1
|
Goode BL, Eskin J, Shekhar S. Mechanisms of actin disassembly and turnover. J Cell Biol 2023; 222:e202309021. [PMID: 37948068 PMCID: PMC10638096 DOI: 10.1083/jcb.202309021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Cellular actin networks exhibit a wide range of sizes, shapes, and architectures tailored to their biological roles. Once assembled, these filamentous networks are either maintained in a state of polarized turnover or induced to undergo net disassembly. Further, the rates at which the networks are turned over and/or dismantled can vary greatly, from seconds to minutes to hours or even days. Here, we review the molecular machinery and mechanisms employed in cells to drive the disassembly and turnover of actin networks. In particular, we highlight recent discoveries showing that specific combinations of conserved actin disassembly-promoting proteins (cofilin, GMF, twinfilin, Srv2/CAP, coronin, AIP1, capping protein, and profilin) work in concert to debranch, sever, cap, and depolymerize actin filaments, and to recharge actin monomers for new rounds of assembly.
Collapse
Affiliation(s)
- Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Julian Eskin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
Dibsy R, Bremaud E, Mak J, Favard C, Muriaux D. HIV-1 diverts cortical actin for particle assembly and release. Nat Commun 2023; 14:6945. [PMID: 37907528 PMCID: PMC10618566 DOI: 10.1038/s41467-023-41940-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Enveloped viruses assemble and bud from the host cell membranes. Any role of cortical actin in these processes have often been a source of debate. Here, we assessed if cortical actin was involved in HIV-1 assembly in infected CD4 T lymphocytes. Our results show that preventing actin branching not only increases HIV-1 particle release but also the number of individual HIV-1 Gag assembly clusters at the T cell plasma membrane. Indeed, in infected T lymphocytes and in in vitro quantitative model systems, we show that HIV-1 Gag protein prefers areas deficient in F-actin for assembling. Finally, we found that the host factor Arpin, an inhibitor of Arp2/3 branched actin, is recruited at the membrane of infected T cells and it can associate with the viral Gag protein. Altogether, our data show that, for virus assembly and particle release, HIV-1 prefers low density of cortical actin and may favor local actin debranching by subverting Arpin.
Collapse
Affiliation(s)
- Rayane Dibsy
- Institute of Research in Infectious disease of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS, Montpellier, France
| | - Erwan Bremaud
- Institute of Research in Infectious disease of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS, Montpellier, France
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Brisbane, Australia
| | - Cyril Favard
- Institute of Research in Infectious disease of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS, Montpellier, France
| | - Delphine Muriaux
- Institute of Research in Infectious disease of Montpellier (IRIM), University of Montpellier, UMR9004 CNRS, Montpellier, France.
| |
Collapse
|
3
|
Chen Y, Zhao C, Guo H, Zou W, Zhang Z, Wei D, Lu H, Zhang L, Zhao Y. Wip1 inhibits neutrophil extracellular traps to promote abscess formation in mice by directly dephosphorylating Coronin-1a. Cell Mol Immunol 2023; 20:941-954. [PMID: 37386173 PMCID: PMC10387484 DOI: 10.1038/s41423-023-01057-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/04/2023] [Indexed: 07/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection; however, the molecular regulation of NET formation remains poorly understood. In the current study, we found that inhibition of the wild-type p53-induced phosphatase 1 (Wip1) significantly suppressed the activity of Staphylococcus aureus (S. aureus) and accelerated abscess healing in S. aureus-induced abscess model mice by enhancing NET formation. A Wip1 inhibitor significantly enhanced NET formation in mouse and human neutrophils in vitro. High-resolution mass spectrometry and biochemical assays demonstrated that Coro1a is a substrate of Wip1. Further experiments also revealed that Wip1 preferentially and directly interacts with phosphorylated Coro1a than compared to unphosphorylated inactivated Coro1a. The phosphorylated Ser426 site of Coro1a and the 28-90 aa domain of Wip1 are essential for the direct interaction of Coro1a and Wip1 and for Wip1 dephosphorylation of p-Coro1a Ser426. Wip1 deletion or inhibition in neutrophils significantly upregulated the phosphorylation of Coro1a-Ser426, which activated phospholipase C and subsequently the calcium pathway, the latter of which promoted NET formation after infection or lipopolysaccharide stimulation. This study revealed Coro1a to be a novel substrate of Wip1 and showed that Wip1 is a negative regulator of NET formation during infection. These results support the potential application of Wip1 inhibitors to treat bacterial infections.
Collapse
Affiliation(s)
- Yifang Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weilong Zou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regeneration, Beijing, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Han X, Hu Z, Surya W, Ma Q, Zhou F, Nordenskiöld L, Torres J, Lu L, Miao Y. The intrinsically disordered region of coronins fine-tunes oligomerization and actin polymerization. Cell Rep 2023; 42:112594. [PMID: 37269287 DOI: 10.1016/j.celrep.2023.112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
Coronins play critical roles in actin network formation. The diverse functions of coronins are regulated by the structured N-terminal β propeller and the C-terminal coiled coil (CC). However, less is known about a middle "unique region" (UR), which is an intrinsically disordered region (IDR). The UR/IDR is an evolutionarily conserved signature in the coronin family. By integrating biochemical and cell biology experiments, coarse-grained simulations, and protein engineering, we find that the IDR optimizes the biochemical activities of coronins in vivo and in vitro. The budding yeast coronin IDR plays essential roles in regulating Crn1 activity by fine-tuning CC oligomerization and maintaining Crn1 as a tetramer. The IDR-guided optimization of Crn1 oligomerization is critical for F-actin cross-linking and regulation of Arp2/3-mediated actin polymerization. The final oligomerization status and homogeneity of Crn1 are contributed by three examined factors: helix packing, the energy landscape of the CC, and the length and molecular grammar of the IDR.
Collapse
Affiliation(s)
- Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Zixin Hu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Qianqian Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Feng Zhou
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
5
|
Kim W, Jeon TJ. Dynamic subcellular localization of DydA in Dictyostelium cells. Biochem Biophys Res Commun 2023; 663:186-191. [PMID: 37121129 DOI: 10.1016/j.bbrc.2023.04.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
DydA plays an important role in chemotaxis, development, and cell growth as an adaptor protein that connects Ras signaling and cytoskeletal rearrangement. DydA is a downstream effector of RasG and is involved in controlling cell polarity and pseudopodia formation during chemoattractant-directed cell migration. To understand the mechanism by which DydA functions on the cell migration, we investigated the dynamic subcellular localization of DydA in response to chemoattractant stimulation and found that DydA rapidly and transiently translocated to the cell cortex through the RA domain and the PRM region in DydA in response to chemoattractant stimulation. The PRM region appears to play a primary role in the translocation of DydA to the cell cortex and in its localization to the actin foci at the bottom of cells. Colocalization experiments of GFP-PRM with RFP-coronin indicated that GFP-PRM preceded GFP-coronin by 2-3 s in response to chemoattractant stimulation. These results suggest that the PRM region plays an indispensable role in relaying upstream regulators, such as RasG, to downstream effectors by mediating the localization of DydA to the cell cortex upon chemoattractant stimulation.
Collapse
Affiliation(s)
- Wonbum Kim
- Department of Life Science, BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Taeck Joong Jeon
- Department of Life Science, BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
6
|
Qi J, Cheng W, Gao Z, Chen Y, Shipton ML, Furkert D, Chin AC, Riley AM, Fiedler D, Potter BVL, Fu C. Itraconazole inhibits endothelial cell migration by disrupting inositol pyrophosphate-dependent focal adhesion dynamics and cytoskeletal remodeling. Biomed Pharmacother 2023; 161:114449. [PMID: 36857911 PMCID: PMC7614367 DOI: 10.1016/j.biopha.2023.114449] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The antifungal drug itraconazole has been repurposed to anti-angiogenic agent, but the mechanisms of action have been elusive. Here we report that itraconazole disrupts focal adhesion dynamics and cytoskeletal remodeling, which requires 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7). We find that inositol hexakisphosphate kinase 1 (IP6K1) binds Arp2 and generates 5-InsP7 to recruit coronin, a negative regulator of the Arp2/3 complex. IP6K1 also produces focal adhesion-enriched 5-InsP7, which binds focal adhesion kinase (FAK) at the FERM domain to promote its dimerization and phosphorylation. Itraconazole treatment elicits displacement of IP6K1/5-InsP7, thus augments 5-InsP7-mediated inhibition of Arp2/3 complex and reduces 5-InsP7-mediated FAK dimerization. Itraconazole-treated cells display reduced focal adhesion dynamics and actin cytoskeleton remodeling. Accordingly, itraconazole severely disrupts cell motility, an essential component of angiogenesis. These results demonstrate critical roles of IP6K1-generated 5-InsP7 in regulating focal adhesion dynamics and actin cytoskeleton remodeling and reveal functional mechanisms by which itraconazole inhibits cell motility.
Collapse
Affiliation(s)
- Ji Qi
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Weiwei Cheng
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhe Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Megan L Shipton
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Chenglai Fu
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
7
|
Le N, Routh J, Kirk C, Wu Q, Patel R, Keyes C, Kim K. Red CdSe/ZnS QDs' Intracellular Trafficking and Its Impact on Yeast Polarization and Actin Filament. Cells 2023; 12:484. [PMID: 36766825 PMCID: PMC9914768 DOI: 10.3390/cells12030484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Quantum dots are nanoparticles (2-10 nm) that emit strong and tunable fluorescence. Quantum dots have been heavily used in high-demand commercialized products, research, and for medical purposes. Emerging concerns have demonstrated the negative impact of quantum dots on living cells; however, the intracellular trafficking of QDs in yeast cells and the effect of this interaction remains unclear. The primary goal of our research is to investigate the trafficking path of red cadmium selenide zinc sulfide quantum dots (CdSe/ZnS QDs) in Saccharomyces cerevisiae and the impact QDs have on yeast cellular dynamics. Using cells with GFP-tagged reference organelle markers and confocal microscopy, we were able to track the internalization of QDs. We found that QDs initially aggregate at the exterior of yeast cells, enter the cell using clathrin-receptor-mediated endocytosis, and distribute at the late Golgi/trans-Golgi network. We also found that the treatment of red CdSe/ZnS QDs resulted in growth rate reduction and loss of polarized growth in yeast cells. Our RNA sequence analysis revealed many altered genes. Particularly, we found an upregulation of DID2, which has previously been associated with cell cycle arrest when overexpressed, and a downregulation of APS2, a gene that codes for a subunit of AP2 protein important for the recruitment of proteins to clathrin-mediated endocytosis vesicle. Furthermore, CdSe/ZnS QDs treatment resulted in a slightly delayed endocytosis and altered the actin dynamics in yeast cells. We found that QDs caused an increased level of F-actin and a significant reduction in profilin protein expression. In addition, there was a significant elevation in the amount of coronin protein expressed, while the level of cofilin was unchanged. Altogether, this suggests that QDs favor the assembly of actin filaments. Overall, this study provides a novel toxicity mechanism of red CdSe/ZnS QDs on yeast actin dynamics and cellular processes, including endocytosis.
Collapse
Affiliation(s)
- Nhi Le
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Jonathan Routh
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Cameron Kirk
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| | - Qihua Wu
- Jordan Valley Innovation Center, 542 N Boonville, Springfield, MO 65806, USA
| | - Rishi Patel
- Jordan Valley Innovation Center, 542 N Boonville, Springfield, MO 65806, USA
| | - Chloe Keyes
- Jordan Valley Innovation Center, 542 N Boonville, Springfield, MO 65806, USA
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA
| |
Collapse
|
8
|
Schneider F, Metz I, Rust MB. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance. Brain Res Bull 2023; 192:21-35. [PMID: 36336143 DOI: 10.1016/j.brainresbull.2022.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Directed outgrowth of axons is fundamental for the establishment of neuronal networks. Axon outgrowth is guided by growth cones, highly motile structures enriched in filamentous actin (F-actin) located at the axons' distal tips. Growth cones exploit F-actin-based protrusions to scan the environment for guidance cues, and they contain the sensory apparatus to translate guidance cue information into intracellular signaling cascades. These cascades act upstream of actin-binding proteins (ABP) and thereby control assembly and disassembly of F-actin. Spatiotemporally controlled F-actin dis-/assembly in growth cones steers the axon towards attractants and away from repellents, and it thereby navigates the axon through the developing nervous system. Hence, ABP that control F-actin dynamics emerged as critical regulators of neuronal network formation. In the present review article, we will summarize and discuss current knowledge of the mechanisms that control remodeling of the actin cytoskeleton in growth cones, focusing on recent progress in the field. Further, we will introduce tools and techniques that allow to study actin regulatory mechanism in growth cones.
Collapse
Affiliation(s)
- Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany.
| |
Collapse
|
9
|
Lappalainen P, Kotila T, Jégou A, Romet-Lemonne G. Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol 2022; 23:836-852. [PMID: 35918536 DOI: 10.1038/s41580-022-00508-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/30/2022]
Abstract
Polymerization of actin filaments against membranes produces force for numerous cellular processes, such as migration, morphogenesis, endocytosis, phagocytosis and organelle dynamics. Consequently, aberrant actin cytoskeleton dynamics are linked to various diseases, including cancer, as well as immunological and neurological disorders. Understanding how actin filaments generate forces in cells, how force production is regulated by the interplay between actin-binding proteins and how the actin-regulatory machinery responds to mechanical load are at the heart of many cellular, developmental and pathological processes. During the past few years, our understanding of the mechanisms controlling actin filament assembly and disassembly has evolved substantially. It has also become evident that the activities of key actin-binding proteins are not regulated solely by biochemical signalling pathways, as mechanical regulation is critical for these proteins. Indeed, the architecture and dynamics of the actin cytoskeleton are directly tuned by mechanical load. Here we discuss the general mechanisms by which key actin regulators, often in synergy with each other, control actin filament assembly, disassembly, and monomer recycling. By using an updated view of actin dynamics as a framework, we discuss how the mechanics and geometry of actin networks control actin-binding proteins, and how this translates into force production in endocytosis and mesenchymal cell migration.
Collapse
Affiliation(s)
- Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
10
|
King ZT, Butler MT, Hockenberry MA, Subramanian BC, Siesser PF, Graham DM, Legant WR, Bear JE. Coro1B and Coro1C regulate lamellipodia dynamics and cell motility by tuning branched actin turnover. J Cell Biol 2022; 221:e202111126. [PMID: 35657370 PMCID: PMC9170525 DOI: 10.1083/jcb.202111126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/01/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023] Open
Abstract
Actin filament dynamics must be precisely controlled in cells to execute behaviors such as vesicular trafficking, cytokinesis, and migration. Coronins are conserved actin-binding proteins that regulate several actin-dependent subcellular processes. Here, we describe a new conditional knockout cell line for two ubiquitous coronins, Coro1B and Coro1C. These coronins, which strongly co-localize with Arp2/3-branched actin, require Arp2/3 activity for proper subcellular localization. Coronin null cells have altered lamellipodial protrusion dynamics due to increased branched actin density and reduced actin turnover within lamellipodia, leading to defective haptotaxis. Surprisingly, excessive cofilin accumulates in coronin null lamellipodia, a result that is inconsistent with the current models of coronin-cofilin functional interaction. However, consistent with coronins playing a pro-cofilin role, coronin null cells have increased F-actin levels. Lastly, we demonstrate that the loss of coronins increases accompanied by an increase in cellular contractility. Together, our observations reveal that coronins are critical for proper turnover of branched actin networks and that decreased actin turnover leads to increased cellular contractility.
Collapse
Affiliation(s)
- Zayna T. King
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - Mitchell T. Butler
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - Max A. Hockenberry
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - Bhagawat C. Subramanian
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - Priscila F. Siesser
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - David M. Graham
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - Wesley R. Legant
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - James E. Bear
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- University of North Carolina Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
11
|
Striepen JF, Voeltz GK. Coronin 1C restricts endosomal branched actin to organize ER contact and endosome fission. J Biophys Biochem Cytol 2022; 221:213342. [PMID: 35802042 PMCID: PMC9274145 DOI: 10.1083/jcb.202110089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022] Open
Abstract
ER contact sites define the position of endosome bud fission during actin-dependent cargo sorting. Disrupting endosomal actin structures prevents retrograde cargo movement; however, how actin affects ER contact site formation and endosome fission is not known. Here we show that in contrast with the WASH complex, actin, its nucleator ARP2/3, and COR1C form a contained structure at the bud neck that defines the site of bud fission. We found that actin confinement is facilitated by type I coronins. Depletion of type I coronins allows actin to extend along the length of the bud in an ARP2/3-dependent manner. We demonstrate that extension of branched actin prevents ER recruitment and stalls buds before fission. Finally, our structure-function studies show that the COR1C’s coiled-coil domain is sufficient to restore actin confinement, ER recruitment, and endosome fission. Together, our data reveal how the dynamics of endosomal actin and activity of actin regulators organize ER-associated bud fission.
Collapse
Affiliation(s)
- Jonathan F Striepen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO.,Howard Hughes Medical Institute, Chevy Chase, MD
| | - Gia K Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO.,Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
12
|
Chung J, Goode BL, Gelles J. Single-molecule analysis of actin filament debranching by cofilin and GMF. Proc Natl Acad Sci U S A 2022; 119:e2115129119. [PMID: 35858314 PMCID: PMC9304009 DOI: 10.1073/pnas.2115129119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
Eukaryotic cells contain branched actin networks that are essential for endocytosis, motility, and other key cellular processes. These networks, which are formed by filamentous actin and the Arp2/3 complex, must subsequently be debranched to allow network remodeling and to recycle the Arp2/3 complex. Debranching appears to be catalyzed by two different members of the actin depolymerizing factor homology protein family: cofilin and glial maturation factor (GMF). However, their mechanisms of debranching are only partially understood. Here, we used single-molecule fluorescence imaging of Arp2/3 complex and actin filaments under physiological ionic conditions to observe debranching by GMF and cofilin. We demonstrate that cofilin, like GMF, is an authentic debrancher independent of its filament-severing activity and that the debranching activities of the two proteins are additive. While GMF binds directly to the Arp2/3 complex, cofilin selectively accumulates on branch-junction daughter filaments in tropomyosin-decorated networks just prior to debranching events. Quantitative comparison of debranching rates with the known kinetics of cofilin-actin binding suggests that cofilin occupancy of a particular single actin site at the branch junction is sufficient to trigger debranching. In rare cases in which the order of departure could be resolved during GMF- or cofilin-induced debranching, the Arp2/3 complex left the branch junction bound to the pointed end of the daughter filament, suggesting that both GMF and cofilin can work by destabilizing the mother filament-Arp2/3 complex interface. Taken together, these observations suggest that GMF and cofilin promote debranching by distinct yet complementary mechanisms.
Collapse
Affiliation(s)
- Johnson Chung
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| | - Bruce L. Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
| |
Collapse
|
13
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Delgado MG, Rivera CA, Lennon-Duménil AM. Macropinocytosis and Cell Migration: Don't Drink and Drive…. Subcell Biochem 2022; 98:85-102. [PMID: 35378704 DOI: 10.1007/978-3-030-94004-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macropinocytosis is a nonspecific mechanism by which cells compulsively "drink" the surrounding extracellular fluids in order to feed themselves or sample the molecules therein, hence gaining information about their environment. This process is cell-intrinsically incompatible with the migration of many cells, implying that the two functions are antagonistic. The migrating cell uses a molecular switch to stop and explore its surrounding fluid by macropinocytosis, after which it employs the same molecular machinery to start migrating again to examine another location. This cycle of migration/macropinocytosis allows cells to explore tissues, and it is key to a range of physiological processes. Evidence of this evolutionarily conserved antagonism between the two processes can be found in several cell types-immune cells, for example, being particularly adept-and ancient organisms (e.g., the social amoeba Dictyostelium discoideum). How macropinocytosis and migration are negatively coupled is the subject of this chapter.
Collapse
|
15
|
Fregoso FE, van Eeuwen T, Simanov G, Rebowski G, Boczkowska M, Zimmet A, Gautreau AM, Dominguez R. Molecular mechanism of Arp2/3 complex inhibition by Arpin. Nat Commun 2022; 13:628. [PMID: 35110533 PMCID: PMC8810855 DOI: 10.1038/s41467-022-28112-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/09/2022] [Indexed: 11/09/2022] Open
Abstract
Positive feedback loops involving signaling and actin assembly factors mediate the formation and remodeling of branched actin networks in processes ranging from cell and organelle motility to mechanosensation. The Arp2/3 complex inhibitor Arpin controls the directional persistence of cell migration by interrupting a feedback loop involving Rac-WAVE-Arp2/3 complex, but Arpin’s mechanism of inhibition is unknown. Here, we describe the cryo-EM structure of Arpin bound to Arp2/3 complex at 3.24-Å resolution. Unexpectedly, Arpin binds Arp2/3 complex similarly to WASP-family nucleation-promoting factors (NPFs) that activate the complex. However, whereas NPFs bind to two sites on Arp2/3 complex, on Arp2-ArpC1 and Arp3, Arpin only binds to the site on Arp3. Like NPFs, Arpin has a C-helix that binds at the barbed end of Arp3. Mutagenesis studies in vitro and in cells reveal how sequence differences within the C-helix define the molecular basis for inhibition by Arpin vs. activation by NPFs. The Arp2/3 complex inhibitor Arpin controls cell migration by interrupting a feedback loop involving Rac-WAVE-Arp2/3 complex Here, the authors use structural, biochemical, and cellular studies to reveal Arpin’s mechanism of inhibition.
Collapse
Affiliation(s)
- Fred E Fregoso
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Trevor van Eeuwen
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Gleb Simanov
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Grzegorz Rebowski
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Austin Zimmet
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexis M Gautreau
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau, France.,Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Roberto Dominguez
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Silva RCMC, Panis C, Pires BRB. Lessons from transmissible cancers for immunotherapy and transplant. Immunol Med 2021; 45:146-161. [PMID: 34962854 DOI: 10.1080/25785826.2021.2018783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The emergence of horizontal transmission of cancer between vertebrates is an issue that interests scientists and medical society. Transmission requires: (i) a mechanism by which cancer cells can transfer to another organism and (ii) a repressed immune response on the part of the recipient. Transmissible tumors are unique models to comprehend the responses and mechanisms mediated by the major histocompatibility complex (MHC), which can be transposed for transplant biology. Here, we discuss the mechanisms involved in immune-mediated tissue rejection, making a parallel with transmissible cancers. We also discuss cellular and molecular mechanisms involved in cancer immunotherapy and anti-rejection therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | | |
Collapse
|
17
|
Fujimoto K, Nakano K, Kuwayama H, Yumura S. Deletion of gmfA induces keratocyte-like migration in Dictyostelium. FEBS Open Bio 2021; 12:306-319. [PMID: 34855306 PMCID: PMC8727941 DOI: 10.1002/2211-5463.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 11/06/2022] Open
Abstract
Glia maturation factor (GMF) has been established as an inactivating factor of the actin‐related protein 2/3 (Arp2/3) complex, which regulates actin assembly. Regulation of actin assembly and reorganization is crucial for various cellular events, such as cell migration, cell division, and development. Here, to examine the roles of ADF‐H domain‐containing protein (also known as glia maturation factor; GmfA), the product of a single GMF homologous gene in Dictyostelium, gmfA‐null cells were generated. They had moderate defects in cell growth and cytokinesis. Interestingly, they showed a keratocyte‐like fan shape with a broader pseudopod, where Arp3 accumulated at higher levels than in wild‐type cells. They migrated with higher persistence, but their velocities were comparable to those of wild‐type cells. The polar pseudopods during cell division were also broader than those in wild‐type cells. However, GmfA did not localize at the pseudopods in migrating cells or the polar pseudopods in dividing cells. Adhesions of mutant cells to the substratum were much stronger than that of wild‐type cells. Although the mutant cells showed chemotaxis comparable to that of wild‐type cells, they formed disconnected streams during the aggregation stage; however, they finally formed normal fruiting bodies. These results suggest that GmfA plays a crucial role in cell migration.
Collapse
Affiliation(s)
- Koushiro Fujimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| | - Kentaro Nakano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Japan
| |
Collapse
|
18
|
Gautreau AM, Fregoso FE, Simanov G, Dominguez R. Nucleation, stabilization, and disassembly of branched actin networks. Trends Cell Biol 2021; 32:421-432. [PMID: 34836783 PMCID: PMC9018471 DOI: 10.1016/j.tcb.2021.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Arp2/3 complex is an actin filament nucleation and branching machinery conserved in all eukaryotes from yeast to human. Arp2/3 complex branched networks generate pushing forces that drive cellular processes ranging from membrane remodeling to cell and organelle motility. Several molecules regulate these processes by directly inhibiting or activating Arp2/3 complex and by stabilizing or disassembling branched networks. Here, we review recent advances in our understanding of Arp2/3 complex regulation, including high-resolution cryoelectron microscopy (cryo-EM) structures that illuminate the mechanisms of Arp2/3 complex activation and branch formation, and novel cellular pathways of branch formation, stabilization, and debranching. We also identify major gaps in our understanding of Arp2/3 complex inhibition and branch stabilization and disassembly.
Collapse
Affiliation(s)
- Alexis M Gautreau
- Laboratoire de Biologie Structurale de la Cellule, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | - Fred E Fregoso
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gleb Simanov
- Laboratoire de Biologie Structurale de la Cellule, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Roberto Dominguez
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Hanley SE, Willis SD, Cooper KF. Snx4-assisted vacuolar targeting of transcription factors defines a new autophagy pathway for controlling ATG expression. Autophagy 2021; 17:3547-3565. [PMID: 33678121 PMCID: PMC8632336 DOI: 10.1080/15548627.2021.1877934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy, in part, is controlled by the repression and activation of autophagy-related (ATG) genes. Here, we describe a new selective autophagy pathway that targets functional transcriptional regulators to control their activity. This pathway is activated in response to nitrogen starvation and recycles transcriptional activators (Msn2 and Rim15) and a repressor (Ssn2/Med13) of ATG expression. Further analysis of Ssn2/Med13 vacuolar proteolysis revealed that this pathway utilizes the core autophagic machinery. However, it is independent of known nucleophagy mechanisms, receptor proteins, and the scaffold protein Atg11. Instead, Ssn2/Med13 exits the nucleus through the nuclear pore complex (NPC) and associates with the cytoplasmic nucleoporin Gle1, a member of the RNA remodeling complex. Dbp5 and Nup159, that act in concert with Gle1, are also required for Ssn2/Med13 clearance. Ssn2/Med13 is retrieved from the nuclear periphery and degraded by Atg17-initiated phagophores anchored to the vacuole. Efficient transfer to phagophores depends on the sorting nexin heterodimer Snx4/Atg24-Atg20, which binds to Atg17, and relocates to the perinucleus following nitrogen starvation. To conclude, this pathway defines a previously undescribed autophagy mechanism that targets select transcriptional regulators for rapid vacuolar proteolysis, utilizing the RNA remodeling complex, the sorting nexin heterodimer Snx4-Atg20, Atg17, and the core autophagic machinery. It is physiologically relevant as this Snx4-assisted vacuolar targeting pathway permits cells to fine-tune the autophagic response by controlling the turnover of both positive and negative regulators of ATG transcription.Abbreviations: AIM: Atg8 interacting motif; ATG: autophagy-related; CKM: CDK8 kinase module; IDR: intrinsically disordered region; IP6: phosphoinositide inositol hexaphosphate; NPC: nuclear pore complex; PAS: phagophore assembly site; UPS: ubiquitin-proteasomal system.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| | - Stephen D. Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| | - Katrina F. Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| |
Collapse
|
20
|
Parihar PS, Singh A, Karade SS, Sahasrabuddhe AA, Pratap JV. Structural insights into kinetoplastid coronin oligomerization domain and F-actin interaction. Curr Res Struct Biol 2021; 3:268-276. [PMID: 34746809 PMCID: PMC8554105 DOI: 10.1016/j.crstbi.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
The two-domain actin associated protein coronin interacts with filamentous (F-) actin, facilitating diverse biological processes including cell proliferation, motility, phagocytosis, host-parasite interaction and cargo binding. The conserved N-terminal β-propeller domain is involved in protein: protein interactions, while the C-terminal coiled-coil domain mediates oligomerization, transducing conformational changes. The L. donovani coronin coiled-coil (LdCoroCC) domain exhibited a novel topology and oligomer association with an inherent asymmetry, caused primarily by three a residues of successive heptads. In the T.brucei homolog (TbrCoro), two of these 'a' residues are different (Val 493 & 507 replacing LdCoroCC Ile 486 and Met 500 respectively). The elucidated structure possesses a similar topology and assembly while comparative structural analysis shows that the T.brucei coronin coiled-coil domain (TbrCoroCC) too possesses the asymmetry though its magnitude is smaller. Analysis identifies that the asymmetric state is stabilized via cyclic salt bridges formed by Arg 497 and Glu 504. Co-localization studies (LdCoro, TbrCoro and corresponding mutant coiled coil constructs) with actin show that there are subtle differences in their binding patterns, with the double mutant V493I-V507M showing maximal effect. None of the constructs have an effect on F-actin length. Taken together with LdCoroCC, we therefore conclude that the inherent asymmetric structures are essential for kinetoplastids, and are of interest in understanding and exploiting actin dynamics.
Collapse
Affiliation(s)
- Pankaj Singh Parihar
- Division of Biochemistry and Structural Biology, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Aastha Singh
- Division of Biochemistry and Structural Biology, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Sharanbasappa Shrimant Karade
- Division of Biochemistry and Structural Biology, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Amogh Anant Sahasrabuddhe
- Division of Biochemistry and Structural Biology, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - J Venkatesh Pratap
- Division of Biochemistry and Structural Biology, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| |
Collapse
|
21
|
Schieweck R, Schöneweiss EC, Harner M, Rieger D, Illig C, Saccà B, Popper B, Kiebler MA. Pumilio2 Promotes Growth of Mature Neurons. Int J Mol Sci 2021; 22:ijms22168998. [PMID: 34445704 PMCID: PMC8396670 DOI: 10.3390/ijms22168998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
RNA-binding proteins (RBPs) are essential regulators controlling both the cellular transcriptome and translatome. These processes enable cellular plasticity, an important prerequisite for growth. Cellular growth is a complex, tightly controlled process. Using cancer cells as model, we looked for RBPs displaying strong expression in published transcriptome datasets. Interestingly, we found the Pumilio (Pum) protein family to be highly expressed in all these cells. Moreover, we observed that Pum2 is regulated by basic fibroblast growth factor (bFGF). bFGF selectively enhances protein levels of Pum2 and the eukaryotic initiation factor 4E (eIF4E). Exploiting atomic force microscopy and in vitro pulldown assays, we show that Pum2 selects for eIF4E mRNA binding. Loss of Pum2 reduces eIF4E translation. Accordingly, depletion of Pum2 led to decreased soma size and dendritic branching of mature neurons, which was accompanied by a reduction in essential growth factors. In conclusion, we identify Pum2 as an important growth factor for mature neurons. Consequently, it is tempting to speculate that Pum2 may promote cancer growth.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Elisa-Charlott Schöneweiss
- Zentrum für Medizinische Biotechnologie (ZMB), University of Duisburg-Essen, 41541 Duisburg, Germany; (E.-C.S.); (B.S.)
| | - Max Harner
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Daniela Rieger
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Christin Illig
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| | - Barbara Saccà
- Zentrum für Medizinische Biotechnologie (ZMB), University of Duisburg-Essen, 41541 Duisburg, Germany; (E.-C.S.); (B.S.)
| | - Bastian Popper
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
- Biomedical Center (BMC), Core Facility Animal Models, Ludwig-Maximilians-University, 82152 München, Germany
- Correspondence: ; Tel.: +49-89-2180-71996
| | - Michael A. Kiebler
- Biomedical Center (BMC), Department for Cell Biology & Anatomy, Medical Faculty, Ludwig-Maximilians-University, 82152 München, Germany; (R.S.); (M.H.); (D.R.); (C.I.); (M.A.K.)
| |
Collapse
|
22
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
23
|
Straka T, Schröder C, Roos A, Kollipara L, Sickmann A, Williams MPI, Hafner M, Khan MM, Rudolf R. Regulatory Function of Sympathetic Innervation on the Endo/Lysosomal Trafficking of Acetylcholine Receptor. Front Physiol 2021; 12:626707. [PMID: 33776791 PMCID: PMC7991846 DOI: 10.3389/fphys.2021.626707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/08/2021] [Indexed: 01/02/2023] Open
Abstract
Recent studies have demonstrated that neuromuscular junctions are co-innervated by sympathetic neurons. This co-innervation has been shown to be crucial for neuromuscular junction morphology and functional maintenance. To improve our understanding of how sympathetic innervation affects nerve–muscle synapse homeostasis, we here used in vivo imaging, proteomic, biochemical, and microscopic approaches to compare normal and sympathectomized mouse hindlimb muscles. Live confocal microscopy revealed reduced fiber diameters, enhanced acetylcholine receptor turnover, and increased amounts of endo/lysosomal acetylcholine-receptor-bearing vesicles. Proteomics analysis of sympathectomized skeletal muscles showed that besides massive changes in mitochondrial, sarcomeric, and ribosomal proteins, the relative abundance of vesicular trafficking markers was affected by sympathectomy. Immunofluorescence and Western blot approaches corroborated these findings and, in addition, suggested local upregulation and enrichment of endo/lysosomal progression and autophagy markers, Rab 7 and p62, at the sarcomeric regions of muscle fibers and neuromuscular junctions. In summary, these data give novel insights into the relevance of sympathetic innervation for the homeostasis of muscle and neuromuscular junctions. They are consistent with an upregulation of endocytic and autophagic trafficking at the whole muscle level and at the neuromuscular junction.
Collapse
Affiliation(s)
- Tatjana Straka
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Charlotte Schröder
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | | | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany.,Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | | | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Muzamil Majid Khan
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
24
|
Tur-Gracia S, Martinez-Quiles N. Emerging functions of cytoskeletal proteins in immune diseases. J Cell Sci 2021; 134:134/3/jcs253534. [PMID: 33558442 DOI: 10.1242/jcs.253534] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immune cells are especially dependent on the proper functioning of the actin cytoskeleton, and both innate and adaptive responses rely on it. Leukocytes need to adhere not only to substrates but also to cells in order to form synapses that pass on instructions or kill infected cells. Neutrophils literally squeeze their cell body during blood extravasation and efficiently migrate to the inflammatory focus. Moreover, the development of immune cells requires the remodeling of their cytoskeleton as it depends on, among other processes, adhesive contacts and migration. In recent years, the number of reports describing cytoskeletal defects that compromise the immune system has increased immensely. Furthermore, a new emerging paradigm points toward a role for the cellular actin content as an essential component of the so-called homeostasis-altering molecular processes that induce the activation of innate immune signaling pathways. Here, we review the role of critical actin-cytoskeleton-remodeling proteins, including the Arp2/3 complex, cofilin, coronin and WD40-repeat containing protein 1 (WDR1), in immune pathophysiology, with a special focus on autoimmune and autoinflammatory traits.
Collapse
Affiliation(s)
- Sara Tur-Gracia
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Narcisa Martinez-Quiles
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain .,Gregorio Marañón Health Research Institute, 28007 Madrid, Spain
| |
Collapse
|
25
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
26
|
Gupta CM, Ambaru B, Bajaj R. Emerging Functions of Actins and Actin Binding Proteins in Trypanosomatids. Front Cell Dev Biol 2020; 8:587685. [PMID: 33163497 PMCID: PMC7581878 DOI: 10.3389/fcell.2020.587685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
Actin is the major protein constituent of the cytoskeleton that performs wide range of cellular functions. It exists in monomeric and filamentous forms, dynamics of which is regulated by a large repertoire of actin binding proteins. However, not much was known about existence of these proteins in trypanosomatids, till the genome sequence data of three important organisms of this class, viz. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, became available. Here, we have reviewed most of the findings reported to date on the intracellular distribution, structure and functions of these proteins and based on them, we have hypothesized some of their functions. The major findings are as follows: (1) All the three organisms encode at least a set of ten actin binding proteins (profilin, twinfilin, ADF/cofilin, CAP/srv2, CAPz, coronin, two myosins, two formins) and one isoform of actin, except that T. cruzi encodes for three formins and several myosins along with four actins. (2) Actin 1 and a few actin binding proteins (ADF/cofilin, profilin, twinfilin, coronin and myosin13 in L. donovani; ADF/cofilin, profilin and myosin1 in T. brucei; profilin and myosin-F in T.cruzi) have been identified and characterized. (3) In all the three organisms, actin cytoskeleton has been shown to regulate endocytosis and intracellular trafficking. (4) Leishmania actin1 has been the most characterized protein among trypanosomatid actins. (5) This protein is localized to the cytoplasm as well as in the flagellum, nucleus and kinetoplast, and in vitro, it binds to DNA and displays scDNA relaxing and kDNA nicking activities. (6) The pure protein prefers to form bundles instead of thin filaments, and does not bind DNase1 or phalloidin. (7) Myosin13, myosin1 and myosin-F regulate endocytosis and intracellular trafficking, respectively, in Leishmania, T. brucei and T. cruzi. (8) Actin-dependent myosin13 motor is involved in dynamics and assembly of Leishmania flagellum. (9) Leishmania twinfilin localizes mostly to the nucleolus and coordinates karyokinesis by effecting splindle elongation and DNA synthesis. (10) Leishmania coronin binds and promotes actin filament formation and exists in tetrameric form rather than trimeric form, like other coronins. (11) Trypanosomatid profilins are essential for survival of all the three parasites.
Collapse
Affiliation(s)
- Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rani Bajaj
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
27
|
Sprenkeler EGG, Webbers SDS, Kuijpers TW. When Actin is Not Actin' Like It Should: A New Category of Distinct Primary Immunodeficiency Disorders. J Innate Immun 2020; 13:3-25. [PMID: 32846417 DOI: 10.1159/000509717] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
An increasing number of primary immunodeficiencies (PIDs) have been identified over the last decade, which are caused by deleterious mutations in genes encoding for proteins involved in actin cytoskeleton regulation. These mutations primarily affect hematopoietic cells and lead to defective function of immune cells, such as impaired motility, signaling, proliferative capacity, and defective antimicrobial host defense. Here, we review several of these immunological "actinopathies" and cover both clinical aspects, as well as cellular mechanisms of these PIDs. We focus in particular on the effect of these mutations on human neutrophil function.
Collapse
Affiliation(s)
- Evelien G G Sprenkeler
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands, .,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands,
| | - Steven D S Webbers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, Amsterdam University Medical Center (AUMC), University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, AUMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Jaumouillé V, Waterman CM. Physical Constraints and Forces Involved in Phagocytosis. Front Immunol 2020; 11:1097. [PMID: 32595635 PMCID: PMC7304309 DOI: 10.3389/fimmu.2020.01097] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
Fabrice TN, Fiedler T, Studer V, Vinet A, Brogna F, Schmidt A, Pieters J. Interactome and F-Actin Interaction Analysis of Dictyostelium discoideum Coronin A. Int J Mol Sci 2020; 21:E1469. [PMID: 32098122 PMCID: PMC7073074 DOI: 10.3390/ijms21041469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Coronin proteins are evolutionary conserved WD repeat containing proteins that have been proposed to carry out different functions. In Dictyostelium, the short coronin isoform, coronin A, has been implicated in cytoskeletal reorganization, chemotaxis, phagocytosis and the initiation of multicellular development. Generally thought of as modulators of F-actin, coronin A and its mammalian homologs have also been shown to mediate cellular processes in an F-actin-independent manner. Therefore, it remains unclear whether or not coronin A carries out its functions through its capacity to interact with F-actin. Moreover, the interacting partners of coronin A are not known. Here, we analyzed the interactome of coronin A as well as its interaction with F-actin within cells and in vitro. Interactome analysis showed the association with a diverse set of interaction partners, including fimbrin, talin and myosin subunits, with only a transient interaction with the minor actin10 isoform, but not the major form of actin, actin8, which was consistent with the absence of a coronin A-actin interaction as analyzed by co-sedimentation from cells and lysates. In vitro, however, purified coronin A co-precipitated with rabbit muscle F-actin in a coiled-coil-dependent manner. Our results suggest that an in vitro interaction of coronin A and rabbit muscle actin may not reflect the cellular interaction state of coronin A with actin, and that coronin A interacts with diverse proteins in a time-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean Pieters
- Biozentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (T.N.F.); (T.F.); (V.S.); (A.V.); (F.B.); (A.S.)
| |
Collapse
|
30
|
Abstract
Phagocytosis is a specialized process that enables cellular ingestion and clearance of microbes, dead cells and tissue debris that are too large for other endocytic routes. As such, it is an essential component of tissue homeostasis and the innate immune response, and also provides a link to the adaptive immune response. However, ingestion of large particulate materials represents a monumental task for phagocytic cells. It requires profound reorganization of the cell morphology around the target in a controlled manner, which is limited by biophysical constraints. Experimental and theoretical studies have identified critical aspects associated with the interconnected biophysical properties of the receptors, the membrane, and the actin cytoskeleton that can determine the success of large particle internalization. In this review, we will discuss the major physical constraints involved in the formation of a phagosome. Focusing on two of the most-studied types of phagocytic receptors, the Fcγ receptors and the complement receptor 3 (αMβ2 integrin), we will describe the complex molecular mechanisms employed by phagocytes to overcome these physical constraints.
Collapse
Affiliation(s)
- Valentin Jaumouillé
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
31
|
Franco-Bocanegra DK, George B, Lau LC, Holmes C, Nicoll JAR, Boche D. Microglial motility in Alzheimer's disease and after Aβ42 immunotherapy: a human post-mortem study. Acta Neuropathol Commun 2019; 7:174. [PMID: 31703599 PMCID: PMC6842157 DOI: 10.1186/s40478-019-0828-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/13/2019] [Indexed: 02/04/2023] Open
Abstract
Microglial function is highly dependent on cell motility, with baseline motility required for homeostatic surveillance activity and directed motility to migrate towards a source of injury. Experimental evidence suggests impaired microglial motility in Alzheimer’s disease (AD) and therefore we have investigated whether the expression of proteins associated with motility is altered in AD and affected by the Aβ immunotherapy using post-mortem brain tissue of 32 controls, 44 AD cases, and 16 AD cases from our unique group of patients immunised against Aβ42 (iAD). Sections of brain were immunolabelled and quantified for (i) the motility-related microglial proteins Iba1, cofilin 1 (CFL1), coronin-1a (CORO1A) and P2RY12, and (ii) pan-Aβ, Aβ42 and phosphorylated tau (ptau). The neuroinflammatory environment was characterised using Meso Scale Discovery multiplex assays. The expression of all four motility-related proteins was unmodified in AD compared with controls, whereas Iba1 and P2RY12, the homeostatic markers, were increased in the iAD group compared with AD. Iba1 and P2RY12 showed significant positive correlations with Aβ in controls but not in the AD or iAD groups. Pro- and anti-inflammatory proteins were increased in AD, whereas immunotherapy appears to result in a slightly less pro-inflammatory environment. Our findings suggest that as Aβ appears during the ageing process, the homeostatic Iba1 and P2RY12 –positive microglia respond to Aβ, but this response is absent in AD. Aβ-immunisation promoted increased Iba1 and P2RY12 expression, likely reflecting increased baseline microglial motility but without restoring the profile observed in controls.
Collapse
|
32
|
Chánez-Paredes S, Montoya-García A, Schnoor M. Cellular and pathophysiological consequences of Arp2/3 complex inhibition: role of inhibitory proteins and pharmacological compounds. Cell Mol Life Sci 2019; 76:3349-3361. [PMID: 31073744 PMCID: PMC11105272 DOI: 10.1007/s00018-019-03128-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
The actin-related protein complex 2/3 (Arp2/3) generates branched actin networks important for many cellular processes such as motility, vesicular trafficking, cytokinesis, and intercellular junction formation and stabilization. Activation of Arp2/3 requires interaction with actin nucleation-promoting factors (NPFs). Regulation of Arp2/3 activity is achieved by endogenous inhibitory proteins through direct binding to Arp2/3 and competition with NPFs or by binding to Arp2/3-induced actin filaments and disassembly of branched actin networks. Arp2/3 inhibition has recently garnered more attention as it has been associated with attenuation of cancer progression, neurotoxic effects during drug abuse, and pathogen invasion of host cells. In this review, we summarize current knowledge on expression, inhibitory mechanisms and function of endogenous proteins able to inhibit Arp2/3 such as coronins, GMFs, PICK1, gadkin, and arpin. Moreover, we discuss cellular consequences of pharmacological Arp2/3 inhibition.
Collapse
Affiliation(s)
- Sandra Chánez-Paredes
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Armando Montoya-García
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| |
Collapse
|
33
|
Dai X, Liang Z, Liu L, Guo K, Xu S, Wang H. Silencing of MALAT1 inhibits migration and invasion by sponging miR‑1‑3p in prostate cancer cells. Mol Med Rep 2019; 20:3499-3508. [PMID: 31485645 PMCID: PMC6755148 DOI: 10.3892/mmr.2019.10602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/19/2019] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is a common malignancy with a high mortality rate. Long non-coding RNA metastasis associated with lung adenocarcinoma transcript 1 (MALAT1) has been reported to serve tumor-promoting roles. However, the underlying mechanism requires further examination. In the present study, it was demonstrated that MALAT1 was increased while microRNA (miR/miRNA)-1-3p was decreased in prostate cancer cell lines. The silencing of MALAT1 inhibited migration, invasion and epithelial-mesenchymal transition, when epithelial (E)-cadherin expression level was increased, and neural (N)-cadherin, vimentin, Slug and Snail expression levels were decreased. Dual-luciferase reporter assay results demonstrated that miR-1-3p bound to MALAT1 and coronin 1C (CORO1C) 3′ untranslated region, and MALAT1 competed with CORO1C for the binding sites of miR-1-3p. MALAT1 inhibited the expression of miR-1-3p and vice versa. MALAT1 knockdown induced the decline of CORO1C, which was subsequently recovered by the miR-1-3p inhibitor. In addition, by inhibiting miR-1-3p or overexpressing CORO1C, the silencing of MALAT1-induced phenotypic alterations were restored. In conclusion, MALAT1 serving as a degradable miRNA sponge, may sequester miR-1-3p from CORO1C and by silencing MALAT1, migration, invasion and epithelial-mesenchymal transition may be inhibited in prostate cancer cells. MALAT1 and CORO1C may serve as novel clinical therapeutic targets for prostate cancer.
Collapse
Affiliation(s)
- Xiaofan Dai
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zuowen Liang
- Human Sperm Bank of Jilin Province, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shengqi Xu
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
34
|
Franco-Bocanegra DK, McAuley C, Nicoll JAR, Boche D. Molecular Mechanisms of Microglial Motility: Changes in Ageing and Alzheimer's Disease. Cells 2019; 8:cells8060639. [PMID: 31242692 PMCID: PMC6627151 DOI: 10.3390/cells8060639] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022] Open
Abstract
Microglia are the tissue-resident immune cells of the central nervous system, where they constitute the first line of defense against any pathogens or injury. Microglia are highly motile cells and in order to carry out their function, they constantly undergo changes in their morphology to adapt to their environment. The microglial motility and morphological versatility are the result of a complex molecular machinery, mainly composed of mechanisms of organization of the actin cytoskeleton, coupled with a “sensory” system of membrane receptors that allow the cells to perceive changes in their microenvironment and modulate their responses. Evidence points to microglia as accountable for some of the changes observed in the brain during ageing, and microglia have a role in the development of neurodegenerative diseases, such as Alzheimer’s disease. The present review describes in detail the main mechanisms driving microglial motility in physiological conditions, namely, the cytoskeletal actin dynamics, with emphasis in proteins highly expressed in microglia, and the role of chemotactic membrane proteins, such as the fractalkine and purinergic receptors. The review further delves into the changes occurring to the involved proteins and pathways specifically during ageing and in Alzheimer’s disease, analyzing how these changes might participate in the development of this disease.
Collapse
Affiliation(s)
- Diana K Franco-Bocanegra
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - Ciaran McAuley
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|
35
|
Paz ML, Barrantes FJ. Autoimmune Attack of the Neuromuscular Junction in Myasthenia Gravis: Nicotinic Acetylcholine Receptors and Other Targets. ACS Chem Neurosci 2019; 10:2186-2194. [PMID: 30916550 DOI: 10.1021/acschemneuro.9b00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) family, the archetype member of the pentameric ligand-gated ion channels, is ubiquitously distributed in the central and peripheral nervous systems, and its members are the targets for both genetic and acquired forms of neurological disorders. In the central nervous system, nAChRs contribute to the pathological mechanisms of neurodegenerative disorders, such as Alzheimer and Parkinson diseases. In the peripheral nerve-muscle synapse, the vertebrate neuromuscular junction, "classical" myasthenia gravis (MG) and other forms of neuromuscular transmission disorders are antibody-mediated autoimmune diseases. In MG, antibodies to the nAChR bind to the postsynaptic receptors and activate the classical complement pathway culminating in the formation of the membrane attack complex, with the subsequent destruction of the postsynaptic apparatus. Divalent nAChR-antibodies also cause internalization and loss of the nAChRs. Loss of receptors by either mechanism results in the muscle weakness and fatigability that typify the clinical manifestations of the disease. Other targets for antibodies, in a minority of patients, include muscle specific kinase (MuSK) and low-density lipoprotein related protein 4 (LRP4). This brief Review analyzes the current status of muscle-type nAChR in relation to the pathogenesis of autoimmune diseases affecting the peripheral cholinergic synapse.
Collapse
Affiliation(s)
- Mariela L. Paz
- Immunology Department, Faculty of Pharmacy and Biochemistry, IDEHU-CONICET, University of Buenos Aires, Junin 956, C1113AAD Buenos Aires, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
36
|
Jansen S, Goode BL. Tropomyosin isoforms differentially tune actin filament length and disassembly. Mol Biol Cell 2019; 30:671-679. [PMID: 30650006 PMCID: PMC6589703 DOI: 10.1091/mbc.e18-12-0815] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cellular actin networks exhibit diverse filamentous architectures and turnover dynamics, but how these differences are specified remains poorly understood. Here, we used multicolor total internal reflection fluorescence microscopy to ask how decoration of actin filaments by five biologically prominent Tropomyosin (TPM) isoforms influences disassembly induced by Cofilin alone, or by the collaborative effects of Cofilin, Coronin, and AIP1 (CCA). TPM decoration restricted Cofilin binding to pointed ends, while not interfering with Coronin binding to filament sides. Different isoforms of TPM provided variable levels of protection against disassembly, with the strongest protection by Tpm3.1 and the weakest by Tpm1.6. In biomimetic assays in which filaments were simultaneously assembled by formins and disassembled by CCA, these TPM isoform-specific effects persisted, giving rise to filaments with different lengths and treadmilling behavior. Together, our data reveal that TPM isoforms have quantitatively distinct abilities to tune actin filament length and turnover.
Collapse
Affiliation(s)
- Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA 02454
| |
Collapse
|
37
|
Coronin 1C promotes triple-negative breast cancer invasiveness through regulation of MT1-MMP traffic and invadopodia function. Oncogene 2018; 37:6425-6441. [PMID: 30065298 DOI: 10.1038/s41388-018-0422-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/07/2018] [Accepted: 06/22/2018] [Indexed: 01/11/2023]
Abstract
Membrane type 1-matrix metalloproteinase (MT1-MMP), a membrane-tethered protease, is key for matrix breakdown during cancer invasion and metastasis. Assembly of branched actin networks by the Arp2/3 complex is required for MT1-MMP traffic and formation of matrix-degradative invadopodia. Contrasting with the well-established role of actin filament branching factor cortactin in invadopodia function during cancer cell invasion, the contribution of coronin-family debranching factors to invadopodia-based matrix remodeling is not known. Here, we investigated the contribution of coronin 1C to the invasive potential of breast cancer cells. We report that expression of coronin 1C is elevated in invasive human breast cancers, correlates positively with MT1-MMP expression in relation with increased metastatic risk and is a new independent prognostic factor in breast cancer. We provide evidence that, akin to cortactin, coronin 1C is required for invadopodia formation and matrix degradation by breast cancer cells lines and for 3D collagen invasion by multicellular spheroids. Using intravital imaging of orthotopic human breast tumor xenografts, we find that coronin 1C accumulates in structures forming in association with collagen fibrils in the tumor microenvironment. Moreover, we establish the role of coronin 1C in the regulation of positioning and trafficking of MT1-MMP-positive endolysosomes. These results identify coronin 1C as a novel player of the multi-faceted mechanism responsible for invadopodia formation, MT1-MMP surface exposure and invasiveness in breast cancer cells.
Collapse
|
38
|
Luan Q, Liu SL, Helgeson LA, Nolen BJ. Structure of the nucleation-promoting factor SPIN90 bound to the actin filament nucleator Arp2/3 complex. EMBO J 2018; 37:embj.2018100005. [PMID: 30322896 DOI: 10.15252/embj.2018100005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/09/2022] Open
Abstract
Unlike the WASP family of Arp2/3 complex activators, WISH/DIP/SPIN90 (WDS) family proteins activate actin filament nucleation by the Arp2/3 complex without the need for a preformed actin filament. This allows WDS proteins to initiate branched actin network assembly by providing seed filaments that activate WASP-bound Arp2/3 complex. Despite their important role in actin network initiation, it is unclear how WDS proteins drive the activating steps that require both WASP and pre-existing actin filaments during WASP-mediated nucleation. Here, we show that SPIN90 folds into an armadillo repeat domain that binds a surface of Arp2/3 complex distinct from the two WASP sites, straddling a hinge point that may stimulate movement of the Arp2 subunit into the activated short-pitch conformation. SPIN90 binds a surface on Arp2/3 complex that overlaps with actin filament binding, explaining how it could stimulate the same structural rearrangements in the complex as pre-existing actin filaments. By revealing how WDS proteins activate the Arp2/3 complex, these data provide a molecular foundation to understand initiation of dendritic actin networks and regulation of Arp2/3 complex by its activators.
Collapse
Affiliation(s)
- Qing Luan
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Su-Ling Liu
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Luke A Helgeson
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Brad J Nolen
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| |
Collapse
|
39
|
Hoyer MJ, Chitwood PJ, Ebmeier CC, Striepen JF, Qi RZ, Old WM, Voeltz GK. A Novel Class of ER Membrane Proteins Regulates ER-Associated Endosome Fission. Cell 2018; 175:254-265.e14. [PMID: 30220460 PMCID: PMC6195207 DOI: 10.1016/j.cell.2018.08.030] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 05/01/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022]
Abstract
Endoplasmic reticulum (ER) membrane contact sites (MCSs) mark positions where endosomes undergo fission for cargo sorting. To define the role of ER at this unique MCS, we targeted a promiscuous biotin ligase to cargo-sorting domains on endosome buds. This strategy identified the ER membrane protein TMCC1, a member of a conserved protein family. TMCC1 concentrates at the ER-endosome MCSs that are spatially and temporally linked to endosome fission. When TMCC1 is depleted, endosome morphology is normal, buds still form, but ER-associated bud fission and subsequent cargo sorting to the Golgi are impaired. We find that the endosome-localized actin regulator Coronin 1C is required for ER-associated fission of actin-dependent cargo-sorting domains. Coronin 1C is recruited to endosome buds independently of TMCC1, while TMCC1/ER recruitment requires Coronin 1C. This link between TMCC1 and Coronin 1C suggests that the timing of TMCC1-dependent ER recruitment is tightly regulated to occur after cargo has been properly sequestered into the bud.
Collapse
Affiliation(s)
- Melissa J Hoyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Patrick J Chitwood
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Christopher C Ebmeier
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Jonathan F Striepen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Robert Z Qi
- Division of Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - William M Old
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | - Gia K Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado-Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
40
|
Douglas RG, Nandekar P, Aktories JE, Kumar H, Weber R, Sattler JM, Singer M, Lepper S, Sadiq SK, Wade RC, Frischknecht F. Inter-subunit interactions drive divergent dynamics in mammalian and Plasmodium actin filaments. PLoS Biol 2018; 16:e2005345. [PMID: 30011270 PMCID: PMC6055528 DOI: 10.1371/journal.pbio.2005345] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023] Open
Abstract
Cell motility is essential for protozoan and metazoan organisms and typically relies on the dynamic turnover of actin filaments. In metazoans, monomeric actin polymerises into usually long and stable filaments, while some protozoans form only short and highly dynamic actin filaments. These different dynamics are partly due to the different sets of actin regulatory proteins and partly due to the sequence of actin itself. Here we probe the interactions of actin subunits within divergent actin filaments using a comparative dynamic molecular model and explore their functions using Plasmodium, the protozoan causing malaria, and mouse melanoma derived B16-F1 cells as model systems. Parasite actin tagged to a fluorescent protein (FP) did not incorporate into mammalian actin filaments, and rabbit actin-FP did not incorporate into parasite actin filaments. However, exchanging the most divergent region of actin subdomain 3 allowed such reciprocal incorporation. The exchange of a single amino acid residue in subdomain 2 (N41H) of Plasmodium actin markedly improved incorporation into mammalian filaments. In the parasite, modification of most subunit–subunit interaction sites was lethal, whereas changes in actin subdomains 1 and 4 reduced efficient parasite motility and hence mosquito organ penetration. The strong penetration defects could be rescued by overexpression of the actin filament regulator coronin. Through these comparative approaches we identified an essential and common contributor, subdomain 3, which drives the differential dynamic behaviour of two highly divergent eukaryotic actins in motile cells. Actin is one of the most abundant and conserved proteins across eukaryotes. Its ability to assemble from individual monomers into dynamic polymers is essential for many cellular functions, including division and motility. In most cells, actin is able to form long and stable filaments. However, an actin of the malaria-causing parasite Plasmodium, while having a very similar monomer structure to actins from other eukaryotes, forms only short and unstable filaments. These short and dynamic filaments are crucial in allowing the parasite to move very rapidly in tissue. Here we investigated the basis of these differences. We used molecular dynamics simulations of actin filaments to investigate the actin–actin interfaces in filaments from Plasmodium and rabbit. We next engineered parasites to express chimeric actins that contained different parts of rabbit and parasite actin and thereby identified actin residues important for parasite viability and progression across the life cycle. We could rescue the most prominent defect specifically with overexpression of the actin binding protein coronin. This suggests that the more stable actin harms the parasite and that coronin helps in recycling filaments. By screening the effects of actin chimeras in mammalian cells, we also identified regions that allow these different actins to efficiently interact with each other. Taken together, our results improve our understanding of the interactions required for actin to incorporate into filaments across divergent eukaryotes.
Collapse
Affiliation(s)
- Ross G. Douglas
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Prajwal Nandekar
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia-Elisabeth Aktories
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Hirdesh Kumar
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebekka Weber
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia M. Sattler
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Simone Lepper
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - S. Kashif Sadiq
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Rebecca C. Wade
- Molecular and Cellular Modeling, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany
- * E-mail: (FF); (RCW)
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- * E-mail: (FF); (RCW)
| |
Collapse
|
41
|
Goode BL, Sweeney MO, Eskin JA. GMF as an Actin Network Remodeling Factor. Trends Cell Biol 2018; 28:749-760. [PMID: 29779865 DOI: 10.1016/j.tcb.2018.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 10/24/2022]
Abstract
Glia maturation factor (GMF) has recently been established as a regulator of the actin cytoskeleton with a unique role in remodeling actin network architecture. Conserved from yeast to mammals, GMF is one of five members of the ADF-H family of actin regulatory proteins, which includes ADF/cofilin, Abp1/Drebrin, Twinfilin, and Coactosin. GMF does not bind actin, but instead binds the Arp2/3 complex with high affinity. Through this association, GMF catalyzes the debranching of actin filament networks and inhibits actin nucleation by Arp2/3 complex. Here, we discuss GMF's emerging role in controlling actin filament spatial organization and dynamics underlying cell motility, endocytosis, and other biological processes. Further, we attempt to reconcile these functions with its earlier characterization as a cell differentiation factor.
Collapse
Affiliation(s)
- Bruce L Goode
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA.
| | - Meredith O Sweeney
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Julian A Eskin
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| |
Collapse
|
42
|
Mori M, Mode R, Pieters J. From Phagocytes to Immune Defense: Roles for Coronin Proteins in Dictyostelium and Mammalian Immunity. Front Cell Infect Microbiol 2018; 8:77. [PMID: 29623258 PMCID: PMC5874285 DOI: 10.3389/fcimb.2018.00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022] Open
Abstract
Microbes have interacted with eukaryotic cells for as long as they have been co-existing. While many of these interactions are beneficial for both the microbe as well as the eukaryotic cell, several microbes have evolved into pathogenic species. For some of these pathogens, host cell invasion results in irreparable damage and thus host cell destruction, whereas others use the host to avoid immune detection and elimination. One of the latter pathogens is Mycobacterium tuberculosis, arguably one of the most notorious pathogens on earth. In mammalian macrophages, M. tuberculosis manages to survive within infected macrophages by avoiding intracellular degradation in lysosomes using a number of different strategies. One of these is based on the recruitment and phagosomal retention of the host protein coronin 1, that is a member of the coronin protein family and a mammalian homolog of coronin A, a protein identified in Dictyostelium. Besides mediating mycobacterial survival in macrophages, coronin 1 is also an important regulator of naïve T cell homeostasis. How, exactly, coronin 1 mediates its activity in immune cells remains unclear. While in lower eukaryotes coronins are involved in cytoskeletal regulation, the functions of the seven coronin members in mammals are less clear. Dictyostelium coronins may have maintained multiple functions, whereas the mammalian coronins may have evolved from regulators of the cytoskeleton to modulators of signal transduction. In this minireview, we will discuss the different studies that have contributed to understand the molecular and cellular functions of coronin proteins in mammals and Dictyostelium.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
43
|
Zhang D, Zhu X, Sun F, Zhang K, Niu S, Huang X. The roles of actin cytoskeleton and actin-associated protein Crn1p in trap formation of Arthrobotrys oligospora. Res Microbiol 2017; 168:655-663. [PMID: 28506837 DOI: 10.1016/j.resmic.2017.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
Nematode-trapping fungi include a variety of species capable of generating specific trapping devices to capture nematodes and the production of devices is also an indicator of a switch from saprophytic to predacious lifestyles. Traps are developed from vegetative mycelia, but they are quite different from hyphae in both morphological and physiological characteristics. Therefore, the molecular mechanisms underlying their formation have attracted much attention. In this investigation, Arthrobotrys oligospora, a nematode-trapping fungus, has three-dimensional networks and genomics and proteomics were recently performed, so as to reveal the relationship between actin cytoskeleton and trap formation. Both actin staining via FITC-phalloidin and treatment of actin polymerization inhibitor Lat-B illustrated that the actin cytoskeleton played an important role in trap development. Furthermore, absence of the conserved actin-associated protein Crn1p caused a structural defect of traps and failure to infect nematodes. It was observed that mutant Δcrn1 represented a reduced number of rings and a lower complexity of three-dimensional networks, likely due to the disturbance of actin branching. Collectively, our study confirmed the involvement of the actin cytoskeleton as well as the conserved actin-associated protein Crn1p in trap formation. It further suggested the manners in which Crn1p influences the development of three-dimensional networks in A. oligospora.
Collapse
Affiliation(s)
- Donghua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Xin Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Fan Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Shanzhuang Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Xiaowei Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China; Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
44
|
Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation. PLoS Genet 2017; 13:e1006708. [PMID: 28369054 PMCID: PMC5393896 DOI: 10.1371/journal.pgen.1006708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/17/2017] [Accepted: 03/20/2017] [Indexed: 02/04/2023] Open
Abstract
Mammalian and fungal prions arise de novo; however, the mechanism is poorly understood in molecular terms. One strong possibility is that oxidative damage to the non-prion form of a protein may be an important trigger influencing the formation of its heritable prion conformation. We have examined the oxidative stress-induced formation of the yeast [PSI+] prion, which is the altered conformation of the Sup35 translation termination factor. We used tandem affinity purification (TAP) and mass spectrometry to identify the proteins which associate with Sup35 in a tsa1 tsa2 antioxidant mutant to address the mechanism by which Sup35 forms the [PSI+] prion during oxidative stress conditions. This analysis identified several components of the cortical actin cytoskeleton including the Abp1 actin nucleation promoting factor, and we show that deletion of the ABP1 gene abrogates oxidant-induced [PSI+] prion formation. The frequency of spontaneous [PSI+] prion formation can be increased by overexpression of Sup35 since the excess Sup35 increases the probability of forming prion seeds. In contrast to oxidant-induced [PSI+] prion formation, overexpression-induced [PSI+] prion formation was only modestly affected in an abp1 mutant. Furthermore, treating yeast cells with latrunculin A to disrupt the formation of actin cables and patches abrogated oxidant-induced, but not overexpression-induced [PSI+] prion formation, suggesting a mechanistic difference in prion formation. [PIN+], the prion form of Rnq1, localizes to the IPOD (insoluble protein deposit) and is thought to influence the aggregation of other proteins. We show Sup35 becomes oxidized and aggregates during oxidative stress conditions, but does not co-localize with Rnq1 in an abp1 mutant which may account for the reduced frequency of [PSI+] prion formation. Prions are infectious agents which are composed of misfolded proteins and have been implicated in progressive neurodegenerative diseases such as Creutzfeldt Jakob Disease (CJD). Most prion diseases occur sporadically and are then propagated in a protein-only mechanism via induced protein misfolding. Little is currently known regarding how normally soluble proteins spontaneously form their prion forms. Previous studies have implicated oxidative damage of the non-prion form of some proteins as an important trigger for the formation of their heritable prion conformation. Using a yeast prion model we found that the cortical actin cytoskeleton is required for the transition of an oxidized protein to its heritable infectious conformation. In mutants which disrupt the cortical actin cytoskeleton, the oxidized protein aggregates, but does not localize to its normal amyloid deposition site, termed the IPOD. The IPOD serves as a site where prion proteins undergo fragmentation and seeding and we show that preventing actin-mediated localization to this site prevents both spontaneous and oxidant-induced prion formation.
Collapse
|
45
|
Britton GJ, Ambler R, Clark DJ, Hill EV, Tunbridge HM, McNally KE, Burton BR, Butterweck P, Sabatos-Peyton C, Hampton-O’Neil LA, Verkade P, Wülfing C, Wraith DC. PKCθ links proximal T cell and Notch signaling through localized regulation of the actin cytoskeleton. eLife 2017; 6:e20003. [PMID: 28112644 PMCID: PMC5310840 DOI: 10.7554/elife.20003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/22/2017] [Indexed: 11/16/2022] Open
Abstract
Notch is a critical regulator of T cell differentiation and is activated through proteolytic cleavage in response to ligand engagement. Using murine myelin-reactive CD4 T cells, we demonstrate that proximal T cell signaling modulates Notch activation by a spatiotemporally constrained mechanism. The protein kinase PKCθ is a critical mediator of signaling by the T cell antigen receptor and the principal costimulatory receptor CD28. PKCθ selectively inactivates the negative regulator of F-actin generation, Coronin 1A, at the center of the T cell interface with the antigen presenting cell (APC). This allows for effective generation of the large actin-based lamellum required for recruitment of the Notch-processing membrane metalloproteinase ADAM10. Such enhancement of Notch activation is critical for efficient T cell proliferation and Th17 differentiation. We reveal a novel mechanism that, through modulation of the cytoskeleton, controls Notch activation at the T cell:APC interface thereby linking T cell receptor and Notch signaling pathways.
Collapse
Affiliation(s)
- Graham J Britton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Rachel Ambler
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Danielle J Clark
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Elaine V Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Helen M Tunbridge
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kerrie E McNally
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Bronwen R Burton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Philomena Butterweck
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Lea A Hampton-O’Neil
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - David Cameron Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
46
|
Sokolova OS, Chemeris A, Guo S, Alioto SL, Gandhi M, Padrick S, Pechnikova E, David V, Gautreau A, Goode BL. Structural Basis of Arp2/3 Complex Inhibition by GMF, Coronin, and Arpin. J Mol Biol 2016; 429:237-248. [PMID: 27939292 DOI: 10.1016/j.jmb.2016.11.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
The evolutionarily conserved Arp2/3 complex plays a central role in nucleating the branched actin filament arrays that drive cell migration, endocytosis, and other processes. To better understand Arp2/3 complex regulation, we used single-particle electron microscopy to compare the structures of Arp2/3 complex bound to three different inhibitory ligands: glia maturation factor (GMF), Coronin, and Arpin. Although the three inhibitors have distinct binding sites on Arp2/3 complex, they each induced an "open" nucleation-inactive conformation. Coronin promoted a standard (previously described) open conformation of Arp2/3 complex, with the N-terminal β-propeller domain of Coronin positioned near the p35/ARPC2 subunit of Arp2/3 complex. GMF induced two distinct open conformations of Arp2/3 complex, which correlated with the two suggested binding sites for GMF. Furthermore, GMF synergized with Coronin in inhibiting actin nucleation by Arp2/3 complex. Arpin, which uses VCA-related acidic (A) motifs to interact with the Arp2/3 complex, induced the standard open conformation, and two new masses appeared at positions near Arp2 and Arp3. Furthermore, Arpin showed additive inhibitory effects on Arp2/3 complex with Coronin and GMF. Together, these data suggest that Arp2/3 complex conformation is highly polymorphic and that its activities can be controlled combinatorially by different inhibitory ligands.
Collapse
Affiliation(s)
- Olga S Sokolova
- Department of Biology, Moscow M.V. Lomonosov University, Moscow 119234, Russia
| | - Angelina Chemeris
- Department of Biology, Moscow M.V. Lomonosov University, Moscow 119234, Russia; Ecole Polytechnique, CNRS UMR7654, Palaiseau 91120, France
| | - Siyang Guo
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | | | - Meghal Gandhi
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Shae Padrick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | - Violaine David
- Ecole Polytechnique, CNRS UMR7654, Palaiseau 91120, France
| | | | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
47
|
Kim GY, Park JH, Kim H, Lim HJ, Park HY. Coronin 1B serine 2 phosphorylation by p38α is critical for vascular endothelial growth factor-induced migration of human umbilical vein endothelial cells. Cell Signal 2016; 28:1817-1825. [DOI: 10.1016/j.cellsig.2016.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/06/2016] [Accepted: 08/15/2016] [Indexed: 11/30/2022]
|
48
|
Rodnick-Smith M, Liu SL, Balzer CJ, Luan Q, Nolen BJ. Identification of an ATP-controlled allosteric switch that controls actin filament nucleation by Arp2/3 complex. Nat Commun 2016; 7:12226. [PMID: 27417392 PMCID: PMC4947185 DOI: 10.1038/ncomms12226] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/10/2016] [Indexed: 01/07/2023] Open
Abstract
Nucleation of branched actin filaments by Arp2/3 complex is tightly regulated to control actin assembly in cells. Arp2/3 complex activation involves conformational changes brought about by ATP, Nucleation Promoting Factor (NPF) proteins, actin filaments and NPF-recruited actin monomers. To understand how these factors promote activation, we must first understand how the complex is held inactive in their absence. Here we demonstrate that the Arp3 C-terminal tail is a structural switch that prevents Arp2/3 complex from adopting an active conformation. The interaction between the tail and a hydrophobic groove in Arp3 blocks movement of Arp2 and Arp3 into an activated filament-like (short pitch) conformation. Our data indicate ATP binding destabilizes this interaction via an allosteric link between the Arp3 nucleotide cleft and the hydrophobic groove, thereby promoting the short-pitch conformation. Our results help explain how Arp2/3 complex is locked in an inactive state without activators and how autoinhibition is relieved.
Collapse
Affiliation(s)
- Max Rodnick-Smith
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, USA
| | - Su-Ling Liu
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Connor J Balzer
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, USA
| | - Qing Luan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | - Brad J Nolen
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
49
|
Miao Y, Han X, Zheng L, Xie Y, Mu Y, Yates JR, Drubin DG. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast. Nat Commun 2016; 7:11265. [PMID: 27068241 PMCID: PMC4832064 DOI: 10.1038/ncomms11265] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin–Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. Metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. Here the authors identify fimbrin as one of the main metaphase Cdk1 targets for cell cycle regulation of actin cable assembly in budding yeast.
Collapse
Affiliation(s)
- Yansong Miao
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ying Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|
50
|
Srivastava R, Prasadareddy Kajuluri L, Pathak N, Gupta CM, Sahasrabuddhe AA. Oligomerization of coronin: Implication on actin filament length inLeishmania. Cytoskeleton (Hoboken) 2016; 72:621-32. [DOI: 10.1002/cm.21269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/27/2015] [Accepted: 12/07/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Rashmi Srivastava
- Molecular and Structural Biology Division; CSIR-Central Drug Research Institute, Jankipuram Extension, Sector-10; Lucknow India
- Department of Biosciences; Integral University; Lucknow India
| | - Lova Prasadareddy Kajuluri
- Molecular and Structural Biology Division; CSIR-Central Drug Research Institute, Jankipuram Extension, Sector-10; Lucknow India
| | - Neelam Pathak
- Department of Biosciences; Integral University; Lucknow India
| | - Chhitar M. Gupta
- Institute of Bioinformatics and Applied Biotechnology; Bangalore India
| | - Amogh A. Sahasrabuddhe
- Molecular and Structural Biology Division; CSIR-Central Drug Research Institute, Jankipuram Extension, Sector-10; Lucknow India
| |
Collapse
|