1
|
Hirooka Y, Izumikawa K, Miyao S, Ohga T, Nobe Y, Taoka M, Nagahama M. Pre-ribosomal WDR74 module coordinates the early and late pre-rRNA processing stages for the NVL2-mediated regulation of 60S ribosome biogenesis. Biochem Biophys Res Commun 2025; 744:151175. [PMID: 39706051 DOI: 10.1016/j.bbrc.2024.151175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
WD repeat domain 74 (WDR74) is a nucleolar protein involved in the early stages of pre-60S maturation in the ribosome biogenesis pathway. In later stages, WDR74 interacts with MTR4, an RNA helicase that functions with the exosome nuclease complex, and is dissociated upon ATP hydrolysis by the chaperone-like nuclear VCP-like 2 (NVL2) AAA-ATPase. We previously reported that ATP hydrolysis-defective NVL2 causes aberrant accumulation of WDR74 on the MTR4-exosome complex at the nucleolar periphery and in the nucleoplasm and that this nuclear redistribution of WDR74 leads to the unusual cleavage of the early rRNA precursor within the internal transcribed spacer 1 sequence. However, the precise mechanisms underlying this NVL2-mediated regulation is largely obscure. In this study, co-immunoprecipitation combined with mass spectrometry revealed that WDR74 functions as part of a pre-ribosomal subcomplex, termed the WDR74 module, consisting of eukaryotic conserved WDR74, RPF1, MAK16, and RRP1. Each component of the WDR74 module was mutually essential for the interaction of other members with MTR4, and all components were required for the accurate cleavage of pre-rRNA during 60S ribosome biogenesis. Moreover, impaired release of WDR74 from the MTR4-exosome complex caused by NVL2 dysfunction prevented MTR4 from recruiting PICT1, an MTR4 adaptor protein required for the 3'-end maturation of 5.8S rRNA. Our results highlight the key role of the WDR74 module in coordinating the early pre-rRNA cleavage and late processing of pre-5.8S rRNAs.
Collapse
Affiliation(s)
- Yuya Hirooka
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Keiichi Izumikawa
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Sotaro Miyao
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Takayuki Ohga
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachiouji, Tokyo, 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachiouji, Tokyo, 192-0397, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
2
|
Kofler L, Grundmann L, Gerhalter M, Prattes M, Merl-Pham J, Zisser G, Grishkovskaya I, Hodirnau VV, Vareka M, Breinbauer R, Hauck SM, Haselbach D, Bergler H. The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation. Nat Commun 2024; 15:7511. [PMID: 39209816 PMCID: PMC11362459 DOI: 10.1038/s41467-024-51754-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The formation of new ribosomes is tightly coordinated with cell growth and proliferation. In eukaryotes, the correct assembly of all ribosomal proteins and RNAs follows an intricate scheme of maturation and rearrangement steps across three cellular compartments: the nucleolus, nucleoplasm, and cytoplasm. We demonstrate that usnic acid, a lichen secondary metabolite, inhibits the maturation of the large ribosomal subunit in yeast. We combine biochemical characterization of pre-ribosomal particles with a quantitative single-particle cryo-EM approach to monitor changes in nucleolar particle populations upon drug treatment. Usnic acid rapidly blocks the transition from nucleolar state B to C of Nsa1-associated pre-ribosomes, depleting key maturation factors such as Dbp10 and hindering pre-rRNA processing. This primary nucleolar block rapidly rebounds on earlier stages of the pathway which highlights the regulatory linkages between different steps. In summary, we provide an in-depth characterization of the effect of usnic acid on ribosome biogenesis, which may have implications for its reported anti-cancer activities.
Collapse
Affiliation(s)
- Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Lorenz Grundmann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | | | - Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Juliane Merl-Pham
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria
| | | | - Martin Vareka
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria
| | - Stefanie M Hauck
- Core Facility Metabolomics and Proteomics (CF-MPC), Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Munich, Germany
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria.
| |
Collapse
|
3
|
Deryabin A, Moraleva A, Dobrochaeva K, Kovaleva D, Rubtsova M, Dontsova O, Rubtsov Y. Human RPF1 and ESF1 in Pre-rRNA Processing and the Assembly of Pre-Ribosomal Particles: A Functional Study. Cells 2024; 13:326. [PMID: 38391939 PMCID: PMC10886481 DOI: 10.3390/cells13040326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Ribosome biogenesis is essential for the functioning of living cells. In higher eukaryotes, this multistep process is tightly controlled and involves a variety of specialized proteins and RNAs. This pool of so-called ribosome biogenesis factors includes diverse proteins with enzymatic and structural functions. Some of them have homologs in yeast S. cerevisiae, and their function can be inferred from the structural and biochemical data obtained for the yeast counterparts. The functions of human proteins RPF1 and ESF1 remain largely unclear, although RPF1 has been recently shown to participate in 60S biogenesis. Both proteins have drawn our attention since they contribute to the early stages of ribosome biogenesis, which are far less studied than the later stages. In this study, we employed the loss-of-function shRNA/siRNA-based approach to the human cell line HEK293 to determine the role of RPF1 and ESF1 in ribosome biogenesis. Downregulating RPF1 and ESF1 significantly changed the pattern of RNA products derived from 47S pre-rRNA. Our findings demonstrate that RPF1 and ESF1 are associated with different pre-ribosomal particles, pre-60S, and pre-40S particles, respectively. Our results allow for speculation about the particular steps of pre-rRNA processing, which highly rely on the RPF1 and ESF1 functions. We suggest that both factors are not directly involved in pre-rRNA cleavage but rather help pre-rRNA to acquire the conformation favoring its cleavage.
Collapse
Affiliation(s)
- Alexander Deryabin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
| | - Anastasiia Moraleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
- Department of Applied Mathematics, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Kira Dobrochaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
| | - Diana Kovaleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
| | - Maria Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yury Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 119997 Moscow, Russia
- N.N.Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia
| |
Collapse
|
4
|
Thoms M, Lau B, Cheng J, Fromm L, Denk T, Kellner N, Flemming D, Fischer P, Falquet L, Berninghausen O, Beckmann R, Hurt E. Structural insights into coordinating 5S RNP rotation with ITS2 pre-RNA processing during ribosome formation. EMBO Rep 2023; 24:e57984. [PMID: 37921038 DOI: 10.15252/embr.202357984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023] Open
Abstract
The rixosome defined in Schizosaccharomyces pombe and humans performs diverse roles in pre-ribosomal RNA processing and gene silencing. Here, we isolate and describe the conserved rixosome from Chaetomium thermophilum, which consists of two sub-modules, the sphere-like Rix1-Ipi3-Ipi1 and the butterfly-like Las1-Grc3 complex, connected by a flexible linker. The Rix1 complex of the rixosome utilizes Sda1 as landing platform on nucleoplasmic pre-60S particles to wedge between the 5S rRNA tip and L1-stalk, thereby facilitating the 180° rotation of the immature 5S RNP towards its mature conformation. Upon rixosome positioning, the other sub-module with Las1 endonuclease and Grc3 polynucleotide-kinase can reach a strategic position at the pre-60S foot to cleave and 5' phosphorylate the nearby ITS2 pre-rRNA. Finally, inward movement of the L1 stalk permits the flexible Nop53 N-terminus with its AIM motif to become positioned at the base of the L1-stalk to facilitate Mtr4 helicase-exosome participation for completing ITS2 removal. Thus, the rixosome structure elucidates the coordination of two central ribosome biogenesis events, but its role in gene silencing may adapt similar strategies.
Collapse
Affiliation(s)
- Matthias Thoms
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin Lau
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lisa Fromm
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Timo Denk
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nikola Kellner
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Paulina Fischer
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Laurent Falquet
- University of Fribourg and Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | | | - Roland Beckmann
- Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|
5
|
LaPeruta AJ, Hedayati S, Micic J, Fitzgerald F, Kim D, Oualline G, Woolford JL. Yeast ribosome biogenesis factors Puf6 and Nog2 and ribosomal proteins uL2 and eL43 act in concert to facilitate the release of nascent large ribosomal subunits from the nucleolus. Nucleic Acids Res 2023; 51:11277-11290. [PMID: 37811893 PMCID: PMC10639061 DOI: 10.1093/nar/gkad794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Large ribosomal subunit precursors (pre-LSUs) are primarily synthesized in the nucleolus. At an undetermined step in their assembly, they are released into the nucleoplasm. Structural models of yeast pre-LSUs at various stages of assembly have been collected using cryo-EM. However, which cryo-EM model is closest to the final nucleolar intermediate of the LSU has yet to be determined. To elucidate the mechanisms of the release of pre-LSUs from the nucleolus, we assayed effects of depleting or knocking out two yeast ribosome biogenesis factors (RiBi factors), Puf6 and Nog2, and two ribosomal proteins, uL2 and eL43. These proteins function during or stabilize onto pre-LSUs between the late nucleolar stages to early nucleoplasmic stages of ribosome biogenesis. By characterizing the phenotype of these four mutants, we determined that a particle that is intermediate between the cryo-EM model State NE1 and State NE2 likely represents the final nucleolar assembly intermediate of the LSU. We conclude that the release of the RiBi factors Nip7, Nop2 and Spb1 and the subsequent stabilization of rRNA domains IV and V may be key triggers for the release of pre-LSUs from the nucleolus.
Collapse
Affiliation(s)
- Amber J LaPeruta
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Stefanie Hedayati
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Fiona Fitzgerald
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - David Kim
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Grace Oualline
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Lau B, Huang Z, Kellner N, Niu S, Berninghausen O, Beckmann R, Hurt E, Cheng J. Mechanism of 5S RNP recruitment and helicase-surveilled rRNA maturation during pre-60S biogenesis. EMBO Rep 2023; 24:e56910. [PMID: 37129998 PMCID: PMC10328080 DOI: 10.15252/embr.202356910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Ribosome biogenesis proceeds along a multifaceted pathway from the nucleolus to the cytoplasm that is extensively coupled to several quality control mechanisms. However, the mode by which 5S ribosomal RNA is incorporated into the developing pre-60S ribosome, which in humans links ribosome biogenesis to cell proliferation by surveillance by factors such as p53-MDM2, is poorly understood. Here, we report nine nucleolar pre-60S cryo-EM structures from Chaetomium thermophilum, one of which clarifies the mechanism of 5S RNP incorporation into the early pre-60S. Successive assembly states then represent how helicases Dbp10 and Spb4, and the Pumilio domain factor Puf6 act in series to surveil the gradual folding of the nearby 25S rRNA domain IV. Finally, the methyltransferase Spb1 methylates a universally conserved guanine nucleotide in the A-loop of the peptidyl transferase center, thereby licensing further maturation. Our findings provide insight into the hierarchical action of helicases in safeguarding rRNA tertiary structure folding and coupling to surveillance mechanisms that culminate in local RNA modification.
Collapse
Affiliation(s)
- Benjamin Lau
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Zixuan Huang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co‐laboratory of Medical Epigenetics and MetabolismFudan UniversityShanghaiChina
| | - Nikola Kellner
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | | | | | - Roland Beckmann
- Gene CenterLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co‐laboratory of Medical Epigenetics and MetabolismFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Ma C, Wu D, Chen Q, Gao N. Structural dynamics of AAA + ATPase Drg1 and mechanism of benzo-diazaborine inhibition. Nat Commun 2022; 13:6765. [PMID: 36351914 PMCID: PMC9646744 DOI: 10.1038/s41467-022-34511-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
The type II AAA + ATPase Drg1 is a ribosome assembly factor, functioning to release Rlp24 from the pre-60S particle just exported from nucleus, and its activity in can be inhibited by a drug molecule diazaborine. However, molecular mechanisms of Drg1-mediated Rlp24 removal and diazaborine-mediated inhibition are not fully understood. Here, we report Drg1 structures in different nucleotide-binding and benzo-diazaborine treated states. Drg1 hexamers transits between two extreme conformations (planar or helical arrangement of protomers). By forming covalent adducts with ATP molecules in both ATPase domain, benzo-diazaborine locks Drg1 hexamers in a symmetric and non-productive conformation to inhibits both inter-protomer and inter-ring communication of Drg1 hexamers. We also obtained a substrate-engaged mutant Drg1 structure, in which conserved pore-loops form a spiral staircase to interact with the polypeptide through a sequence-independent manner. Structure-based mutagenesis data highlight the functional importance of the pore-loop, the D1-D2 linker and the inter-subunit signaling motif of Drg1, which share similar regulatory mechanisms with p97. Our results suggest that Drg1 may function as an unfoldase that threads a substrate protein within the pre-60S particle.
Collapse
Affiliation(s)
- Chengying Ma
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China ,Changping Laboratory, 102206 Beijing, China
| | - Damu Wu
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Qian Chen
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China
| | - Ning Gao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, 100871 Beijing, China ,Changping Laboratory, 102206 Beijing, China ,grid.11135.370000 0001 2256 9319National Biomedical Imaging Center, Peking University, 100871 Beijing, China
| |
Collapse
|
9
|
Kocaman S, Lo YH, Krahn JM, Sobhany M, Dandey VP, Petrovich ML, Etigunta SK, Williams JG, Deterding LJ, Borgnia MJ, Stanley RE. Communication network within the essential AAA-ATPase Rix7 drives ribosome assembly. PNAS NEXUS 2022; 1:pgac118. [PMID: 36090660 PMCID: PMC9437592 DOI: 10.1093/pnasnexus/pgac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 02/06/2023]
Abstract
Rix7 is an essential AAA+ ATPase that functions during the early stages of ribosome biogenesis. Rix7 is composed of three domains including an N-terminal domain (NTD) and two AAA+ domains (D1 and D2) that assemble into an asymmetric stacked hexamer. It was recently established that Rix7 is a presumed protein translocase that removes substrates from preribosomes by translocating them through its central pore. However, how the different domains of Rix7 coordinate their activities within the overall hexameric structure was unknown. We captured cryo-electron microscopy (EM) structures of single and double Walker B variants of full length Rix7. The disordered NTD was not visible in the cryo-EM reconstructions, but cross-linking mass spectrometry revealed that the NTD can associate with the central channel in vitro. Deletion of the disordered NTD enabled us to obtain a structure of the Rix7 hexamer to 2.9 Å resolution, providing high resolution details of critical motifs involved in substrate translocation and interdomain communication. This structure coupled with cell-based assays established that the linker connecting the D1 and D2 domains as well as the pore loops lining the central channel are essential for formation of the large ribosomal subunit. Together, our work shows that Rix7 utilizes a complex communication network to drive ribosome biogenesis.
Collapse
Affiliation(s)
- Seda Kocaman
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Yu-Hua Lo
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Venkata P Dandey
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Matthew L Petrovich
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Suhas K Etigunta
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Department of Health and Human Services, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Leesa J Deterding
- Department of Health and Human Services, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
10
|
Bhutada P, Favre S, Jaafar M, Hafner J, Liesinger L, Unterweger S, Bischof K, Darnhofer B, Siva Sankar D, Rechberger G, Abou Merhi R, Lebaron S, Birner-Gruenberger R, Kressler D, Henras AK, Pertschy B. Rbp95 binds to 25S rRNA helix H95 and cooperates with the Npa1 complex during early pre-60S particle maturation. Nucleic Acids Res 2022; 50:10053-10077. [PMID: 36018804 PMCID: PMC9508819 DOI: 10.1093/nar/gkac724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic ribosome synthesis involves more than 200 assembly factors, which promote ribosomal RNA (rRNA) processing, modification and folding, and assembly of ribosomal proteins. The formation and maturation of the earliest pre-60S particles requires structural remodeling by the Npa1 complex, but is otherwise still poorly understood. Here, we introduce Rbp95 (Ycr016w), a constituent of early pre-60S particles, as a novel ribosome assembly factor. We show that Rbp95 is both genetically and physically linked to most Npa1 complex members and to ribosomal protein Rpl3. We demonstrate that Rbp95 is an RNA-binding protein containing two independent RNA-interacting domains. In vivo, Rbp95 associates with helix H95 in the 3′ region of the 25S rRNA, in close proximity to the binding sites of Npa1 and Rpl3. Additionally, Rbp95 interacts with several snoRNAs. The absence of Rbp95 results in alterations in the protein composition of early pre-60S particles. Moreover, combined mutation of Rbp95 and Npa1 complex members leads to a delay in the maturation of early pre-60S particles. We propose that Rbp95 acts together with the Npa1 complex during early pre-60S maturation, potentially by promoting pre-rRNA folding events within pre-60S particles.
Collapse
Affiliation(s)
- Priya Bhutada
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Sébastien Favre
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France.,Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Jutta Hafner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Laura Liesinger
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Stefan Unterweger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Karin Bischof
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Barbara Darnhofer
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Devanarayanan Siva Sankar
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Gerald Rechberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Raghida Abou Merhi
- Genomic Stability and Biotherapy (GSBT) Laboratory, Faculty of Sciences, Rafik Hariri Campus, Lebanese University, Beirut, Lebanon
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Ruth Birner-Gruenberger
- BioTechMed-Graz, Graz, Austria.,Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria.,Institute of Chemical Technologies and Analytics, Technische Universität Wien, Getreidemarkt 9/E164, 1060 Vienna, Austria
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Brigitte Pertschy
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
11
|
Micic J, Rodríguez-Galán O, Babiano R, Fitzgerald F, Fernández-Fernández J, Zhang Y, Gao N, Woolford JL, de la Cruz J. Ribosomal protein eL39 is important for maturation of the nascent polypeptide exit tunnel and proper protein folding during translation. Nucleic Acids Res 2022; 50:6453-6473. [PMID: 35639884 PMCID: PMC9226512 DOI: 10.1093/nar/gkac366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
During translation, nascent polypeptide chains travel from the peptidyl transferase center through the nascent polypeptide exit tunnel (NPET) to emerge from 60S subunits. The NPET includes portions of five of the six 25S/5.8S rRNA domains and ribosomal proteins uL4, uL22, and eL39. Internal loops of uL4 and uL22 form the constriction sites of the NPET and are important for both assembly and function of ribosomes. Here, we investigated the roles of eL39 in tunnel construction, 60S biogenesis, and protein synthesis. We show that eL39 is important for proper protein folding during translation. Consistent with a delay in processing of 27S and 7S pre-rRNAs, eL39 functions in pre-60S assembly during middle nucleolar stages. Our biochemical assays suggest the presence of eL39 in particles at these stages, although it is not visualized in them by cryo-electron microscopy. This indicates that eL39 takes part in assembly even when it is not fully accommodated into the body of pre-60S particles. eL39 is also important for later steps of assembly, rotation of the 5S ribonucleoprotein complex, likely through long range rRNA interactions. Finally, our data strongly suggest the presence of alternative pathways of ribosome assembly, previously observed in the biogenesis of bacterial ribosomal subunits.
Collapse
Affiliation(s)
- Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Fiona Fitzgerald
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Yunyang Zhang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
12
|
Mitterer V, Pertschy B. RNA folding and functions of RNA helicases in ribosome biogenesis. RNA Biol 2022; 19:781-810. [PMID: 35678541 PMCID: PMC9196750 DOI: 10.1080/15476286.2022.2079890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosome biogenesis involves the synthesis of ribosomal RNA (rRNA) and its stepwise folding into the unique structure present in mature ribosomes. rRNA folding starts already co-transcriptionally in the nucleolus and continues when pre-ribosomal particles further maturate in the nucleolus and upon their transit to the nucleoplasm and cytoplasm. While the approximate order of folding of rRNA subdomains is known, especially from cryo-EM structures of pre-ribosomal particles, the actual mechanisms of rRNA folding are less well understood. Both small nucleolar RNAs (snoRNAs) and proteins have been implicated in rRNA folding. snoRNAs hybridize to precursor rRNAs (pre-rRNAs) and thereby prevent premature folding of the respective rRNA elements. Ribosomal proteins (r-proteins) and ribosome assembly factors might have a similar function by binding to rRNA elements and preventing their premature folding. Besides that, a small group of ribosome assembly factors are thought to play a more active role in rRNA folding. In particular, multiple RNA helicases participate in individual ribosome assembly steps, where they are believed to coordinate RNA folding/unfolding events or the release of proteins from the rRNA. In this review, we summarize the current knowledge on mechanisms of RNA folding and on the specific function of the individual RNA helicases involved. As the yeast Saccharomyces cerevisiae is the organism in which ribosome biogenesis and the role of RNA helicases in this process is best studied, we focused our review on insights from this model organism, but also make comparisons to other organisms where applicable.
Collapse
Affiliation(s)
- Valentin Mitterer
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany
- BioTechMed-Graz, Graz, Austria
| | - Brigitte Pertschy
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, Graz, Austria
| |
Collapse
|
13
|
Bagatelli FFM, de Luna Vitorino FN, da Cunha JPC, Oliveira CC. The ribosome assembly factor Nop53 has a structural role in the formation of nuclear pre-60S intermediates, affecting late maturation events. Nucleic Acids Res 2021; 49:7053-7074. [PMID: 34125911 PMCID: PMC8266606 DOI: 10.1093/nar/gkab494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic ribosome biogenesis is an elaborate process during which ribosomal proteins assemble with the pre-rRNA while it is being processed and folded. Hundreds of assembly factors (AF) are required and transiently recruited to assist the sequential remodeling events. One of the most intricate ones is the stepwise removal of the internal transcribed spacer 2 (ITS2), between the 5.8S and 25S rRNAs, that constitutes together with five AFs the pre-60S ‘foot’. In the transition from nucleolus to nucleoplasm, Nop53 replaces Erb1 at the basis of the foot and recruits the RNA exosome for the ITS2 cleavage and foot disassembly. Here we comprehensively analyze the impact of Nop53 recruitment on the pre-60S compositional changes. We show that depletion of Nop53, different from nop53 mutants lacking the exosome-interacting motif, not only causes retention of the unprocessed foot in late pre-60S intermediates but also affects the transition from nucleolar state E particle to subsequent nuclear stages. Additionally, we reveal that Nop53 depletion causes the impairment of late maturation events such as Yvh1 recruitment. In light of recently described pre-60S cryo-EM structures, our results provide biochemical evidence for the structural role of Nop53 rearranging and stabilizing the foot interface to assist the Nog2 particle formation.
Collapse
Affiliation(s)
- Felipe F M Bagatelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Francisca N de Luna Vitorino
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, SP 05503-900, Brazil.,Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Julia P C da Cunha
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, SP 05503-900, Brazil.,Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Carla C Oliveira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
14
|
Prattes M, Grishkovskaya I, Hodirnau VV, Rössler I, Klein I, Hetzmannseder C, Zisser G, Gruber CC, Gruber K, Haselbach D, Bergler H. Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine. Nat Commun 2021; 12:3483. [PMID: 34108481 PMCID: PMC8190095 DOI: 10.1038/s41467-021-23854-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023] Open
Abstract
The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2'-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.
Collapse
Affiliation(s)
- Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | | | - Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Klein
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
- Field of Excellence BioHealth - University of Graz, Graz, Austria.
| |
Collapse
|
15
|
Olombrada M, Peña C, Rodríguez-Galán O, Klingauf-Nerurkar P, Portugal-Calisto D, Oborská-Oplová M, Altvater M, Gavilanes JG, Martínez-Del-Pozo Á, de la Cruz J, García-Ortega L, Panse VG. The ribotoxin α-sarcin can cleave the sarcin/ricin loop on late 60S pre-ribosomes. Nucleic Acids Res 2020; 48:6210-6222. [PMID: 32365182 PMCID: PMC7293039 DOI: 10.1093/nar/gkaa315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
The ribotoxin α-sarcin belongs to a family of ribonucleases that cleave the sarcin/ricin loop (SRL), a critical functional rRNA element within the large ribosomal subunit (60S), thereby abolishing translation. Whether α-sarcin targets the SRL only in mature 60S subunits remains unresolved. Here, we show that, in yeast, α-sarcin can cleave SRLs within late 60S pre-ribosomes containing mature 25S rRNA but not nucleolar/nuclear 60S pre-ribosomes containing 27S pre-rRNA in vivo. Conditional expression of α-sarcin is lethal, but does not impede early pre-rRNA processing, nuclear export and the cytoplasmic maturation of 60S pre-ribosomes. Thus, SRL-cleaved containing late 60S pre-ribosomes seem to escape cytoplasmic proofreading steps. Polysome analyses revealed that SRL-cleaved 60S ribosomal subunits form 80S initiation complexes, but fail to progress to the step of translation elongation. We suggest that the functional integrity of a α-sarcin cleaved SRL might be assessed only during translation.
Collapse
Affiliation(s)
- Miriam Olombrada
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de Madrid, Spain.,Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, CH-8093 Zürich, Switzerland
| | - Cohue Peña
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, CH-8093 Zürich, Switzerland.,Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, CH-8006 Zürich, Switzerland
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Purnima Klingauf-Nerurkar
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, CH-8093 Zürich, Switzerland.,Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, CH-8006 Zürich, Switzerland
| | - Daniela Portugal-Calisto
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, CH-8006 Zürich, Switzerland
| | - Michaela Oborská-Oplová
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, CH-8093 Zürich, Switzerland.,Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, CH-8006 Zürich, Switzerland
| | - Martin Altvater
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, CH-8093 Zürich, Switzerland
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de Madrid, Spain
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de Madrid, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Lucía García-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense de Madrid, Spain
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, CH-8006 Zürich, Switzerland
| |
Collapse
|
16
|
Kater L, Mitterer V, Thoms M, Cheng J, Berninghausen O, Beckmann R, Hurt E. Construction of the Central Protuberance and L1 Stalk during 60S Subunit Biogenesis. Mol Cell 2020; 79:615-628.e5. [PMID: 32668200 DOI: 10.1016/j.molcel.2020.06.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/13/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Abstract
Ribosome assembly is driven by numerous assembly factors, including the Rix1 complex and the AAA ATPase Rea1. These two assembly factors catalyze 60S maturation at two distinct states, triggering poorly understood large-scale structural transitions that we analyzed by cryo-electron microscopy. Two nuclear pre-60S intermediates were discovered that represent previously unknown states after Rea1-mediated removal of the Ytm1-Erb1 complex and reveal how the L1 stalk develops from a pre-mature nucleolar to a mature-like nucleoplasmic state. A later pre-60S intermediate shows how the central protuberance arises, assisted by the nearby Rix1-Rea1 machinery, which was solved in its pre-ribosomal context to molecular resolution. This revealed a Rix12-Ipi32 tetramer anchored to the pre-60S via Ipi1, strategically positioned to monitor this decisive remodeling. These results are consistent with a general underlying principle that temporarily stabilized immature RNA domains are successively remodeled by assembly factors, thereby ensuring failsafe assembly progression.
Collapse
Affiliation(s)
- Lukas Kater
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Valentin Mitterer
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Matthias Thoms
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany; Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Jingdong Cheng
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Otto Berninghausen
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Roland Beckmann
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Klingauf-Nerurkar P, Gillet LC, Portugal-Calisto D, Oborská-Oplová M, Jäger M, Schubert OT, Pisano A, Peña C, Rao S, Altvater M, Chang Y, Aebersold R, Panse VG. The GTPase Nog1 co-ordinates the assembly, maturation and quality control of distant ribosomal functional centers. eLife 2020; 9:e52474. [PMID: 31909713 PMCID: PMC6968927 DOI: 10.7554/elife.52474] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic ribosome precursors acquire translation competence in the cytoplasm through stepwise release of bound assembly factors, and proofreading of their functional centers. In case of the pre-60S, these steps include removal of placeholders Rlp24, Arx1 and Mrt4 that prevent premature loading of the ribosomal protein eL24, the protein-folding machinery at the polypeptide exit tunnel (PET), and the ribosomal stalk, respectively. Here, we reveal that sequential ATPase and GTPase activities license release factors Rei1 and Yvh1 to trigger Arx1 and Mrt4 removal. Drg1-ATPase activity removes Rlp24 from the GTPase Nog1 on the pre-60S; consequently, the C-terminal tail of Nog1 is extracted from the PET. These events enable Rei1 to probe PET integrity and catalyze Arx1 release. Concomitantly, Nog1 eviction from the pre-60S permits peptidyl transferase center maturation, and allows Yvh1 to mediate Mrt4 release for stalk assembly. Thus, Nog1 co-ordinates the assembly, maturation and quality control of distant functional centers during ribosome formation.
Collapse
Affiliation(s)
| | - Ludovic C Gillet
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | | | - Michaela Oborská-Oplová
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Martin Jäger
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Olga T Schubert
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Agnese Pisano
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| | - Cohue Peña
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| | - Sanjana Rao
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| | | | - Yiming Chang
- Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Vikram G Panse
- Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
18
|
Abstract
In the past 25 years, genetic and biochemical analyses of ribosome assembly in yeast have identified most of the factors that participate in this complex pathway and have generated models for the mechanisms driving the assembly. More recently, the publication of numerous cryo-electron microscopy structures of yeast ribosome assembly intermediates has provided near-atomic resolution snapshots of ribosome precursor particles. Satisfyingly, these structural data support the genetic and biochemical models and provide additional mechanistic insight into ribosome assembly. In this Review, we discuss the mechanisms of assembly of the yeast small ribosomal subunit and large ribosomal subunit in the nucleolus, nucleus and cytoplasm. Particular emphasis is placed on concepts such as the mechanisms of RNA compaction, the functions of molecular switches and molecular mimicry, the irreversibility of assembly checkpoints and the roles of structural and functional proofreading of pre-ribosomal particles.
Collapse
|
19
|
Prattes M, Lo YH, Bergler H, Stanley RE. Shaping the Nascent Ribosome: AAA-ATPases in Eukaryotic Ribosome Biogenesis. Biomolecules 2019; 9:E715. [PMID: 31703473 PMCID: PMC6920918 DOI: 10.3390/biom9110715] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
AAA-ATPases are molecular engines evolutionarily optimized for the remodeling of proteins and macromolecular assemblies. Three AAA-ATPases are currently known to be involved in the remodeling of the eukaryotic ribosome, a megadalton range ribonucleoprotein complex responsible for the translation of mRNAs into proteins. The correct assembly of the ribosome is performed by a plethora of additional and transiently acting pre-ribosome maturation factors that act in a timely and spatially orchestrated manner. Minimal disorder of the assembly cascade prohibits the formation of functional ribosomes and results in defects in proliferation and growth. Rix7, Rea1, and Drg1, which are well conserved across eukaryotes, are involved in different maturation steps of pre-60S ribosomal particles. These AAA-ATPases provide energy for the efficient removal of specific assembly factors from pre-60S particles after they have fulfilled their function in the maturation cascade. Recent structural and functional insights have provided the first glimpse into the molecular mechanism of target recognition and remodeling by Rix7, Rea1, and Drg1. Here we summarize current knowledge on the AAA-ATPases involved in eukaryotic ribosome biogenesis. We highlight the latest insights into their mechanism of mechano-chemical complex remodeling driven by advanced cryo-EM structures and the use of highly specific AAA inhibitors.
Collapse
Affiliation(s)
- Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010 Graz, Austria;
| | - Yu-Hua Lo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, Durham, NC 27709, USA;
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/EG, A-8010 Graz, Austria;
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, Durham, NC 27709, USA;
| |
Collapse
|
20
|
Ramos-Sáenz A, González-Álvarez D, Rodríguez-Galán O, Rodríguez-Gil A, Gaspar SG, Villalobo E, Dosil M, de la Cruz J. Pol5 is an essential ribosome biogenesis factor required for 60S ribosomal subunit maturation in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2019; 25:1561-1575. [PMID: 31413149 PMCID: PMC6795146 DOI: 10.1261/rna.072116.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
In Saccharomyces cerevisiae, more than 250 trans-acting factors are involved in the maturation of 40S and 60S ribosomal subunits. The expression of most of these factors is transcriptionally coregulated to ensure correct ribosome production under a wide variety of environmental and intracellular conditions. Here, we identified the essential nucleolar Pol5 protein as a novel trans-acting factor required for the synthesis of 60S ribosomal subunits. Pol5 weakly and/or transiently associates with early to medium pre-60S ribosomal particles. Depletion of and temperature-sensitive mutations in Pol5 result in a deficiency of 60S ribosomal subunits and accumulation of half-mer polysomes. Both processing of 27SB pre-rRNA to mature 25S rRNA and release of pre-60S ribosomal particles from the nucle(ol)us to the cytoplasm are impaired in the Pol5-depleted strain. Moreover, we identified the genes encoding ribosomal proteins uL23 and eL27A as multicopy suppressors of the slow growth of a temperature-sensitive pol5 mutant. These results suggest that Pol5 could function in ensuring the correct folding of 25S rRNA domain III; thus, favoring the correct assembly of these two ribosomal proteins at their respective binding sites into medium pre-60S ribosomal particles. Pol5 is homologous to the human tumor suppressor Myb-binding protein 1A (MYBBP1A). However, expression of MYBBP1A failed to complement the lethal phenotype of a pol5 null mutant strain though interfered with 60S ribosomal subunit biogenesis.
Collapse
Affiliation(s)
- Ana Ramos-Sáenz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Daniel González-Álvarez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
| | - Sonia G Gaspar
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Eduardo Villalobo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| | - Mercedes Dosil
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), CSIC-Universidad de Salamanca, E-37007, Salamanca, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, E-37007, Salamanca, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012, Seville, Spain
| |
Collapse
|
21
|
Li PC, Li K, Wang J, Zhao CZ, Zhao SZ, Hou L, Xia H, Ma CL, Wang XJ. The AAA-ATPase MIDASIN 1 Functions in Ribosome Biogenesis and Is Essential for Embryo and Root Development. PLANT PHYSIOLOGY 2019; 180:289-304. [PMID: 30755475 PMCID: PMC6501072 DOI: 10.1104/pp.18.01225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/30/2019] [Indexed: 05/04/2023]
Abstract
Ribosome biogenesis is an orchestrated process that relies on many assembly factors. The AAA-ATPase Midasin 1 (Mdn1) functions as a ribosome assembly factor in yeast (Saccharomyces cerevisiae), but the roles of MDN1 in Arabidopsis (Arabidopsis thaliana) are poorly understood. Here, we showed that the Arabidopsis null mutant of MDN1 is embryo-lethal. Using the weak mutant mdn1-1, which maintains viability, we found that MDN1 is critical for the regular pattern of auxin maxima in the globular embryo and functions in root meristem maintenance. By detecting the subcellular distribution of ribosome proteins, we noted that mdn1-1 impairs nuclear export of the pre-60S ribosomal particle. The processing of ribosomal precusor RNAs, including 35S, 27SB, and 20S, is also affected in this mutant. MDN1 physically interacts with PESCADILLO2 (PES2), an essential assembly factor of the 60S ribosome, and the observed mislocalization of PES2 in mdn1-1 further implied that MDN1 plays an indispensable role in 60S ribosome biogenesis. Therefore, the observed hypersensitivity of mdn1-1 to a eukaryotic translation inhibitor and high-sugar conditions might be associated with the defect in ribosome biogenesis. Overall, this work establishes a role of Arabidopsis MDN1 in ribosome biogenesis, which agrees with its roles in embryogenesis and root development.
Collapse
Affiliation(s)
- Peng-Cheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Ke Li
- College of Life Science, Shandong University, Qingdao 266237, PR China
| | - Juan Wang
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Chuan-Zhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Shu-Zhen Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Lei Hou
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Chang-Le Ma
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Xing-Jun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| |
Collapse
|
22
|
Cryo-EM structure of the essential ribosome assembly AAA-ATPase Rix7. Nat Commun 2019; 10:513. [PMID: 30705282 PMCID: PMC6355894 DOI: 10.1038/s41467-019-08373-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/28/2018] [Indexed: 01/24/2023] Open
Abstract
Rix7 is an essential type II AAA-ATPase required for the formation of the large ribosomal subunit. Rix7 has been proposed to utilize the power of ATP hydrolysis to drive the removal of assembly factors from pre-60S particles, but the mechanism of release is unknown. Rix7's mammalian homolog, NVL2 has been linked to cancer and mental illness disorders, highlighting the need to understand the molecular mechanisms of this essential machine. Here we report the cryo-EM reconstruction of the tandem AAA domains of Rix7 which form an asymmetric stacked homohexameric ring. We trapped Rix7 with a polypeptide in the central channel, revealing Rix7's role as a molecular unfoldase. The structure establishes that type II AAA-ATPases lacking the aromatic-hydrophobic motif within the first AAA domain can engage a substrate throughout the entire central channel. The structure also reveals that Rix7 contains unique post-α7 insertions within both AAA domains important for Rix7 function.
Collapse
|
23
|
Biedka S, Micic J, Wilson D, Brown H, Diorio-Toth L, Woolford JL. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes. J Cell Biol 2018; 217:2503-2518. [PMID: 29691304 PMCID: PMC6028539 DOI: 10.1083/jcb.201711037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Ribosome biogenesis involves numerous pre-rRNA processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Biedka et al. show that ribosomal proteins and assembly factors remodel several neighborhoods, including two 60S ribosomal subunit functional centers, during removal of the ITS2 spacer RNA. Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C2 site of 27SB pre-rRNA. C2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C2 cleavage and interpreted these results using cryo–electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C2 cleavage. Interestingly, when C2 cleavage is directly blocked by depleting or inactivating the C2 endonuclease, assembly progresses through all other subsequent steps.
Collapse
Affiliation(s)
- Stephanie Biedka
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Daniel Wilson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Hailey Brown
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Luke Diorio-Toth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
24
|
Zhou D, Zhu X, Zheng S, Tan D, Dong MQ, Ye K. Cryo-EM structure of an early precursor of large ribosomal subunit reveals a half-assembled intermediate. Protein Cell 2018; 10:120-130. [PMID: 29557065 PMCID: PMC6340896 DOI: 10.1007/s13238-018-0526-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/04/2018] [Indexed: 11/25/2022] Open
Abstract
Assembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates. It is unknown how the highly intertwined structure of 60S large ribosomal subunits is established. Here, we report the structure of an early nucleolar pre-60S ribosome determined by cryo-electron microscopy at 3.7 Å resolution, revealing a half-assembled subunit. Domains I, II and VI of 25S/5.8S rRNA pack tightly into a native-like substructure, but domains III, IV and V are not assembled. The structure contains 12 assembly factors and 19 ribosomal proteins, many of which are required for early processing of large subunit rRNA. The Brx1-Ebp2 complex would interfere with the assembly of domains IV and V. Rpf1, Mak16, Nsa1 and Rrp1 form a cluster that consolidates the joining of domains I and II. Our structure reveals a key intermediate on the path to establishing the global architecture of 60S subunits.
Collapse
Affiliation(s)
- Dejian Zhou
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Xing Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sanduo Zheng
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Keqiong Ye
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Sanghai ZA, Miller L, Molloy KR, Barandun J, Hunziker M, Chaker-Margot M, Wang J, Chait BT, Klinge S. Modular assembly of the nucleolar pre-60S ribosomal subunit. Nature 2018; 556:126-129. [PMID: 29512650 DOI: 10.1038/nature26156] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/23/2018] [Indexed: 12/13/2022]
Abstract
Early co-transcriptional events during eukaryotic ribosome assembly result in the formation of precursors of the small (40S) and large (60S) ribosomal subunits. A multitude of transient assembly factors regulate and chaperone the systematic folding of pre-ribosomal RNA subdomains. However, owing to a lack of structural information, the role of these factors during early nucleolar 60S assembly is not fully understood. Here we report cryo-electron microscopy (cryo-EM) reconstructions of the nucleolar pre-60S ribosomal subunit in different conformational states at resolutions of up to 3.4 Å. These reconstructions reveal how steric hindrance and molecular mimicry are used to prevent both premature folding states and binding of later factors. This is accomplished by the concerted activity of 21 ribosome assembly factors that stabilize and remodel pre-ribosomal RNA and ribosomal proteins. Among these factors, three Brix-domain proteins and their binding partners form a ring-like structure at ribosomal RNA (rRNA) domain boundaries to support the architecture of the maturing particle. The existence of mutually exclusive conformations of these pre-60S particles suggests that the formation of the polypeptide exit tunnel is achieved through different folding pathways during subsequent stages of ribosome assembly. These structures rationalize previous genetic and biochemical data and highlight the mechanisms that drive eukaryotic ribosome assembly in a unidirectional manner.
Collapse
Affiliation(s)
- Zahra Assur Sanghai
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Linamarie Miller
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, New York 10065, USA.,Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, New York 10065, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Jonas Barandun
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Mirjam Hunziker
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Malik Chaker-Margot
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, New York 10065, USA.,Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, New York 10065, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10065, USA
| | - Sebastian Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
26
|
Lo YH, Pillon MC, Stanley RE. Combining X-Ray Crystallography with Small Angle X-Ray Scattering to Model Unstructured Regions of Nsa1 from S. Cerevisiae. J Vis Exp 2018. [PMID: 29364241 DOI: 10.3791/56953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Determination of the full-length structure of ribosome assembly factor Nsa1 from Saccharomyces cerevisiae (S. cerevisiae) is challenging because of the disordered and protease labile C-terminus of the protein. This manuscript describes the methods to purify recombinant Nsa1 from S. cerevisiae for structural analysis by both X-ray crystallography and SAXS. X-ray crystallography was utilized to solve the structure of the well-ordered N-terminal WD40 domain of Nsa1, and then SAXS was used to resolve the structure of the C-terminus of Nsa1 in solution. Solution scattering data was collected from full-length Nsa1 in solution. The theoretical scattering amplitudes were calculated from the high-resolution crystal structure of the WD40 domain, and then a combination of rigid body and ab initio modeling revealed the C-terminus of Nsa1. Through this hybrid approach the quaternary structure of the entire protein was reconstructed. The methods presented here should be generally applicable for the hybrid structural determination of other proteins composed of a mix of structured and unstructured domains.
Collapse
Affiliation(s)
- Yu-Hua Lo
- Signal Transduction Laboratory, National Institutes of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health
| | - Monica C Pillon
- Signal Transduction Laboratory, National Institutes of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institutes of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health;
| |
Collapse
|
27
|
Kater L, Thoms M, Barrio-Garcia C, Cheng J, Ismail S, Ahmed YL, Bange G, Kressler D, Berninghausen O, Sinning I, Hurt E, Beckmann R. Visualizing the Assembly Pathway of Nucleolar Pre-60S Ribosomes. Cell 2017; 171:1599-1610.e14. [PMID: 29245012 PMCID: PMC5745149 DOI: 10.1016/j.cell.2017.11.039] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/13/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Eukaryotic 60S ribosomal subunits are comprised of three rRNAs and ∼50 ribosomal proteins. The initial steps of their formation take place in the nucleolus, but, owing to a lack of structural information, this process is poorly understood. Using cryo-EM, we solved structures of early 60S biogenesis intermediates at 3.3 Å to 4.5 Å resolution, thereby providing insights into their sequential folding and assembly pathway. Besides revealing distinct immature rRNA conformations, we map 25 assembly factors in six different assembly states. Notably, the Nsa1-Rrp1-Rpf1-Mak16 module stabilizes the solvent side of the 60S subunit, and the Erb1-Ytm1-Nop7 complex organizes and connects through Erb1's meandering N-terminal extension, eight assembly factors, three ribosomal proteins, and three 25S rRNA domains. Our structural snapshots reveal the order of integration and compaction of the six major 60S domains within early nucleolar 60S particles developing stepwise from the solvent side around the exit tunnel to the central protuberance.
Collapse
Affiliation(s)
- Lukas Kater
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Matthias Thoms
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Clara Barrio-Garcia
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Jingdong Cheng
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Sherif Ismail
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | | | - Gert Bange
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Dieter Kressler
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Otto Berninghausen
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany
| | - Irmgard Sinning
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany
| | - Roland Beckmann
- Gene Center Munich and Center of Integrated Protein Science-Munich (CiPS-M), Department of Biochemistry, Feodor-Lynen-Str. 25, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
28
|
Hiraishi N, Ishida YI, Sudo H, Nagahama M. WDR74 participates in an early cleavage of the pre-rRNA processing pathway in cooperation with the nucleolar AAA-ATPase NVL2. Biochem Biophys Res Commun 2017; 495:116-123. [PMID: 29107693 DOI: 10.1016/j.bbrc.2017.10.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
WD repeat-containing protein 74 (WDR74), a nucleolar-localized protein, is the mammalian ortholog of Nsa1, a 60S ribosome assembly factor in yeast. We previously showed that WDR74 associates with MTR4, the nuclear exosome-assisting RNA helicase, whose dissociation is prohibited by an ATPase-deficient mutant of the AAA-type chaperone NVL2. However, the functions and regulation of WDR74 during ribosome biogenesis in cooperation with NVL2 remains unknown. Here, we demonstrated that knockdown of WDR74 leads to significant defects in the pre-rRNA cleavage within the internal transcribed spacer 1 (ITS1), occurring in an early stage of the processing pathway. Interestingly, when the dissociation of WDR74 from the MTR4-containing exonuclease complex was impaired upon expression of the mutant NVL2, the same processing defect, with partial migration of WDR74 from the nucleolus towards the nucleoplasm, was observed. In the nucleoplasm, an increased interaction between WDR74 and MTR4 was detected by in situ proximity ligation assay. Therefore, the dissociation of WDR74 from MTR4 in a late stage of rRNA synthesis is thought to be required for appropriate maturation of the pre-60S particles. These results suggest that the spatiotemporal regulation of ribosome biogenesis in the nucleolus is mediated by the ATPase activity of NVL2.
Collapse
Affiliation(s)
- Nobuhiro Hiraishi
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Yo-Ichi Ishida
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Haruka Sudo
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
29
|
The AAA ATPase MDN1 Acts as a SUMO-Targeted Regulator in Mammalian Pre-ribosome Remodeling. Mol Cell 2017; 64:607-615. [PMID: 27814492 DOI: 10.1016/j.molcel.2016.09.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/26/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023]
Abstract
Biogenesis of translation-competent 80S ribosomes is a multi-step process requiring the sequential action of non-ribosomal trans-acting factors. We previously identified the human PELP1-TEX10-WDR18 complex and the associated SUMO isopeptidase SENP3 as regulators of 60S maturation. We provided evidence that deconjugating SUMO from PELP1 by SENP3 is instrumental for proper ribosome biogenesis. Here we show that SUMO conjugation/deconjugation of PELP1 controls its dynamic association with the AAA ATPase MDN1, a key factor of pre-60S remodeling. We demonstrate that modification of PELP1 promotes the recruitment of MDN1 to pre-60S particles, while deSUMOylation is needed to release both MDN1 and PELP1 from pre-ribosomes. Inactivation of SENP3 traps MDN1 at pre-60S particles and prevents critical remodeling events, ultimately generating aberrant pre-60S complexes. We define MDN1 as a SUMO-targeted AAA ATPase, and we propose that a controlled SUMO cycle on PELP1 serves as regulatory point for mammalian 60S maturation through ordered recruitment and release of MDN1.
Collapse
|
30
|
Kressler D, Hurt E, Baßler J. A Puzzle of Life: Crafting Ribosomal Subunits. Trends Biochem Sci 2017; 42:640-654. [DOI: 10.1016/j.tibs.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/16/2017] [Accepted: 05/05/2017] [Indexed: 01/24/2023]
|
31
|
Structural transitions during large ribosomal subunit maturation analyzed by tethered nuclease structure probing in S. cerevisiae. PLoS One 2017; 12:e0179405. [PMID: 28686620 PMCID: PMC5501410 DOI: 10.1371/journal.pone.0179405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Yeast large ribosomal subunit (LSU) precursors are subject to substantial changes in protein composition during their maturation due to coordinated transient interactions with a large number of ribosome biogenesis factors and due to the assembly of ribosomal proteins. These compositional changes go along with stepwise processing of LSU rRNA precursors and with specific rRNA folding events, as revealed by recent cryo-electron microscopy analyses of late nuclear and cytoplasmic LSU precursors. Here we aimed to analyze changes in the spatial rRNA surrounding of selected ribosomal proteins during yeast LSU maturation. For this we combined a recently developed tethered tertiary structure probing approach with both targeted and high throughput readout strategies. Several structural features of late LSU precursors were faithfully detected by this procedure. In addition, the obtained data let us suggest that early rRNA precursor processing events are accompanied by a global transition from a flexible to a spatially restricted rRNA conformation. For intermediate LSU precursors a number of structural hallmarks could be addressed which include the fold of the internal transcribed spacer between 5.8S rRNA and 25S rRNA, the orientation of the central protuberance and the spatial organization of the interface between LSU rRNA domains I and III.
Collapse
|
32
|
Lo YH, Romes EM, Pillon MC, Sobhany M, Stanley RE. Structural Analysis Reveals Features of Ribosome Assembly Factor Nsa1/WDR74 Important for Localization and Interaction with Rix7/NVL2. Structure 2017; 25:762-772.e4. [PMID: 28416111 DOI: 10.1016/j.str.2017.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 01/06/2023]
Abstract
Ribosome assembly is a complex process that requires hundreds of essential assembly factors, including Rix7 (NVL2 in mammals) and Nsa1 (WDR74 in mammals). Rix7 is a type II double ring, AAA-ATPase, which is closely related to the well-known Cdc48/p97. Previous studies in Saccharomyces cerevisiae suggest that Rix7 mediates the release of Nsa1 from nucleolar pre-60S particles; however, the underlying mechanisms of this release are unknown. Through multiple structural analyses we show that S. cerevisiae Nsa1 is composed of an N-terminal seven-bladed WD40 domain followed by a lysine-rich C terminus that extends away from the WD40 domain and is required for nucleolar localization. Co-immunoprecipitation assays with the mammalian homologs identified a well-conserved interface within WDR74 that is important for its association with NVL2. We further show that WDR74 associates with the D1 AAA domain of NVL2, which represents a novel mode of binding of a substrate with a type II AAA-ATPase.
Collapse
Affiliation(s)
- Yu-Hua Lo
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Erin M Romes
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Monica C Pillon
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Mack Sobhany
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
33
|
Espinar-Marchena FJ, Fernández-Fernández J, Rodríguez-Galán O, Fernández-Pevida A, Babiano R, de la Cruz J. Role of the yeast ribosomal protein L16 in ribosome biogenesis. FEBS J 2016; 283:2968-85. [PMID: 27374275 DOI: 10.1111/febs.13797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Most ribosomal proteins play essential roles in ribosome synthesis and function. In this study, we have analysed the contribution of yeast ribosomal protein L16 to ribosome biogenesis. We show that in vivo depletion of the essential L16 protein results in a deficit in 60S subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability and rapid turnover of early and intermediate pre-60S particles, as evidenced by the reduced steady-state levels of 27SBS and 7SL /S pre-rRNA, and the low amounts of de novo synthesized 27S pre-rRNA and 25S rRNA. Additionally, depletion of L16 blocks nucleocytoplasmic export of pre-60S particles. Moreover, we show that L16 assembles in the nucleolus and binds to early 90S preribosomal particles. Many evolutionarily conserved ribosomal proteins possess extra eukaryote-specific amino- or carboxy-terminal extensions and/or internal loops. Here, we have also investigated the role of the eukaryote-specific carboxy-terminal extension of L16. Progressive truncation of this extension recapitulates, albeit to a lesser extent, the growth and ribosome biogenesis defects of the L16 depletion. We conclude that L16 assembly is a prerequisite to properly stabilize rRNA structures within early pre-60S particles, thereby favouring efficient 27S pre-rRNA processing within the internal transcribed spacer 1 at sites A3 and B1 . Upon depletion of L16, the lack of this stabilization aborts early pre-60S particle assembly and subjects these intermediates to turnover.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| |
Collapse
|
34
|
Talkish J, Biedka S, Jakovljevic J, Zhang J, Tang L, Strahler JR, Andrews PC, Maddock JR, Woolford JL. Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis. RNA (NEW YORK, N.Y.) 2016; 22:852-66. [PMID: 27036125 PMCID: PMC4878612 DOI: 10.1261/rna.055780.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/18/2016] [Indexed: 05/11/2023]
Abstract
In higher eukaryotes, pre-rRNA processing occurs almost exclusively post-transcriptionally. This is not the case in rapidly dividing yeast, as the majority of nascent pre-rRNAs are processed cotranscriptionally, with cleavage at the A2 site first releasing a pre-40S ribosomal subunit followed by release of a pre-60S ribosomal subunit upon transcription termination. Ribosome assembly is driven in part by hierarchical association of assembly factors and r-proteins. Groups of proteins are thought to associate with pre-ribosomes cotranscriptionally during early assembly steps, whereas others associate later, after transcription is completed. Here we describe a previously uncharacterized phenotype observed upon disruption of ribosome assembly, in which normally late-binding proteins associate earlier, with pre-ribosomes containing 35S pre-rRNA. As previously observed by many other groups, we show that disruption of 60S subunit biogenesis results in increased amounts of 35S pre-rRNA, suggesting that a greater fraction of pre-rRNAs are processed post-transcriptionally. Surprisingly, we found that early pre-ribosomes containing 35S pre-rRNA also contain proteins previously thought to only associate with pre-ribosomes after early pre-rRNA processing steps have separated maturation of the two subunits. We believe the shift to post-transcriptional processing is ultimately due to decreased cellular division upon disruption of ribosome assembly. When cells are grown under stress or to high density, a greater fraction of pre-rRNAs are processed post-transcriptionally and follow an alternative processing pathway. Together, these results affirm the principle that ribosome assembly occurs through different, parallel assembly pathways and suggest that there is a kinetic foot-race between the formation of protein binding sites and pre-rRNA processing events.
Collapse
Affiliation(s)
- Jason Talkish
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Stephanie Biedka
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jingyu Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Lan Tang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - John R Strahler
- Department of Biological Chemistry, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Philip C Andrews
- Department of Biological Chemistry, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Janine R Maddock
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
35
|
Qi W, Zhu J, Wu Q, Wang Q, Li X, Yao D, Jin Y, Wang G, Wang G, Song R. Maize reas1 Mutant Stimulates Ribosome Use Efficiency and Triggers Distinct Transcriptional and Translational Responses. PLANT PHYSIOLOGY 2016; 170:971-88. [PMID: 26645456 PMCID: PMC4734584 DOI: 10.1104/pp.15.01722] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/07/2015] [Indexed: 05/19/2023]
Abstract
Ribosome biogenesis is a fundamental cellular process in all cells. Impaired ribosome biogenesis causes developmental defects; however, its molecular and cellular bases are not fully understood. We cloned a gene responsible for a maize (Zea mays) small seed mutant, dek* (for defective kernel), and found that it encodes Ribosome export associated1 (ZmReas1). Reas1 is an AAA-ATPase that controls 60S ribosome export from the nucleus to the cytoplasm after ribosome maturation. dek* is a weak mutant allele with decreased Reas1 function. In dek* cells, mature 60S ribosome subunits are reduced in the nucleus and cytoplasm, but the proportion of actively translating polyribosomes in cytosol is significantly increased. Reduced phosphorylation of eukaryotic initiation factor 2α and the increased elongation factor 1α level indicate an enhancement of general translational efficiency in dek* cells. The mutation also triggers dramatic changes in differentially transcribed genes and differentially translated RNAs. Discrepancy was observed between differentially transcribed genes and differentially translated RNAs, indicating distinct cellular responses at transcription and translation levels to the stress of defective ribosome processing. DNA replication and nucleosome assembly-related gene expression are selectively suppressed at the translational level, resulting in inhibited cell growth and proliferation in dek* cells. This study provides insight into cellular responses due to impaired ribosome biogenesis.
Collapse
Affiliation(s)
- Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Jie Zhu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Qiao Wu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Qun Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Xia Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Dongsheng Yao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Ying Jin
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Gang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Guifeng Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China (W.Q., J.Z., Q.Wu., Q.Wa., X.L., D.Y., Y.J., Ga.W., Gu.W., R.S.); and Coordinated Crop Biology Research Center, Beijing 100193, China (W.Q., Ga.W., Gu.W., R.S.) and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China (R.S)
| |
Collapse
|
36
|
Hiraishi N, Ishida YI, Nagahama M. AAA-ATPase NVL2 acts on MTR4-exosome complex to dissociate the nucleolar protein WDR74. Biochem Biophys Res Commun 2015; 467:534-40. [DOI: 10.1016/j.bbrc.2015.09.160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/30/2015] [Indexed: 01/29/2023]
|
37
|
NVL2, a nucleolar AAA-ATPase, is associated with the nuclear exosome and is involved in pre-rRNA processing. Biochem Biophys Res Commun 2015; 464:780-6. [PMID: 26166824 DOI: 10.1016/j.bbrc.2015.07.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 11/22/2022]
Abstract
Nuclear VCP-like 2 (NVL2) is a member of the chaperone-like AAA-ATPase family and is involved in the biosynthesis of 60S ribosomal subunits in mammalian cells. We previously showed the interaction of NVL2 with a DExD/H-box RNA helicase MTR4/DOB1, which is a known cofactor for an exoribonuclease complex, the exosome. This finding implicated NVL2 in RNA metabolic processes during ribosome biogenesis. In the present study, we found that a series of mutations within the ATPase domain of NVL2 causes a defect in pre-rRNA processing into mature 28S and 5.8S rRNAs. Co-immunoprecipitation analysis showed that NVL2 was associated with the nuclear exosome complex, which includes RRP6 as a nucleus-specific catalytic subunit. This interaction was prevented by depleting either MTR4 or RRP6, indicating their essential role in mediating this interaction with NVL2. Additionally, knockdown of MPP6, another cofactor for the nuclear exosome, also prevented the interaction by causing MTR4 to dissociate from the nuclear exosome. These results suggest that NVL2 is involved in pre-rRNA processing by associating with the nuclear exosome complex and that MPP6 is required for maintaining the integrity of this rRNA processing complex.
Collapse
|
38
|
Stelter P, Huber FM, Kunze R, Flemming D, Hoelz A, Hurt E. Coordinated Ribosomal L4 Protein Assembly into the Pre-Ribosome Is Regulated by Its Eukaryote-Specific Extension. Mol Cell 2015; 58:854-62. [PMID: 25936803 DOI: 10.1016/j.molcel.2015.03.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/06/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Eukaryotic ribosome biogenesis requires nuclear import and hierarchical incorporation of ∼80 ribosomal proteins (RPs) into the ribosomal RNA core. In contrast to prokaryotes, many eukaryotic RPs possess long extensions that interdigitate in the mature ribosome. RpL4 is a prime example, with an ∼80-residue-long surface extension of unknown function. Here, we identify assembly chaperone Acl4 that initially binds the universally conserved internal loop of newly synthesized RpL4 via its superhelical TPR domain, thereby restricting RpL4 loop insertion at its cognate nascent rRNA site. RpL4 release from Acl4 is orchestrated with pre-ribosome assembly, during which the eukaryote-specific RpL4 extension makes several distinct interactions with the 60S surface, including a co-evolved site on neighboring RpL18. Consequently, mutational inactivation of this contact site, on either RpL4 or RpL18, impairs RpL4-Acl4 disassembly and RpL4 pre-ribosome incorporation. We propose that hierarchical ribosome assembly can be achieved by eukaryotic RP extensions and dedicated assembly chaperones.
Collapse
Affiliation(s)
- Philipp Stelter
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ruth Kunze
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Dirk Flemming
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
McCann KL, Charette JM, Vincent NG, Baserga SJ. A protein interaction map of the LSU processome. Genes Dev 2015; 29:862-75. [PMID: 25877921 PMCID: PMC4403261 DOI: 10.1101/gad.256370.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/04/2015] [Indexed: 01/12/2023]
Abstract
Maturation of the large ribosomal subunit (LSU) in eukaryotes is a complex and highly coordinated process that requires the concerted action of a large, dynamic, ribonucleoprotein complex, the LSU processome. To interrogate its organization and architecture, McCann et al. assayed 4800 protein–protein interactions and identified 232 high-confidence, binary-interacting protein pairs, representing a fourfold increase from current knowledge. The resulting LSU processome interactome map enhances our understanding of the organization and function of the biogenesis factors within the LSU processome. Maturation of the large ribosomal subunit (LSU) in eukaryotes is a complex and highly coordinated process that requires the concerted action of a large, dynamic, ribonucleoprotein complex, the LSU processome. While we know that >80 ribosome biogenesis factors are required throughout the course of LSU assembly, little is known about how these factors interact with each other within the LSU processome. To interrogate its organization and architecture, we took a systems biology approach and performed a semi-high-throughput, array-based, directed yeast two-hybrid assay. Assaying 4800 protein–protein interactions, we identified 232 high-confidence, binary-interacting protein pairs, representing a fourfold increase from current knowledge. The resulting LSU processome interactome map has enhanced our understanding of the organization and function of the biogenesis factors within the LSU processome, revealing both novel and previously identified subcomplexes and hub proteins, including Nop4.
Collapse
Affiliation(s)
- Kathleen L McCann
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - J Michael Charette
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Nicholas G Vincent
- Department of Microbiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
40
|
Nerurkar P, Altvater M, Gerhardy S, Schütz S, Fischer U, Weirich C, Panse VG. Eukaryotic Ribosome Assembly and Nuclear Export. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:107-40. [DOI: 10.1016/bs.ircmb.2015.07.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Aryal UK, Xiong Y, McBride Z, Kihara D, Xie J, Hall MC, Szymanski DB. A proteomic strategy for global analysis of plant protein complexes. THE PLANT CELL 2014; 26:3867-82. [PMID: 25293756 PMCID: PMC4247564 DOI: 10.1105/tpc.114.127563] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/11/2014] [Accepted: 09/18/2014] [Indexed: 05/20/2023]
Abstract
Global analyses of protein complex assembly, composition, and location are needed to fully understand how cells coordinate diverse metabolic, mechanical, and developmental activities. The most common methods for proteome-wide analysis of protein complexes rely on affinity purification-mass spectrometry or yeast two-hybrid approaches. These methods are time consuming and are not suitable for many plant species that are refractory to transformation or genome-wide cloning of open reading frames. Here, we describe the proof of concept for a method allowing simultaneous global analysis of endogenous protein complexes that begins with intact leaves and combines chromatographic separation of extracts from subcellular fractions with quantitative label-free protein abundance profiling by liquid chromatography-coupled mass spectrometry. Applying this approach to the crude cytosolic fraction of Arabidopsis thaliana leaves using size exclusion chromatography, we identified hundreds of cytosolic proteins that appeared to exist as components of stable protein complexes. The reliability of the method was validated by protein immunoblot analysis and comparisons with published size exclusion chromatography data and the masses of known complexes. The method can be implemented with appropriate instrumentation, is applicable to any biological system, and has the potential to be further developed to characterize the composition of protein complexes and measure the dynamics of protein complex localization and assembly under different conditions.
Collapse
Affiliation(s)
- Uma K Aryal
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Yi Xiong
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Zachary McBride
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 Department of Computer Science, Purdue University, West Lafayette, Indiana 47907
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, Indiana 47907
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Daniel B Szymanski
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
42
|
MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol 2014; 34:3321-40. [PMID: 24980433 DOI: 10.1128/mcb.00320-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MDM2 mediates the ubiquitylation and thereby triggers the proteasomal degradation of the tumor suppressor protein p53. However, genetic evidence suggests that MDM2 contributes to multiple regulatory networks independently of p53 degradation. We have now identified the DEAD-box RNA helicase DDX24 as a nucleolar protein that interacts with MDM2. DDX24 was found to bind to the central region of MDM2, resulting in the polyubiquitylation of DDX24 both in vitro and in vivo. Unexpectedly, however, the polyubiquitylation of DDX24 did not elicit its proteasomal degradation but rather promoted its association with preribosomal ribonucleoprotein (pre-rRNP) processing complexes that are required for the early steps of pre-rRNA processing. Consistently with these findings, depletion of DDX24 in cells impaired pre-rRNA processing and resulted both in abrogation of MDM2 function and in consequent p53 stabilization. Our results thus suggest an unexpected role of MDM2 in the nonproteolytic ubiquitylation of DDX24, which may contribute to the regulation of pre-rRNA processing.
Collapse
|
43
|
Thomson E, Ferreira-Cerca S, Hurt E. Eukaryotic ribosome biogenesis at a glance. J Cell Sci 2014; 126:4815-21. [PMID: 24172536 DOI: 10.1242/jcs.111948] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ribosomes play a pivotal role in the molecular life of every cell. Moreover, synthesis of ribosomes is one of the most energetically demanding of all cellular processes. In eukaryotic cells, ribosome biogenesis requires the coordinated activity of all three RNA polymerases and the orchestrated work of many (>200) transiently associated ribosome assembly factors. The biogenesis of ribosomes is a tightly regulated activity and it is inextricably linked to other fundamental cellular processes, including growth and cell division. Furthermore, recent studies have demonstrated that defects in ribosome biogenesis are associated with several hereditary diseases. In this Cell Science at a Glance article and the accompanying poster, we summarise the current knowledge on eukaryotic ribosome biogenesis, with an emphasis on the yeast model system.
Collapse
Affiliation(s)
- Emma Thomson
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
44
|
Assembly and nuclear export of pre-ribosomal particles in budding yeast. Chromosoma 2014; 123:327-44. [PMID: 24817020 DOI: 10.1007/s00412-014-0463-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 11/27/2022]
Abstract
The ribosome is responsible for the final step of decoding genetic information into proteins. Therefore, correct assembly of ribosomes is a fundamental task for all living cells. In eukaryotes, the construction of the ribosome which begins in the nucleolus requires coordinated efforts of >350 specialized factors that associate with pre-ribosomal particles at distinct stages to perform specific assembly steps. On their way through the nucleus, diverse energy-consuming enzymes are thought to release assembly factors from maturing pre-ribosomal particles after accomplishing their task(s). Subsequently, recruitment of export factors prepares pre-ribosomal particles for transport through nuclear pore complexes. Pre-ribosomes are exported into the cytoplasm in a functionally inactive state, where they undergo final maturation before initiating translation. Accumulating evidence indicates a tight coupling between nuclear export, cytoplasmic maturation, and final proofreading of the ribosome. In this review, we summarize our current understanding of nuclear export of pre-ribosomal subunits and cytoplasmic maturation steps that render pre-ribosomal subunits translation-competent.
Collapse
|
45
|
Leidig C, Thoms M, Holdermann I, Bradatsch B, Berninghausen O, Bange G, Sinning I, Hurt E, Beckmann R. 60S ribosome biogenesis requires rotation of the 5S ribonucleoprotein particle. Nat Commun 2014; 5:3491. [PMID: 24662372 DOI: 10.1038/ncomms4491] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/22/2014] [Indexed: 01/23/2023] Open
Abstract
During eukaryotic ribosome biogenesis, nascent ribosomal RNA (rRNA) forms pre-ribosomal particles containing ribosomal proteins and assembly factors. Subsequently, these immature rRNAs are processed and remodelled. Little is known about the premature assembly states of rRNAs and their structural rearrangement during ribosome biogenesis. Using cryo-EM we characterize a pre-60S particle, where the 5S rRNA and its associated ribosomal proteins L18 and L5 (5S ribonucleoprotein (RNP)) are rotated by almost 180° when compared with the mature subunit. Consequently, neighbouring 25S rRNA helices that protrude from the base of the central protuberance are deformed. This altered topology is stabilized by nearby assembly factors (Rsa4 and Nog1), which were identified by fitting their three-dimensional structures into the cryo-EM density. We suggest that the 5S RNP performs a semicircular movement during 60S biogenesis to adopt its final position, fulfilling a chaperone-like function in guiding the flanking 25S rRNA helices of the central protuberance to their final topology.
Collapse
Affiliation(s)
- Christoph Leidig
- Gene Center and Center of Integrated Protein Science Munich (CiPS-M), Department of Chemistry and Biochemistry, University of Munich, 81377 Munich, Germany
| | - Matthias Thoms
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Iris Holdermann
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Bettina Bradatsch
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Otto Berninghausen
- Gene Center and Center of Integrated Protein Science Munich (CiPS-M), Department of Chemistry and Biochemistry, University of Munich, 81377 Munich, Germany
| | - Gert Bange
- 1] Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany [2]
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Roland Beckmann
- Gene Center and Center of Integrated Protein Science Munich (CiPS-M), Department of Chemistry and Biochemistry, University of Munich, 81377 Munich, Germany
| |
Collapse
|
46
|
Pratte D, Singh U, Murat G, Kressler D. Mak5 and Ebp2 act together on early pre-60S particles and their reduced functionality bypasses the requirement for the essential pre-60S factor Nsa1. PLoS One 2013; 8:e82741. [PMID: 24312670 PMCID: PMC3846774 DOI: 10.1371/journal.pone.0082741] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Ribosomes are the molecular machines that translate mRNAs into proteins. The synthesis of ribosomes is therefore a fundamental cellular process and consists in the ordered assembly of 79 ribosomal proteins (r-proteins) and four ribosomal RNAs (rRNAs) into a small 40S and a large 60S ribosomal subunit that form the translating 80S ribosomes. Most of our knowledge concerning this dynamic multi-step process comes from studies with the yeast Saccharomyces cerevisiae, which have shown that assembly and maturation of pre-ribosomal particles, as they travel from the nucleolus to the cytoplasm, relies on a multitude (>200) of biogenesis factors. Amongst these are many energy-consuming enzymes, including 19 ATP-dependent RNA helicases and three AAA-ATPases. We have previously shown that the AAA-ATPase Rix7 promotes the release of the essential biogenesis factor Nsa1 from late nucleolar pre-60S particles. Here we show that mutant alleles of genes encoding the DEAD-box RNA helicase Mak5, the C/D-box snoRNP component Nop1 and the rRNA-binding protein Nop4 bypass the requirement for Nsa1. Interestingly, dominant-negative alleles of RIX7 retain their phenotype in the absence of Nsa1, suggesting that Rix7 may have additional nuclear substrates besides Nsa1. Mak5 is associated with the Nsa1 pre-60S particle and synthetic lethal screens with mak5 alleles identified the r-protein Rpl14 and the 60S biogenesis factors Ebp2, Nop16 and Rpf1, which are genetically linked amongst each other. We propose that these 'Mak5 cluster' factors orchestrate the structural arrangement of a eukaryote-specific 60S subunit surface composed of Rpl6, Rpl14 and Rpl16 and rRNA expansion segments ES7L and ES39L. Finally, over-expression of Rix7 negatively affects growth of mak5 and ebp2 mutant cells both in the absence and presence of Nsa1, suggesting that Rix7, at least when excessively abundant, may act on structurally defective pre-60S subunits and may subject these to degradation.
Collapse
Affiliation(s)
- Dagmar Pratte
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ujjwala Singh
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
47
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 574] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
48
|
Suvorova ES, Radke JB, Ting LM, Vinayak S, Alvarez CA, Kratzer S, Kim K, Striepen B, White MW. A nucleolar AAA-NTPase is required for parasite division. Mol Microbiol 2013; 90:338-55. [PMID: 23964771 DOI: 10.1111/mmi.12367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 01/02/2023]
Abstract
Apicomplexa division involves several distinct phases shared with other eukaryote cell cycles including a gap period (G1) prior to chromosome synthesis, although how progression through the parasite cell cycle is controlled is not understood. Here we describe a cell cycle mutant that reversibly arrests in the G1 phase. The defect in this mutant was mapped by genetic complementation to a gene encoding a novel AAA-ATPase/CDC48 family member called TgNoAP1. TgNoAP1 is tightly regulated and expressed in the nucleolus during the G1/S phases. A tyrosine to a cysteine change upstream of the second AAA+ domain in the temperature sensitive TgNoAP1 allele leads to conditional protein instability, which is responsible for rapid cell cycle arrest and a primary defect in 28S rRNA processing as confirmed by knock-in of the mutation back into the parent genome. The interaction of TgNoAP1 with factors of the snoRNP and R2TP complexes indicates this protein has a role in pre-rRNA processing. This is a novel role for a cdc48-related chaperone protein and indicates that TgNoAP1 may be part of a dynamic mechanism that senses the health of the parasite protein machinery at the initial steps of ribosome biogenesis and conveys that information to the parasite cell cycle checkpoint controls.
Collapse
Affiliation(s)
- Elena S Suvorova
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, FL, 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ohmayer U, Gamalinda M, Sauert M, Ossowski J, Pöll G, Linnemann J, Hierlmeier T, Perez-Fernandez J, Kumcuoglu B, Leger-Silvestre I, Faubladier M, Griesenbeck J, Woolford J, Tschochner H, Milkereit P. Studies on the assembly characteristics of large subunit ribosomal proteins in S. cerevisae. PLoS One 2013; 8:e68412. [PMID: 23874617 PMCID: PMC3707915 DOI: 10.1371/journal.pone.0068412] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022] Open
Abstract
During the assembly process of ribosomal subunits, their structural components, the ribosomal RNAs (rRNAs) and the ribosomal proteins (r-proteins) have to join together in a highly dynamic and defined manner to enable the efficient formation of functional ribosomes. In this work, the assembly of large ribosomal subunit (LSU) r-proteins from the eukaryote S. cerevisiae was systematically investigated. Groups of LSU r-proteins with specific assembly characteristics were detected by comparing the protein composition of affinity purified early, middle, late or mature LSU (precursor) particles by semi-quantitative mass spectrometry. The impact of yeast LSU r-proteins rpL25, rpL2, rpL43, and rpL21 on the composition of intermediate to late nuclear LSU precursors was analyzed in more detail. Effects of these proteins on the assembly states of other r-proteins and on the transient LSU precursor association of several ribosome biogenesis factors, including Nog2, Rsa4 and Nop53, are discussed.
Collapse
Affiliation(s)
- Uli Ohmayer
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Martina Sauert
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Julius Ossowski
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Gisela Pöll
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Jan Linnemann
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Thomas Hierlmeier
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | | | - Beril Kumcuoglu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Isabelle Leger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, Universite Paul Sabatier, Toulouse, France
| | - Marlène Faubladier
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, Universite Paul Sabatier, Toulouse, France
| | | | - John Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Herbert Tschochner
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| | - Philipp Milkereit
- Lehrstuhl für Biochemie III, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
50
|
Targeted proteomics reveals compositional dynamics of 60S pre-ribosomes after nuclear export. Mol Syst Biol 2013; 8:628. [PMID: 23212245 PMCID: PMC3542530 DOI: 10.1038/msb.2012.63] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/02/2012] [Indexed: 01/16/2023] Open
Abstract
Construction and intracellular targeting of eukaryotic pre-ribosomal particles involve a multitude of diverse transiently associating trans-acting assembly factors, energy-consuming enzymes, and transport factors. The ability to rapidly and reliably measure co-enrichment of multiple factors with maturing pre-ribosomal particles presents a major biochemical bottleneck towards revealing their function and the precise contribution of >50 energy-consuming steps that drive ribosome assembly. Here, we devised a workflow that combines genetic trapping, affinity-capture, and selected reaction monitoring mass spectrometry (SRM-MS), to overcome this deficiency. We exploited this approach to interrogate the dynamic proteome of pre-60S particles after nuclear export. We uncovered assembly factors that travel with pre-60S particles to the cytoplasm, where they are released before initiating translation. Notably, we identified a novel shuttling factor that facilitates nuclear export of pre-60S particles. Capturing and quantitating protein interaction networks of trapped intermediates of macromolecular complexes by our workflow is a reliable discovery tool to unveil dynamic processes that contribute to their in vivo assembly and transport.
Collapse
|