1
|
Peng Y, Zhou L, Jin Y, Wu D, Chen N, Zhang C, Liu H, Li C, Ning R, Yang X, Mao Q, Liu J, Zhang P. Calcium bridges built by mitochondria-associated endoplasmic reticulum membranes: potential targets for neural repair in neurological diseases. Neural Regen Res 2025; 20:3349-3369. [PMID: 39589178 DOI: 10.4103/nrr.nrr-d-24-00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/29/2024] [Indexed: 11/27/2024] Open
Abstract
The exchange of information and materials between organelles plays a crucial role in regulating cellular physiological functions and metabolic levels. Mitochondria-associated endoplasmic reticulum membranes serve as physical contact channels between the endoplasmic reticulum membrane and the mitochondrial outer membrane, formed by various proteins and protein complexes. This microstructural domain mediates several specialized functions, including calcium (Ca 2+ ) signaling, autophagy, mitochondrial morphology, oxidative stress response, and apoptosis. Notably, the dysregulation of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes is a critical factor in the pathogenesis of neurological diseases. Certain proteins or protein complexes within these membranes directly or indirectly regulate the distance between the endoplasmic reticulum and mitochondria, as well as the transduction of Ca 2+ signaling. Conversely, Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes influences other mitochondria-associated endoplasmic reticulum membrane-associated functions. These functions can vary significantly across different neurological diseases-such as ischemic stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease-and their respective stages of progression. Targeted modulation of these disease-related pathways and functional proteins can enhance neurological function and promote the regeneration and repair of damaged neurons. Therefore, mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling plays a pivotal role in the pathological progression of neurological diseases and represents a significant potential therapeutic target. This review focuses on the effects of protein complexes in mitochondria-associated endoplasmic reticulum membranes and the distinct roles of mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling in neurological diseases, specifically highlighting the early protective effects and neuronal damage that can result from prolonged mitochondrial Ca 2+ overload or deficiency. This article provides a comprehensive analysis of the various mechanisms of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes in neurological diseases, contributing to the exploration of potential therapeutic targets for promoting neuroprotection and nerve repair.
Collapse
Affiliation(s)
- Yichen Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Yaju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Danli Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chengcai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Hongpeng Liu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chunlan Li
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Rong Ning
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Xichen Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Qiuyue Mao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Jiaxin Liu
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Pengyue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Shapiro IM, Risbud MV, Tang T, Landis WJ. Skeletal and dental tissue mineralization: The potential role of the endoplasmic reticulum/Golgi complex and the endolysosomal and autophagic transport systems. Bone 2025; 193:117390. [PMID: 39814250 DOI: 10.1016/j.bone.2025.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes. The cellular level of phosphate ions in these organelles is also high (millimolar). While the source of these ions for mineral formation has not been identified, there are sound reasons for considering that they may be liberated from mitochondria during the utilization of ATP for anabolic purposes, perhaps linked to matrix synthesis. Published studies indicate that calcium and phosphate ions or their clusters contained as cargo within the intracellular organelles noted above lead to formation of extracellular mineral. The mineral sequestered in mitochondria has been documented as an amorphous calcium phosphate. The ion-, ion cluster- or mineral-containing vesicles exit the cell in plasma membrane blebs, secretory lysosomes or possibly intraluminal vesicles. Such a cell-regulated process provides a means for the rapid transport of ions or mineral particles to the mineralization front of skeletal and dental tissues. Within the extracellular matrix, the ions or mineral may associate to form larger aggregates and potential mineral nuclei, and they may bind to collagen and other proteins. How cells of hard tissues perform their housekeeping and other biosynthetic functions while transporting the very large volumes of ions required for mineralization of the extracellular matrix is far from clear. Addressing this and related questions raised in this review suggests guidelines for further investigations of the intracellular processes promoting the mineralization of the skeletal and dental tissues.
Collapse
Affiliation(s)
- Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Tengteng Tang
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States of America
| | - William J Landis
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
3
|
He P, Chang H, Qiu Y, Wang Z. Mitochondria associated membranes in dilated cardiomyopathy: connecting pathogenesis and cellular dysfunction. Front Cardiovasc Med 2025; 12:1571998. [PMID: 40166597 PMCID: PMC11955654 DOI: 10.3389/fcvm.2025.1571998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, yet therapeutic options remain limited. While traditional research has focused on mechanisms such as energy deficits and calcium dysregulation, increasing evidence suggests that mitochondria-associated membranes (MAMs) could provide new insights into understanding and treating DCM. In this narrative review, we summarize the key role of MAMs, crucial endoplasmic reticulum (ER)-mitochondria interfaces, in regulating cellular processes such as calcium homeostasis, lipid metabolism, and mitochondrial dynamics. Disruption of MAMs function may initiate pathological cascades, including ER stress, inflammation, and cell death. These disruptions in MAM function lead to further destabilization of cellular homeostasis. Identifying MAMs as key modulators of cardiac health may provide novel insights for early diagnosis and targeted therapies in DCM.
Collapse
Affiliation(s)
- Pingge He
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongbo Chang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yueqing Qiu
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhentao Wang
- Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Zhang S, Shao Y, Su M, Hao Y, Yuan Y, Xing D. The application of different biotechnologies in detecting the changes in MAM and their classic discoveries. Anal Biochem 2025; 698:115744. [PMID: 39647806 DOI: 10.1016/j.ab.2024.115744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Mitochondria-associated membrane (MAM) has been studied as a novel target for explaining the mechanisms underlying the changes in cellular function and the process of multiple diseases. This structure is a complex of proteins, it tethers mitochondria to the endoplasmic/sarcoplasmic reticulum (ER/SR) and mediates the crosstalk of ions, lipids and metabolites between the two organelles. Different component proteins play distinctive ways in influencing the structure of MAM or the cellular signal transduction. Mitochondria and ER are the hubs of cellular bioenergetics and protein homeostasis respectively, MAM was supposed to play both physiological and pathological roles in regulating the function of either the two organelles and cells. The mitochondria-associated membrane is a highly dynamic structure and could be disrupted or remodelled within several minutes. Up to now, not all component proteins of the MAM complex have been revealed. Several biochemical and imaging approaches have been used to measure the changes in the structure or the number of MAMs, but they come with their issues. For distinct research aims, particular techniques were used based on their applicabilities, the research platforms and technical defects. This review briefly summarized the current biotechnologies for detecting MAM, and analyzed their limitations, aiming to assist further research in selecting appropriate methods based on actual situations.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China; School of Physical Education, Qingdao University, Qingdao, China.
| | - Yingchun Shao
- Department of Clinical Pharmacy, Qingdao Municipal Hospital, Qingdao, China
| | - Mengzhu Su
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China; School of Physical Education, Qingdao University, Qingdao, China
| | - Yuerong Hao
- School of Physical Education, Qingdao University, Qingdao, China
| | - Yang Yuan
- College of Physical Education and Sport Science, Qufu Normal University, Qufu, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China; School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Lamari F, Rossignol F, Mitchell GA. Glycerophospholipids: Roles in Cell Trafficking and Associated Inborn Errors. J Inherit Metab Dis 2025; 48:e70019. [PMID: 40101691 PMCID: PMC11919462 DOI: 10.1002/jimd.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/20/2025]
Abstract
Glycerophospholipids (GPLs) are the main lipid components of cellular membranes. They are implicated in membrane structure, vesicle trafficking, neurotransmission, and cell signalling. GPL molecules are amphiphilic, organized around the three carbons of glycerol. Positions sn-1 and sn-2 are each esterified to a fatty acid (FA). At position sn-3, a phosphate group is linked, which in turn can bind a polar head group, the most prevalent classes being phosphatidic acid (PA, phosphate alone as head group), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). Pathways of GPL biosynthesis span several cell compartments (endoplasmic reticulum (ER), Golgi mitochondria). Particularly important are mitochondria-associated membranes (MAMs), where the ER and mitochondrial outer membrane are in proximity. After synthesis, GPLs continuously undergo remodelling by FA hydrolysis and re-esterification. Esterification with different FAs alters membrane properties. Many steps in GPL synthesis and remodelling can be mediated by more than one enzyme, suggesting complexity that requires further exploration. The 38 known GPL-related inborn errors are clinically diverse. 23 (61%) have neurologic features, sometimes progressive and severe, particularly developmental delay/encephalopathy in 16 (42%) and spastic paraplegia in 12 (32%). Photoreceptor/neuroretinal disease occurs in 14 (37%). Three present skeletal dysplasias (8%). Most GPL inborn errors have been diagnosed by broad molecular testing. Lipidomics holds promise for diagnostic testing and for the discovery of functionally relevant metabolite profiles for monitoring natural history and treatment response.
Collapse
Affiliation(s)
- Foudil Lamari
- Metabolic Biochemistry, Neurometabolic and Neurodegenerative Unit - DMU BioGeMH Hôpital Pitié-Salpêtrière, AP-HP. Sorbonne Université, Paris, France
- Brain Institute - Institut du Cerveau - ICM, Inserm U1127, Hôpital Pitié-Salpêtrière, Paris, France
| | - Francis Rossignol
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Division of Medical Genetics and Genomics, Department of Pediatrics, CHU Sainte Justine and Université de Montréal, Montréal, Canada
| | - Grant A Mitchell
- Division of Medical Genetics and Genomics, Department of Pediatrics, CHU Sainte Justine and Université de Montréal, Montréal, Canada
| |
Collapse
|
6
|
Yang M, Qin X, Liu X. The effect of mitochondrial-associated endoplasmic reticulum membranes (MAMs) modulation: New insights into therapeutic targets for depression. Neurosci Biobehav Rev 2025; 172:106087. [PMID: 40031998 DOI: 10.1016/j.neubiorev.2025.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Depression is a prevalent mental disorder with high morbidity and mortality and its pathogenesis remains exactly unclarified. However, mitochondria and endoplasmic reticulum (ER) are two highly dynamic organelles that perform an indispensable role in the development of depression. Mitochondrial dysfunction and ER stress are recognized as vital pathological hallmarks in depression. The changes of intracellular activities such as mitochondrial dynamics, mitophagy, energy metabolism and ER stress are closely correlated with the progression of depression. Moreover, organelles interactions are conducive to homeostasis and cellular functions, and mitochondrial-associated endoplasmic reticulum membranes (MAMs) serve as signaling hubs of the two organelles and the coupling of the pathological progression. The main roles of MAMs are involved in metabolism, signal transduction, lipid transport, and maintenance of its structure and function. At present, accumulating studies elucidated that MAMs have gradually become a novel therapeutic target in treatment of depression. In the review, we focus on influence of mitochondria dysfunction and ER stress on depression. Furthermore, we discuss the underlying role of MAMs in depression and highlight natural products targeting MAMs as potential antidepressants to treat depression.
Collapse
Affiliation(s)
- Maohui Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| | - Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
Qu Y, Liu ZX, Zheng XX, Wu SN, An JQ, Zou MH, Zhang ZR. MFN2-mediated decrease in mitochondria-associated endoplasmic reticulum membranes contributes to sunitinib-induced endothelial dysfunction and hypertension. J Mol Cell Cardiol 2025; 200:45-60. [PMID: 39848488 DOI: 10.1016/j.yjmcc.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/04/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension. METHODS Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition. RESULTS Sunitinib increased mitochondrial ROS accumulation, decreased oxygen consumption rate, ATP production, and mitochondrial calcium ([Ca2+]M) levels, and impaired endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) signaling in HUVECs. In addition, sunitinib also decreased mitochondrial membrane potential, elongated mitochondria, and reduced MAMs. Remarkably, these effects were reversed by an adeno-virus linker (Ad-linker) that reinforces MAMs. Engineered augmentation of MAMs using AAV-FLT1-linker significantly mitigated sunitinib-induced hypertension, by restoring endothelium-dependent relaxation in mice, highlighting the crucial role of MAMs in this process. Further analyses revealed that sunitinib enhanced Akt-mediated expression of mitofusin 2 (MFN2), causing mitochondrial elongation, and induced dephosphorylation of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) at residues Y1737/Y1738, reducing [Ca2+]M. Our study suggests that increased MFN2 expression and IP3R1 dephosphorylation are critical in sunitinib-induced MAMs reduction and [Ca2+]M homeostasis. CONCLUSION Sunitinib induces mitochondrial dysfunction, Akt/MFN2-mediated decrease in MAMs and mitochondrial elongation, and IP3R1 dephosphorylation in endothelial cells, leading to endothelial dysfunction and hypertension. Our results provide the potential therapeutic targets for combating TKI-induced hypertension.
Collapse
Affiliation(s)
- Yao Qu
- Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China; Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Zhi-Xue Liu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Xiao-Xu Zheng
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Sheng-Nan Wu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Jun-Qing An
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA
| | - Ming-Hui Zou
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China; Center for Molecular and Translational Medicine, Georgia State University, Atlanta, USA.
| | - Zhi-Ren Zhang
- Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China.
| |
Collapse
|
8
|
Yu M, Song M, Zhang M, Chen S, Ni B, Li X, Lei W, Shen Z, Fan Y, Zhang J, Hu S. Mitochondrial Mutation Leads to Cardiomyocyte Hypertrophy by Disruption of Mitochondria-Associated ER Membrane. Cell Prolif 2025:e70002. [PMID: 39981966 DOI: 10.1111/cpr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
m.3243A>G is the most common pathogenic mtDNA mutation. High energy-demanding organs, such as heart, are usually involved in mitochondria diseases. However, whether and how m.3243A>G affects cardiomyocytes remain unknown. We have established patient-specific iPSCs carrying m.3243A>G and induced cardiac differentiation. Cardiomyocytes with high m.3243A>G burden exhibited hypertrophic phenotype. This point mutation is localised in MT-TL1 encoding tRNALeu (UUR). m.3243A>G altered tRNALeu (UUR) conformation and decreased its stability. mtDNA is essential for mitochondrial function. Mitochondria dysfunction occurred and tended to become round. Its interaction with ER, mitochondria-associated ER membrane (MAM), was disrupted with decreased contact number and length. MAM is a central hub for calcium trafficking. Disrupted MAM disturbed calcium homeostasis, which may be the direct and leading cause of cardiomyocyte hypertrophy, as MAM enforcement reversed this pathological state. Considering the threshold effect of mitochondrial disease, mito-TALENs were introduced to eliminate mutant mitochondria and release mutation load. Mutation reduction partially reversed the cellular behaviour and made it approach to that of control one. These findings reveal the pathogenesis underlying m.3243A>G from perspective of organelle interaction, rather than organelle. Beyond mitochondria quality control, its proper interaction with other organelles, such as ER, matters for mitochondria disease. This study may provide inspiration for mitochondria disease intervention.
Collapse
Affiliation(s)
- Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Min Song
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Manna Zhang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, Shanghai, China
| | - Shuangshuang Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Baoqiang Ni
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xuechun Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Cardiovascular Disease, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Zhu Y, Chen S, Su H, Meng Y, Zang C, Ning P, Hu L, Shao H. CPT1A-mediated MFF succinylation promotes stemness maintenance in ovarian cancer stem cells. Commun Biol 2025; 8:250. [PMID: 39956875 PMCID: PMC11830779 DOI: 10.1038/s42003-025-07720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
Cancer stem cells (CSCs) play crucial roles in cancer progression, immune evasion, drug resistance, and recurrence. Understanding the mechanisms behind CSCs generation and stemness maintenance is vital for early cancer diagnosis and treatment. Here, we unveil that carnitine palmitoyltransferase 1A (CPT1A) is highly expressed in ovarian cancer stem cells (OCSCs) and is essential for maintaining stemness by regulating lipid desaturation. Studies confirmed that CPT1A enhances SREBP1 activation, upregulating SCD1 expression, and promoting lipid desaturation in OCSCs. Mechanistic studies reveal that CPT1A promotes succinylation of mitochondrial fission factor (MFF) through its lysine succinyltransferase (LSTase) activity, crucial for mitochondria-associated membranes formation and SREBP1 activation. Inhibiting CPT1A's LSTase activity with Glyburide reduces OCSCs' stemness and enhances cisplatin's anti-tumor effects against ovarian cancer in vitro and in vivo. Together, our studies highlight the significance of CPT1A's LSTase activity in maintaining OCSCs' stemness, offering potential targets and therapeutic strategies for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yaqin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Shuting Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hong Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yaning Meng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Chen Zang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Panjiao Ning
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Lele Hu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Huanjie Shao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Wang J, Wang M, Zeng X, Li Y, Lei L, Chen C, Lin X, Fang P, Guo Y, Jiang X, Wang Y, Chen L, Long J. Targeting membrane contact sites to mediate lipid dynamics: innovative cancer therapies. Cell Commun Signal 2025; 23:89. [PMID: 39955542 PMCID: PMC11830217 DOI: 10.1186/s12964-025-02089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Membrane contact sites (MCS) are specialized regions where organelles are closely interconnected through membrane structures, facilitating the transfer and exchange of ions, lipids, and other molecules. This proximity enables a synergistic regulation of cellular homeostasis and functions. The formation and maintenance of these contact sites are governed by specific proteins that bring organelle membranes into close apposition, thereby enabling functional crosstalk between cellular compartments. In eukaryotic cells, lipids are primarily synthesized and metabolized within distinct organelles and must be transported through MCS to ensure proper cellular function. Consequently, MCS act as pivotal platforms for lipid synthesis and trafficking, particularly in cancer cells and immune cells within the tumor microenvironment, where dynamic alterations are critical for maintaining lipid homeostasis. This article provides a comprehensive analysis of how these cells exploit membrane contact sites to modulate lipid synthesis, metabolism, and transport, with a specific focus on how MCS-mediated lipid dynamics influence tumor progression. We also examine the differences in MCS and associated molecules across various cancer types, exploring novel therapeutic strategies targeting MCS-related lipid metabolism for the development of anticancer drugs, while also addressing the challenges involved.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China.
| | - Meifeng Wang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Xueni Zeng
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Yanhan Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Lingzhi Lei
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Changan Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Xi Lin
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Peiyuan Fang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China
| | - Yuxuan Guo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, 410013, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, 410013, China
| | - Lihong Chen
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, University Town, Fuzhou, Fujian, 350122, China.
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, 350028, China.
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
11
|
Joaquim M, Altin S, Bulimaga MB, Simões T, Nolte H, Bader V, Franchino CA, Plouzennec S, Szczepanowska K, Marchesan E, Hofmann K, Krüger M, Ziviani E, Trifunovic A, Chevrollier A, Winklhofer KF, Motori E, Odenthal M, Escobar-Henriques M. Mitofusin 2 displays fusion-independent roles in proteostasis surveillance. Nat Commun 2025; 16:1501. [PMID: 39929801 PMCID: PMC11811173 DOI: 10.1038/s41467-025-56673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Mitochondria are essential organelles and their functional state dictates cellular proteostasis. However, little is known about the molecular gatekeepers involved, especially in absence of external stress. Here we identify a role of MFN2 in quality control independent of its function in organellar shape remodeling. MFN2 ablation alters the cellular proteome, marked for example by decreased levels of the import machinery and accumulation of the kinase PINK1. Moreover, MFN2 interacts with the proteasome and cytosolic chaperones, thereby preventing aggregation of newly translated proteins. Similarly to MFN2-KO cells, patient fibroblasts with MFN2-disease variants recapitulate excessive protein aggregation defects. Restoring MFN2 levels re-establishes proteostasis in MFN2-KO cells and rescues fusion defects of MFN1-KO cells. In contrast, MFN1 loss or mitochondrial shape alterations do not alter protein aggregation, consistent with a fusion-independent role of MFN2 in cellular homeostasis. In sum, our findings open new possibilities for therapeutic strategies by modulation of MFN2 levels.
Collapse
Affiliation(s)
- Mariana Joaquim
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Selver Altin
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Maria-Bianca Bulimaga
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty of the University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Tânia Simões
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hendrik Nolte
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- MPI for Biology of Ageing, 50931, Cologne, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany, and Cluster of Excellence RESOLV, Bochum, Germany
| | - Camilla Aurora Franchino
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Solenn Plouzennec
- University of Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
| | - Karolina Szczepanowska
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- ReMedy International Research Agenda Unit, International Institute of Molecular Mechanisms and Machines (IMol), Polish Academy of Sciences, 00-783, Warsaw, Poland
| | | | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Ziviani
- Deparment of Biology, University of Padova, Padova, Italy
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Arnaud Chevrollier
- University of Angers, MitoLab Team, MitoVasc Unit, CNRS UMR6015, INSERM U1083, SFR ICAT, Angers, France
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany, and Cluster of Excellence RESOLV, Bochum, Germany
| | - Elisa Motori
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty of the University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Mafalda Escobar-Henriques
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Zellmer JC, Tarantino MB, Kim M, Lomoio S, Maesako M, Hajnóczky G, Bhattacharyya R. Stabilization of mitochondria-associated endoplasmic reticulum membranes regulates Aβ generation in a three-dimensional neural model of Alzheimer's disease. Alzheimers Dement 2025; 21:e14417. [PMID: 39713841 PMCID: PMC11848173 DOI: 10.1002/alz.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION We previously demonstrated that regulating mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) affects axonal Aβ generation in a well-characterized three-dimensional (3D) neural Alzheimer's disease (AD) model. MAMs vary in thickness and length, impacting their functions. Here, we examined the effect of MAM thickness on Aβ in our 3D neural model of AD. METHODS We employed fluorescence resonance energy transfer (FRET) or fluorescence-based MAM stabilizers, electron microscopy, Aβ enzyme-linked immunosorbent assay (ELISA), and live-cell imaging with kymography to assess how stabilizing MAMs of different gap widths influence Aβ production and MAM axonal mobility. RESULTS Stabilizing tight MAMs (∼6 nm gap width) significantly increased Aβ levels, whereas basal (∼25 nm) and loose MAMs (∼40 nm) maintained or reduced Aβ levels, respectively. Tight MAMs reduced mitochondrial axonal velocity compared to basal MAMs, while loose MAMs showed severely reduced axonal distribution. DISCUSSION Our findings suggest that stabilizing MAMs of specific gap widths, particularly in axons, without complete destabilization could be an effective therapeutic strategy for AD. HIGHLIGHTS The stabilization of MAMs exacerbates or ameliorates Aβ generation from AD neurons in a MAM gap width-dependent manner. A specific stabilization threshold within the MAM gap width spectrum shifts the amyloidogenic process to non-amyloidogenic. Tight MAMs slow down mitochondrial axonal transport compared to lose MAMs offering a quantitative method for measuring MAM stabilization.
Collapse
Affiliation(s)
- Jacob C. Zellmer
- Genetics and Aging Research UnitMassGeneral Institute for Neurodegenerative DiseaseHenry and Allison McCance Center for Brain HealthDepartment of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Marina B. Tarantino
- Genetics and Aging Research UnitMassGeneral Institute for Neurodegenerative DiseaseHenry and Allison McCance Center for Brain HealthDepartment of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Michelle Kim
- Genetics and Aging Research UnitMassGeneral Institute for Neurodegenerative DiseaseHenry and Allison McCance Center for Brain HealthDepartment of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Selene Lomoio
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| | - Masato Maesako
- Alzheimer's Disease Research UnitMassGeneral Institute for Neurodegenerative DiseaseMassachusetts General Hospital/Harvard Medical SchoolCharlestownMassachusettsUSA
| | - György Hajnóczky
- MitoCare CenterDepartment of PathologyAnatomy & Cell BiologyThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Raja Bhattacharyya
- Genetics and Aging Research UnitMassGeneral Institute for Neurodegenerative DiseaseHenry and Allison McCance Center for Brain HealthDepartment of NeurologyMassachusetts General Hospital, Harvard Medical SchoolCharlestownMassachusettsUSA
| |
Collapse
|
13
|
Monaghan RM. The fundamental role of mitochondria-endoplasmic reticulum contacts in ageing and declining healthspan. Open Biol 2025; 15:240287. [PMID: 39933574 DOI: 10.1098/rsob.240287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
This open question research article highlights mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), which have emerged as crucial cellular structures that challenge our traditional understanding of organelle function. This review highlights the critical importance of MAMs as a frontier in cell biology with far-reaching implications for health, disease and ageing. MAMs serve as dynamic communication hubs between the ER and mitochondria, orchestrating essential processes such as calcium signalling, lipid metabolism and cellular stress responses. Recent research has implicated MAM dysfunction in a wide array of conditions, including neurodegenerative diseases, metabolic disorders, cardiovascular diseases and cancer. The significant lack of biological knowledge behind MAM function emphasizes the need to study these enigmatic subcellular sites in greater detail. Key open questions include the mechanisms controlling MAM formation and disassembly, the full complement of MAM-associated proteins and how MAMs contribute to cellular decision-making and ageing processes. Advancing our understanding of MAMs through interdisciplinary approaches and cutting-edge technologies promises to reveal new insights into fundamental cellular signalling pathways and potentially lead to innovative therapeutic strategies for a range of diseases. As such, MAM research represents a critical open question in biology with the potential to transform our understanding of cellular life and human health.
Collapse
Affiliation(s)
- Richard M Monaghan
- British Heart Foundation Centre of Research Excellence Manchester, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, The AV Hill Building, Manchester M13 9PT, UK
| |
Collapse
|
14
|
Latchman NR, Stevens TL, Bedi KC, Prosser BL, Margulies KB, Elrod JW. Ultrastructure analysis of mitochondria, lipid droplet and sarcoplasmic reticulum apposition in human heart failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635600. [PMID: 39975328 PMCID: PMC11838275 DOI: 10.1101/2025.01.29.635600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background Cardiomyocyte structural remodeling is reported as a causal contributor to heart failure (HF) development and progression. Growing evidence highlights the role of organelle apposition in cardiomyocyte function and homeostasis. Disruptions in organelle crosstalk, such as that between the sarcoplasmic reticulum (SR) and mitochondria, are thought to impact numerous cellular processes such as calcium handling and cellular bioenergetics; two processes that are disrupted and implicated in cardiac pathophysiology. While the physical distance between organelles is thought to be essential for homeostatic cardiomyocyte function, whether the interactions and coupling of organelles are altered in human heart failure remains unclear. Methods Here, we utilized transmission electron microscopy and careful quantification of ultrastructure to characterize the changes in organelle apposition in cardiomyocytes isolated from the hearts of patients diagnosed with various types of HF. Subsequently we employed molecular approaches to examine the expression of proposed organelle tethers. Results We demonstrate that cardiomyocytes isolated from dilated cardiomyopathy, hypertrophic cardiomyopathy and ischemic cardiomyopathy hearts display smaller, more rounded mitochondria, as compared to nonfailing controls. Failing cardiomyocytes also exhibited disrupted SR-mitochondria juxtaposition and changes in the expression of proposed molecular tethers. Further analysis revealed alterations in lipid droplet dynamics including decreased lipid droplet content and less lipid droplets in association with mitochondria in failing cardiomyocytes. Conclusion Here we observed changes in organelle dynamics in cardiomyocytes isolated from heart failure patients diagnosed with differing etiologies. Our results suggest that organelle structure and apposition may be a ubiquitous contributor to human HF progression.
Collapse
Affiliation(s)
- Nadina R. Latchman
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Tyler L. Stevens
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kenneth C. Bedi
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin L. Prosser
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B. Margulies
- Cardiovascular Institute and Cardiovascular Medicine Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John W. Elrod
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Zu R, Lu H, Liu W, Shao S, Zheng J, Ying X, Zhou Y, Li Z, Wang W, Li D, Peng Q, Ma H, Zhang Z, Sun Y. Research Progress in the Molecular Mechanism of NLRP3 Inflammasome in Alzheimer's Disease and Regulation by Natural Plant Products. Mol Neurobiol 2025:10.1007/s12035-025-04715-w. [PMID: 39875780 DOI: 10.1007/s12035-025-04715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/19/2025] [Indexed: 01/30/2025]
Abstract
Alzheimer's disease (AD) is a prominent neurodegenerative disorder affecting the central nervous system in the elderly. Current understanding of AD primarily centers on the gradual decline in cognitive and memory functions, believed to be influenced by factors including mitochondrial dysfunction, β-amyloid aggregation, and neuroinflammation. Emerging research indicates that neuroinflammation plays a significant role in the development of AD, with the inflammasome potentially mediating inflammatory responses that contribute to neurodegeneration. Recent studies in AD pathology have identified a novel form of inflammasome referred to as NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome. Pathological alterations closely associated with NLRP3 inflammasome activation have been observed in the brain tissues of AD patients, transgenic mice, and in vitro neurocyte models. Numerous studies have demonstrated the potent neuroprotective properties of natural plant products (NPPs) against NLRP3 inflammasome-mediated AD pathology. This review provides a comprehensive examination of the NLRP3 inflammasome, its involvement in AD pathology, and the mechanisms underlying the therapeutic effects of NPP targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Runru Zu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Hao Lu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Wanting Liu
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Simai Shao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Jiayao Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Xiran Ying
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Yangang Zhou
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Wang Wang
- School of Basic Medicine, Nanchang Medical College, Nanchang, 330052, Jiangxi, PR China
| | - Dejuan Li
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China
| | - Quekun Peng
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases With Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China.
| |
Collapse
|
16
|
Cartes-Saavedra B, Ghosh A, Hajnóczky G. The roles of mitochondria in global and local intracellular calcium signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00820-1. [PMID: 39870977 DOI: 10.1038/s41580-024-00820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/29/2025]
Abstract
Activation of Ca2+ channels in Ca2+ stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca2+]c) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca2+ uptake and chelation, alongside efficient Ca2+ release mechanisms. Still, mitochondria do not store Ca2+ in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca2+]c signals. However, mitochondria take up Ca2+ at high local [Ca2+]c signals that originate from neighbouring organelles, and also during sustained global elevations of [Ca2+]c. Accumulated Ca2+ in the mitochondria stimulates oxidative metabolism and upon return to the cytoplasm, can produce spatially confined rises in [Ca2+]c to exert control over processes that are sensitive to Ca2+. Thus, the mitochondrial handling of [Ca2+]c is of physiological relevance. Furthermore, dysregulation of mitochondrial Ca2+ handling can contribute to debilitating diseases. We discuss the mechanisms and relevance of mitochondria in local and global calcium signals.
Collapse
Affiliation(s)
- Benjamín Cartes-Saavedra
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arijita Ghosh
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Freppel W, Barragan Torres VA, Uyar O, Anton A, Nouhi Z, Broquière M, Mazeaud C, Sow AA, Léveillé A, Gilbert C, Tremblay N, Owen JE, Bemis CL, Laulhé X, Lamarre A, Neufeldt CJ, Rodrigue-Gervais IG, Pichlmair A, Girard D, Scaturro P, Hulea L, Chatel-Chaix L. Dengue virus and Zika virus alter endoplasmic reticulum-mitochondria contact sites to regulate respiration and apoptosis. iScience 2025; 28:111599. [PMID: 39834870 PMCID: PMC11743106 DOI: 10.1016/j.isci.2024.111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/17/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
During infection, dengue virus (DENV) and Zika virus (ZIKV), two (ortho)flaviviruses of public health concern worldwide, induce alterations of mitochondria morphology to favor viral replication, suggesting a viral co-opting of mitochondria functions. Here, we performed an extensive transmission electron microscopy-based quantitative analysis to demonstrate that both DENV and ZIKV alter endoplasmic reticulum-mitochondria contact sites (ERMC). This correlated at the molecular level with an impairment of ERMC tethering protein complexes located at the surface of both organelles. Furthermore, virus infection modulated the mitochondrial oxygen consumption rate. Consistently, metabolomic and mitoproteomic analyses revealed a decrease in the abundance of several metabolites of the Krebs cycle and changes in the stoichiometry of the electron transport chain. Most importantly, ERMC destabilization by protein knockdown increased virus replication while dampening ZIKV-induced apoptosis. Overall, our results support the notion that flaviviruses hijack ERMCs to generate a cytoplasmic environment beneficial for sustained and efficient replication.
Collapse
Affiliation(s)
- Wesley Freppel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Viviana Andrea Barragan Torres
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Olus Uyar
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Anaïs Anton
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Zaynab Nouhi
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec H1T 2M4, Canada
| | - Mathilde Broquière
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Clément Mazeaud
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Aïssatou Aïcha Sow
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Alexanne Léveillé
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Claudia Gilbert
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Nicolas Tremblay
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Jonathan Eintrez Owen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheyanne L. Bemis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xavier Laulhé
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Alain Lamarre
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Christopher J. Neufeldt
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ian Gaël Rodrigue-Gervais
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine 81675 Munich, Germany
- German Center of Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Denis Girard
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Pietro Scaturro
- Institute of Virology, Technical University of Munich, School of Medicine 81675 Munich, Germany
- Leibniz Institute of Virology 20251 Hamburg, Germany
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec H1T 2M4, Canada
- Department of Medicine, University of Montréal, Montréal, Québec H3C 3J7, Canada
| | - Laurent Chatel-Chaix
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
- Center of Excellence in Orphan Diseases Research-Fondation Courtois, Québec, Canada
- Regroupement Intersectoriel de Recherche en Santé de l’Université du Québec, Québec, Canada
| |
Collapse
|
18
|
Serano M, Perni S, Pierantozzi E, Laurino A, Sorrentino V, Rossi D. Intracellular Membrane Contact Sites in Skeletal Muscle Cells. MEMBRANES 2025; 15:29. [PMID: 39852269 PMCID: PMC11767089 DOI: 10.3390/membranes15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca2+ storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle. These contact sites primarily involve the plasma membrane; among these, specialized membrane contact sites between the transverse tubules and the terminal cisternae of the sarcoplasmic reticulum form triads. Triads are skeletal muscle-specific contact sites where Ca2+ channels and regulatory proteins assemble to form the so-called calcium release complex. Additionally, the sarcoplasmic reticulum contacts mitochondria to enable a more precise regulation of Ca2+ homeostasis and energy metabolism. The sarcoplasmic reticulum and the plasma membrane also undergo dynamic remodeling to allow Ca2+ entry from the extracellular space and replenish the stores. This process involves the formation of dynamic membrane contact sites called Ca2+ Entry Units. This review explores the key processes in biogenesis and assembly of intracellular membrane contact sites as well as the membrane remodeling that occurs in response to muscle fatigue.
Collapse
Affiliation(s)
- Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Stefano Perni
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Annunziatina Laurino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
19
|
Navarro E, Montesinos J. Mitochondria-Associated Endoplasmic Reticulum Membranes in Microglia: One Contact Site to Rule Them all. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564241312807. [PMID: 39881949 PMCID: PMC11775980 DOI: 10.1177/25152564241312807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining tissue homeostasis by monitoring and responding to environmental changes through processes such as phagocytosis, cytokine production or synapse remodeling. Their dynamic nature and diverse functions are supported by the regulation of multiple metabolic pathways, enabling microglia to efficiently adapt to fluctuating signals. A key aspect of this regulation occurs at mitochondria-associated ER membranes (MAM), specialized contact sites between the ER and mitochondria. These structures facilitate the exchange of calcium, lipids, and metabolites and serve as metabolic and signaling hubs. This review synthesizes current research on how MAM influence microglial physiology, with an emphasis on their role in immunometabolism, offering new insights into the integration of metabolic and immune functions in the CNS and its impact in the context of neurodegeneration.
Collapse
Affiliation(s)
- Elisa Navarro
- Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Neurochemistry Research Institute, Complutense University of Madrid, Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Jorge Montesinos
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
20
|
Zhang M, Wei J, He C, Sui L, Jiao C, Zhu X, Pan X. Inter- and intracellular mitochondrial communication: signaling hubs in aging and age-related diseases. Cell Mol Biol Lett 2024; 29:153. [PMID: 39695918 DOI: 10.1186/s11658-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are versatile and complex organelles that can continuously communicate and interact with the cellular milieu. Deregulated communication between mitochondria and host cells/organelles has significant consequences and is an underlying factor of many pathophysiological conditions, including the process of aging. During aging, mitochondria lose function, and mitocellular communication pathways break down; mitochondrial dysfunction interacts with mitochondrial dyscommunication, forming a vicious circle. Therefore, strategies to protect mitochondrial function and promote effective communication of mitochondria can increase healthy lifespan and longevity, which might be a new treatment paradigm for age-related disorders. In this review, we comprehensively discuss the signal transduction mechanisms of inter- and intracellular mitochondrial communication, as well as the interactions between mitochondrial communication and the hallmarks of aging. This review emphasizes the indispensable position of inter- and intracellular mitochondrial communication in the aging process of organisms, which is crucial as the cellular signaling hubs. In addition, we also specifically focus on the status of mitochondria-targeted interventions to provide potential therapeutic targets for age-related diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liutao Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chucheng Jiao
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
21
|
Zhuang Y, Jiang W, Zhao Z, Li W, Deng Z, Liu J. Ion channel-mediated mitochondrial volume regulation and its relationship with mitochondrial dynamics. Channels (Austin) 2024; 18:2335467. [PMID: 38546173 PMCID: PMC10984129 DOI: 10.1080/19336950.2024.2335467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
The mitochondrion, one of the important cellular organelles, has the major function of generating adenosine triphosphate and plays an important role in maintaining cellular homeostasis, governing signal transduction, regulating membrane potential, controlling programmed cell death and modulating cell proliferation. The dynamic balance of mitochondrial volume is an important factor required for maintaining the structural integrity of the organelle and exerting corresponding functions. Changes in the mitochondrial volume are closely reflected in a series of biological functions and pathological changes. The mitochondrial volume is controlled by the osmotic balance between the cytoplasm and the mitochondrial matrix. Thus, any disruption in the influx of the main ion, potassium, into the cells can disturb the osmotic balance between the cytoplasm and the matrix, leading to water movement between these compartments and subsequent alterations in mitochondrial volume. Recent studies have shown that mitochondrial volume homeostasis is closely implicated in a variety of diseases. In this review, we provide an overview of the main influencing factors and research progress in the field of mitochondrial volume homeostasis.
Collapse
Affiliation(s)
- Yujia Zhuang
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
- Clinical College of Shantou University Medical College, Shantou, China
| | - Wenting Jiang
- Operating room, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People’s Hospital/the First Hospital Affiliated to Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
An ZY, Han SZ, Li ZY, Chang SY, Zhang XL, Lu GJ, Zhang T, Quan BH, Yin XJ, Quan LH, Kang JD. Eicosatrienoic acid enhances the quality of in vitro matured porcine oocytes by reducing PRKN-mediated ubiquitination of CISD2. Theriogenology 2024; 230:285-298. [PMID: 39357167 DOI: 10.1016/j.theriogenology.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Oocytes and early embryos are exposed to many uncontrollable factors that trigger endoplasmic reticulum (ER) stress during in vitro culture. Prevention of ER stress is an effective way to improve the oocyte maturation rate and oocyte quality. Increasing evidence suggests that dietary intake of sufficient n-3 polyunsaturated fatty acids (PUFAs) is associated with health benefits, particularly in the domain of female reproductive health. We found that supplementation of eicosatrienoic acid (ETA) during in vitro maturation (IVM) of oocyte significantly downregulated ER stress-related genes. Mitochondria-associated membranes (MAMs) are communications areas between the ER and mitochondria. Inositol 1,4,5-trisphosphate receptor (IP3R) is a key calcium channels in MAMs and, participates in the regulation of many cellular functions. Notably, the MAM area was significantly decreased in ETA-treated oocytes. CDGSH iron sulfur domain 2 (CISD2) is presents in MAMs, but its role in oocytes is unknown. ETA treatment significantly increased CISD2 expression, and siRNA-mediated knockdown of CISD2 blocked the inhibitory effect of ETA on IP3R. Transcriptomic sequencing and immunoprecipitation experiments showed that ETA treatment significantly decreased expression of the E3 ubiquitin ligase PRKN. PRKN induced ubiquitination and degradation of CISD2, indicating that the PRKN-mediated ubiquitin-proteasome system regulates CISD2. In conclusion, our study reveals the mechanism by which ETA supplementation during IVM alleviates mitochondrial calcium overload under ER stress conditions by decreasing PRKN-mediated ubiquitination of CISD2 and facilitating inhibition of IP3R by CISD2/BCL-2. This improves oocyte quality and subsequent embryo developmental competence prior to implantation.
Collapse
Affiliation(s)
- Zhi-Yong An
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Zhou-Yan Li
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Xiu-Li Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Gao-Jie Lu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Tuo Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Biao-Hu Quan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| | - Xi-Jun Yin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| | - Lin-Hu Quan
- College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanji, 133002, China.
| |
Collapse
|
23
|
Hattori N, Sato S. Mitochondrial dysfunction in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1415-1428. [PMID: 39585446 DOI: 10.1007/s00702-024-02863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
The exact cause of nigral cell death in Parkinson's disease (PD) is still unknown. However, research on MPTP-induced experimental parkinsonism has significantly advanced our understanding. In this model, it is widely accepted that mitochondrial respiratory failure is the primary mechanism of cell death. Studies have shown that a toxic metabolite of MPTP inhibits Complex I and alpha-ketoglutarate dehydrogenase activities in mitochondria. Since then, many research groups have focused on mitochondrial dysfunction in PD, identifying deficiencies in Complex I or III in PD patients' brains, skeletal muscle, and platelets. There is some debate about the decline in mitochondrial function in peripheral organs. However, since α-synuclein, the main component protein of Lewy bodies, accumulates in peripheral organs, it is reasonable to consider PD a systemic disease. Additionally, mutant mitochondrial DNA with a 4,977 base pair deletion has been found in the brains of PD patients, suggesting that age-related accumulation of deleted mtDNA is accelerated in the striatum and may contribute to the pathophysiology of PD. While the cause of PD remains unknown, mitochondrial dysfunction is undoubtedly a factor in cell death in PD. In addition, the causative gene for familial PD, parkin (now PRKN), and PTEN-induced putative kinase 1 (PINK1), both gene products are also involved in mitochondrial quality control. Moreover, we have successfully isolated and identified CHCHD2, which is involved in the mitochondrial electron transfer system. There is no doubt that mitochondrial dysfunction contributes to cell death in PD.
Collapse
Affiliation(s)
- Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1-Hirosawa, Wako-Shi, Saitama, 351-0198, Japan.
| | - Shigeto Sato
- Department of Neurology, Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
- Center for Biomedical Research Resources, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| |
Collapse
|
24
|
Luo W, Xu Z, Li F, Ding L, Wang R, Lin Y, Mao X, Chen X, Li Y, Lu Z, Xie H, Wang H, Zhu Z, Lu Y, Guo L, Yu X, Xia L, He HH, Li G. m6Am Methyltransferase PCIF1 Promotes LPP3 Mediated Phosphatidic Acid Metabolism and Renal Cell Carcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404033. [PMID: 39422663 PMCID: PMC11633504 DOI: 10.1002/advs.202404033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/29/2024] [Indexed: 10/19/2024]
Abstract
N6-methyl-2'-O-methyladenosine (m6Am), occurring adjacent to the 7-methylguanosine (m7G) cap structure and catalyzed by the newly identified writer PCIF1 (phosphorylated CTD interacting factor 1), has been implicated in the pathogenesis of various diseases. However, its involvement in renal cell carcinoma (RCC) remains unexplored. Here, significant upregulation of PCIF1 and m6Am levels in RCC tissues are identified, unveiling their oncogenic roles both in vitro and in vivo. Mechanically, employing m6Am-Exo-Seq, LPP3 (phospholipid phosphatase 3) mRNA is identified as a key downstream target whose translation is enhanced by m6Am modification. Furthermore, LPP3 is revealed as a key regulator of phosphatidic acid metabolism, critical for preventing its accumulation in mitochondria and facilitating mitochondrial fission. Consequently, Inhibition of the PCIF1/LPP3 axis significantly altered mitochondrial morphology and reduced RCC tumor progression. In addition, depletion of PCIF1 sensitizes RCC to sunitinib treatment. This study highlights the intricate interplay between m6Am modification, phosphatidic acid metabolism, and mitochondrial dynamics, offering a promising therapeutic avenue for RCC.
Collapse
Affiliation(s)
- Wenqin Luo
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Zhehao Xu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Fan Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Lifeng Ding
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Ruyue Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yudong Lin
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Xudong Mao
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Xianjiong Chen
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yang Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Zeyi Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Haiyun Xie
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Huan Wang
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Ziwei Zhu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Yi Lu
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Luying Guo
- Kidney Disease Center of First Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
| | - Xiaojing Yu
- Department of RadiologySir Run Run Shaw hospitalZhejiang University School of MedicineHangzhou310016China
| | - Liqun Xia
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Housheng Hansen He
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Gonghui Li
- Department of UrologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| |
Collapse
|
25
|
Makio T, Chen J, Simmen T. ER stress as a sentinel mechanism for ER Ca 2+ homeostasis. Cell Calcium 2024; 124:102961. [PMID: 39471738 DOI: 10.1016/j.ceca.2024.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca2+ ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca2+ binding, increases cytosolic Ca2+through the opening of ER Ca2+ channels, and activates store-operated Ca2+ entry (SOCE). Posttranslational modifications (PTMs) of the ER Ca2+ handling proteins through ER stress-dependent phosphorylation or oxidation control these mechanisms, as demonstrated in the case of the sarco/endoplasmic reticulum ATPase (SERCA), inositol 1,4,5 trisphosphate receptors (IP3Rs) or stromal interaction molecule 1 (STIM1). Their aim is to restore ER Ca2+ homeostasis but also to increase Ca2+ transfer from the ER to mitochondria during ER stress. This latter function boosts ER bioenergetics, but also triggers apoptosis if ER Ca2+ signaling persists. ER Ca2+ toolkit oxidative modifications upon ER stress can occur within the ER lumen or in the adjacent cytosol. Enzymes involved in this redox control include ER oxidoreductin 1 (ERO1) or the thioredoxin-family protein disulfide isomerases (PDI) and ERp57. A tight, but adaptive connection between ER Ca2+ content, ER stress and mitochondrial readouts allows for the proper functioning of many tissues, including skeletal muscle, the liver, and the pancreas, where ER stress either maintains or compromises their function, depending on its extent and context. Upon mutation of key regulators of ER Ca2+ signaling, diseases such as muscular defects (e.g., from mutated selenoprotein N, SEPN1/SELENON), or diabetes (e.g., from mutated PERK) are the result.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada.
| |
Collapse
|
26
|
Liu J, Liu Y, Gao C, Pan H, Huang P, Tan Y, Chen S. The ultrastructural and proteomic analysis of mitochondria-associated endoplasmic reticulum membrane in the midbrain of a Parkinson's disease mouse model. Aging Cell 2024:e14436. [PMID: 39614648 DOI: 10.1111/acel.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
Recent studies indicated that the dysregulation of mitochondria-associated endoplasmic reticulum membrane (MAM) could be a significant hub in the pathogenesis of Parkinson's disease (PD). However, little has been known about how MAM altered in PD. This study was aimed to observe morphological changes and analyze proteomic profiles of MAM in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models. In MPTP-treated mice, transmission electron microscopy was applied for MAM ultrastructural visualization. Nano ultra-high performance liquid chromatography-tandem mass spectrum and bioinformatic analysis were adopted to obtain underlying molecular data of MAM fractions. The loosened, shortened and reduced MAM tethering was found in substantia nigral neurons from MPTP-treated mice. In midbrain MAM proteomics, 158 differentially expressed proteins (DEPs) were identified between two groups. Specific DEPs were validated by western blot and exhibited significantly statistical changes, aligning with proteomic results. Bioinformatic analysis indicated that membrane, cytoplasm and cell projection were three major localizations for DEPs. Biological processes including metabolism, lipid transport, and immunological and apoptotic signaling pathways were greatly affected. For consensus MAM proteins, the enriched pathway analysis revealed the potential relationship between neurodegenerative diseases and MAM. Several biological processes such as peroxisome function and clathrin-mediated endocytosis, were clustered, which provided additional insights into the fundamental molecular pathways associated with MAM. In our study, we demonstrated disrupted ER-mitochondria contacts in an MPTP-induced PD mouse model. The underlying signatures of MAM were revealed by proteomics and bioinformatic analysis, providing valuable insights into its potential role in PD pathogenesis.
Collapse
Affiliation(s)
- Jin Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yi Liu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chao Gao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong Pan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Chaudhary A, Kumar A, Swain N, Chaudhary K, Sonker H, Dewan S, Patil RA, Singh RG. Endocytic Uptake of Self-Assembled Iridium(III) Nanoaggregates for Holistic Treatment of Metastatic 3D Triple-Negative Breast Tumor Spheroids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406809. [PMID: 39607393 DOI: 10.1002/smll.202406809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Triple-negative breast cancer (TNBC) presents a formidable challenge due to its aggressive behavior and limited array of treatment options available. This study focuses on employing nanoaggregate material of organometallic Ir(III) complexes for treating TNBC cell line MDA-MB-231. In this approach, Ir(III) complexes with enhanced cellular permeability are strategically designed and achieved through the incorporation of COOMe groups into their structure. The lead compound, IrL1, exhibits promiscuous nanoscale aggregation in RPMI cell culture media, characterized by a stable hydrodynamic effective diameter ranging from 190 to 202 nm over 48 h. With excellent photo-responsive contrast-enhanced cell imaging properties IrL1 exhibits an outstanding IC50, 48h value of 36.05± 0.03 nm when irradiated with 390 nm light in MDA-MB-231 (IC50, 48 h of Cisplatin is 5.29 µµ). In cell, investigation confirms that IrL1 nanoaggregates internalization via energy-dependent endocytosis undergo ferroptosis and ROS mediated cell death in MDA-MB-231 cells. Further, these in vivo studies using NOD-SCID mice confirmed that IrL1 exhibits a tendency to ablate tumors inoculated in mice models at therapeutically relevant doses. Thus, this comprehensive approach holds promise for expanding the repertoire of organometallic Ir(III) nanoaggregates with adaptable characteristics, thereby advancing their clinical utility of nanomedicine in the holistic treatment of metastatic 3D triple-negative breast tumor spheroids.
Collapse
Affiliation(s)
| | - Ashwini Kumar
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Nikhil Swain
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Kajal Chaudhary
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Himanshu Sonker
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | - Sayari Dewan
- Department of Chemistry, IIT Kanpur, Kanpur, UP, 208016, India
| | | | | |
Collapse
|
28
|
Jia Z, Li H, Xu K, Li R, Yang S, Chen L, Zhang Q, Li S, Sun X. MAM-mediated mitophagy and endoplasmic reticulum stress: the hidden regulators of ischemic stroke. Front Cell Neurosci 2024; 18:1470144. [PMID: 39640236 PMCID: PMC11617170 DOI: 10.3389/fncel.2024.1470144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemic stroke (IS) is the predominant subtype of stroke and a leading contributor to global mortality. The mitochondrial-associated endoplasmic reticulum membrane (MAM) is a specialized region that facilitates communication between the endoplasmic reticulum and mitochondria, and has been extensively investigated in the context of neurodegenerative diseases. Nevertheless, its precise involvement in IS remains elusive. This literature review elucidates the intricate involvement of MAM in mitophagy and endoplasmic reticulum stress during IS. PINK1, FUNDC1, Beclin1, and Mfn2 are highly concentrated in the MAM and play a crucial role in regulating mitochondrial autophagy. GRP78, IRE1, PERK, and Sig-1R participate in the unfolded protein response (UPR) within the MAM, regulating endoplasmic reticulum stress during IS. Hence, the diverse molecules on MAM operate independently and interact with each other, collectively contributing to the pathogenesis of IS as the covert orchestrator.
Collapse
Affiliation(s)
- Ziyi Jia
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongtao Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruobing Li
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Yang
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Long Chen
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qianwen Zhang
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shulin Li
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
29
|
García Casas P, Rossini M, Påvénius L, Saeed M, Arnst N, Sonda S, Fernandes T, D'Arsiè I, Bruzzone M, Berno V, Raimondi A, Sassano ML, Naia L, Barbieri E, Sigismund S, Agostinis P, Sturlese M, Niemeyer BA, Brismar H, Ankarcrona M, Gautier A, Pizzo P, Filadi R. Simultaneous detection of membrane contact dynamics and associated Ca 2+ signals by reversible chemogenetic reporters. Nat Commun 2024; 15:9775. [PMID: 39532847 PMCID: PMC11557831 DOI: 10.1038/s41467-024-52985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Membrane contact sites (MCSs) are hubs allowing various cell organelles to coordinate their activities. The dynamic nature of these sites and their small size hinder analysis by current imaging techniques. To overcome these limitations, we here design a series of reversible chemogenetic reporters incorporating improved, low-affinity variants of splitFAST, and study the dynamics of different MCSs at high spatiotemporal resolution, both in vitro and in vivo. We demonstrate that these versatile reporters suit different experimental setups well, allowing one to address challenging biological questions. Using these probes, we identify a pathway in which calcium (Ca2+) signalling dynamically regulates endoplasmic reticulum-mitochondria juxtaposition, characterizing the underlying mechanism. Finally, by integrating Ca2+-sensing capabilities into the splitFAST technology, we introduce PRINCESS (PRobe for INterorganelle Ca2+-Exchange Sites based on SplitFAST), a class of reporters to simultaneously detect MCSs and measure the associated Ca2+ dynamics using a single biosensor.
Collapse
Affiliation(s)
- Paloma García Casas
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Medicine, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and CSIC, Valladolid, Spain
| | - Michela Rossini
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Institute of Neuroscience, National Research Council (CNR), Padua, Italy
| | - Linnea Påvénius
- Science for Life Laboratory,, Karolinska Institutet, Stockholm, Sweden
| | - Mezida Saeed
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Nikita Arnst
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Sonia Sonda
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Institute of Neuroscience, National Research Council (CNR), Padua, Italy
| | - Tânia Fernandes
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Irene D'Arsiè
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Institute of Neuroscience, National Research Council (CNR), Padua, Italy
| | - Matteo Bruzzone
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Valeria Berno
- ALEMBIC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Raimondi
- ALEMBIC, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, CH-6500, Bellinzona, Switzerland
| | - Maria Livia Sassano
- Cell Death Research and Therapy lab, Department of Cellular and Molecular Medicine, and Center for Cancer Biology-VIB, KU Leuven, Leuven, Belgium
| | - Luana Naia
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | | | - Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Agostinis
- Cell Death Research and Therapy lab, Department of Cellular and Molecular Medicine, and Center for Cancer Biology-VIB, KU Leuven, Leuven, Belgium
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | - Hjalmar Brismar
- Science for Life Laboratory,, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Maria Ankarcrona
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- Institute of Neuroscience, National Research Council (CNR), Padua, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padua, Padua, Italy.
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- Institute of Neuroscience, National Research Council (CNR), Padua, Italy.
| |
Collapse
|
30
|
Zheng B, Zhang X, Kong X, Li J, Huang B, Li H, Ji Z, Wei X, Tao S, Shan Z, Ling Z, Liu J, Chen J, Zhao F. S1P regulates intervertebral disc aging by mediating endoplasmic reticulum-mitochondrial calcium ion homeostasis. JCI Insight 2024; 9:e177789. [PMID: 39316443 PMCID: PMC11601718 DOI: 10.1172/jci.insight.177789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
As the aging process progresses, age-related intervertebral disc degeneration (IVDD) is becoming an emerging public health issue. Site-1 protease (S1P) has recently been found to be associated with abnormal spinal development in patients with mutations and has multiple biological functions. Here, we discovered a reduction of S1P in degenerated and aging intervertebral discs, primarily regulated by DNA methylation. Furthermore, through drug treatment and siRNA-mediated S1P knockdown, nucleus pulposus cells were more prone to exhibit degenerative and aging phenotypes. Conditional KO of S1P in mice resulted in spinal developmental abnormalities and premature aging. Mechanistically, S1P deficiency impeded COP II-mediated transport vesicle formation, which leads to protein retention in the endoplasmic reticulum (ER) and subsequently ER distension. ER distension increased the contact between the ER and mitochondria, disrupting ER-to-mitochondria calcium flow and resulting in mitochondrial dysfunction and energy metabolism disturbance. Finally, using 2-APB to inhibit calcium ion channels and the senolytic drug dasatinib and quercetin (D + Q) partially rescued the aging and degenerative phenotypes caused by S1P deficiency. In conclusion, our findings suggest that S1P is a critical factor in causing IVDD in the process of aging and highlight the potential of targeting S1P as a therapeutic approach for age-related IVDD.
Collapse
Affiliation(s)
- Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiangxi Kong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hui Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhongyin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoan Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zemin Ling
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Zhang XY, Han C, Yao Y, Wei TT. Current insights on mitochondria-associated endoplasmic reticulum membranes (MAMs) and their significance in the pathophysiology of ocular disorders. Exp Eye Res 2024; 248:110110. [PMID: 39326773 DOI: 10.1016/j.exer.2024.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The intricate interaction network necessary for essential physiological functions underscores the interdependence among eukaryotic cells. Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs), specialized junctions between mitochondria and the ER, were recently discovered. These junctions participate in various cellular processes, including calcium level regulation, lipid metabolism, mitochondrial integrity maintenance, autophagy, and inflammatory responses via modulating the structure and molecular composition of various cellular components. Therefore, MAMs contribute to the pathophysiology of numerous ocular disorders, including Diabetic Retinopathy (DR), Age-related Macular Degeneration (AMD) and glaucoma. In addition to providing a concise overview of the architectural and functional aspects of MAMs, this review explores the key pathogenetic pathways involving MAMs in the development of several ocular disorders.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Cheng Han
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Ting-Ting Wei
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
32
|
Liu Y, Wei Y, Jin X, Cai H, Chen Q, Zhang X. PDZD8 Augments Endoplasmic Reticulum-Mitochondria Contact and Regulates Ca2+ Dynamics and Cypd Expression to Induce Pancreatic β-Cell Death during Diabetes. Diabetes Metab J 2024; 48:1058-1072. [PMID: 39069376 PMCID: PMC11621647 DOI: 10.4093/dmj.2023.0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/26/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGRUOUND Diabetes mellitus (DM) is a chronic metabolic disease that poses serious threats to human physical and mental health worldwide. The PDZ domain-containing 8 (PDZD8) protein mediates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) formation in mammals. We explored the role of PDZD8 in DM and investigated its potential mechanism of action. METHODS High-fat diet (HFD)- and streptozotocin-induced mouse DM and palmitic acid (PA)-induced insulin 1 (INS-1) cell models were constructed. PDZD8 expression was detected using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. MAM formation, interactions between voltage-dependent anion-selective channel 1 (VDAC1) and inositol 1,4,5-triphosphate receptor type 1 (IP3R1), pancreatic β-cell apoptosis and proliferation were detected using transmission electron microscopy (TEM), proximity ligation assay (PLA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, immunofluorescence staining, and Western blotting. The mitochondrial membrane potential, cell apoptosis, cytotoxicity, and subcellular Ca2+ localization in INS-1 cells were detected using a JC-1 probe, flow cytometry, and an lactate dehydrogenase kit. RESULTS PDZD8 expression was up-regulated in the islets of HFD mice and PA-treated pancreatic β-cells. PDZD8 knockdown markedly shortened MAM perimeter, suppressed the expression of MAM-related proteins IP3R1, glucose-regulated protein 75 (GRP75), and VDAC1, inhibited the interaction between VDAC1 and IP3R1, alleviated mitochondrial dysfunction and ER stress, reduced the expression of ER stress-related proteins, and decreased apoptosis while increased proliferation of pancreatic β-cells. Additionally, PDZD8 knockdown alleviated Ca2+ flow into the mitochondria and decreased cyclophilin D (Cypd) expression. Cypd overexpression alleviated the promoting effect of PDZD8 knockdown on the apoptosis of β-cells. CONCLUSION PDZD8 knockdown inhibited pancreatic β-cell death in DM by alleviated ER-mitochondria contact and the flow of Ca2+ into the mitochondria.
Collapse
Affiliation(s)
- Yongxin Liu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yongqing Wei
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaolong Jin
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyu Cai
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qianqian Chen
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
33
|
Zhao G, Jia M, Zhu S, Ren H, Wang G, Xin G, Sun M, Wang X, Lin Q, Jiang Q, Zhang C. Mitotic ER-mitochondria contact enhances mitochondrial Ca 2+ influx to promote cell division. Cell Rep 2024; 43:114794. [PMID: 39342616 DOI: 10.1016/j.celrep.2024.114794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Cell division is tightly regulated and requires an expanded energy supply. However, how this energy is generated remains unclear. Here, we establish a correlation between two mitochondrial Ca2+ influx events and ATP production during mitosis. While both events promote ATP production during mitosis, the second event, the Ca2+ influx surge, is substantial. To facilitate this Ca2+ influx surge, the lamin B receptor (LBR) organizes a mitosis-specific endoplasmic reticulum (ER)-mitochondrial contact site (ERMCS), creating a rapid Ca2+ transport pathway. LBR acts as a tether, connecting the ER Ca2+ release channel IP3R with the mitochondrial VDAC2. Depletion of LBR disrupts the Ca2+ influx surge, reduces ATP production, and postpones the metaphase-anaphase transition and subsequent cell division. These findings provide insight into the mechanisms underlying mitotic energy production and supply required for cell proliferation.
Collapse
Affiliation(s)
- Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shicong Zhu
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - He Ren
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guopeng Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mengjie Sun
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiangyang Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiaoyu Lin
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
34
|
Zhang X, Shi S, Du Y, Chai R, Guo Z, Duan C, Wang H, Hu Y, Chang X, Du B. Shaping cardiac destiny: the role of post-translational modifications on endoplasmic reticulum - mitochondria crosstalk in cardiac remodeling. Front Pharmacol 2024; 15:1423356. [PMID: 39464632 PMCID: PMC11502351 DOI: 10.3389/fphar.2024.1423356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiac remodeling is a shared pathological change in most cardiovascular diseases. Encompassing both adaptive physiological responses and decompensated pathological changes. Anatomically, atrial remodeling is primarily caused by atrial fibrillation, whereas ventricular remodeling is typically induced by myocardial infarction, hypertension, or cardiomyopathy. Mitochondria, the powerhouse of cardiomyocytes, collaborate with other organelles such as the endoplasmic reticulum to control a variety of pathophysiological processes such as calcium signaling, lipid transfer, mitochondrial dynamics, biogenesis, and mitophagy. This mechanism is proven to be essential for cardiac remodeling. Post-translational modifications can regulate intracellular signaling pathways, gene expression, and cellular stress responses in cardiac cells by modulating protein function, stability, and interactions, consequently shaping the myocardial response to injury and stress. These modifications, in particular phosphorylation, acetylation, and ubiquitination, are essential for the regulation of the complex molecular pathways that underlie cardiac remodeling. This review provides a comprehensive overview of the crosstalk between the endoplasmic reticulum and mitochondria during cardiac remodeling, focusing on the regulatory effects of various post-translational modifications on these interactions.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Department of Internal Medicine, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihang Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruoning Chai
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zezhen Guo
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chenglin Duan
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Chang
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai Du
- Department of Cardiology, Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Dematteis G, Tapella L, Casali C, Talmon M, Tonelli E, Reano S, Ariotti A, Pessolano E, Malecka J, Chrostek G, Kulkovienė G, Umbrasas D, Distasi C, Grilli M, Ladds G, Filigheddu N, Fresu LG, Mikoshiba K, Matute C, Ramos-Gonzalez P, Jekabsone A, Calì T, Brini M, Biggiogera M, Cavaliere F, Miggiano R, Genazzani AA, Lim D. ER-mitochondria distance is a critical parameter for efficient mitochondrial Ca 2+ uptake and oxidative metabolism. Commun Biol 2024; 7:1294. [PMID: 39390051 PMCID: PMC11467464 DOI: 10.1038/s42003-024-06933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
IP3 receptor (IP3R)-mediated Ca2+ transfer at the mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) drives mitochondrial Ca2+ uptake and oxidative metabolism and is linked to different pathologies, including Parkinson's disease (PD). The dependence of Ca2+ transfer efficiency on the ER-mitochondria distance remains unexplored. Employing molecular rulers that stabilize ER-mitochondrial distances at 5 nm resolution, and using genetically encoded Ca2+ indicators targeting the ER lumen and the sub-mitochondrial compartments, we now show that a distance of ~20 nm is optimal for Ca2+ transfer and mitochondrial oxidative metabolism due to enrichment of IP3R at MERCS. In human iPSC-derived astrocytes from PD patients, 20 nm MERCS were specifically reduced, which correlated with a reduction of mitochondrial Ca2+ uptake. Stabilization of the ER-mitochondrial interaction at 20 nm, but not at 10 nm, fully rescued mitochondrial Ca2+ uptake in PD astrocytes. Our work determines with precision the optimal distance for Ca2+ flux between ER and mitochondria and suggests a new paradigm for fine control over mitochondrial function.
Collapse
Affiliation(s)
- Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani"; University of Pavia, Pavia, Italy
| | - Maria Talmon
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Elisa Tonelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Simone Reano
- Interdipartimental Center for Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Adele Ariotti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Emanuela Pessolano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Justyna Malecka
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Gabriela Chrostek
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Gabrielė Kulkovienė
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Danielius Umbrasas
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Carla Distasi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, UK
| | - Nicoletta Filigheddu
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Katsuhiko Mikoshiba
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech Univeristy, Shanghai, China
| | - Carlos Matute
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIBERNED, Madrid, Spain
| | - Paula Ramos-Gonzalez
- CIBERNED, Madrid, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU); Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH) at Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Aiste Jekabsone
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tito Calì
- Study Center for Neurodegeneration (CESNE), Department of Biomedical Sciences (DSB), Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Pharmaceutical and Pharmacological Sciences (DSF), Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani"; University of Pavia, Pavia, Italy
| | - Fabio Cavaliere
- CIBERNED, Madrid, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU); Achucarro Basque Center for Neuroscience; The Basque Biomodels Platform for Human Research (BBioH) at Achucarro Basque Center for Neuroscience, Fundación Biofisica Bizkaia, Leioa, Spain
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
36
|
Zhao F, Cui Z, Wang P, Zhao Z, Zhu K, Bai Y, Jin X, Wang L, Lu L. GRP75-dependent mitochondria-ER contacts ensure cell survival during early mouse thymocyte development. Dev Cell 2024; 59:2643-2658.e7. [PMID: 38981469 DOI: 10.1016/j.devcel.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Mitochondria and endoplasmic reticulum contacts (MERCs) control multiple cellular processes, including cell survival and differentiation. Based on the observations that MERCs were specifically enriched in the CD4-CD8- double-negative (DN) stage, we studied their role in early mouse thymocyte development. We found that T cell-specific knockout of Hspa9, which encodes GRP75, a protein that mediates MERC formation by assembling the IP3R-GRP75-VDAC complex, impaired DN3 thymocyte viability and resulted in thymocyte developmental arrest at the DN3-DN4 transition. Mechanistically, GRP75 deficiency induced mitochondrial stress, releasing mitochondrial DNA (mtDNA) into the cytosol and triggering the type I interferon (IFN-I) response. The IFN-I pathway contributed to both the impairment of cell survival and DN3-DN4 transition blockage, while increased lipid peroxidation (LPO) played a major role downstream of IFN-I. Thus, our study identifies the essential role of GRP75-dependent MERCs in early thymocyte development and the governing facts of cell survival and differentiation in the DN stage.
Collapse
Affiliation(s)
- Fan Zhao
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zejin Cui
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Zhishan Zhao
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Kaixiang Zhu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yadan Bai
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Xuexiao Jin
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lie Wang
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China; Bone Marrow Transplantation Center and Institute of Immunology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linrong Lu
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
37
|
Xu K, Saaoud F, Shao Y, Lu Y, Yang Q, Jiang X, Wang H, Yang X. A new paradigm in intracellular immunology: Mitochondria emerging as leading immune organelles. Redox Biol 2024; 76:103331. [PMID: 39216270 PMCID: PMC11402145 DOI: 10.1016/j.redox.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondria, traditionally recognized as cellular 'powerhouses' due to their pivotal role in energy production, have emerged as multifunctional organelles at the intersection of bioenergetics, metabolic signaling, and immunity. However, the understanding of their exact contributions to immunity and inflammation is still developing. This review first introduces the innovative concept of intracellular immunity, emphasizing how mitochondria serve as critical immune signaling hubs. They are instrumental in recognizing and responding to pathogen and danger signals, and in modulating immune responses. We also propose mitochondria as the leading immune organelles, drawing parallels with the broader immune system in their functions of antigen presentation, immune regulation, and immune response. Our comprehensive review explores mitochondrial immune signaling pathways, their therapeutic potential in managing inflammation and chronic diseases, and discusses cutting-edge methodologies for mitochondrial research. Targeting a broad readership of both experts in mitochondrial functions and newcomers to the field, this review sets forth new directions that could transform our understanding of intracellular immunity and the integrated immune functions of intracellular organelles.
Collapse
Affiliation(s)
- Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | | | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, USA; Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, USA; Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
38
|
Yao H, Xie Y, Li C, Liu W, Yi G. Mitochondria-Associated Organelle Crosstalk in Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Transl Res 2024; 17:1106-1118. [PMID: 38807004 DOI: 10.1007/s12265-024-10523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Organelle damage is a significant contributor to myocardial ischemia/reperfusion (I/R) injury. This damage often leads to disruption of endoplasmic reticulum protein regulatory programs and dysfunction of mitochondrial energy metabolism. Mitochondria and endoplasmic reticulum are seamlessly connected through the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a crucial site for the exchange of organelles and metabolites. However, there is a lack of reports regarding the communication of information and metabolites between mitochondria and related organelles, which is a crucial factor in triggering myocardial I/R damage. To address this research gap, this review described the role of crosstalk between mitochondria and the correlative organelles such as endoplasmic reticulum, lysosomal and nuclei involved in reperfusion injury of the heart. In summary, this review aims to provide a comprehensive understanding of the crosstalk between organelles in myocardial I/R injury, with the ultimate goal of facilitating the development of targeted therapies based on this knowledge.
Collapse
Affiliation(s)
- Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
| | - Yuxin Xie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Chaoquan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
| | - Wanting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
39
|
Li S, Xu R, Yao Y, Rousseau D. ATAD3 is a limiting factor in mitochondrial biogenesis and adipogenesis of white adipocyte-like 3T3-L1 cells. Cell Biol Int 2024; 48:1473-1489. [PMID: 38923254 DOI: 10.1002/cbin.12206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
ATAD3 is a vital ATPase of the inner mitochondrial membrane of pluri-cellular eukaryotes, with largely unknown functions but early required for organism development as necessary for mitochondrial biogenesis. ATAD3 knock-down in C. elegans inhibits at first the development of adipocyte-like intestinal tissue so we used mouse adipocyte model 3T3-L1 cells to analyze ATAD3 functions during adipogenesis and lipogenesis in a mammalian model. ATAD3 function was studied by stable and transient modulation of ATAD3 expression in adipogenesis- induced 3T3-L1 cells using Knock-Down and overexpression strategies, exploring different steps of adipocyte differentiation and lipogenesis. We show that (i) an increase in ATAD3 is preceding differentiation-induced mitochondrial biogenesis; (ii) downregulation of ATAD3 inhibits adipogenesis, lipogenesis, and impedes overexpression of many mitochondrial proteins; (iii) ATAD3 re-expression rescues the phenotype of ATAD3 KD, and (iv) differentiation and lipogenesis are accelerated by ATAD3 overexpression, but inhibited by expression of a dominant-negative mutant. We further show that the ATAD3 KD phenotype is not due to altered insulin signal but involves a limitation of mitochondrial biogenesis linked to Drp1. These results demonstrate that ATAD3 is limiting for in vitro mitochondrial biogenesis and adipogenesis/lipogenesis and therefore that ATAD3 mutation/over- or under-expression could be involved in adipogenic and lipogenic pathologies.
Collapse
Affiliation(s)
- Shuijie Li
- Department of Biology, University Grenoble Alpes, Grenoble, France
| | - Rui Xu
- Institute of Biochemistry and Cell Biology of Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Yao Yao
- Institute of Biochemistry and Cell Biology of Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Denis Rousseau
- Department of Biology, University Grenoble Alpes, Grenoble, France
- Laboratoire des Matériaux et du Génie Physique-Interfaces entre Matériaux et Matière Biologique -Institut National Polytechnique-Centre National de la Recherche Scientifique - Unité Mixte de Recherche, Grenoble, France
| |
Collapse
|
40
|
Luo JS, Zhai WH, Ding LL, Zhang XJ, Han J, Ning JQ, Chen XM, Jiang WC, Yan RY, Chen MJ. MAMs and Mitochondrial Quality Control: Overview and Their Role in Alzheimer's Disease. Neurochem Res 2024; 49:2682-2698. [PMID: 39002091 DOI: 10.1007/s11064-024-04205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.
Collapse
Affiliation(s)
- Jian-Sheng Luo
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Hu Zhai
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ling-Ling Ding
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xian-Jie Zhang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia Han
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia-Qi Ning
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xue-Meng Chen
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Cai Jiang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ru-Yu Yan
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Meng-Jie Chen
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| |
Collapse
|
41
|
Yang Z, Chan DC. Development of a Signal-integrating Reporter to Monitor Mitochondria-ER Contacts. ACS Synth Biol 2024; 13:2791-2803. [PMID: 39162343 DOI: 10.1021/acssynbio.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mitochondria-endoplasmic reticulum contact sites (MERCS) serve as hotspots for important cellular processes, including calcium homeostasis, phospholipid homeostasis, mitochondria dynamics, and mitochondrial quality control. MERCS reporters based on complementation of green fluorescent proteins (GFP) fragments have been designed to visualize MERCS in real-time, but we find that they do not accurately respond to changes in MERCS content. Here, we utilize split LacZ complementing fragments to develop the first MERCS reporter system (termed SpLacZ-MERCS) that continuously integrates the MERCS information within a cell and generates a fluorescent output. Our system exhibits good organelle targeting, no artifactual tethering, and effective, dynamic tracking of the MERCS level in single cells. The SpLacZ-MERCS reporter was validated by drug treatments and genetic perturbations known to affect mitochondria-ER contacts. The signal-integrating nature of SpLacZ-MERCS may enable systematic identification of genes and drugs that regulate mitochondria-ER interactions. Our successful application of the split LacZ complementation strategy to study MERCS may be extended to study other forms of interorganellar crosstalk.
Collapse
Affiliation(s)
- Zheng Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
42
|
Raby A, Missiroli S, Sanatine P, Langui D, Pansiot J, Beaude N, Vezzana L, Saleh R, Marinello M, Laforge M, Pinton P, Buj-Bello A, Burgo A. Spastin regulates ER-mitochondrial contact sites and mitochondrial homeostasis. iScience 2024; 27:110683. [PMID: 39252960 PMCID: PMC11382127 DOI: 10.1016/j.isci.2024.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) emerged to play critical roles in numerous cellular processes, and their dysregulation has been associated to neurodegenerative disorders. Mutations in the SPG4 gene coding for spastin are among the main causes of hereditary spastic paraplegia (HSP). Spastin binds and severs microtubules, and the long isoform of this protein, namely M1, spans the outer leaflet of ER membrane where it interacts with other ER-HSP proteins. Here, we showed that overexpressed M1 spastin localizes in ER-mitochondria intersections and that endogenous spastin accumulates in MERCs. We demonstrated in different cellular models that downregulation of spastin enhances the number of MERCs, alters mitochondrial morphology, and impairs ER and mitochondrial calcium homeostasis. These effects are associated with reduced mitochondrial membrane potential, oxygen species levels, and oxidative metabolism. These findings extend our knowledge on the role of spastin in the ER and suggest MERCs deregulation as potential causes of SPG4-HSP disease.
Collapse
Affiliation(s)
- Amelie Raby
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Sonia Missiroli
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | | | - Dominique Langui
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Julien Pansiot
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Nissai Beaude
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Lucie Vezzana
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Rachelle Saleh
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Martina Marinello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Mireille Laforge
- Université Paris Cité, NeuroDiderot, Inserm, 75019 Paris, France
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, and Technopole of Ferrara, Laboratory for Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Ana Buj-Bello
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Andrea Burgo
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
43
|
Guo M, Liu R, Zhang F, Qu J, Yang Y, Li X. A new perspective on liver diseases: Focusing on the mitochondria-associated endoplasmic reticulum membranes. Pharmacol Res 2024; 208:107409. [PMID: 39284429 DOI: 10.1016/j.phrs.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The pathogenesis of liver diseases is multifaceted and intricate, posing a persistent global public health challenge with limited therapeutic options. Therefore, further research into liver diseases is imperative for better comprehension and advancement in treatment strategies. Numerous studies have confirmed the endoplasmic reticulum (ER) and mitochondria as key organelles driving liver diseases. Notably, the mitochondrial-associated ER membranes (MAMs) establish a physical and functional connection between the ER and mitochondria, highlighting the importance of inter-organelle communication in maintaining their functional homeostasis. This review delves into the intricate architecture and regulative mechanism of the integrated MAM that facilitate the physiological transfer of signals and substances between organelles. Additionally, we also provide a detailed overview regarding the varied pathogenic roles of malfunctioning MAM in liver diseases, focusing on its involvement in the progression of ER stress and mitochondrial dysfunction, the regulation of mitochondrial dynamics and Ca2+ transfer, as well as the disruption of lipid and glucose homeostasis. Furthermore, the current challenges and prospects associated with MAM in liver disease research are thoroughly discussed. In conclusion, elucidating the specific structure and function of MAM in different liver diseases may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Mengyu Guo
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 100029, China
| | - Fukun Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Yun Yang
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, China.
| |
Collapse
|
44
|
Huang KT, Wagner LE, Takano T, Lin XX, Bagavant H, Deshmukh U, Yule DI. Dysregulated Ca 2+ signaling, fluid secretion, and mitochondrial function in a mouse model of early Sjögren's disease. eLife 2024; 13:RP97069. [PMID: 39259200 PMCID: PMC11390111 DOI: 10.7554/elife.97069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
The molecular mechanisms leading to saliva secretion are largely established, but factors that underlie secretory hypofunction, specifically related to the autoimmune disease Sjögren's syndrome (SS) are not fully understood. A major conundrum is the lack of association between the severity of salivary gland immune cell infiltration and glandular hypofunction. SS-like disease was induced by treatment with DMXAA, a small molecule agonist of murine STING. We have previously shown that the extent of salivary secretion is correlated with the magnitude of intracellular Ca2+ signals (Takano et al., 2021). Contrary to our expectations, despite a significant reduction in fluid secretion, neural stimulation resulted in enhanced Ca2+ signals with altered spatiotemporal characteristics in vivo. Muscarinic stimulation resulted in reduced activation of the Ca2+-activated Cl- channel, TMEM16a, although there were no changes in channel abundance or absolute sensitivity to Ca2+. Super-resolution microscopy revealed a disruption in the colocalization of Inositol 1,4,5-trisphosphate receptor Ca2+ release channels with TMEM16a, and channel activation was reduced when intracellular Ca2+ buffering was increased. These data indicate altered local peripheral coupling between the channels. Appropriate Ca2+ signaling is also pivotal for mitochondrial morphology and bioenergetics. Disrupted mitochondrial morphology and reduced oxygen consumption rate were observed in DMXAA-treated animals. In summary, early in SS disease, dysregulated Ca2+ signals lead to decreased fluid secretion and disrupted mitochondrial function contributing to salivary gland hypofunction.
Collapse
Affiliation(s)
- Kai-Ting Huang
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Larry E Wagner
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Xiao-Xuan Lin
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| | - Harini Bagavant
- Arthritis and Clinical Immunology, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - Umesh Deshmukh
- Arthritis and Clinical Immunology, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - David I Yule
- Department of Pharmacology and Physiology, University of RochesterRochesterUnited States
| |
Collapse
|
45
|
Brueck L, Roocke S, Matschke V, Richter-Unruh A, Marcus-Alic K, Theiss C, Stahlke S. FGF23 and Cell Stress in SaOS-2 Cells-A Model Reflecting X-Linked Hypophosphatemia Dynamics. Cells 2024; 13:1515. [PMID: 39329699 PMCID: PMC11430666 DOI: 10.3390/cells13181515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Our study investigates the impact of FGF23 overexpression on SaOS-2 cells to elucidate its role in cellular stress and morphology, contributing to the understanding of skeletal pathologies like X-linked hypophosphatemia (XLH). Using transmission electron microscopy and protein analysis (Western blot), we analyzed the rough endoplasmic reticulum (rER) and mitochondria in SaOS-2 cells with FGF23 overexpression compared to controls. We found significant morphological changes, including enlarged and elongated rER and mitochondria, with increased contact zones, suggesting enhanced interaction and adaptation to elevated protein synthesis and secretion demands. Additionally, we observed higher apoptosis rates of the cells after 24-72 h in vitro and upregulated proteins associated with ER stress and apoptosis, such as CHOP, XBP1 (spliced and unspliced), GRP94, eIF2α, and BAX. These findings indicate a robust activation of the unfolded protein response (UPR) and apoptotic pathways due to FGF23 overexpression. Our results highlight the critical role of ER and mitochondrial interactions in cellular stress responses and provide new insights into the mechanistic link between FGF23 signaling and cellular homeostasis. In conclusion, our study underscores the importance of analyzing UPR-related pathways in the development of therapeutic strategies for skeletal and systemic diseases and contributes to a broader understanding of diseases like XLH.
Collapse
Affiliation(s)
- Lisanne Brueck
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
| | - Sascha Roocke
- The Medical Proteome Center, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Annette Richter-Unruh
- Clinic for Children and Adolescents, Pediatric Endocrinology, St. Josefs-Hospital, D-44791 Bochum, Germany
| | - Katrin Marcus-Alic
- The Medical Proteome Center, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (L.B.)
| |
Collapse
|
46
|
Decker ST, Funai K. Mitochondrial membrane lipids in the regulation of bioenergetic flux. Cell Metab 2024; 36:1963-1978. [PMID: 39178855 PMCID: PMC11374467 DOI: 10.1016/j.cmet.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Oxidative phosphorylation (OXPHOS) occurs through and across the inner mitochondrial membrane (IMM). Mitochondrial membranes contain a distinct lipid composition, aided by lipid biosynthetic machinery localized in the IMM and class-specific lipid transporters that limit lipid traffic in and out of mitochondria. This unique lipid composition appears to be essential for functions of mitochondria, particularly OXPHOS, by its effects on direct lipid-to-protein interactions, membrane properties, and cristae ultrastructure. This review highlights the biological significance of mitochondrial lipids, with a particular spotlight on the role of lipids in mitochondrial bioenergetics. We describe pathways for the biosynthesis of mitochondrial lipids and provide evidence for their roles in physiology, their implications in human disease, and the mechanisms by which they regulate mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Stephen Thomas Decker
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
47
|
Serangeli I, Diamanti T, De Jaco A, Miranda E. Role of mitochondria-endoplasmic reticulum contacts in neurodegenerative, neurodevelopmental and neuropsychiatric conditions. Eur J Neurosci 2024; 60:5040-5068. [PMID: 39099373 DOI: 10.1111/ejn.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) mediate a close and continuous communication between both organelles that is essential for the transfer of calcium and lipids to mitochondria, necessary for cellular signalling and metabolic pathways. Their structural and molecular characterisation has shown the involvement of many proteins that bridge the membranes of the two organelles and maintain the structural stability and function of these contacts. The crosstalk between the two organelles is fundamental for proper neuronal function and is now recognised as a component of many neurological disorders. In fact, an increasing proportion of MERC proteins take part in the molecular and cellular basis of pathologies affecting the nervous system. Here we review the alterations in MERCs that have been reported for these pathologies, from neurodevelopmental and neuropsychiatric disorders to neurodegenerative diseases. Although mitochondrial abnormalities in these debilitating conditions have been extensively attributed to the high energy demand of neurons, a distinct role for MERCs is emerging as a new field of research. Understanding the molecular details of such alterations may open the way to new paths of therapeutic intervention.
Collapse
Affiliation(s)
- Ilaria Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
48
|
Gurlo T, Liu R, Wang Z, Hoang J, Ryazantsev S, Daval M, Butler AE, Yang X, Blencowe M, Butler PC. Dysregulation of cholesterol homeostasis is an early signal of β-cell proteotoxicity characteristic of type 2 diabetes. Physiol Genomics 2024; 56:621-633. [PMID: 38949617 DOI: 10.1152/physiolgenomics.00029.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024] Open
Abstract
Type 2 diabetes (T2D) is a common metabolic disease due to insufficient insulin secretion by pancreatic β-cells in the context of insulin resistance. Islet molecular pathology reveals a role for protein misfolding in β-cell dysfunction and loss with islet amyloid derived from islet amyloid polypeptide (IAPP), a protein coexpressed and cosecreted with insulin. The most toxic form of misfolded IAPP is intracellular membrane disruptive toxic oligomers present in β-cells in T2D and in β-cells of mice transgenic for human IAPP (hIAPP). Prior work revealed a high degree of overlap of transcriptional changes in islets from T2D and prediabetic 9- to 10-wk-old mice transgenic for hIAPP with most changes being pro-survival adaptations and therefore of limited therapeutic guidance. Here, we investigated islets from hIAPP transgenic mice at an earlier age (6 wk) to screen for potential mediators of hIAPP toxicity that precede predominance of pro-survival signaling. We identified early suppression of cholesterol synthesis and trafficking along with aberrant intra-β-cell cholesterol and lipid deposits and impaired cholesterol trafficking to cell membranes. These findings align with comparable lipid deposits present in β-cells in T2D and increased vulnerability to develop T2D in individuals taking medications that suppress cholesterol synthesis.NEW & NOTEWORTHY β-Cell failure in type 2 diabetes (T2D) is characterized by β-cell misfolded protein stress due to the formation of toxic oligomers of islet amyloid polypeptide (IAPP). Most transcriptional changes in islets in T2D are pro-survival adaptations consistent with the slow progression of β-cell loss. In the present study, investigation of the islet transcriptional signatures in a mouse model of T2D expressing human IAPP revealed decreased cholesterol synthesis and trafficking as a plausible early mediator of IAPP toxicity.
Collapse
Affiliation(s)
- Tatyana Gurlo
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Ruoshui Liu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States
| | - Zhongying Wang
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Jonathan Hoang
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Sergey Ryazantsev
- Electron Imaging Center, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, California, United States
| | - Marie Daval
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Alexandra E Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, United States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, United States
| | - Peter C Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| |
Collapse
|
49
|
Guo J, Wang Y, Shi C, Zhang D, Zhang Q, Wang L, Gong Z. Mitochondrial calcium uniporter complex: Unveiling the interplay between its regulators and calcium homeostasis. Cell Signal 2024; 121:111284. [PMID: 38964444 DOI: 10.1016/j.cellsig.2024.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The mitochondrial calcium uniporter complex (MCUc), serving as the specific channel for calcium influx into the mitochondrial matrix, is integral to calcium homeostasis and cellular integrity. Given its importance, ongoing research spans various disease models to understand the properties of the MCUc in pathophysiological contexts, but reported a different conclusion. Therefore, this review delves into the profound connection between MCUc-mediated calcium transients and cellular signaling pathways, mitochondrial dynamics, metabolism, and cell death. Additionally, we shed light on the recent advancements concerning the structural intricacies and auxiliary components of the MCUc in both resting and activated states. Furthermore, emphasis is placed on novel extrinsic and intrinsic regulators of the MCUc and their therapeutic implications across a spectrum of diseases. Meanwhile, we employed molecular docking simulations and identified candidate traditional Chinese medicine components with potential binding sites to the MCUc, potentially offering insights for further research on MCUc modulation.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
50
|
Nyström JH, Heikkilä TRH, Thapa K, Pulli I, Törnquist K, Toivola DM. Colonocyte keratins stabilize mitochondria and contribute to mitochondrial energy metabolism. Am J Physiol Gastrointest Liver Physiol 2024; 327:G438-G453. [PMID: 38860856 PMCID: PMC11427106 DOI: 10.1152/ajpgi.00220.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding, and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8-/-) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation, and blunted mitochondrial ketogenesis, the role of K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8-/- colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8-/- colonocyte mitochondria in vivo are smaller and rounder and that mitochondrial motility is increased in K8-/- Caco-2 cells. Furthermore, K8-/- Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared with controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8-/- Caco-2 cells and in vivo in K8-/- mouse colonocytes, and reexpression of K8 into K8-/- Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca2+ is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca2+. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca2+ signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.NEW & NOTEWORTHY In this study, we show that colonocyte intermediate filament protein keratin 8 is important for stabilizing mitochondria and maintaining mitochondrial energy metabolism, as keratin 8-deficient colonocytes display smaller, rounder, and more motile mitochondria, diminished mitochondrial respiration, and altered Ca2+ dynamics. Changes in fusion-regulating proteins are rescued with reexpression of keratin 8. These alterations in colonocyte mitochondrial homeostasis contribute to keratin 8-associated colitis pathophysiology.
Collapse
Affiliation(s)
- Joel H Nyström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Taina R H Heikkilä
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Keshav Thapa
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilari Pulli
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Kid Törnquist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|