1
|
Chun SY, Park C, Oh J, Yoon HJ, Kim TI, Kim Y, Ham SW, Koh HR, Lee HH, Kim HY, Oh K. (Thio)chromenone derivatives exhibit anti-metastatic effects through selective inhibition of uPAR in cancer cell lines: discovery of an uPAR-targeting fluorescent probe. Chem Commun (Camb) 2025; 61:909-912. [PMID: 39668665 DOI: 10.1039/d4cc05907g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
A class of (thio)chromenone derivatives has been identified as suitable ligands for uPAR, a glycoprotein with a prognostic value in a large number of human cancers. The (thio)chromenone agents actively inhibited the binding of uPAR to uPA with a binding affinity of 18.6 nM, reducing cell migration in the wound healing assay by up to 40% without apparent cell motility. The discovery of an uPAR-targeting fluorescent probe was also made in this study that can selectively bind to the membrane uPAR, providing valuable molecular insights into the role of uPAR in cancer metastasis. This study should serve as a basis for the development of new uPAR-targeting agents that can control the metastatic potential of cancer cells with minimal cytotoxicity.
Collapse
Affiliation(s)
- So-Young Chun
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.
| | - Chanhee Park
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.
| | - Jiwon Oh
- Department of Integrative Energy Engineering, Graduate School of Energy and Environment (KU-KIST Green School), College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hey-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Il Kim
- Department of Chemistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Youngmi Kim
- Department of Chemistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung Wook Ham
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hye Ran Koh
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.
| |
Collapse
|
2
|
Cherf GM, Lee RB, Mehta N, Clifford C, Torres K, Kintzing JR, Cochran JR. An engineered ultrahigh affinity bi-paratopic uPAR targeting agent confers enhanced tumor targeting. Biotechnol Bioeng 2024; 121:3169-3180. [PMID: 38965775 DOI: 10.1002/bit.28790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is overexpressed on tumor cells in multiple types of cancer and contributes to disease progression and metastasis. In this work, we engineered a novel bi-paratopic uPAR targeting agent by fusing the binding domains of two native uPAR ligands: uPA and vitronectin, with a flexible peptide linker. The linker length was optimized to facilitate simultaneous engagement of both domains to their adjacent epitopes on uPAR, resulting in a high affinity and avid binding interaction. Furthermore, the individual domains were affinity-matured using yeast surface display and directed evolution, resulting in a bi-paratopic protein with affinity in the picomolar to femtomolar range. This engineered uPAR targeting agent demonstrated significantly enhanced tumor localization in mouse tumor models compared to the native uPAR ligand and warrants further investigation as a diagnostic and therapeutic agent for cancer.
Collapse
Affiliation(s)
- Gerald M Cherf
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Robert B Lee
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Nishant Mehta
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Claire Clifford
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Kathleen Torres
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
López-Carrasco A, Vieco-Martí I, Granados-Aparici S, Acevedo-León D, Estañ-Capell N, Portugal R, Huerta-Aragonés J, Cañete A, Navarro S, Noguera R. Vitronectin Levels in the Plasma of Neuroblastoma Patients and Culture Media of 3D Models: A Prognostic Circulating Biomarker? Int J Mol Sci 2024; 25:8733. [PMID: 39201421 PMCID: PMC11354570 DOI: 10.3390/ijms25168733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Vitronectin is a glycoprotein present in plasma and the extracellular matrix that is implicated in cell migration. The high amount of vitronectin found in neuroblastoma biopsies has been associated with poor prognosis. Moreover, increased vitronectin levels have been described in the plasma of patients with different cancers. Our aim was to assess vitronectin as a potential circulating biomarker of neuroblastoma prognosis. Vitronectin concentration was quantified using ELISA in culture media of four neuroblastoma cell lines grown in a monolayer and in 3D models, and in the plasma of 114 neuroblastoma patients. Three of the neuroblastoma cell lines secreted vitronectin to culture media when cultured in a monolayer and 3D models. Vitronectin release was higher by neuroblastoma cells cultured in 3D models than in the monolayer and was still elevated when cells were grown in 3D scaffolds with cross-linked vitronectin. Vitronectin secretion occurred independently of cell numbers in cultures. Its concentration in the plasma of neuroblastoma patients ranged between 52.4 and 870 µg/mL (median, 218 µg/mL). A ROC curve was used to establish a cutoff of 361 µg/mL, above which patients over 18 months old had worse prognosis (p = 0.0018). Vitronectin could be considered a new plasma prognostic biomarker in neuroblastoma and warrants confirmation in collaborative studies. Drugs inhibiting vitronectin interactions with cells and/or the extracellular matrix could represent a significant improvement in survival for neuroblastoma patients.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Isaac Vieco-Martí
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Sofía Granados-Aparici
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | | | | | | | | | - Adela Cañete
- Politechnic and University Hospital La Fe, 46026 Valencia, Spain
| | - Samuel Navarro
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
- Pathology Department, Medical School, University of Valencia, 46010 Valencia, Spain
| | - Rosa Noguera
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
- Pathology Department, Medical School, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
4
|
Hamada M, Varkoly KS, Riyadh O, Beladi R, Munuswamy-Ramanujam G, Rawls A, Wilson-Rawls J, Chen H, McFadden G, Lucas AR. Urokinase-Type Plasminogen Activator Receptor (uPAR) in Inflammation and Disease: A Unique Inflammatory Pathway Activator. Biomedicines 2024; 12:1167. [PMID: 38927374 PMCID: PMC11201033 DOI: 10.3390/biomedicines12061167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a unique protease binding receptor, now recognized as a key regulator of inflammation. Initially, uPA/uPAR was considered thrombolytic (clot-dissolving); however, recent studies have demonstrated its predominant immunomodulatory functions in inflammation and cancer. The uPA/uPAR complex has a multifaceted central role in both normal physiological and also pathological responses. uPAR is expressed as a glycophosphatidylinositol (GPI)-linked receptor interacting with vitronectin, integrins, G protein-coupled receptors, and growth factor receptors within a large lipid raft. Through protein-to-protein interactions, cell surface uPAR modulates intracellular signaling, altering cellular adhesion and migration. The uPA/uPAR also modifies extracellular activity, activating plasminogen to form plasmin, which breaks down fibrin, dissolving clots and activating matrix metalloproteinases that lyse connective tissue, allowing immune and cancer cell invasion and releasing growth factors. uPAR is now recognized as a biomarker for inflammatory diseases and cancer; uPAR and soluble uPAR fragments (suPAR) are increased in viral sepsis (COVID-19), inflammatory bowel disease, and metastasis. Here, we provide a comprehensive overview of the structure, function, and current studies examining uPAR and suPAR as diagnostic markers and therapeutic targets. Understanding uPAR is central to developing diagnostic markers and the ongoing development of antibody, small-molecule, nanogel, and virus-derived immune-modulating treatments that target uPAR.
Collapse
Affiliation(s)
- Mostafa Hamada
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Kyle Steven Varkoly
- Department of Internal Medicine, McLaren Macomb Hospital, Michigan State University College of Human Medicine, 1000 Harrington St., Mt Clemens, MI 48043, USA
| | - Omer Riyadh
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Roxana Beladi
- Department of Neurosurgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, 16001 W Nine Mile Rd, Southfield, MI 48075, USA;
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Alan Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Hao Chen
- Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Grant McFadden
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| |
Collapse
|
5
|
He Y, Døssing KBV, Rossing M, Bagger FO, Kjaer A. uPAR (PLAUR) Marks Two Intra-Tumoral Subtypes of Glioblastoma: Insights from Single-Cell RNA Sequencing. Int J Mol Sci 2024; 25:1998. [PMID: 38396677 PMCID: PMC10889167 DOI: 10.3390/ijms25041998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Urokinase plasminogen activator receptor (uPAR) encoded by the PLAUR gene is known as a clinical marker for cell invasiveness in glioblastoma multiforme (GBM). It is additionally implicated in various processes, including angiogenesis and inflammation within the tumor microenvironment. However, there has not been a comprehensive study that depicts the overall functions and molecular cooperators of PLAUR with respect to intra-tumoral subtypes of GBM. Using single-cell RNA sequencing data from 37 GBM patients, we identified PLAUR as a marker gene for two distinct subtypes in GBM. One subtype is featured by inflammatory activities and the other subtype is marked by ECM remodeling processes. Using the whole-transcriptome data from single cells, we are able to uncover the molecular cooperators of PLAUR for both subtypes without presuming biological pathways. Two protein networks comprise the molecular context of PLAUR, with each of the two subtypes characterized by a different dominant network. We concluded that targeting PLAUR directly influences the mechanisms represented by these two protein networks, regardless of the subtype of the targeted cell.
Collapse
Affiliation(s)
- Yue He
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet, 2200 Copenhagen, Denmark; (Y.H.); (K.B.V.D.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristina B. V. Døssing
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet, 2200 Copenhagen, Denmark; (Y.H.); (K.B.V.D.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (F.O.B.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark (F.O.B.)
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet, 2200 Copenhagen, Denmark; (Y.H.); (K.B.V.D.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Li CZ, Qiang YY, Liu ZJ, Zheng LS, Peng LX, Mei Y, Meng DF, Wei WW, Chen DW, Xu L, Lang YH, Xie P, Peng XS, Wang MD, Guo LL, Shu DT, Ding LY, Lin ST, Luo FF, Wang J, Li SS, Huang BJ, Chen JD, Qian CN. Ulinastatin inhibits the metastasis of nasopharyngeal carcinoma by involving uPA/uPAR signaling. Drug Dev Res 2023; 84:1468-1481. [PMID: 37534761 DOI: 10.1002/ddr.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Distant metastasis is the primary reason for treatment failure in patients with nasopharyngeal carcinoma (NPC). In this study, we investigated the effect of ulinastatin (UTI) on NPC metastasis and its underlying mechanism. Highly-metastatic NPC cell lines S18 and 58F were treated with UTI and the effect on cell proliferation, migration, and invasion were determined by MTS and Transwell assays. S18 cells with luciferase-expressing (S18-1C3) were injected into the left hind footpad of nude mice to establish a model of spontaneous metastasis from the footpad to popliteal lymph node (LN). The luciferase messenger RNA (mRNA) was measured by quantitative polymerase chain reaction (qPCR), and the metastasis inhibition rate was calculated. Key molecular members of the UTI-related uPA, uPAR, and JAT/STAT3 signaling pathways were detected by qPCR and immunoblotting. UTI suppressed the migration and infiltration of S18 and 5-8F cells and suppressed the metastasis of S18 cells in vivo without affecting cell proliferation. uPAR expression decreased from 24 to 48 h after UTI treatment. The antimetastatic effect of UTI is partly due to the suppression of uPA and uPAR. UTI partially suppresses NPC metastasis by downregulating the expression of uPA and uPAR.
Collapse
Affiliation(s)
- Chang-Zhi Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Medical School, Pingdingshan University, Pingdingshan, China
| | - Yuan-Yuan Qiang
- Ningxia Key Laboratory for Cerebrocranical Disease, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhi-Jie Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiotherapy, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong-Fang Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen-Wen Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dong-Wen Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Xu
- Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-Hong Lang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ping Xie
- Department of Radiation Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xing-Si Peng
- Department of Radiation Oncology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming-Dian Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling-Ling Guo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Di-Tian Shu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liu-Yan Ding
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Ting Lin
- The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Fei-Fei Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sha-Sha Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangzhou Concord Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Leth JM, Newcombe EA, Grønnemose AL, Jørgensen JT, Qvist K, Clausen AS, Knudsen LBS, Kjaer A, Kragelund BB, Jørgensen TJD, Ploug M. Targeted imaging of uPAR expression in vivo with cyclic AE105 variants. Sci Rep 2023; 13:17248. [PMID: 37821532 PMCID: PMC10567728 DOI: 10.1038/s41598-023-43934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
A comprehensive literature reports on the correlation between elevated levels of urokinase-type plasminogen activator receptor (uPAR) and the severity of diseases with chronic inflammation including solid cancers. Molecular imaging is widely used as a non-invasive method to locate disease dissemination via full body scans and to stratify patients for targeted treatment. To date, the only imaging probe targeting uPAR that has reached clinical phase-II testing relies on a high-affinity 9-mer peptide (AE105), and several studies by positron emission tomography (PET) scanning or near-infra red (NIR) fluorescence imaging have validated its utility and specificity in vivo. While our previous studies focused on applying various reporter groups, the current study aims to improve uPAR-targeting properties of AE105. We successfully stabilized the small uPAR-targeting core of AE105 by constraining its conformational landscape by disulfide-mediated cyclization. Importantly, this modification mitigated the penalty on uPAR-affinity typically observed after conjugation to macrocyclic chelators. Cyclization did not impair tumor targeting efficiency of AE105 in vivo as assessed by PET imaging and a trend towards increased tracer uptake was observed. In future studies, we predict that this knowledge will aid development of new fluorescent AE105 derivatives with a view to optical imaging of uPAR to assist precision guided cancer surgery.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, 2200, Copenhagen N, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Estella Anne Newcombe
- Structural Biology and NMR Laboratory, Copenhagen N, Denmark
- REPIN, Copenhagen N, Denmark
- The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Anne Louise Grønnemose
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, 2200, Copenhagen N, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Katrine Qvist
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Anne Skovsbo Clausen
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Line Bruhn Schneider Knudsen
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet, Copenhagen N, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Birthe Brandt Kragelund
- Structural Biology and NMR Laboratory, Copenhagen N, Denmark
- REPIN, Copenhagen N, Denmark
- The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | | | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, 2200, Copenhagen N, Denmark.
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
8
|
Chaudhary PK, Kim S, Kim S. Shedding Light on the Cell Biology of Platelet-Derived Extracellular Vesicles and Their Biomedical Applications. Life (Basel) 2023; 13:1403. [PMID: 37374185 DOI: 10.3390/life13061403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
EVs are membranous subcellular structures originating from various cells, including platelets which consist of biomolecules that can modify the target cell's pathophysiological functions including inflammation, cell communication, coagulation, and metastasis. EVs, which are known to allow the transmission of a wide range of molecules between cells, are gaining popularity in the fields of subcellular treatment, regenerative medicine, and drug delivery. PEVs are the most abundant EVs in circulation, being produced by platelet activation, and are considered to have a significant role in coagulation. PEV cargo is extremely diverse, containing lipids, proteins, nucleic acids, and organelles depending on the condition that induced their release and can regulate a wide range of biological activities. PEVs, unlike platelets, can overcome tissue barriers, allowing platelet-derived contents to be transferred to target cells and organs that platelets cannot reach. Their isolation, characterization, and therapeutic efficacy, on the other hand, are poorly understood. This review summarizes the technical elements of PEV isolation and characterization methods as well as the pathophysiological role of PEVs, including therapeutic potential and translational possibility in diverse disciplines.
Collapse
Affiliation(s)
- Preeti Kumari Chaudhary
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelet Signaling, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
9
|
Ballonová L, Kulíšková P, Slanina P, Štíchová J, Vlková M, Hakl R, Litzman J, Souček P, Freiberger T. PLAUR splicing pattern in hereditary angioedema patients' monocytes and macrophages. Mol Biol Rep 2023; 50:4975-4982. [PMID: 37086298 DOI: 10.1007/s11033-023-08391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND The PLAUR gene encodes the urokinase-like plasminogen activator receptor (uPAR) and may undergo alternative splicing. Excluding cassette exons 3, 5 and 6 from the transcript results in truncated protein variants whose precise functions have not been elucidated yet. The PLAUR gene is one of several expressed in myeloid cells, where uPAR participates in different cellular processes, including the contact activation system and kallikrein-kinin system, which play an important role in hereditary angioedema (HAE) pathogenesis. A hypothesis about the PLAUR splicing pattern impact on HAE severity was tested. METHODS AND RESULTS The RT-PCR quantified by capillary electrophoresis was used. Although no significant difference in alternative transcript frequency was observed between healthy volunteers and HAE patients, a significant increase in all cassette exon inclusion variants was revealed during monocyte-to-macrophage differentiation. CONCLUSIONS PLAUR alternative splicing in monocytes and macrophages neither was different between HAE patients and healthy controls, nor reflected disease severity. However, the results showed an PLAUR splicing pattern was changing during monocyte-to-macrophage differentiation, but the significance of these changes is unknown and awaits future clarification.
Collapse
Affiliation(s)
- Lucie Ballonová
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Kulíšková
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Peter Slanina
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Julie Štíchová
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Vlková
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Roman Hakl
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Litzman
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Přemysl Souček
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic.
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Tomáš Freiberger
- Centre of Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Vitronectin acts as a key regulator of adhesion and migration in human umbilical cord-derived MSCs under different stress conditions. Exp Cell Res 2023; 423:113467. [PMID: 36634744 DOI: 10.1016/j.yexcr.2023.113467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
To improve mesenchymal stem cell (MSC)-based therapy efficacy, it is critical to identify factors involved in regulating migration and adhesion of MSCs under microenvironmental stress conditions. We observed that human Wharton's jelly-derived MSCs (WJ-MSCs) exhibited increase in cell spread area and adhesion, with reduction in cellular migration under serum starvation stress. The changes in adhesion and migration characteristics were accompanied by formation of large number of super mature focal adhesions along with extensive stress fibres and altered ECM gene expression with notable induction in vitronectin (VTN) expression. NF-κβ was found to be a positive regulator of VTN expression while ERK pathway regulated it negatively. Inhibition of these signalling pathways or knocking down of VTN under serum starvation established the correlation between increase in VTN expression and increased cellular adhesion with corresponding reduction in cell migration. VTN knockdown also resulted in reduction of super mature focal adhesions and extensive stress fibres, formed under serum starvation stress. Additionally, VTN induction was not detected in hypoxia-treated WJ-MSCs, and the MSCs showed no significant change in the adhesion or migration properties under hypoxia. VTN is established as a key player which possibly regulates the adhesion and migration properties of WJ-MSCs via focal adhesion signalling.
Collapse
|
11
|
Lourenço AL, Chuo SW, Bohn MF, Hann B, Khan S, Yevalekar N, Patel N, Yang T, Xu L, Lv D, Drakas R, Lively S, Craik CS. High-throughput optofluidic screening of single B cells identifies novel cross-reactive antibodies as inhibitors of uPAR with antibody-dependent effector functions. MAbs 2023; 15:2184197. [PMID: 36859773 PMCID: PMC9988344 DOI: 10.1080/19420862.2023.2184197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is an essential regulator for cell signaling in tumor cell proliferation, adhesion, and metastasis. The ubiquitous nature of uPAR in many aggressive cancer types makes uPAR an attractive target for immunotherapy. Here, we present a rapid and successful workflow for developing cross-reactive anti-uPAR recombinant antibodies (rAbs) using high-throughput optofluidic screening of single B-cells from human uPAR-immunized mice. A total of 80 human and cynomolgus uPAR cross-reactive plasma cells were identified, and selected mouse VH/VL domains were linked to the trastuzumab (Herceptin®) constant domains for the expression of mouse-human chimeric antibodies. The resulting rAbs were characterized by their tumor-cell recognition, binding activity, and cell adhesion inhibition on triple-negative breast cancer cells. In addition, the rAbs were shown to enact antibody-dependent cellular cytotoxicity (ADCC) in the presence of either human natural killer cells or peripheral blood mononuclear cells, and were evaluated for the potential use of uPAR-targeting antibody-drug conjugates (ADCs). Three lead antibodies (11857, 8163, and 3159) were evaluated for their therapeutic efficacy in vivo and were shown to suppress tumor growth. Finally, the binding epitopes of the lead antibodies were characterized, providing information on their unique binding modes to uPAR. Altogether, the strategy identified unique cross-reactive antibodies with ADCC, ADC, and functional inhibitory effects by targeting cell-surface uPAR, that can be tested in safety studies and serve as potential immunotherapeutics.
Collapse
Affiliation(s)
- André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Markus F Bohn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Shireen Khan
- ChemPartner, South San Francisco, California, USA
| | | | - Nitin Patel
- ChemPartner, South San Francisco, California, USA
| | - Teddy Yang
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Lina Xu
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Dandan Lv
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Robert Drakas
- ShangPharma Innovation Inc, South San Francisco, California, USA
| | - Sarah Lively
- ChemPartner, South San Francisco, California, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Jia C, Lovins C, Malone HM, Keasey MP, Hagg T. Female-specific neuroprotection after ischemic stroke by vitronectin-focal adhesion kinase inhibition. J Cereb Blood Flow Metab 2022; 42:1961-1974. [PMID: 35702047 PMCID: PMC9536130 DOI: 10.1177/0271678x221107871] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We found that blood vitronectin (VTN) leaks into the brain and exacerbates tissue loss after stroke by increasing pro-inflammatory IL-6 expression in female, but not male, mice. VTN signals through integrins and downstream focal adhesion kinase (FAK). Here, a two day systemic treatment with a small molecule FAK inhibitor starting 6 h after middle cerebral artery occlusion reduced ipsilateral brain injury size by ∼40-45% at 7 and 14 d, as well as inflammation and motor dysfunction in wild-type female, but not male, mice. FAK inhibition also reduced IL-6 expression in the injured female striatum at 24 h by 62%. Inducible selective gene deletion of FAK in astrocytes also reduced acute IL-6 expression by 72% only in females, and mitigated infarct size by ∼80% and inflammation at 14 d after stroke. Lastly, VTN-/- females had better outcomes, but FAK inhibitor treatment had no additional protective or anti-inflammatory effects. Altogether, this suggests that VTN is detrimental in females primarily through FAK and that FAK inhibition provides neuroprotection (cerebroprotection) by reducing VTN-induced IL-6 expression in astrocytes. Thus, VTN signaling can be targeted to mitigate harmful inflammation with relevance to treatments for women with ischemic stroke, who often have worse outcomes than men.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Hannah M Malone
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| |
Collapse
|
13
|
Alorabi M, Cavalu S, Al-Kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, Negm WA, Youssef A, El-Kadem AH, Saad HM, Batiha GES. Pentoxifylline and berberine mitigate diclofenac-induced acute nephrotoxicity in male rats via modulation of inflammation and oxidative stress. Biomed Pharmacother 2022; 152:113225. [PMID: 35671584 DOI: 10.1016/j.biopha.2022.113225] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022] Open
Abstract
Nephrotoxicity (NT) is a renal-specific situation caused by different toxins and drugs like non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs like diclofenac (DCF) lead to glomerular dysfunction. Pentoxifylline (PTX) and berberine (BER) have antioxidant and anti-inflammatory properties. Thus, the objective of the present study was to investigate the ameliorative effect of PTX, BER and their combination against DCF-mediated acute NT. Induction of acute NT was done via DCF injection (150 mg/kg I.P, for 6 days) in rats. PTX 200 mg/kg, BER 200 mg/kg and their combination were administrated for 6 days prior to DCF injection and concurrently with DCF for additional 6 days. Acute NT was evaluated biochemically and histopathologically by measuring blood urea (BU), serum creatinine (SCr), kidney injury molecule-1(KIM-1), integrin (ITG), and vitronectin (VTN), interleukin (IL)-18, Neutrophil gelatinase-associated lipocalin (NGAL), glomerular filtration rate (GFR), superoxide dismutase (SOD) and glutathione (GSH) and malondialdehyde (MDA) with the scoring of histopathological alterations. PTX, BER and their combination significantly (P < 0.05) attenuated biochemical and histopathological changes in DCF-mediated acute NT by amelioration of BU, SCr, KIM-1, ITG, VTN, IL-18, NGAL, GFR, SOD, GSH, MDA and scoring of histopathological alterations. The combined effects of PTX and BER produced more significant effects (P < 0.05) than either PTX or BER when used alone against DCF-induced acute NT. In conclusion, BER and BTX were found to have potential renoprotective effects against DCF-induced NT in rats by inhibiting inflammatory reactions and oxidative stress.
Collapse
Affiliation(s)
- Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia.
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania.
| | - Hayder M Al-Kuraishy
- Pharmacology and Therapeutic Medicine Department, Faculty of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Pharmacology and Therapeutic Medicine Department, Faculty of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia; Pharmacology Department, Faculty of Medicine, Beni-Suef University, Egypt.
| | - Walaa A Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| | - Amal Youssef
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Egypt.
| | - Aya H El-Kadem
- Pharmacology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51744, Matrouh, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
14
|
Roehm B, McAdams M, Hedayati SS. Novel Biomarkers of Kidney Disease in Advanced Heart Failure: Beyond GFR and Proteinuria. Curr Heart Fail Rep 2022; 19:223-235. [PMID: 35624386 DOI: 10.1007/s11897-022-00557-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Kidney disease is a common finding in patients with heart failure and can significantly impact treatment decisions and outcomes. Abnormal kidney function is currently determined in clinical practice using filtration markers in the blood to estimate glomerular filtration rate, but the manifestations of kidney disease in the setting of heart failure are much more complex than this. In this manuscript, we review novel biomarkers that may provide a more well-rounded assessment of kidney disease in patients with heart failure. RECENT FINDINGS Galectin-3, ST2, FGF-23, suPAR, miRNA, GDF-15, and NAG may be prognostic of kidney disease progression. L-FABP and suPAR may help predict acute kidney injury (AKI). ST2 and NAG may be helpful in diuretic resistance. Several biomarkers may be useful in determining prognosis of long-term kidney disease progression, prediction of AKI, and development of diuretic resistance. Further research into the mechanisms of kidney disease in heart failure utilizing many of these biomarkers may lead to the identification of therapeutic targets.
Collapse
Affiliation(s)
- Bethany Roehm
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 6201 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| | - Meredith McAdams
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 6201 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - S Susan Hedayati
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 6201 Harry Hines Boulevard, Dallas, TX, 75390, USA
| |
Collapse
|
15
|
Qin L, Wang L, Zhang J, Zhou H, Yang Z, Wang Y, Cai W, Wen F, Jiang X, Zhang T, Ye H, Long B, Qin J, Shi W, Guan X, Yu Z, Yang J, Wang Q, Jiao Z. Therapeutic strategies targeting uPAR potentiate anti-PD-1 efficacy in diffuse-type gastric cancer. SCIENCE ADVANCES 2022; 8:eabn3774. [PMID: 35613265 PMCID: PMC9132454 DOI: 10.1126/sciadv.abn3774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The diffuse-type gastric cancer (DGC) is a subtype of gastric cancer (GC) associated with low HER2 positivity rate and insensitivity to chemotherapy and immune checkpoint inhibitors. Here, we identify urokinase-type plasminogen activator receptor (uPAR) as a potential therapeutic target for DGC. We have developed a novel anti-uPAR monoclonal antibody, which targets the domains II and III of uPAR and blocks the binding of urokinase-type plasminogen activator to uPAR. We show that the combination of anti-uPAR and anti-Programmed cell death protein 1 (PD-1) remarkably inhibits tumor growth and prolongs survival via multiple mechanisms, using cell line-derived xenograft and patient-derived xenograft mouse models. Furthermore, uPAR chimeric antigen receptor-expressing T cells based on the novel anti-uPAR effectively kill DGC patient-derived organoids and exhibit impressive survival benefit in the established mouse models, especially when combined with PD-1 blockade therapy. Our study provides a new possibility of DGC treatment by targeting uPAR in a unique manner.
Collapse
Affiliation(s)
- Long Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Long Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Junchang Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Huinian Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Zhiliang Yang
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, Gansu 730000, China
| | - Yan Wang
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, Gansu 730000, China
| | - Weiwen Cai
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Fei Wen
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Tiansheng Zhang
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, Gansu 730000, China
| | - Huili Ye
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Bo Long
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Junjie Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Wengui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Xiaoying Guan
- Department of Pathology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Jing Yang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
- Corresponding author. (Z.J.); (Q.W.); (J.Y.)
| | - Qi Wang
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, Gansu 730000, China
- Corresponding author. (Z.J.); (Q.W.); (J.Y.)
| | - Zuoyi Jiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
- Corresponding author. (Z.J.); (Q.W.); (J.Y.)
| |
Collapse
|
16
|
Chaudhary PK, Kim S, Kim S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int J Mol Sci 2022; 23:ijms23116022. [PMID: 35682700 PMCID: PMC9181192 DOI: 10.3390/ijms23116022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Collapse
|
17
|
Biasella F, Strunz T, Kiel C, Weber BHF, Friedrich U. Vitronectin and Its Interaction with PAI-1 Suggests a Functional Link to Vascular Changes in AMD Pathobiology. Cells 2022; 11:1766. [PMID: 35681461 PMCID: PMC9179922 DOI: 10.3390/cells11111766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of age-related macular degeneration (AMD), a frequent disorder of the central retina, is incompletely understood. Genome-wide association studies (GWAS) suggest a strong contribution of genomic variation in AMD susceptibility. Nevertheless, little is known about biological mechanisms of the disease. We reported previously that the AMD-associated polymorphism rs704C > T in the vitronectin (VTN) gene influences protein expression and functional aspects of encoded vitronectin, a human blood and extracellular matrix (ECM) protein. Here, we refined the association of rs704 with AMD in 16,144 cases and 17,832 controls and noted that rs704 is carried exclusively by the neovascular AMD subtype. Interaction studies demonstrate that rs704 affects the ability of vitronectin to bind the angiogenic regulator plasminogen activator inhibitor 1 (PAI-1) but has no influence on stabilizing its active state. Western blot analysis and confocal imaging reveal a strong enrichment of PAI-1 in the ECM of cultured endothelial cells and RPE cell line ARPE-19 exposed to vitronectin. Large-scale gene expression of VTN and PAI-1 showed positive correlations and a statistically significant increase in human retinal and blood tissues aged 60 years and older. Our results suggest a mechanism by which the AMD-associated rs704 variant in combination with ageing may contribute to the vascular complications in AMD.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (F.B.); (T.S.); (C.K.)
| | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (F.B.); (T.S.); (C.K.)
| | - Christina Kiel
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (F.B.); (T.S.); (C.K.)
| | | | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (F.B.); (T.S.); (C.K.)
- Institute of Clinical Human Genetics, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (F.B.); (T.S.); (C.K.)
| |
Collapse
|
18
|
Omran F, Kyrou I, Osman F, Lim VG, Randeva HS, Chatha K. Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. Int J Mol Sci 2022; 23:5680. [PMID: 35628490 PMCID: PMC9143441 DOI: 10.3390/ijms23105680] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major healthcare burden on the population worldwide. Early detection of this disease is important in prevention and treatment to minimise morbidity and mortality. Biomarkers are a critical tool to either diagnose, screen, or provide prognostic information for pathological conditions. This review discusses the historical cardiac biomarkers used to detect these conditions, discussing their application and their limitations. Identification of new biomarkers have since replaced these and are now in use in routine clinical practice, but still do not detect all disease. Future cardiac biomarkers are showing promise in early studies, but further studies are required to show their value in improving detection of CVD above the current biomarkers. Additionally, the analytical platforms that would allow them to be adopted in healthcare are yet to be established. There is also the need to identify whether these biomarkers can be used for diagnostic, prognostic, or screening purposes, which will impact their implementation in routine clinical practice.
Collapse
Affiliation(s)
- Farah Omran
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Faizel Osman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ven Gee Lim
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Harpal Singh Randeva
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Kamaljit Chatha
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Biochemistry and Immunology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| |
Collapse
|
19
|
Alfano D, Franco P, Stoppelli MP. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front Cell Dev Biol 2022; 10:818616. [PMID: 35493073 PMCID: PMC9045800 DOI: 10.3389/fcell.2022.818616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycosyl-phosphatidyl-inositol anchored (GPI) membrane protein. The uPAR primary ligand is the serine protease urokinase (uPA), converting plasminogen into plasmin, a broad spectrum protease, active on most extracellular matrix components. Besides uPA, the uPAR binds specifically also to the matrix protein vitronectin and, therefore, is regarded also as an adhesion receptor. Complex formation of the uPAR with diverse transmembrane proteins, including integrins, formyl peptide receptors, G protein-coupled receptors and epidermal growth factor receptor results in intracellular signalling. Thus, the uPAR is a multifunctional receptor coordinating surface-associated pericellular proteolysis and signal transduction, thereby affecting physiological and pathological mechanisms. The uPAR-initiated signalling leads to remarkable cellular effects, that include increased cell migration, adhesion, survival, proliferation and invasion. Although this is beyond the scope of this review, the uPA/uPAR system is of great interest to cancer research, as it is associated to aggressive cancers and poor patient survival. Increasing evidence links the uPA/uPAR axis to epithelial to mesenchymal transition, a highly dynamic process, by which epithelial cells can convert into a mesenchymal phenotype. Furthermore, many reports indicate that the uPAR is involved in the maintenance of the stem-like phenotype and in the differentiation process of different cell types. Moreover, the levels of anchor-less, soluble form of uPAR, respond to a variety of inflammatory stimuli, including tumorigenesis and viral infections. Finally, the role of uPAR in virus infection has received increasing attention, in view of the Covid-19 pandemics and new information is becoming available. In this review, we provide a mechanistic perspective, via the detailed examination of consolidated and recent studies on the cellular responses to the multiple uPAR activities.
Collapse
|
20
|
Shmakova AA, Klimovich PS, Rysenkova KD, Popov VS, Gorbunova AS, Karpukhina AA, Karagyaur MN, Rubina KA, Tkachuk VA, Semina EV. Urokinase Receptor uPAR Downregulation in Neuroblastoma Leads to Dormancy, Chemoresistance and Metastasis. Cancers (Basel) 2022; 14:cancers14040994. [PMID: 35205745 PMCID: PMC8870350 DOI: 10.3390/cancers14040994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary uPAR is a membrane receptor that contributes to extracellular matrix remodeling and controls cellular adhesion, proliferation, survival, and migration. We demonstrate that the initially high uPAR expression predicts poor survival in neuroblastoma. However, relapsed neuroblastomas have a significantly decreased uPAR expression. uPAR downregulation in neuroblastoma cells leads to dormancy and resistance to chemotherapeutic drugs. In mice, low uPAR-expressing neuroblastoma cells formed smaller primary tumors but more frequent metastasis. Abstract uPAR is a membrane receptor that binds extracellular protease urokinase, contributes to matrix remodeling and plays a crucial role in cellular adhesion, proliferation, survival, and migration. uPAR overexpression in tumor cells promotes mitogenesis, opening a prospective avenue for targeted therapy. However, uPAR targeting in cancer has potential risks. We have recently shown that uPAR downregulation in neuroblastoma promotes epithelial-mesenchymal transition (EMT), potentially associated with metastasis and chemoresistance. We used data mining to evaluate the role of uPAR expression in primary and relapsed human neuroblastomas. To model the decreased uPAR expression, we targeted uPAR using CRISPR/Cas9 and shRNA in neuroblastoma Neuro2a cells and evaluated their chemosensitivity in vitro as well as tumor growth and metastasis in vivo. We demonstrate that the initially high PLAUR expression predicts poor survival in human neuroblastoma. However, relapsed neuroblastomas have a significantly decreased PLAUR expression. uPAR targeting in neuroblastoma Neuro2a cells leads to p38 activation and an increased p21 expression (suggesting a dormant phenotype). The dormancy in neuroblastoma cells can be triggered by the disruption of uPAR-integrin interaction. uPAR-deficient cells are less sensitive to cisplatin and doxorubicin treatment and exhibit lower p53 activation. Finally, low uPAR-expressing Neuro2a cells formed smaller primary tumors, but more frequent metastasis in mice. To the best of our knowledge, this is the first study revealing the pathological role of dormant uPAR-deficient cancer cells having a chemoresistant and motile phenotype.
Collapse
Affiliation(s)
- Anna A. Shmakova
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Polina S. Klimovich
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Karina D. Rysenkova
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Vladimir S. Popov
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Anna S. Gorbunova
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Anna A. Karpukhina
- Koltzov Institute of Developmental Biology, Russian Academy of Science, 117334 Moscow, Russia;
| | - Maxim N. Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Vsevolod A. Tkachuk
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Ekaterina V. Semina
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
- Correspondence:
| |
Collapse
|
21
|
Therapeutic Strategies Targeting Urokinase and Its Receptor in Cancer. Cancers (Basel) 2022; 14:cancers14030498. [PMID: 35158766 PMCID: PMC8833673 DOI: 10.3390/cancers14030498] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies have ascertained that uPA and uPAR do participate in tumor progression and metastasis and are involved in cell adhesion, migration, invasion and survival, as well as angiogenesis. Increased levels of uPA and uPAR in tumor tissues, stroma and biological fluids correlate with adverse clinic-pathologic features and poor patient outcomes. After binding to uPAR, uPA activates plasminogen to plasmin, a broad-spectrum matrix- and fibrin-degrading enzyme able to facilitate tumor cell invasion and dissemination to distant sites. Moreover, uPAR activated by uPA regulates most cancer cell activities by interacting with a broad range of cell membrane receptors. These findings make uPA and uPAR not only promising diagnostic and prognostic markers but also attractive targets for developing anticancer therapies. In this review, we debate the uPA/uPAR structure-function relationship as well as give an update on the molecules that interfere with or inhibit uPA/uPAR functions. Additionally, the possible clinical development of these compounds is discussed.
Collapse
|
22
|
Kumar AA, Buckley BJ, Ranson M. The Urokinase Plasminogen Activation System in Pancreatic Cancer: Prospective Diagnostic and Therapeutic Targets. Biomolecules 2022; 12:152. [PMID: 35204653 PMCID: PMC8961517 DOI: 10.3390/biom12020152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy that features high recurrence rates and the poorest prognosis of all solid cancers. The urokinase plasminogen activation system (uPAS) is strongly implicated in the pathophysiology and clinical outcomes of patients with pancreatic ductal adenocarcinoma (PDAC), which accounts for more than 90% of all pancreatic cancers. Overexpression of the urokinase-type plasminogen activator (uPA) or its cell surface receptor uPAR is a key step in the acquisition of a metastatic phenotype via multiple mechanisms, including the increased activation of cell surface localised plasminogen which generates the serine protease plasmin. This triggers multiple downstream processes that promote tumour cell migration and invasion. Increasing clinical evidence shows that the overexpression of uPA, uPAR, or of both is strongly associated with worse clinicopathological features and poor prognosis in PDAC patients. This review provides an overview of the current understanding of the uPAS in the pathogenesis and progression of pancreatic cancer, with a focus on PDAC, and summarises the substantial body of evidence that supports the role of uPAS components, including plasminogen receptors, in this disease. The review further outlines the clinical utility of uPAS components as prospective diagnostic and prognostic biomarkers for PDAC, as well as a rationale for the development of novel uPAS-targeted therapeutics.
Collapse
Affiliation(s)
- Ashna A. Kumar
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Benjamin J. Buckley
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
23
|
Integrin β1 orchestrates the abnormal cell-matrix attachment and invasive behaviour of E-cadherin dysfunctional cells. Gastric Cancer 2022; 25:124-137. [PMID: 34486077 PMCID: PMC8732838 DOI: 10.1007/s10120-021-01239-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumour progression relies on the ability of cancer cells to penetrate and invade neighbouring tissues. E-cadherin loss is associated with increased cell invasion in gastric carcinoma, and germline mutations of the E-cadherin gene are causative of hereditary diffuse gastric cancer. Although E-cadherin dysfunction impacts cell-cell adhesion, cell dissemination also requires an imbalance of adhesion to the extracellular matrix (ECM). METHODS To identify ECM components and receptors relevant for adhesion of E-cadherin dysfunctional cells, we implemented a novel ECM microarray platform coupled with molecular interaction networks. The functional role of putative candidates was determined by combining micropattern traction microscopy, protein modulation and in vivo approaches, as well as transcriptomic data of 262 gastric carcinoma samples, retrieved from the cancer genome atlas (TCGA). RESULTS Here, we show that E-cadherin mutations induce an abnormal interplay of cells with specific components of the ECM, which encompasses increased traction forces and Integrin β1 activation. Integrin β1 synergizes with E-cadherin dysfunction, promoting cell scattering and invasion. The significance of the E-cadherin-Integrin β1 crosstalk was validated in Drosophila models and found to be consistent with evidence from human gastric carcinomas, where increased tumour grade and poor survival are associated with low E-cadherin and high Integrin β1 levels. CONCLUSIONS Integrin β1 is a key mediator of invasion in carcinomas with E-cadherin impairment and should be regarded as a biomarker of poor prognosis in gastric cancer.
Collapse
|
24
|
Lv T, Zhao Y, Jiang X, Yuan H, Wang H, Cui X, Xu J, Zhao J, Wang J. uPAR: An Essential Factor for Tumor Development. J Cancer 2021; 12:7026-7040. [PMID: 34729105 PMCID: PMC8558663 DOI: 10.7150/jca.62281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is closely related to the loss of control of many genes. Urokinase-type plasminogen activator receptor (uPAR), a glycolipid-anchored protein on the cell surface, is controlled by many factors in tumorigenesis and is expressed in many tumor tissues. In this review, we summarize the regulatory effects of the uPAR signaling pathway on processes and factors related to tumor progression, such as tumor cell proliferation, adhesion, metastasis, glycolysis, tumor microenvironment and angiogenesis. Overall, the evidence accumulated to date suggests that uPAR induction by tumor progression may be one of the most important factors affecting therapeutic efficacy. An improved understanding of the interactions between uPAR and its coreceptors in cancer will provide critical biomolecular information that may help to better predict the disease course and response to therapy.
Collapse
Affiliation(s)
- Tao Lv
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Ying Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Xinni Jiang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China 610500
| | - Hemei Yuan
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Haibo Wang
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Xuelin Cui
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jiashun Xu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jingye Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jianlin Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan, China 655011
| |
Collapse
|
25
|
Metrangolo V, Ploug M, Engelholm LH. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities. Cancers (Basel) 2021; 13:cancers13215376. [PMID: 34771541 PMCID: PMC8582577 DOI: 10.3390/cancers13215376] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Discovered more than three decades ago, the urokinase-type plasminogen activator receptor (uPAR) has now firmly established itself as a versatile molecular target holding promise for the treatment of aggressive malignancies. The copious abundance of uPAR in virtually all human cancerous tissues versus their healthy counterparts has fostered a gradual shift in the therapeutic landscape targeting this receptor from function inhibition to cytotoxic approaches to selectively eradicate the uPAR-expressing cells by delivering a targeted cytotoxic insult. Multiple avenues are being explored in a preclinical setting, including the more innovative immune- or stroma targeting therapies. This review discusses the current state of these strategies, their potentialities, and challenges, along with future directions in the field of uPAR targeting. Abstract One of the largest challenges to the implementation of precision oncology is identifying and validating selective tumor-driving targets to enhance the therapeutic efficacy while limiting off-target toxicity. In this context, the urokinase-type plasminogen activator receptor (uPAR) has progressively emerged as a promising therapeutic target in the management of aggressive malignancies. By focalizing the plasminogen activation cascade and subsequent extracellular proteolysis on the cell surface of migrating cells, uPAR endows malignant cells with a high proteolytic and migratory potential to dissolve the restraining extracellular matrix (ECM) barriers and metastasize to distant sites. uPAR is also assumed to choreograph multiple other neoplastic stages via a complex molecular interplay with distinct cancer-associated signaling pathways. Accordingly, high uPAR expression is observed in virtually all human cancers and is frequently associated with poor patient prognosis and survival. The promising therapeutic potential unveiled by the pleiotropic nature of this receptor has prompted the development of distinct targeted intervention strategies. The present review will focus on recently emerged cytotoxic approaches emphasizing the novel technologies and related limits hindering their application in the clinical setting. Finally, future research directions and emerging opportunities in the field of uPAR targeting are also discussed.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-31-43-20-77
| |
Collapse
|
26
|
Leth JM, Ploug M. Targeting the Urokinase-Type Plasminogen Activator Receptor (uPAR) in Human Diseases With a View to Non-invasive Imaging and Therapeutic Intervention. Front Cell Dev Biol 2021; 9:732015. [PMID: 34490277 PMCID: PMC8417595 DOI: 10.3389/fcell.2021.732015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
The interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) focalizes plasminogen activation to cell surfaces, thereby regulating extravascular fibrinolysis, cell adhesion, and migration. uPAR belongs to the Ly6/uPAR (LU) gene superfamily and the high-affinity binding site for uPA is assembled by a dynamic association of its three consecutive LU domains. In most human solid cancers, uPAR is expressed at the invasive areas of the tumor-stromal microenvironment. High levels of uPAR in resected tumors or shed to the plasma of cancer patients are robustly associated with poor prognosis and increased risk of relapse and metastasis. Over the years, a plethora of different strategies to inhibit uPA and uPAR function have been designed and investigated in vitro and in vivo in mouse models, but so far none have been implemented in the clinics. In recent years, uPAR-targeting with the intent of cytotoxic eradication of uPAR-expressing cells have nonetheless gained increasing momentum. Another avenue that is currently being explored is non-invasive imaging with specific uPAR-targeted reporter-molecules containing positron emitting radionuclides or near-infrared (NIR) florescence probes with the overarching aim of being able to: (i) localize disease dissemination using positron emission tomography (PET) and (ii) assist fluorescence guided surgery using optical imaging. In this review, we will discuss these advancements with special emphasis on applications using a small 9-mer peptide antagonist that targets uPAR with high affinity.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Shen W, Alshehri M, Desale S, Wilcox C. The Effect of Amiloride on Proteinuria in Patients with Proteinuric Kidney Disease. Am J Nephrol 2021; 52:368-377. [PMID: 33957621 DOI: 10.1159/000515809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Proteinuric kidney diseases share an aggressive clinical course of developing end-stage renal disease. However, the treatment is limited. Amiloride, an epithelial sodium channel (ENaC) inhibitor, was reported to reduce proteinuria in animal studies and case reports independent of ENaC inhibition. We hypothesized that amiloride not triamterene (an analog of amiloride) would reduce proteinuria in the patients with proteinuric kidney disease. METHODS Patients with proteinuria >1.0 g/day and estimated glomerular filtration rate (eGFR) >30 mL/min/1.73 m2 on a maximum tolerable dose of angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers were randomized to receive amiloride 5 mg twice daily or triamterene 50 mg twice daily for 8 weeks, followed by 4 weeks of washout, and then crossed over to the other drug for 8 weeks. The primary outcome was 24-h urine protein reduction. Secondary outcomes were changes in body weight, blood pressure (BP), serum potassium, and eGFR. Data were analyzed by analysis of variance. RESULTS A total of 12 patients completed the study. Amiloride reduced 24-h urine protein by 38.7% (p = 0.002) and decreased systolic BP by 12.3 mm Hg (p = 0.04). Interestingly, triamterene reduced 24 h urine protein as well, by 32.8% (p = 0.02). Triamterene lowered eGFR by 9.0 mL/min/1.73 m2 (p = 0.007), but it was reversible. The average weight change was insignificant in both groups (p = 0.40 and 0.34 respectively). Three patients withdrew the study due to hyperkalemia. CONCLUSIONS Both amiloride and triamterene significantly reduced proteinuria in patients with proteinuric kidney disease. The anti-proteinuric effect was additive to renin-angiotensin-aldosterone system (RAAS) blockade, given all patients were on RAAS blockade. Hyperkalemia was a safety concern. Larger trials might be needed to examine the antiproteinuric effects of ENaC inhibitors.
Collapse
Affiliation(s)
- Wen Shen
- Division of Nephrology and Hypertension, Department of Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Mohammed Alshehri
- Division of Nephrology and Hypertension, Department of Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Sameer Desale
- Division of Nephrology and Hypertension, Department of Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Christopher Wilcox
- Division of Nephrology and Hypertension, Department of Medicine, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| |
Collapse
|
28
|
Shahdeo D, Kesarwani V, Suhag D, Ahmed J, Alshehri SM, Gandhi S. Self-assembled chitosan polymer intercalating peptide functionalized gold nanoparticles as nanoprobe for efficient imaging of urokinase plasminogen activator receptor in cancer diagnostics. Carbohydr Polym 2021; 266:118138. [PMID: 34044952 DOI: 10.1016/j.carbpol.2021.118138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022]
Abstract
Targeting cell surface receptors for specific drug delivery in cancer has garnered lot of attention. Urokinase plasminogen activator receptor (uPAR), a surface biomarker, is overexpressed on many tumours including breast, colorectal, prostate, and ovarian cancers. Binding of growth factor domain (GFD) of urokinase plasminogen activator (uPA) with uPAR lead to its close conformation, and allow somatomedin B domain (SMB) of vitronectin binding by allosteric modulation. In-silico docking of uPAR with GFD and SMB peptides was performed to identify potential binding affinity. Herein, we report fluorescently labeled peptide functionalized AuNPs with a mixed self-assembled monolayer of intercalating chitosan polymer for efficient targeting and imaging of uPAR-positive cells. The biophysical characterization of nanoconjugates and uPAR-specific targeting was assessed by FACS, cell adhesion, and fluorescence imaging. AuNPs/chitosan/GFD+SMB peptides showed higher uptake as compared to AuNPs/chitosan/GFD, and AuNPs/chitosan/SMB that can be utilized as a tool for molecular targeting and imaging in metastasis.
Collapse
Affiliation(s)
- Deepshikha Shahdeo
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, Telangana, India
| | - Veerbhan Kesarwani
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, Telangana, India
| | - Deepa Suhag
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Panchgaon, Haryana 122413, India
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, Telangana, India; Amity Institute of Biotechnology, Amity University, Noida 201301, India.
| |
Collapse
|
29
|
Non-Coding RNAs as Biomarkers of Tumor Progression and Metastatic Spread in Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13081839. [PMID: 33921525 PMCID: PMC8069230 DOI: 10.3390/cancers13081839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Despite advances in cancer research in recent years, efficient predictive biomarkers of tumor progression and metastatic spread for ovarian cancer are still missing. Therefore, we critically address recent findings in the field of non-coding RNAs (microRNAs and long non-coding RNAs) and DNA methylation in ovarian cancer patients as promising novel biomarkers of ovarian cancer progression. Abstract Ovarian cancer is one of the most common causes of death among gynecological malignancies. Molecular changes occurring in the primary tumor lead to metastatic spread into the peritoneum and the formation of distant metastases. Identification of these changes helps to reveal the nature of metastases development and decipher early biomarkers of prognosis and disease progression. Comparing differences in gene expression profiles between primary tumors and metastases, together with disclosing their epigenetic regulation, provides interesting associations with progression and metastasizing. Regulatory elements from the non-coding RNA families such as microRNAs and long non-coding RNAs seem to participate in these processes and represent potential molecular biomarkers of patient prognosis. Progress in therapy individualization and its proper targeting also rely upon a better understanding of interactions among the above-listed factors. This review aims to summarize currently available findings of microRNAs and long non-coding RNAs linked with tumor progression and metastatic process in ovarian cancer. These biomolecules provide promising tools for monitoring the patient’s response to treatment, and further they serve as potential therapeutic targets of this deadly disease.
Collapse
|
30
|
Dupuy AM, Kuster N, Bargnoux AS, Aguilhon S, Huet F, Leclercq F, Pasquié JL, Roubille F, Cristol JP. Long term pronostic value of suPAR in chronic heart failure: reclassification of patients with low MAGGIC score. Clin Chem Lab Med 2021; 59:1299-1306. [PMID: 33544524 DOI: 10.1515/cclm-2020-0903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/22/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Inflammation is a hallmark of heart failure (HF) and among inflammatory biomarkers, the most studied remains the C-reactive protein (CRP). In recent years several biomarkers have emerged, such as sST2 and soluble urokinase-type plasminogen activator receptor (suPAR). This study set out to examine the relative importance of long-time prognostic strength of suPAR and the potential additive information on patient risk with chronic HF in comparison with pronostic value of CRP and sST2. METHODS Demographics, clinical and biological variables were assessed in a total of 182 patients with chronic HF over median follow-up period of 80 months. Inflammatory biomarkers (i.e., CRP, sST2, and suPAR) were performed. RESULTS In univariate Cox regression analysis age, NYHA class, MAGGIC score and the five biomarkers (N-terminal pro brain natriuretic peptide [NT-proBNP], high-sensitive cardiac troponin T [hs-cTnT], CRP, sST2, and suPAR) were associated with both all-cause and cardiovascular mortality. In the multivariate model, only NT-proBNP, suPAR, and MAGGIC score remained independent predictors of all-cause mortality as well as of cardiovascular mortality. Risk classification analysis was significantly improved with the addition of suPAR particularly for all-cause short- and long-term mortality. Using a classification tree approach, the same three variables could be considered as significant classifier variables to predict all-cause or cardiovascular mortality and an algorithm were reported. We demonstrated the favorable outcome associated with patients with a low MAGGIC score and a low suPAR level by comparison to patients with low MAGGIC score but high suPAR values. CONCLUSIONS The main findings of our study are (1) that among the three inflammatory biomarkers, only suPAR levels were independently associated with 96-month mortality for patients with chronic HF and (2) that an algorithm based on clinical score, a cardiomyocyte stress biomarker and an inflammatory biomarker could help to a more reliable long term risk stratification in heart failure.
Collapse
Affiliation(s)
- Anne Marie Dupuy
- Department of Biochemistry, Centre Ressources Biologiques de Montpellier, University Hospital of Montpellier, Montpellier, France
| | - Nils Kuster
- Department of Biochemistry, Centre Ressources Biologiques de Montpellier, University Hospital of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Anne Sophie Bargnoux
- Department of Biochemistry, Centre Ressources Biologiques de Montpellier, University Hospital of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Sylvain Aguilhon
- Cardiology Department, University Hospital of Montpellier, Montpellier, France
| | - Fabien Huet
- Cardiology Department, University Hospital of Montpellier, Montpellier, France
| | - Florence Leclercq
- Cardiology Department, University Hospital of Montpellier, Montpellier, France
| | - Jean-Luc Pasquié
- Cardiology Department, University Hospital of Montpellier, Montpellier, France
| | - François Roubille
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France.,Cardiology Department, University Hospital of Montpellier, Montpellier, France
| | - Jean Paul Cristol
- Department of Biochemistry, Centre Ressources Biologiques de Montpellier, University Hospital of Montpellier, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| |
Collapse
|
31
|
Bum-Erdene K, Liu D, Xu D, Ghozayel MK, Meroueh SO. Design and Synthesis of Fragment Derivatives with a Unique Inhibition Mechanism of the uPAR·uPA Interaction. ACS Med Chem Lett 2021; 12:60-66. [PMID: 33488965 DOI: 10.1021/acsmedchemlett.0c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
There is substantial interest in the development of small molecules that inhibit the tight and highly challenging protein-protein interaction between the glycophosphatidylinositol (GPI)-anchored cell surface receptor uPAR and the serine protease uPA. While preparing derivatives of a fragment-like compound that previously emerged from a computational screen, we identified compound 5 (IPR-3242), which inhibited binding of uPA to uPAR with submicromolar IC50s. The high inhibition potency prompted us to carry out studies to rule out potential aggregation, lack of stability, reactivity, and nonspecific inhibition. We designed and prepared 16 derivatives to further explore the role of each substituent. Interestingly, the compounds only partially inhibited binding of a fluorescently labeled α-helical peptide that binds to uPAR at the uPAR·uPA interface. Collectively, the results suggest that the compounds bind to uPAR outside of the uPAR·uPA interface, trapping the receptor into a conformation that is not able to bind to uPA. Additional studies will have to be carried out to determine whether this unique inhibition mechanism can occur at the cell surface.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Degang Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Mona K. Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Samy O. Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
32
|
Lee HY, Son SW, Moeng S, Choi SY, Park JK. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. Int J Mol Sci 2021; 22:ijms22020627. [PMID: 33435156 PMCID: PMC7827914 DOI: 10.3390/ijms22020627] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells. Multiple cellular factors and events, such as apoptosis, survival factors, cell cycle, EMT, stemness, autophagy, and integrins influence the anoikis resistance and anchorage-independent cell growth in cancer. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are dysregulated in cancer. They regulate cellular signaling pathways and events, eventually contributing to cancer aggressiveness. This review presents the role of miRNAs and lncRNAs in modulating anoikis resistance and anchorage-independent cell growth. We also discuss the feasibility of ncRNA-based therapy and the natural features of ncRNAs that need to be contemplated for more beneficial therapeutic strategies against cancer.
Collapse
|
33
|
Xu D, Bum-Erdene K, Leth JM, Ghozayel MK, Ploug M, Meroueh SO. Small-Molecule Inhibition of the uPAR ⋅ uPA Interaction by Conformational Selection. ChemMedChem 2020; 16:377-387. [PMID: 33107192 DOI: 10.1002/cmdc.202000558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/25/2020] [Indexed: 12/12/2022]
Abstract
The urokinase receptor (uPAR) is a cell surface receptor that binds to the serine protease urokinase-type plasminogen activator (uPA) with high affinity. This interaction is beneficial for extravascular fibrin clearance, but it has also been associated with a broad range of pathological conditions including cancer, atherosclerosis, and kidney disease. Here, starting with a small molecule that we previously discovered by virtual screening and cheminformatics analysis, we design and synthesize several derivatives that were tested for binding and inhibition of the uPAR ⋅ uPA interaction. To confirm the binding site and establish a binding mode of the compounds, we carried out biophysical studies using uPAR mutants, among them uPARH47C-N259C , a mutant previously developed to mimic the structure of uPA-bound uPAR. Remarkably, a substantial increase in potency is observed for inhibition of uPARH47C-N259C binding to uPA compared to wild-type uPAR, consistent with our use of the structure of uPAR in its uPA-bound state to design small-molecule uPAR ⋅ uPA antagonists. Combined with the biophysical studies, molecular docking followed by extensive explicit-solvent molecular dynamics simulations and MM-GBSA free energy calculations yielded the most favorable binding pose of the compound. Collectively, these results suggest that potent inhibition of uPAR binding to uPA with small molecules will likely only be achieved by developing small molecules that exhibit high-affinity to solution apo structures of uPAR, rather than uPA-bound structures of the receptor.
Collapse
Affiliation(s)
- David Xu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Julie M Leth
- Finsen Laboratory, Rigshospitalet, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Mona K Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
Biasella F, Plössl K, Karl C, Weber BHF, Friedrich U. Altered Protein Function Caused by AMD-associated Variant rs704 Links Vitronectin to Disease Pathology. Invest Ophthalmol Vis Sci 2020; 61:2. [PMID: 33259607 PMCID: PMC7718807 DOI: 10.1167/iovs.61.14.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Vitronectin, a cell adhesion and spreading factor, is suspected to play a role in the pathogenesis of age-related macular degeneration (AMD), as it is a major component of AMD-specific extracellular deposits (e.g., soft drusen, subretinal drusenoid deposits). The present study addressed the impact of AMD-associated non-synonymous variant rs704 in the vitronectin-encoding gene VTN on vitronectin functionality. Methods Effects of rs704 on vitronectin expression and processing were analyzed by semi-quantitative sequencing of VTN transcripts from retinal pigment epithelium (RPE) cells generated from human induced pluripotent stem cells (hiPSCs) and from human neural retina, as well as by western blot analyses on heterologously expressed vitronectin isoforms. Binding of vitronectin isoforms to retinal and endothelial cells was analyzed by western blot. Immunofluorescence staining followed extracellular matrix (ECM) deposition in cultured RPE cells heterologously expressing the vitronectin isoforms. Adhesion of fluorescently labeled RPE or endothelial cells in dependence of recombinant vitronectin or vitronectin-containing ECM was investigated fluorometrically or microscopically. Tube formation and migration assays addressed effects of vitronectin on angiogenesis-related processes. Results Variant rs704 affected expression, secretion, and processing but not oligomerization of vitronectin. Cell binding and influence on RPE-mediated ECM deposition differed between AMD-risk-associated and non-AMD-risk-associated protein isoforms. Finally, vitronectin affected adhesion and endothelial tube formation. Conclusions The AMD-risk-associated vitronectin isoform exhibits increased expression and altered functionality in cellular processes related to the sub-RPE aspects of AMD pathology. Although further research is required to address the subretinal disease aspects, this initial study supports an involvement of vitronectin in AMD pathogenesis.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Claudia Karl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
35
|
Baart VM, Houvast RD, de Geus-Oei LF, Quax PHA, Kuppen PJK, Vahrmeijer AL, Sier CFM. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res 2020; 10:87. [PMID: 32725278 PMCID: PMC7387399 DOI: 10.1186/s13550-020-00673-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The urokinase plasminogen activator receptor (uPAR) plays a multifaceted role in almost any process where migration of cells and tissue-remodeling is involved such as inflammation, but also in diseases as arthritis and cancer. Normally, uPAR is absent in healthy tissues. By its carefully orchestrated interaction with the protease urokinase plasminogen activator and its inhibitor (plasminogen activator inhibitor-1), uPAR localizes a cascade of proteolytic activities, enabling (patho)physiologic cell migration. Moreover, via the interaction with a broad range of cell membrane proteins, like vitronectin and various integrins, uPAR plays a significant, but not yet completely understood, role in differentiation and proliferation of cells, affecting also disease progression. The implications of these processes, either for diagnostics or therapeutics, have received much attention in oncology, but only limited beyond. Nonetheless, the role of uPAR in different diseases provides ample opportunity to exploit new applications for targeting. Especially in the fields of oncology, cardiology, rheumatology, neurology, and infectious diseases, uPAR-targeted molecular imaging could offer insights for new directions in diagnosis, surveillance, or treatment options.
Collapse
Affiliation(s)
- V M Baart
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - R D Houvast
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - L F de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - P H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Percuros BV, Leiden, The Netherlands.
| |
Collapse
|
36
|
Madhusudhan T, Ghosh S, Wang H, Dong W, Gupta D, Elwakiel A, Stoyanov S, Al-Dabet MM, Krishnan S, Biemann R, Nazir S, Zimmermann S, Mathew A, Gadi I, Rana R, Zeng-Brouwers J, Moeller MJ, Schaefer L, Esmon CT, Kohli S, Reiser J, Rezaie AR, Ruf W, Isermann B. Podocyte Integrin- β 3 and Activated Protein C Coordinately Restrict RhoA Signaling and Ameliorate Diabetic Nephropathy. J Am Soc Nephrol 2020; 31:1762-1780. [PMID: 32709711 DOI: 10.1681/asn.2019111163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (dNP), now the leading cause of ESKD, lacks efficient therapies. Coagulation protease-dependent signaling modulates dNP, in part via the G protein-coupled, protease-activated receptors (PARs). Specifically, the cytoprotective protease-activated protein C (aPC) protects from dNP, but the mechanisms are not clear. METHODS A combination of in vitro approaches and mouse models evaluated the role of aPC-integrin interaction and related signaling in dNP. RESULTS The zymogen protein C and aPC bind to podocyte integrin-β 3, a subunit of integrin-α v β 3. Deficiency of this integrin impairs thrombin-mediated generation of aPC on podocytes. The interaction of aPC with integrin-α v β 3 induces transient binding of integrin-β 3 with G α13 and controls PAR-dependent RhoA signaling in podocytes. Binding of aPC to integrin-β 3 via its RGD sequence is required for the temporal restriction of RhoA signaling in podocytes. In podocytes lacking integrin-β 3, aPC induces sustained RhoA activation, mimicking the effect of thrombin. In vivo, overexpression of wild-type aPC suppresses pathologic renal RhoA activation and protects against dNP. Disrupting the aPC-integrin-β 3 interaction by specifically deleting podocyte integrin-β 3 or by abolishing aPC's integrin-binding RGD sequence enhances RhoA signaling in mice with high aPC levels and abolishes aPC's nephroprotective effect. Pharmacologic inhibition of PAR1, the pivotal thrombin receptor, restricts RhoA activation and nephroprotects RGE-aPChigh and wild-type mice.Conclusions aPC-integrin-α v β 3 acts as a rheostat, controlling PAR1-dependent RhoA activation in podocytes in diabetic nephropathy. These results identify integrin-α v β 3 as an essential coreceptor for aPC that is required for nephroprotective aPC-PAR signaling in dNP.
Collapse
Affiliation(s)
- Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany .,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Sanchita Ghosh
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Hongjie Wang
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Dong
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Dheerendra Gupta
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Stoyan Stoyanov
- German Center for Neurodegenerative Diseases, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.,Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, Amman, Jordan
| | - Shruthi Krishnan
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ronald Biemann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Sumra Nazir
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Silke Zimmermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Akash Mathew
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Ihsan Gadi
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Rajiv Rana
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Jinyang Zeng-Brouwers
- Institute of Pharmacology, University Hospital and Goethe University, Frankfurt, Germany
| | - Marcus J Moeller
- Division of Nephrology and Immunology, University Hospital of the Rheinisch-Westfälische Technische Hochschule, Aachen University of Technology, Aachen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology, University Hospital and Goethe University, Frankfurt, Germany
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Shrey Kohli
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany .,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
37
|
Alpízar-Alpízar W, Skindersoe ME, Rasmussen L, Kriegbaum MC, Christensen IJ, Lund IK, Illemann M, Laerum OD, Krogfelt KA, Andersen LP, Ploug M. Helicobacter pylori Colonization Drives Urokinase Receptor (uPAR) Expression in Murine Gastric Epithelium During Early Pathogenesis. Microorganisms 2020; 8:microorganisms8071019. [PMID: 32660136 PMCID: PMC7409347 DOI: 10.3390/microorganisms8071019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Persistent Helicobacter pylori infection is the most important risk factor for gastric cancer. The urokinase receptor (uPAR) is upregulated in lesions harboring cancer invasion and inflammation. Circumstantial evidence tends to correlate H. pylori colonization with increased uPAR expression in the human gastric epithelium, but a direct causative link has not yet been established in vivo; (2) Methods: In a mouse model of H. pylori-induced gastritis, we investigated the temporal emergence of uPAR protein expression in the gastric mucosa in response to H. pylori (SS1 strain) infection; (3) Results: We observed intense uPAR immunoreactivity in foveolar epithelial cells of the gastric corpus due to de novo synthesis, compared to non-infected animals. This uPAR induction represents a very early response, but it increases progressively over time as do infiltrating immune cells. Eradication of H. pylori infection by antimicrobial therapy causes a regression of uPAR expression to its physiological baseline levels. Suppression of the inflammatory response by prostaglandin E2 treatment attenuates uPAR expression. Notwithstanding this relationship, H. pylori does induce uPAR expression in vitro in co-cultures with gastric cancer cell lines; (4) Conclusions: We showed that persistent H. pylori colonization is a necessary event for the emergence of a relatively high uPAR protein expression in murine gastric epithelial cells.
Collapse
Affiliation(s)
- Warner Alpízar-Alpízar
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Centre for Research on Microscopic Structures (CIEMic) and Department of Biochemistry, University of Costa Rica, 2060 San José, Costa Rica
- Correspondence: (W.A.-A.); (M.P.)
| | - Mette E. Skindersoe
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, 2300 Copenhagen, Denmark; (M.E.S.); (K.A.K.)
- Bacthera, Kogle Allé 6, 2970 Hoersholm, Denmark
| | - Lone Rasmussen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; (L.P.A.); (L.R.)
| | - Mette C. Kriegbaum
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ib J. Christensen
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Hvidovre Hospital, University of Copenhagen, 2650 Copenhagen, Denmark
| | - Ida K. Lund
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Martin Illemann
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ole D. Laerum
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
| | - Karen A. Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, 2300 Copenhagen, Denmark; (M.E.S.); (K.A.K.)
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
- Department of Virus and microbiological Diagnostics, Statens Serum Institute, 2300 Copenhagen, Denmark
| | - Leif P. Andersen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark; (L.P.A.); (L.R.)
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, 2100 Copenhagen, Denmark; (M.C.K.); (I.J.C); (I.K.L.); (M.I.); (O.D.L.)
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2100 Copenhagen, Denmark
- Correspondence: (W.A.-A.); (M.P.)
| |
Collapse
|
38
|
Klimovich PS, Semina EV, Karagyaur MN, Rysenkova KD, Sysoeva VY, Mironov NA, Sagaradze GD, Az'muko AA, Popov VS, Rubina KA, Tkachuk VA. Urokinase receptor regulates nerve regeneration through its interaction with α5β1-integrin. Biomed Pharmacother 2020; 125:110008. [PMID: 32187956 DOI: 10.1016/j.biopha.2020.110008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/30/2020] [Accepted: 02/12/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Urokinase receptor (uPAR) promotes extracellular matrix proteolysis, regulates adhesion and cell migration, transduces intracellular signals through interactions with the lateral partners. The expression of uPAR and urokinase (uPA) is significantly upregulated in peripheral nerves after injury, however, little is known about uPAR function in nerve regeneration or the molecular mechanisms involved. The purpose of this study is to investigate the role of uPAR in nerve regeneration after traumatic injury of n. Peroneus communis in uPA-/-, uPAR-/- or control mice (WT) and in neuritogenesis in an in vitro Neuro 2A cell model. RESULTS Electrophysiological analysis indicates that nerve recovery is significantly impaired in uPAR-/- mice, but not in uPA-/- mice. These data correlate with the reduced amount of NF200-positive axons in regenerating nerves from uPAR-/- mice compared to uPA-/- or control mice. There is an increase in uPAR expression and remarkable colocalization of uPAR with α5 and β1 integrin in uPA-/- mice in recovering nerves, pointing to a potential link between uPAR and its lateral partner α5β1-integrin. Using an in vitro model of neuritogenesis and α325 blocking peptide, which abrogates uPAR-α5β1 interaction in Neuro 2A cells but has no effect on their function, we have further confirmed the significance of uPAR-α5β1 interaction. CONCLUSION Taken together, we report evidence pointing to an important role of uPAR, rather than uPA, in peripheral nerve recovery and neuritogenesis.
Collapse
Affiliation(s)
- P S Klimovich
- Laboratory of Molecular Endocrinology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 3d Cherepkovskaya st. 15а, Moscow, 121552, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - E V Semina
- Laboratory of Molecular Endocrinology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 3d Cherepkovskaya st. 15а, Moscow, 121552, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia.
| | - M N Karagyaur
- Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky av. 27-10, Moscow, 119191, Russia
| | - K D Rysenkova
- Laboratory of Molecular Endocrinology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 3d Cherepkovskaya st. 15а, Moscow, 121552, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - V Yu Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - N A Mironov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - G D Sagaradze
- Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky av. 27-10, Moscow, 119191, Russia
| | - A A Az'muko
- Laboratory for the Synthesis of Peptides, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 3d Cherepkovskaya st. 15а, Moscow, 121552, Russia
| | - V S Popov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - K A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia; Laboratory of Morphogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - V A Tkachuk
- Laboratory of Molecular Endocrinology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 3d Cherepkovskaya st. 15а, Moscow, 121552, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia; Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky av. 27-10, Moscow, 119191, Russia
| |
Collapse
|
39
|
Abstract
The paradoxical pro-tumorigenic function of plasminogen activator inhibitor 1 (PAI-1, aka Serpin E1) in cancer progression and metastasis has been the subject of an abundant scientific literature that has pointed to a pro-angiogenic role, a growth and migration stimulatory function, and an anti-apoptotic activity, all directed toward promoting tumor growth, cancer cell survival, and metastasis. With uPA, PAI-1 is among the most reliable biomarkers and prognosticators in many cancer types. More recently, a novel pro-tumorigenic function of PAI-1 in cancer-related inflammation has been demonstrated. These multifaceted activities of PAI-1 in cancer progression are explained by the complex structure of PAI-1 and its multiple functions that go beyond its anti-fibrinolytic and anti-plasminogen activation activities. However, despite the multiple evidences supporting a pro-tumorigenic role of PAI-1 in cancer, and the development of several inhibitors, targeting PAI-1, has remained elusive. In this article, the various mechanisms responsible for the pro-tumorigenic functions of PAI-1 are reviewed with emphasis on its more recently described contribution to cancer inflammation. The challenges of targeting PAI-1 in cancer therapy are then discussed.
Collapse
Affiliation(s)
- Marta Helena Kubala
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, CA, 90033, USA
- The Saban Research Institute of Children's Hospital, Los Angeles, CA, 90027, USA
| | - Yves Albert DeClerck
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, University of Southern California, Los Angeles, CA, 90033, USA.
- The Saban Research Institute of Children's Hospital, Los Angeles, CA, 90027, USA.
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
40
|
Urokinase Receptor Regulates Adhesion of Progenitor Cardiac Cells to Vitronectin. Bull Exp Biol Med 2019; 167:315-319. [PMID: 31346863 DOI: 10.1007/s10517-019-04517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 10/26/2022]
Abstract
Vitronectin, extracellular matrix protein, plays an important role in embryonic development and in organ and tissue reparation. A unique characteristic of vitronectin is specific binding of various biological molecules, including urokinase receptor (uPAR), extracellular matrix components, adhesion receptors, growth factors, thus supporting the modulation of cell behavior. Vitronectin is in fact not found in intact myocardium, while after infarction its level increases significantly, which correlates with accumulation of uPAR+ progenitor cardiac cells in the focus. The cells isolated from the heart of wild type mice are characterized by higher adhesion to vitronectin than progenitor cardiac cells from the myocardium of uPAR knockout mice. In addition, inhibition of urokinase receptor with specific antibodies on the surface of the progenitor cardiac cells of wild type mice leads to attenuation of their adhesive activity and flattening on vitronectin matrix, which can be important for their distribution in the postinfarction myocardium and realization of the reparative functions.
Collapse
|
41
|
Ciardiello C, Leone A, Lanuti P, Roca MS, Moccia T, Minciacchi VR, Minopoli M, Gigantino V, De Cecio R, Rippa M, Petti L, Capone F, Vitagliano C, Milone MR, Pucci B, Lombardi R, Iannelli F, Di Gennaro E, Bruzzese F, Marchisio M, Carriero MV, Di Vizio D, Budillon A. Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:317. [PMID: 31319863 PMCID: PMC6639931 DOI: 10.1186/s13046-019-1317-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/09/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Molecular markers for prostate cancer (PCa) are required to improve the early definition of patient outcomes. Atypically large extracellular vesicles (EVs), referred as "Large Oncosomes" (LO), have been identified in highly migratory and invasive PCa cells. We recently developed and characterized the DU145R80 subline, selected from parental DU145 cells as resistant to inhibitors of mevalonate pathway. DU145R80 showed different proteomic profile compared to parental DU145 cells, along with altered cytoskeleton dynamics and a more aggressive phenotype. METHODS Immunofluorescence staining and western blotting were used to identify blebbing and EVs protein cargo. EVs, purified by gradient ultra-centrifugations, were analyzed by tunable resistive pulse sensing and multi-parametric flow cytometry approach coupled with high-resolution imaging technologies. LO functional effects were tested in vitro by adhesion and invasion assays and in vivo xenograft model in nude mice. Xenograft and patient tumor tissues were analyzed by immunohistochemistry. RESULTS We found spontaneous blebbing and increased shedding of LO from DU145R80 compared to DU145 cells. LO from DU145R80, compared to those from DU145, carried increased amounts of key-molecules involved in PCa progression including integrin alpha V (αV-integrin). By incubating DU145 cells with DU145R80-derived LO we demonstrated that αV-integrin on LO surface was functionally involved in the increased adhesion and invasion of recipient cells, via AKT. Indeed either the pre-incubation of LO with an αV-integrin blocking antibody, or a specific AKT inhibition in recipient cells are able to revert the LO-induced functional effects. Moreover, DU145R80-derived LO also increased DU145 tumor engraftment in a mice model. Finally, we identified αV-integrin positive LO-like structures in tumor xenografts as well as in PCa patient tissues. Increased αV-integrin tumor expression correlated with high Gleason score and lymph node status. CONCLUSIONS Overall, this study is the first to demonstrate the critical role of αV-integrin positive LO in PCa aggressive features, adding new insights in biological function of these large EVs and suggesting their potential use as PCa prognostic markers.
Collapse
Affiliation(s)
- Chiara Ciardiello
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy.
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Paola Lanuti
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University "G.d'Annunzio", Chieti-Pescara, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy
| | - Maria S Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Valentina R Minciacchi
- Georg-Speyer-Haus Institute for Tumor biology and Experimental Therapy, Frankfurt, Germany
| | - Michele Minopoli
- Neoplastic Progression Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Naples, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Naples, Italy
| | - Rossella De Cecio
- Pathology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Naples, Italy
| | - Massimo Rippa
- Institute of Applied Sciences and Intelligent Systems 'E. Caianiello' of CNR, Pozzuoli, Italy
| | - Lucia Petti
- Institute of Applied Sciences and Intelligent Systems 'E. Caianiello' of CNR, Pozzuoli, Italy
| | - Francesca Capone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Maria R Milone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Federica Iannelli
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Marco Marchisio
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University "G.d'Annunzio", Chieti-Pescara, Italy.,Department of Medicine and Aging Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy
| | - Maria V Carriero
- Neoplastic Progression Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Naples, Italy
| | - Dolores Di Vizio
- Departments of Surgery, Pathology & Lab Medicine, and Biochemical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori - IRCCS- Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
42
|
Wacker A, Bauder-Wüst U, Schäfer M, Schmidt J, Remde Y, Stadlbauer S, Eder M, Liolios C, Kopka K. Designing tracers for PET imaging of the urokinase-type plasminogen activator receptor from a cyclic uPA-derived peptide: first in vitro evaluations. J Labelled Comp Radiopharm 2019; 62:483-494. [PMID: 30970388 DOI: 10.1002/jlcr.3735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Abstract
The treatment of cancer remains a major challenge, especially after tumour cell dissemination and metastases formation. Expression of the urokinase-type plasminogen activation system including urokinase (uPA) and its receptor (uPAR) has been associated with the complex process of cell migration, a tumour's invasive potential as well as a reduced overall and disease-free survival of patients with solid cancers and haematological disorders. A cyclic peptide cyclo[21,29][d-Cys21 ,Cys29 ]-uPA21-30 was designed from the growth factor-like domain (GFD) of urokinase whose binding to uPAR was found to inhibit tumour growth and spread of human ovarian cancer cells in mice. With the aim of visualising uPAR expression using PET imaging to attempt an estimate on the tumour's aggressiveness, the cyclic peptide was modified with an either C- or N-terminally attached variable spacer and chelator. The free ligands were evaluated for their binding affinities to the isolated human uPAR and labelled with 68 Ga and 177 Lu to assess their lipophilicities and stabilities in human serum. Although retaining the full binding potential displayed by cyclo[21,29][d-Cys21 ,Cys29 ]-uPA21-30 to its target was found to be a challenging task upon both C- and N-terminal modification, chelator-bearing ligands were identified that can serve as promising starting points in the development of uPAR-addressing PET tracers.
Collapse
Affiliation(s)
- Anja Wacker
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ulrike Bauder-Wüst
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schäfer
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Schmidt
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yvonne Remde
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Stadlbauer
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Eder
- Department of Radiopharmaca Development, German Cancer Consortium (DKTK), Clinic of Nuclear Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christos Liolios
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
43
|
Höybye C, Faseh L, Himonakos C, Pielak T, Eugen-Olsen J. Serum soluble urokinase plasminogen activator receptor (suPAR) in adults with growth hormone deficiency. Endocr Connect 2019; 8:772-779. [PMID: 31151091 PMCID: PMC6547304 DOI: 10.1530/ec-19-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/27/2022]
Abstract
Growth hormone deficiency (GHD) syndrome is associated with adverse levels of several risk factors for cardiovascular diseases (CVD), including metabolic inflammation. However, the impact of GHD and GH treatment on low-grade inflammation is unknown. The aim of the study was to establish the level of the low-grade inflammation biomarker soluble urokinase plasminogen activator receptor (suPAR) in adults with GHD and the response to long-term GH treatment. Measurements of suPAR and CRP were performed in bio-bank serum samples from 72 adults, 34 males and 38 females, with GHD before and during at least 5 years of GH treatment. Mean age was 52.5 ± 15.5 years, BMI 27.3 ± 5 kg/m2. Clinical evaluations and blood sampling were performed at routine visits. Data on demography, anthropometry, lab results and clinical events were retrieved from post-marketing surveillance study databases and medical records. suPAR and high-sensitive (hs) CRP were analysed using ELISA and immunochemistry, respectively. At baseline blood pressure, lipid profile and fasting glucose were within the normal reference range. Baseline geometric mean and 95% CI of suPAR was 2.9 (2.7-3.3) ng/mL and of CRP 2.3 (0.6-4.0) mg/L. Mean follow-up was 8 ± 2 years. The suPAR levels remained stable during follow-up, although individual increases were seen on occurrence or presence of co-morbidities. In contrast, levels of CRP decreased. In conclusion, the decrease in CRP and indirectly the absence of an expected increase in suPAR over time indicates a favourable effect of GH on low-grade inflammation.
Collapse
Affiliation(s)
- Charlotte Höybye
- Patient Area Endocrinology and Nephrology, Infection and Inflammation Theme, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Correspondence should be addressed to C Höybye:
| | - Laia Faseh
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Christos Himonakos
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Medicine, Karlstad Hospital, Karlstad, Sweden
| | | | - Jesper Eugen-Olsen
- Clinical Research Centre, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
44
|
Burgos-Panadero R, Noguera I, Cañete A, Navarro S, Noguera R. Vitronectin as a molecular player of the tumor microenvironment in neuroblastoma. BMC Cancer 2019; 19:479. [PMID: 31117974 PMCID: PMC6532218 DOI: 10.1186/s12885-019-5693-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 05/08/2019] [Indexed: 11/14/2022] Open
Abstract
Background Vitronectin is a multifunctional glycoprotein known in several human tumors for its adhesive role in processes such as cell growth, angiogenesis and metastasis. In this study, we examined vitronectin expression in neuroblastoma to investigate whether this molecule takes part in cell-cell or cell-extracellular matrix interactions that may confer mechanical properties to promote tumor aggressiveness. Methods We used immunohistochemistry and image analysis tools to characterize vitronectin expression and to test its prognostic value in 91 neuroblastoma patients. To better understand the effect of vitronectin, we studied its in vitro expression using commercial neuroblastoma cell lines and in vivo using intra-adrenal gland xenograft models by immunohistochemistry. Results Digital image analysis allowed us to associate vitronectin staining intensity and location discriminating between territorial vitronectin and interterritorial vitronectin expression patterns. High territorial vitronectin expression (strong staining associated with pericellular and intracellular location) was present in tumors from patients with metastatic undifferentiating neuroblastoma, that were MYCN amplified, 11q deleted or with segmental chromosomal profiles, in the high-risk stratification group and with high genetic instability. In vitro studies confirmed that vitronectin is expressed in tumor cells as small cytoplasmic dot drops. In vivo experiments revealed tumor cells with high and dense cytoplasmic vitronectin expression. Conclusions These findings highlight the relevance of vitronectin in neuroblastoma tumor biology and suggest its potential as a future therapeutic target in neuroblastoma. Electronic supplementary material The online version of this article (10.1186/s12885-019-5693-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebeca Burgos-Panadero
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain.,CIBERONC, Madrid, Spain
| | - Inmaculada Noguera
- Central Support Service for Experimental Research (SCSIE), University of Valencia, Valencia, Spain
| | - Adela Cañete
- Pediatric Oncology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Samuel Navarro
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain.,CIBERONC, Madrid, Spain
| | - Rosa Noguera
- Pathology Department, Medical School, University of Valencia-INCLIVA, Valencia, Spain. .,CIBERONC, Madrid, Spain.
| |
Collapse
|
45
|
Gussen H, Hohlstein P, Bartneck M, Warzecha KT, Buendgens L, Luedde T, Trautwein C, Koch A, Tacke F. Neutrophils are a main source of circulating suPAR predicting outcome in critical illness. J Intensive Care 2019; 7:26. [PMID: 31061709 PMCID: PMC6487050 DOI: 10.1186/s40560-019-0381-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/12/2019] [Indexed: 11/10/2022] Open
Abstract
Background Circulating levels of soluble urokinase plasminogen activation receptor (suPAR) have been proposed as a prognostic biomarker in patients with critical illness and sepsis. However, the origin of suPAR in sepsis has remained obscure. We investigated the potential cellular sources of suPAR by analyzing membrane-bound urokinase plasminogen activator receptor (uPAR, CD87) and evaluated its clinical relevance in critically ill patients. Methods We studied 87 critically ill patients (44 with sepsis, 43 without sepsis) from the medical intensive care unit (ICU) in comparison to 48 standard care patients with infections and 27 healthy controls in a prospective single-center non-interventional cohort study. Cellular uPAR expression of different immune cell subsets (by flow cytometry from peripheral blood) and corresponding serum suPAR concentrations were determined upon ICU admission and at day 3. Furthermore, we analyzed the effects of serum from sepsis patients on the activation and uPAR cleavage of primary human neutrophils and macrophages in vitro. Results In healthy controls, uPAR (CD87) expression was detected on nearly all blood neutrophils and monocytes, but only scarcely on lymphocytes. While uPAR expression on monocytes was maintained in ICU patients, only 58% of neutrophils from critically ill patients expressed uPAR, which was significantly lower than in healthy controls or standard care patients. Concomitantly, serum suPAR levels were significantly increased in ICU patients. We noted a clear inverse correlation between low neutrophilic uPAR and high serum suPAR in standard care and ICU patients, indicating that shedding of uPAR from activated neutrophils represents a main source of suPAR in systemic inflammation. Both low uPAR and high suPAR were closely associated with mortality in critically ill patients. Furthermore, serum from sepsis patients induced uPAR protein expression and subsequent receptor shedding on isolated primary neutrophils, but not on macrophages, in vitro. Conclusions The inverse correlation between low uPAR surface expression on neutrophils and high serum suPAR in critically ill patients supports that neutrophils are a main source of shed suPAR proteins in systemic inflammation. Furthermore, high suPAR levels and low neutrophilic uPAR expression predict mortality in ICU patients. Electronic supplementary material The online version of this article (10.1186/s40560-019-0381-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hendrik Gussen
- 1Department of Medicine III, RWTH-University Hospital Aachen, Aachen, 52074 Germany
| | - Philipp Hohlstein
- 1Department of Medicine III, RWTH-University Hospital Aachen, Aachen, 52074 Germany
| | - Matthias Bartneck
- 1Department of Medicine III, RWTH-University Hospital Aachen, Aachen, 52074 Germany
| | | | - Lukas Buendgens
- 1Department of Medicine III, RWTH-University Hospital Aachen, Aachen, 52074 Germany
| | - Tom Luedde
- 1Department of Medicine III, RWTH-University Hospital Aachen, Aachen, 52074 Germany
| | - Christian Trautwein
- 1Department of Medicine III, RWTH-University Hospital Aachen, Aachen, 52074 Germany
| | - Alexander Koch
- 1Department of Medicine III, RWTH-University Hospital Aachen, Aachen, 52074 Germany
| | - Frank Tacke
- 1Department of Medicine III, RWTH-University Hospital Aachen, Aachen, 52074 Germany.,2Department of Hepatology/Gastroenterology, Charité University Medical Center, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
46
|
Stronati L, Palone F, Negroni A, Colantoni E, Mancuso AB, Cucchiara S, Cesi V, Isoldi S, Vitali R. Dipotassium Glycyrrhizate Improves Intestinal Mucosal Healing by Modulating Extracellular Matrix Remodeling Genes and Restoring Epithelial Barrier Functions. Front Immunol 2019; 10:939. [PMID: 31105713 PMCID: PMC6498413 DOI: 10.3389/fimmu.2019.00939] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
Gut mucosal healing (MH) is considered a key therapeutic target and prognostic parameter in the management of inflammatory bowel disease (IBD). The dipotassium glycyrrhizate (DPG), a salt of the glycoconjugated triterpene glycyrrhizin, has been shown to inhibit the High Mobility Group Box 1 (HMGB1) protein, an allarmin strongly implicated in the pathogenesis of most inflammatory and auto-immune disorders. Here we discuss new insights on how DPG acts on MH comparing the acute phase and the recovery phase from experimental colitis in mice. We found that DPG strongly accelerates MH by differently regulating pro-inflammatory (CXCL1, CXCL3, CXCL5, PTGS2, IL-1β, IL-6, CCL12, CCL7) and wound healing (COL3A1, MMP9, VTN, PLAUR, SERPINE, CSF3, FGF2, FGF7, PLAT, TIMP1) genes as observed only during the recovery phase of colitis. Relevant issue is the identification of extracellular matrix (ECM) remodeling genes, VTN, and PLAUR, as crucial genes to achieve MH during DPG treatment. Furthermore, a noticeable recovery of intestinal epithelial barrier structural organization, wound repair ability, and functionality is observed in two human colorectal adenocarcinoma cell lines exposed to DPG during inflammation. Thus, our study identifies DPG as a potent tool for controlling intestinal inflammation and improving MH.
Collapse
Affiliation(s)
- Laura Stronati
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Palone
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Anna Negroni
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Eleonora Colantoni
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Anna Barbara Mancuso
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Salvatore Cucchiara
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cesi
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Sara Isoldi
- Pediatric Gastroenterology and Liver Unit, Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Roberta Vitali
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| |
Collapse
|
47
|
Yang QX, Zhong S, He L, Jia XJ, Tang H, Cheng ST, Ren JH, Yu HB, Zhou L, Zhou HZ, Ren F, Hu ZW, Gong R, Huang AL, Chen J. PBK overexpression promotes metastasis of hepatocellular carcinoma via activating ETV4-uPAR signaling pathway. Cancer Lett 2019; 452:90-102. [PMID: 30914208 DOI: 10.1016/j.canlet.2019.03.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023]
Abstract
Invasion and metastasis are the predominant causes of lethal outcomes in patients with hepatocellular carcinoma (HCC). However, the molecular mechanism underlying the invasive or metastatic process are still insufficiently understood. Here, we first integrated several public databases and identified a novel protein kinase, PDZ-binding kinase (PBK) that was frequently upregulated and correlated with poor prognosis in patients with HCC. Gain- or loss-of-function analysis revealed that PBK promoted migration and invasion of HCC cells both in vitro and in vivo. Mechanistically, PBK enhanced uPAR expression by activating its promoter activity. Chromatin immunoprecipitation (ChIP) assay showed that ETV4 directly bound to the core region of uPAR promoter while PBK could enhance the binding of ETV4 to uPAR promoter. In orthotopic mouse model, PBK knockdown markedly inhibited the lung metastasis of HCC cells, while this effect was significantly restored by uPAR overexpression. Finally, there was a positive correlation between PBK and uPAR, ETV4 and uPAR in HCC clinical samples. Collectively, these findings revealed that PBK acted as a crucial kinase by promoting invasion and migration via the ETV4-uPAR signaling pathway, and it therefore could be a promising diagnostic biomarker and therapeutic target for HCC metastasis.
Collapse
Affiliation(s)
- Qiu-Xia Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shan Zhong
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lin He
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiao-Jiong Jia
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Tang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hai-Bo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hong-Zhong Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhong-Wen Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Gong
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
48
|
Leth JM, Mertens HDT, Leth-Espensen KZ, Jørgensen TJD, Ploug M. Did evolution create a flexible ligand-binding cavity in the urokinase receptor through deletion of a plesiotypic disulfide bond? J Biol Chem 2019; 294:7403-7418. [PMID: 30894413 DOI: 10.1074/jbc.ra119.007847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Indexed: 11/06/2022] Open
Abstract
The urokinase receptor (uPAR) is a founding member of a small protein family with multiple Ly6/uPAR (LU) domains. The motif defining these LU domains contains five plesiotypic disulfide bonds stabilizing its prototypical three-fingered fold having three protruding loops. Notwithstanding the detailed knowledge on structure-function relationships in uPAR, one puzzling enigma remains unexplored. Why does the first LU domain in uPAR (DI) lack one of its consensus disulfide bonds, when the absence of this particular disulfide bond impairs the correct folding of other single LU domain-containing proteins? Here, using a variety of contemporary biophysical methods, we found that reintroducing the two missing half-cystines in uPAR DI caused the spontaneous formation of the corresponding consensus 7-8 LU domain disulfide bond. Importantly, constraints due to this cross-link impaired (i) the binding of uPAR to its primary ligand urokinase and (ii) the flexible interdomain assembly of the three LU domains in uPAR. We conclude that the evolutionary deletion of this particular disulfide bond in uPAR DI may have enabled the assembly of a high-affinity urokinase-binding cavity involving all three LU domains in uPAR. Of note, an analogous neofunctionalization occurred in snake venom α-neurotoxins upon loss of another pair of the plesiotypic LU domain half-cystines. In summary, elimination of the 7-8 consensus disulfide bond in the first LU domain of uPAR did have significant functional and structural consequences.
Collapse
Affiliation(s)
- Julie M Leth
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Haydyn D T Mertens
- the European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22607 Hamburg, Germany, and
| | - Katrine Zinck Leth-Espensen
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark.,the Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5320 Odense M, Denmark
| | - Thomas J D Jørgensen
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5320 Odense M, Denmark
| | - Michael Ploug
- From the Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark, .,the Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
49
|
Long D, Wang Y, Wang H, Wu X, Yu L. Correlation of Serum and Ascitic Fluid Soluble Form Urokinase Plasminogen Activator Receptor Levels With Patient Complications, Disease Severity, Inflammatory Markers, and Prognosis in Patients With Severe Acute Pancreatitis. Pancreas 2019; 48:335-342. [PMID: 30768571 PMCID: PMC6426350 DOI: 10.1097/mpa.0000000000001247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022]
Abstract
Supplemental digital content is available in the text. Objectives The aim of the study was to investigate the correlation of serum and ascitic fluid soluble form urokinase plasminogen activator receptor (suPAR) levels with patients' complications, disease severity, inflammatory markers, and prognosis in patients with severe acute pancreatitis (SAP). Methods Fifty patients with SAP, 47 patients with mild acute pancreatitis, and 50 healthy controls were enrolled. Serum samples were obtained from all participants after enrollment; meanwhile, ascitic fluid samples were collected from 20 patients with SAP who developed ascites. Serum and ascitic fluid suPAR levels were determined by enzyme-linked immunosorbent assay. Results Serum suPAR level was greatly elevated in patients with SAP than patients with mild acute pancreatitis and healthy controls. Receiver operating characteristic curve showed that serum suPAR presented with good value in predicting risk of pancreatic necrosis, pancreatic infection, and multiple organ dysfunction syndrome, whereas serum suPAR did not predict mortality. Serum suPAR level was also positively correlated with Acute Physiology and Chronic Health Evaluation II score, Balthazar index, and Sequential Organ Failure Assessment score. As to ascitic fluid suPAR, it was positively correlated with serum suPAR level, Acute Physiology and Chronic Health Evaluation II score, Sequential Organ Failure Assessment score, risk of pancreatic infection, and multiple organ dysfunction syndrome. Conclusions Serum and ascetic fluid suPAR levels could be served as markers for disease severity and risk of severe complications in patients with SAP.
Collapse
Affiliation(s)
- Ding Long
- From the Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
50
|
Chana-Muñoz A, Jendroszek A, Sønnichsen M, Wang T, Ploug M, Jensen JK, Andreasen PA, Bendixen C, Panitz F. Origin and diversification of the plasminogen activation system among chordates. BMC Evol Biol 2019; 19:27. [PMID: 30654737 PMCID: PMC6337849 DOI: 10.1186/s12862-019-1353-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023] Open
Abstract
Background The plasminogen (PLG) activation system is composed by a series of serine proteases, inhibitors and several binding proteins, which together control the temporal and spatial generation of the active serine protease plasmin. As this proteolytic system plays a central role in human physiology and pathophysiology it has been extensively studied in mammals. The serine proteases of this system are believed to originate from an ancestral gene by gene duplications followed by domain gains and deletions. However, the identification of ancestral forms in primitive chordates supporting these theories remains elusive. In addition, evolutionary studies of the non-proteolytic members of this system are scarce. Results Our phylogenetic analyses place lamprey PLG at the root of the vertebrate PLG-group, while lamprey PLG-related growth factors represent the ancestral forms of the jawed-vertebrate orthologues. Furthermore, we find that the earliest putative orthologue of the PLG activator group is the hyaluronan binding protein 2 (HABP2) gene found in lampreys. The prime plasminogen activators (tissue- and urokinase-type plasminogen activator, tPA and uPA) first occur in cartilaginous fish and phylogenetic analyses confirm that all orthologues identified compose monophyletic groups to their mammalian counterparts. Cartilaginous fishes exhibit the most ancient vitronectin of all vertebrates, while plasminogen activator inhibitor 1 (PAI-1) appears for the first time in cartilaginous fishes and is conserved in the rest of jawed vertebrate clades. PAI-2 appears for the first time in the common ancestor of reptiles and mammals, and represents the latest appearing plasminogen activator inhibitor. Finally, we noted that the urokinase-type plasminogen activator receptor (uPAR)—and three-LU domain containing genes in general—occurred later in evolution and was first detectable after coelacanths. Conclusions This study identifies several primitive orthologues of the mammalian plasminogen activation system. These ancestral forms provide clues to the origin and diversification of this enzyme system. Further, the discovery of several members—hitherto unknown in mammals—provide new perspectives on the evolution of this important enzyme system. Electronic supplementary material The online version of this article (10.1186/s12862-019-1353-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrés Chana-Muñoz
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Agnieszka Jendroszek
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.,Present address: Interdisciplinary Nanoscience Center - INANO-MBG, Aarhus University, 8000, Aarhus, Denmark
| | - Malene Sønnichsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.,Present address: Interdisciplinary Nanoscience Center - INANO-MBG, Aarhus University, 8000, Aarhus, Denmark
| | - Tobias Wang
- Institute for Bioscience Zoophysiology, Aarhus University, 8000, Aarhus, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Christian Bendixen
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Frank Panitz
- Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark.
| |
Collapse
|