iii) increased levels of the chaperones DnaK and GroEL at the cytoplasmic membrane; (iv) a σ(32) stress response and protein aggregation in the cytoplasm; and (v) impaired protein synthesis. Our study shows that in E. coli SRP-mediated protein targeting is directly linked to maintaining protein homeostasis and the general fitness of the cell.
Collapse
Affiliation(s)
- David Wickström
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gross J, Bhattacharya D. Uniting sex and eukaryote origins in an emerging oxygenic world. Biol Direct 2010; 5:53. [PMID: 20731852 PMCID: PMC2933680 DOI: 10.1186/1745-6150-5-53] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/23/2010] [Indexed: 11/14/2022] Open
Abstract
Background Theories about eukaryote origins (eukaryogenesis) need to provide unified explanations for the emergence of diverse complex features that define this lineage. Models that propose a prokaryote-to-eukaryote transition are gridlocked between the opposing "phagocytosis first" and "mitochondria as seed" paradigms, neither of which fully explain the origins of eukaryote cell complexity. Sex (outcrossing with meiosis) is an example of an elaborate trait not yet satisfactorily addressed in theories about eukaryogenesis. The ancestral nature of meiosis and its dependence on eukaryote cell biology suggest that the emergence of sex and eukaryogenesis were simultaneous and synergic and may be explained by a common selective pressure. Presentation of the hypothesis We propose that a local rise in oxygen levels, due to cyanobacterial photosynthesis in ancient Archean microenvironments, was highly toxic to the surrounding biota. This selective pressure drove the transformation of an archaeal (archaebacterial) lineage into the first eukaryotes. Key is that oxygen might have acted in synergy with environmental stresses such as ultraviolet (UV) radiation and/or desiccation that resulted in the accumulation of reactive oxygen species (ROS). The emergence of eukaryote features such as the endomembrane system and acquisition of the mitochondrion are posited as strategies to cope with a metabolic crisis in the cell plasma membrane and the accumulation of ROS, respectively. Selective pressure for efficient repair of ROS/UV-damaged DNA drove the evolution of sex, which required cell-cell fusions, cytoskeleton-mediated chromosome movement, and emergence of the nuclear envelope. Our model implies that evolution of sex and eukaryogenesis were inseparable processes. Testing the hypothesis Several types of data can be used to test our hypothesis. These include paleontological predictions, simulation of ancient oxygenic microenvironments, and cell biological experiments with Archaea exposed to ROS and UV stresses. Studies of archaeal conjugation, prokaryotic DNA recombination, and the universality of nuclear-mediated meiotic activities might corroborate the hypothesis that sex and the nucleus evolved to support DNA repair. Implications of the hypothesis Oxygen tolerance emerges as an important principle to investigate eukaryogenesis. The evolution of eukaryotic complexity might be best understood as a synergic process between key evolutionary innovations, of which meiosis (sex) played a central role. Reviewers This manuscript was reviewed by Eugene V. Koonin, Anthony M. Poole, and Gáspár Jékely.
Collapse
Affiliation(s)
- Jeferson Gross
- Department of Ecology, Evolution and Natural Resources, Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, 08901, USA
| | | |
Collapse
|
27
|
Bibi E. Early targeting events during membrane protein biogenesis in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:841-50. [PMID: 20682283 DOI: 10.1016/j.bbamem.2010.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
All living cells have co-translational pathways for targeting membrane proteins. Co-translation pathways for secretory proteins also exist but mostly in eukaryotes. Unlike secretory proteins, the biosynthetic pathway of most membrane proteins is conserved through evolution and these proteins are usually synthesized by membrane-bound ribosomes. Translation on the membrane requires that both the ribosomes and the mRNAs be properly localized. Theoretically, this can be achieved by several means. (i) The current view is that the targeting of cytosolic mRNA-ribosome-nascent chain complexes (RNCs) to the membrane is initiated by information in the emerging hydrophobic nascent polypeptides. (ii) The alternative model suggests that ribosomes may be targeted to the membrane also constitutively, whereas the appropriate mRNAs may be carried on small ribosomal subunits or targeted by other cellular factors to the membrane-bound ribosomes. Importantly, the available experimental data do not rule out the possibility that cells may also utilize both pathways in parallel. In any case, it is well documented that a major player in the targeting pathway is the signal recognition particle (SRP) system composed of the SRP and its receptor (SR). Although the functional core of the SRP system is evolutionarily conserved, its composition and biological practice come with different flavors in various organisms. This review is dedicated mainly to the Escherichia (E.) coli SRP, where the biochemical and structural properties of components of the SRP system have been relatively characterized, yielding essential information about various aspects of the pathway. In addition, several cellular interactions of the SRP and its receptor have been described in E. coli, providing insights into their spatial function. Collectively, these in vitro studies have led to the current view of the targeting pathway [see (i) above]. Interestingly, however, in vivo studies of the role of the SRP and its receptor, with emphasis on the temporal progress of the pathway, elicited an alternative hypothesis [see (ii) above]. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
28
|
Yosef I, Bochkareva ES, Adler J, Bibi E. Membrane protein biogenesis in Ffh- or FtsY-depleted Escherichia coli. PLoS One 2010; 5:e9130. [PMID: 20161748 PMCID: PMC2817740 DOI: 10.1371/journal.pone.0009130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/21/2010] [Indexed: 11/19/2022] Open
Abstract
Background The Escherichia coli version of the mammalian signal recognition particle (SRP) system is required for biogenesis of membrane proteins and contains two essential proteins: the SRP subunit Ffh and the SRP-receptor FtsY. Scattered in vivo studies have raised the possibility that expression of membrane proteins is inhibited in cells depleted of FtsY, whereas Ffh-depletion only affects their assembly. These differential results are surprising in light of the proposed model that FtsY and Ffh play a role in the same pathway of ribosome targeting to the membrane. Therefore, we decided to evaluate these unexpected results systematically. Methodology/Principal Findings We characterized the following aspects of membrane protein biogenesis under conditions of either FtsY- or Ffh-depletion: (i) Protein expression, stability and localization; (ii) mRNA levels; (iii) folding and activity. With FtsY, we show that it is specifically required for expression of membrane proteins. Since no changes in mRNA levels or membrane protein stability were detected in cells depleted of FtsY, we propose that its depletion may lead to specific inhibition of translation of membrane proteins. Surprisingly, although FtsY and Ffh function in the same pathway, depletion of Ffh did not affect membrane protein expression or localization. Conclusions Our results suggest that indeed, while FtsY-depletion affects earlier steps in the pathway (possibly translation), Ffh-depletion disrupts membrane protein biogenesis later during the targeting pathway by preventing their functional assembly in the membrane.
Collapse
Affiliation(s)
- Ido Yosef
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Elena S. Bochkareva
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Adler
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
29
|
Abstract
Evolutionary biology rejoices in the diversity of life, but this comes at a cost: other than working in the common framework of neo-Darwinian evolution, specialists in, for example, diatoms and mammals have little to say to each other. Accordingly, their research tends to track the particularities and peculiarities of a given group and seldom enquires whether there are any wider or deeper sets of explanations. Here, I present evidence in support of the heterodox idea that evolution might look to a general theory that does more than serve as a tautology ('evolution explains evolution'). Specifically, I argue that far from its myriad of products being fortuitous and accidental, evolution is remarkably predictable. Thus, I urge a move away from the continuing obsession with Darwinian mechanisms, which are entirely uncontroversial. Rather, I emphasize why we should seek explanations for ubiquitous evolutionary convergence, as well as the emergence of complex integrated systems. At present, evolutionary theory seems to be akin to nineteenth-century physics, blissfully unaware of the imminent arrival of quantum mechanics and general relativity. Physics had its Newton, biology its Darwin: evolutionary biology now awaits its Einstein.
Collapse
|
30
|
Eriksson HM, Wessman P, Ge C, Edwards K, Wieslander Å. Massive formation of intracellular membrane vesicles in Escherichia coli by a monotopic membrane-bound lipid glycosyltransferase. J Biol Chem 2009; 284:33904-14. [PMID: 19767390 PMCID: PMC2797161 DOI: 10.1074/jbc.m109.021618] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/17/2009] [Indexed: 01/07/2023] Open
Abstract
The morphology and curvature of biological bilayers are determined by the packing shapes and interactions of their participant molecules. Bacteria, except photosynthetic groups, usually lack intracellular membrane organelles. Strong overexpression in Escherichia coli of a foreign monotopic glycosyltransferase (named monoglycosyldiacylglycerol synthase), synthesizing a nonbilayer-prone glucolipid, induced massive formation of membrane vesicles in the cytoplasm. Vesicle assemblies were visualized in cytoplasmic zones by fluorescence microscopy. These have a very low buoyant density, substantially different from inner membranes, with a lipid content of > or = 60% (w/w). Cryo-transmission electron microscopy revealed cells to be filled with membrane vesicles of various sizes and shapes, which when released were mostly spherical (diameter approximately 100 nm). The protein repertoire was similar in vesicle and inner membranes and dominated by the glycosyltransferase. Membrane polar lipid composition was similar too, including the foreign glucolipid. A related glycosyltransferase and an inactive monoglycosyldiacylglycerol synthase mutant also yielded membrane vesicles, but without glucolipid synthesis, strongly indicating that vesiculation is induced by the protein itself. The high capacity for membrane vesicle formation seems inherent in the glycosyltransferase structure, and it depends on the following: (i) lateral expansion of the inner monolayer by interface binding of many molecules; (ii) membrane expansion through stimulation of phospholipid synthesis, by electrostatic binding and sequestration of anionic lipids; (iii) bilayer bending by the packing shape of excess nonbilayer-prone phospholipid or glucolipid; and (iv) potentially also the shape or penetration profile of the glycosyltransferase binding surface. These features seem to apply to several other proteins able to achieve an analogous membrane expansion.
Collapse
Affiliation(s)
- Hanna M. Eriksson
- From the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm and
| | - Per Wessman
- the Department of Physical and Analytical Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Changrong Ge
- From the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm and
| | - Katarina Edwards
- the Department of Physical and Analytical Chemistry, Uppsala University, SE-75123 Uppsala, Sweden
| | - Åke Wieslander
- From the Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm and
| |
Collapse
|
31
|
Depletion of the signal recognition particle receptor inactivates ribosomes in Escherichia coli. J Bacteriol 2009; 191:7017-26. [PMID: 19749044 DOI: 10.1128/jb.00208-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signal recognition particle (SRP)-dependent cotranslational targeting of proteins to the cytoplasmic membrane in bacteria or the endoplasmic reticulum membrane in eukaryotes is an essential process in most living organisms. Eukaryotic cells have been shown to respond to an impairment of the SRP pathway by (i) repressing ribosome biogenesis, resulting in decreased protein synthesis, and (ii) by increasing the expression of protein quality control mechanisms, such as chaperones and proteases. In the current study, we have analyzed how bacteria like Escherichia coli respond to a gradual depletion of FtsY, the bacterial SRP receptor. Our analyses using cell-free transcription/translation systems showed that FtsY depletion inhibits the translation of both SRP-dependent and SRP-independent proteins. This synthesis defect is the result of a multifaceted response that includes the upregulation of the ribosome-inactivating protein ribosome modulation factor (RMF). Although the consequences of these responses in E. coli are very similar to some of the effects also observed in eukaryotic cells, one striking difference is that E. coli obviously does not reduce the rate of protein synthesis by downregulating ribosome biogenesis. Instead, the upregulation of RMF leads to a direct and reversible inhibition of translation.
Collapse
|
32
|
Abstract
The Signal Recognition Particle (SRP) plays a critical role in the sorting of nascent secretory and membrane proteins. Remarkably, this function has been conserved from bacteria, where SRP delivers proteins to the inner membrane, through to eukaryotes, where SRP is required for targeting of proteins to the endoplasmic reticulum. This review focuses on present understanding of SRP structure and function and the relationship between the two. Furthermore, the similarities and differences in the structure, function and cellular role of SRP in bacteria, chloroplasts, fungi and mammals will be stressed.
Collapse
Affiliation(s)
- Martin R Pool
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
33
|
Mullaney E, Brown PA, Smith SM, Botting CH, Yamaoka YY, Terres AM, Kelleher DP, Windle HJ. Proteomic and functional characterization of the outer membrane vesicles from the gastric pathogen Helicobacter pylori. Proteomics Clin Appl 2009; 3:785-96. [DOI: 10.1002/prca.200800192] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/14/2009] [Accepted: 01/19/2009] [Indexed: 12/28/2022]
|
34
|
Deatherage BL, Lara JC, Bergsbaken T, Rassoulian Barrett SL, Lara S, Cookson BT. Biogenesis of bacterial membrane vesicles. Mol Microbiol 2009; 72:1395-407. [PMID: 19432795 DOI: 10.1111/j.1365-2958.2009.06731.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Membrane vesicle (MV) release remains undefined, despite its conservation among replicating Gram-negative bacteria both in vitro and in vivo. Proteins identified in Salmonella MVs, derived from the envelope, control MV production via specific defined domains that promote outer membrane protein-peptidoglycan (OM-PG) and OM protein-inner membrane protein (OM-PG-IM) interactions within the envelope structure. Modulation of OM-PG and OM-PG-IM interactions along the cell body and at division septa, respectively, maintains membrane integrity while co-ordinating localized release of MVs with distinct size distribution and protein content. These data support a model of MV biogenesis, wherein bacterial growth and division invoke temporary, localized reductions in the density of OM-PG and OM-PG-IM associations within the envelope structure, thus releasing OM as MVs.
Collapse
Affiliation(s)
- Brooke L Deatherage
- Department of Microbiology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
35
|
Studying membrane proteins through the eyes of the genetic code revealed a strong uracil bias in their coding mRNAs. Proc Natl Acad Sci U S A 2009; 106:6662-6. [PMID: 19366666 DOI: 10.1073/pnas.0902029106] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional processes often involve specific signals in mRNAs. Because mRNAs of integral membrane proteins across evolution are usually translated at distinct locations, we searched for universally conserved specific features in this group of mRNAs. Our analysis revealed that codons of very hydrophobic amino acids, highly represented in integral membrane proteins, are composed of 50% uracils (U). As expected from such a strong U bias, the calculated U profiles of mRNAs closely resemble the hydrophobicity profiles of their encoded proteins and may designate genes encoding integral membrane proteins, even in the absence of information on ORFs. We also show that, unexpectedly, the U-richness phenomenon is not merely a consequence of the codon composition of very hydrophobic amino acids, because counterintuitively, the relatively hydrophilic serine and tyrosine, also encoded by U-rich codons, are overrepresented in integral membrane proteins. Interestingly, although the U-richness phenomenon is conserved, there is an evolutionary trend that minimizes usage of U-rich codons. Taken together, the results suggest that U-richness is an evolutionarily ancient feature of mRNAs encoding integral membrane proteins, which might serve as a physiologically relevant distinctive signature to this group of mRNAs.
Collapse
|
36
|
Hernychova L, Toman R, Ciampor F, Hubalek M, Vackova J, Macela A, Skultety L. Detection and Identification of Coxiella burnetii Based on the Mass Spectrometric Analyses of the Extracted Proteins. Anal Chem 2008; 80:7097-104. [DOI: 10.1021/ac800788k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lenka Hernychova
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Rudolf Toman
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Fedor Ciampor
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Martin Hubalek
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Jana Vackova
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Ales Macela
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Ludovit Skultety
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defense, 500 01 Hradec Kralove, Czech Republic, and Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| |
Collapse
|
37
|
Kol S, Nouwen N, Driessen AJM. Mechanisms of YidC-mediated insertion and assembly of multimeric membrane protein complexes. J Biol Chem 2008; 283:31269-73. [PMID: 18658156 DOI: 10.1074/jbc.r800029200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The YidC protein fulfills a dual and essential role in the assembly of inner membrane proteins in Escherichia coli. Besides interacting with transmembrane segments of newly synthesized membrane proteins that insert into the membrane via the SecYEG complex, YidC also functions as an independent membrane protein insertase and assists in membrane protein folding. Here, we discuss the mechanisms of YidC substrate recognition and membrane insertion with emphasis on its role in the assembly of multimeric membrane protein complexes such as the F1F0-ATP synthase.
Collapse
Affiliation(s)
- Stefan Kol
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, the Zernike Institute of Advanced Materials, The Netherlands
| | | | | |
Collapse
|
38
|
Liu GY, Nie P, Zhang J, Li N. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Flavobacterium columnare. JOURNAL OF FISH DISEASES 2008; 31:269-276. [PMID: 18353018 DOI: 10.1111/j.1365-2761.2007.00898.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Outer membrane proteins (OMPs) of bacteria are key molecules interacting with the host environment. Flavobacterium columnare, a pathogen-causing columnaris disease of fish worldwide, was studied in order to understand the composition of its OMPs. The sarcosine-insoluble membrane fraction of the OMPs was analysed using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in combination with reverse-phase high-performance liquid chromatography-tandem mass spectrometry (RP-HPLC MS/MS). Thirty-six proteins were identified, including proteins involved in cell wall/membrane biogenesis, specific transport of various nutrients and in essential metabolism. The present study is the first report on the OMPs of F. columnare, and may serve as the basis for understanding the pathogenesis of the bacterium.
Collapse
Affiliation(s)
- G Y Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Laboratory of Fish Diseases, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | |
Collapse
|
39
|
Effects of SecE depletion on the inner and outer membrane proteomes of Escherichia coli. J Bacteriol 2008; 190:3505-25. [PMID: 18296516 DOI: 10.1128/jb.01631-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sec translocon is a protein-conducting channel that allows polypeptides to be transferred across or integrated into a membrane. Although protein translocation and insertion in Escherichia coli have been studied using only a small set of specific model substrates, it is generally assumed that most secretory proteins and inner membrane proteins use the Sec translocon. Therefore, we have studied the role of the Sec translocon using subproteome analysis of cells depleted of the essential translocon component SecE. The steady-state proteomes and the proteome dynamics were evaluated using one- and two-dimensional gel analysis, followed by mass spectrometry-based protein identification and extensive immunoblotting. The analysis showed that upon SecE depletion (i) secretory proteins aggregated in the cytoplasm and the cytoplasmic sigma(32) stress response was induced, (ii) the accumulation of outer membrane proteins was reduced, with the exception of OmpA, Pal, and FadL, and (iii) the accumulation of a surprisingly large number of inner membrane proteins appeared to be unaffected or increased. These proteins lacked large translocated domains and/or consisted of only one or two transmembrane segments. Our study suggests that several secretory and inner membrane proteins can use Sec translocon-independent pathways or have superior access to the remaining Sec translocons present in SecE-depleted cells.
Collapse
|
40
|
Origins and evolution of cotranslational transport to the ER. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 607:52-60. [PMID: 17977458 DOI: 10.1007/978-0-387-74021-8_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
All living organisms possess the ability to translocate proteins across biological membranes. This is a fundamental necessity since proteins function in different locations yet are synthesized in one compartment only, the cytosol. Even though different transport systems exist, the pathway that is dominantly used to translocate secretory and membrane proteins is known as the cotranslational transport pathway. It evolved only once and is in its core conserved throughout all kingdoms of life. The process is characterized by a well understood sequence of events: first, an N-terminal signal sequence of a nascent polypeptide is recognized on the ribosome by the signal recognition particle (SRP), then the SRP-ribosome complex is targeted to the membrane via the SRP receptor. Next, the nascent chain is transferred from SRP to the protein conducting channel, through which it is cotranslationally threaded. All the essential components of the system have been identified. Recent structural and biochemical studies have unveiled some of the intricate regulatory circuitry of the process. These studies also shed light on the accessory components unique to eukaryotes, pointing to early events in eukaryotic evolution.
Collapse
|
41
|
Dacks JB, Field MC. Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci 2007; 120:2977-85. [PMID: 17715154 DOI: 10.1242/jcs.013250] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The emergence of an endomembrane system was a crucial stage in the prokaryote-to-eukaryote evolutionary transition. Recent genomic and molecular evolutionary analyses have provided insight into how this critical system arrived at its modern configuration. The apparent relative absence of prokaryotic antecedents for the endomembrane machinery contrasts with the situation for mitochondria, plastids and the nucleus. Overall, the evidence suggests an autogenous origin for the eukaryotic membrane-trafficking machinery. The emerging picture is that early eukaryotic ancestors had a complex endomembrane system, which implies that this cellular system evolved relatively rapidly after the proto-eukaryote diverged away from the other prokaryotic lines. Many of the components of the trafficking system are the result of gene duplications that have produced proteins that have similar functions but differ in their subcellular location. A proto-eukaryote possessing a very simple trafficking system could thus have evolved to near modern complexity in the last common eukaryotic ancestor (LCEA) via paralogous gene family expansion of the proteins encoding organelle identity. The descendents of this common ancestor have undergone further modification of the trafficking machinery; unicellular simplicity and multicellular complexity are the prevailing trend, but there are some remarkable counter-examples.
Collapse
Affiliation(s)
- Joel B Dacks
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | |
Collapse
|
42
|
Bahari L, Parlitz R, Eitan A, Stjepanovic G, Bochkareva ES, Sinning I, Bibi E. Membrane targeting of ribosomes and their release require distinct and separable functions of FtsY. J Biol Chem 2007; 282:32168-75. [PMID: 17726013 DOI: 10.1074/jbc.m705429200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism underlying the interaction of the Escherichia coli signal recognition particle (SRP) receptor FtsY with the cytoplasmic membrane is not fully understood. We investigated this issue by utilizing active (NG+1) and inactive (NG) mutants of FtsY. In solution, the mutants comparably bind and hydrolyze nucleotides and associate with SRP. In contrast, a major difference was observed in the cellular distribution of NG and NG+1. Unlike NG+1, which distributes almost as the wild-type receptor, the inactive NG mutant accumulates on the membrane, together with ribosomes and SRP. The results suggest that NG function is compromised only at a later stage of the targeting pathway and that despite their identical behavior in solution, the membrane-bound NG-SRP complex is less active than NG+1-SRP. This notion is strongly supported by the observation that lipids stimulate the GTPase activity of NG+1-SRP, whereas no stimulation is observed with NG-SRP. In conclusion, we propose that the SRP receptor has two distinct and separable roles in (i) mediating membrane targeting and docking of ribosomes and (ii) promoting their productive release from the docking site.
Collapse
Affiliation(s)
- Liat Bahari
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
43
|
Parlitz R, Eitan A, Stjepanovic G, Bahari L, Bange G, Bibi E, Sinning I. Escherichia coli signal recognition particle receptor FtsY contains an essential and autonomous membrane-binding amphipathic helix. J Biol Chem 2007; 282:32176-84. [PMID: 17726012 DOI: 10.1074/jbc.m705430200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli membrane protein biogenesis is mediated by a signal recognition particle and its membrane-associated receptor (FtsY). Although crucial for its function, it is still not clear how FtsY interacts with the membrane. Analysis of the structure/function differences between severely truncated active (NG+1) and inactive (NG) mutants of FtsY enabled us to identify an essential membrane-interacting determinant. Comparison of the three-dimensional structures of the mutants, combined with site-directed mutagenesis, modeling, and liposome-binding assays, revealed that FtsY contains a conserved autonomous lipid-binding amphipathic alpha-helix at the N-terminal end of the N domain. Deletion experiments showed that this helix is essential for FtsY function in vivo, thus offering, for the first time, clear evidence for the functionally important, physiologically relevant interaction of FtsY with lipids.
Collapse
Affiliation(s)
- Richard Parlitz
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg 69120, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Boonjakuakul JK, Gerns HL, Chen YT, Hicks LD, Minnick MF, Dixon SE, Hall SC, Koehler JE. Proteomic and immunoblot analyses of Bartonella quintana total membrane proteins identify antigens recognized by sera from infected patients. Infect Immun 2007; 75:2548-61. [PMID: 17307937 PMCID: PMC1865797 DOI: 10.1128/iai.01974-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bartonella quintana is a fastidious, gram-negative, rod-shaped bacterium that causes prolonged bacteremia in immunocompetent humans and severe infections in immunocompromised individuals. We sought to define the outer membrane subproteome of B. quintana in order to obtain insight into the biology and pathogenesis of this emerging pathogen and to identify the predominant B. quintana antigens targeted by the human immune system during infection. We isolated the total membrane proteins of B. quintana and identified 60 proteins by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and peptide mass fingerprinting. Using the newly constructed proteome map, we then utilized two-dimensional immunoblotting with sera from 21 B. quintana-infected patients to identify 24 consistently recognized, immunoreactive B. quintana antigens that have potential relevance for pathogenesis and diagnosis. Among the outer membrane proteins, the variably expressed outer membrane protein adhesins (VompA and VompB), peptidyl-prolyl cis-trans-isomerase (PpI), and hemin-binding protein E (HbpE) were recognized most frequently by sera from patients, which is consistent with surface expression of these virulence factors during human infection.
Collapse
Affiliation(s)
- Jenni K Boonjakuakul
- Division of Infectious Diseases, 521 Parnassus Ave., Room C-443, University of California at San Francisco, San Francisco, CA 94143-0654, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Connolly JP, Comerci D, Alefantis TG, Walz A, Quan M, Chafin R, Grewal P, Mujer CV, Ugalde RA, DelVecchio VG. Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteomics 2006; 6:3767-80. [PMID: 16739129 DOI: 10.1002/pmic.200500730] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Brucella abortus is the etiologic agent of bovine brucellosis and causes a chronic disease in humans known as undulant fever. In livestock the disease is characterized by abortion and sterility. Live, attenuated vaccines such as S19 and RB51 have been used to control the spread of the disease in animals; however, they are considered unsafe for human use and they induce abortion in pregnant cattle. For the development of a safer and equally efficacious vaccine, immunoproteomics was utilized to identify novel candidate proteins from B. abortus cell envelope (CE). A total of 163 proteins were identified using 2-DE with MALDI-TOF MS and LC-MS/MS. Some of the major protein components include outer-membrane protein (OMP) 25, OMP31, Omp2b porin, and 60 kDa chaperonin GroEL. 2-DE Western blot analyses probed with antiserum from bovine and a human patient infected with Brucella identified several new immunogenic proteins such as fumarate reductase flavoprotein subunit, F0F1-type ATP synthase alpha subunit, and cysteine synthase A. The elucidation of the immunome of B. abortus CE identified a number of candidate proteins for developing vaccines against Brucella infection in bovine and humans.
Collapse
|
46
|
Vipond C, Suker J, Jones C, Tang C, Feavers IM, Wheeler JX. Proteomic analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain NZ98/254. Proteomics 2006; 6:3400-13. [PMID: 16645985 DOI: 10.1002/pmic.200500821] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the absence of a suitable carbohydrate-based vaccine, outer membrane vesicle (OMV) vaccines have been used to disrupt outbreaks of serogroup B meningococcal disease for more than 20 years. Proteomic technology provides physical methods with the potential to assess the composition and consistency of these complex vaccines. 2-DE, combined with MS, were used to generate a proteome map of an OMV vaccine, developed to disrupt a long-running outbreak of group B disease in New Zealand. Seventy four spots from the protein map were identified including the outer membrane protein (OMP) antigens: PorA, PorB, RmpM and OpcA. Protein identification indicates that, in addition to OMPs, OMV vaccines contain periplasmic, membrane-associated and cytoplasmic proteins. 2-D-DIGE technology highlighted differences between preclinical development batches of vaccines from two different manufacturers.
Collapse
Affiliation(s)
- Caroline Vipond
- Department of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Hertfordshire, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Kowalczewska M, Fenollar F, Lafitte D, Raoult D. Identification of candidate antigen in Whipple's disease using a serological proteomic approach. Proteomics 2006; 6:3294-305. [PMID: 16637011 DOI: 10.1002/pmic.200500171] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Whipple's disease (WD) is a chronic multisystemic infection, caused by Tropheryma whipplei, a Gram-positive rod. Recently, a reliable method has been developed for cultivating T. whipplei in vitro. This together with the availability of complete genome sequence of T. whipplei prompted us to initiate proteome analysis of T. whipplei. The objective of the present study was to identify candidate proteins for serological diagnosis of WD. Immunoreactivities of sera collected from 18 patients with WD were compared with those of 24 control subjects who did not have WD. For this, we used 2-DE, immunoblotting, and MS. In total, we identified 23 candidate antigenic proteins. These included a subset of six proteins, each of which was found significantly more frequently in cases as compared to their controls. The remaining 17 proteins were found exclusively in cases. The methods we used in the current study enabled us to identify candidate antigens that, in our view, might be useful for serological diagnosis of WD.
Collapse
|
48
|
Halic M, Gartmann M, Schlenker O, Mielke T, Pool MR, Sinning I, Beckmann R. Signal recognition particle receptor exposes the ribosomal translocon binding site. Science 2006; 312:745-7. [PMID: 16675701 DOI: 10.1126/science.1124864] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Signal sequences of secretory and membrane proteins are recognized by the signal recognition particle (SRP) as they emerge from the ribosome. This results in their targeting to the membrane by docking with the SRP receptor, which facilitates transfer of the ribosome to the translocon. Here, we present the 8 angstrom cryo-electron microscopy structure of a "docking complex" consisting of a SRP-bound 80S ribosome and the SRP receptor. Interaction of the SRP receptor with both SRP and the ribosome rearranged the S domain of SRP such that a ribosomal binding site for the translocon, the L23e/L35 site, became exposed, whereas Alu domain-mediated elongation arrest persisted.
Collapse
Affiliation(s)
- Mario Halic
- Institute of Biochemistry, Charité, University Medical School Berlin, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Signal recognition particles and their receptors target ribosome nascent chain complexes of preproteins toward the protein translocation apparatus of the cell. The discovery of essential SRP components in the third urkingdom of the phylogenetic tree, the archaea (Woese, C. R., and Fox, G. E. (1977). Proc. Natl. Acad. Sci. U.S.A. 74, 5088-5090) raises questions concerning the structure and composition of the archaeal signal recognition particle as well as the functions that route nascent prepoly peptide chains to the membrane. Investigations of the archaeal SRP pathway could therefore identify novel aspects of this process not previously reported or unique to archaea when compared with the respective eukaryal and bacterial systems.
Collapse
Affiliation(s)
- Ralf G Moll
- Department of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
50
|
Wikström M, Xie J, Bogdanov M, Mileykovskaya E, Heacock P, Wieslander A, Dowhan W. Monoglucosyldiacylglycerol, a Foreign Lipid, Can Substitute for Phosphatidylethanolamine in Essential Membrane-associated Functions in Escherichia coli. J Biol Chem 2004; 279:10484-93. [PMID: 14688287 DOI: 10.1074/jbc.m310183200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which lipid bilayer properties govern or influence membrane protein functions are little understood, but a liquid-crystalline state and the presence of anionic and nonbilayer (NB)-prone lipids seem important. An Escherichia coli mutant lacking the major membrane lipid phosphatidylethanolamine (NB-prone) requires divalent cations for viability and cell integrity and is impaired in several membrane functions that are corrected by introduction of the "foreign" NB-prone neutral glycolipid alpha-monoglucosyldiacylglycerol (MGlcDAG) synthesized by the MGlcDAG synthase from Acholeplasma laidlawii. Dependence on Mg(2+) was reduced, and cellular yields and division malfunction were greatly improved. The increased passive membrane permeability of the mutant was not abolished, but protein-mediated osmotic stress adaptation to salts and sucrose was recovered by the presence of MGlcDAG. MGlcDAG also restored tryptophan prototrophy and active transport function of lactose permease, both critically dependent on phosphatidylethanolamine. Three mechanisms can explain the observed effects: NB-prone MGlcDAG improves the quenched lateral pressure profile across the bilayer; neutral MGlcDAG dilutes the high anionic lipid surface charge; MGlcDAG provides a neutral lipid that can hydrogen bond and/or partially ionize. The reduced dependence on Mg(2+) and lack of correction by high monovalent salts strongly support the essential nature of the NB properties of MGlcDAG.
Collapse
Affiliation(s)
- Malin Wikström
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | | | | | | | | | | | | |
Collapse
|