1
|
Ruhoff VT, Leijnse N, Doostmohammadi A, Bendix PM. Filopodia: integrating cellular functions with theoretical models. Trends Cell Biol 2024:S0962-8924(24)00113-2. [PMID: 38969554 DOI: 10.1016/j.tcb.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024]
Abstract
Filopodia, widely distributed on cell surfaces, are distinguished by their dynamic extensions, playing pivotal roles in a myriad of biological processes. Their functions span from mechanosensing and guidance to cell-cell communication during cellular organization in the early embryo. Filopodia have significant roles in pathogenic processes, such as cancer invasion and viral dissemination. Molecular mapping of the filopodome has revealed generic components essential for filopodia functions. In parallel, recent insights into biophysical mechanisms governing filopodia dynamics have provided the foundation for broader investigations of filopodia's biological functions. We highlight recent discoveries of engagement of filopodia in various stages of development and pathogenesis and present an overview of intricate molecular and physical features of these cellular structures across a spectrum of cellular activities.
Collapse
Affiliation(s)
| | - Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Poul Martin Bendix
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.
| |
Collapse
|
2
|
Li X, Chen B. Dynamics of multicellular swirling on micropatterned substrates. Proc Natl Acad Sci U S A 2024; 121:e2400804121. [PMID: 38900800 PMCID: PMC11214149 DOI: 10.1073/pnas.2400804121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Chirality plays a crucial role in biology, as it is highly conserved and fundamentally important in the developmental process. To better understand the relationship between the chirality of individual cells and that of tissues and organisms, we develop a generalized mechanics model of chiral polarized particles to investigate the swirling dynamics of cell populations on substrates. Our analysis reveals that cells with the same chirality can form distinct chiral patterns on ring-shaped or rectangular substrates. Interestingly, our studies indicate that an excessively strong or weak individual cellular chirality hinders the formation of such chiral patterns. Our studies also indicate that there exists the influence distance of substrate boundaries in chiral patterns. Smaller influence distances are observed when cell-cell interactions are weaker. Conversely, when cell-cell interactions are too strong, multiple cells tend to be stacked together, preventing the formation of chiral patterns on substrates in our analysis. Additionally, we demonstrate that the interaction between cells and substrate boundaries effectively controls the chiral distribution of cellular orientations on ring-shaped substrates. This research highlights the significance of coordinating boundary features, individual cellular chirality, and cell-cell interactions in governing the chiral movement of cell populations and provides valuable mechanics insights into comprehending the intricate connection between the chirality of single cells and that of tissues and organisms.
Collapse
Affiliation(s)
- Xi Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, People’s Republic of China
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, People’s Republic of China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, People’s Republic of China
| |
Collapse
|
3
|
Utsunomiya S, Takebayashi K, Yamaguchi A, Sasamura T, Inaki M, Ueda M, Matsuno K. Left-right Myosin-Is, Myosin1C, and Myosin1D exhibit distinct single molecule behaviors on the plasma membrane of Drosophila macrophages. Genes Cells 2024; 29:380-396. [PMID: 38454557 DOI: 10.1111/gtc.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Left-right (LR) asymmetry is crucial for animal development, particularly in Drosophila where LR-asymmetric morphogenesis of organs hinges on cellular-level chirality, termed cell chirality. In this species, two class I myosins, Myosin1D (Myo1D), and Myosin1C (Myo1C), respectively determine dextral (wild type) and sinistral (mirror image) cell chirality. Previous studies demonstrated Myo1D's ability to propel F-actin in leftward circles during in vitro gliding assays, suggesting its mechanochemical role in defining dextral chirality. Conversely, Myo1C propels F-actin without exhibiting LR-directional preference in this assay, suggesting at other properties governing sinistral chirality. Given the interaction of Myo1D and Myo1C with the membrane, we hypothesized that differences in their membrane behaviors might be critical in dictating their dextral or sinistral activities. In this study, employing single-molecule imaging analyses, we investigated the dynamic behaviors of Myo1D and Myo1C on the plasma membrane. Our findings revealed that Myo1C exhibits a significantly greater proportion of slow-diffusing population compared to Myo1D. Importantly, this characteristic was contingent upon both head and tail domains of Myo1C. The distinct diffusion patterns of Myo1D and Myo1C did not exert mutual influence on each other. This divergence in membrane diffusion between Myo1D and Myo1C may be crucial for dictating cell and organ chirality.
Collapse
Affiliation(s)
- Sosuke Utsunomiya
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Kazutoshi Takebayashi
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Asuka Yamaguchi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takeshi Sasamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Mikiko Inaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Masahiro Ueda
- Center for Biosystems Dynamics Research (BDR), RIKEN, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
4
|
Maxian O, Mogilner A. Helical motors and formins synergize to compact chiral filopodial bundles: A theoretical perspective. Eur J Cell Biol 2024; 103:151383. [PMID: 38237507 DOI: 10.1016/j.ejcb.2023.151383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024] Open
Abstract
Chiral actin bundles have been shown to play an important role in cell dynamics, but our understanding of the molecular mechanisms which combine to generate chirality remains incomplete. To address this, we numerically simulate a crosslinked filopodial bundle under the actions of helical myosin motors and/or formins and examine the collective buckling and twisting of the actin bundle. We first show that a number of proposed mechanisms to buckle polymerizing actin bundles without motor activity fail under biologically-realistic parameters. We then demonstrate that a simplified model of myosin spinning action at the bundle base effectively "braids" the bundle, but cannot control compaction at the fiber tips. Finally, we show that formin-mediated polymerization and motor activity can act synergitically to compact filopodium bundles, as motor activity bends filaments into shapes that activate twist forces induced by formins. Stochastic fluctuations of actin polymerization rates and slower cross linking dynamics both increase buckling and decrease compaction. We discuss implications of our findings for mechanisms of cytoskeletal chirality.
Collapse
Affiliation(s)
- Ondrej Maxian
- Courant Institute, New York University, New York, NY 10012, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60615, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60615, USA
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
5
|
Cheney RE. An unexpected turn for filopodia. Biophys J 2023; 122:3549-3550. [PMID: 37311456 PMCID: PMC10541458 DOI: 10.1016/j.bpj.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Affiliation(s)
- Richard E Cheney
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
6
|
Li W, Chung WL, Kozlov MM, Medalia O, Geiger B, Bershadsky AD. Chiral growth of adherent filopodia. Biophys J 2023; 122:3704-3721. [PMID: 37301982 PMCID: PMC10541518 DOI: 10.1016/j.bpj.2023.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Adherent filopodia are elongated finger-like membrane protrusions, extending from the edges of diverse cell types and participating in cell adhesion, spreading, migration, and environmental sensing. The formation and elongation of filopodia are driven by the polymerization of parallel actin filaments, comprising the filopodia cytoskeletal core. Here, we report that adherent filopodia, formed during the spreading of cultured cells on galectin-8-coated substrates, tend to change the direction of their extension in a chiral fashion, acquiring a left-bent shape. Cryoelectron tomography examination indicated that turning of the filopodia tip to the left is accompanied by the displacement of the actin core bundle to the right of the filopodia midline. Reduction of the adhesion to galectin-8 by treatment with thiodigalactoside abolished this filopodia chirality. By modulating the expression of a variety of actin-associated filopodia proteins, we identified myosin-X and formin DAAM1 as major filopodia chirality promoting factors. Formin mDia1, actin filament elongation factor VASP, and actin filament cross-linker fascin were also shown to be involved. Thus, the simple actin cytoskeleton of filopodia, together with a small number of associated proteins are sufficient to drive a complex navigation process, manifested by the development of left-right asymmetry in these cellular protrusions.
Collapse
Affiliation(s)
- Wenhong Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Alexander D Bershadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Nakamura M, Hui J, Parkhurst SM. Bending actin filaments: twists of fate. Fac Rev 2023; 12:7. [PMID: 37081903 PMCID: PMC10111394 DOI: 10.12703/r/12-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
In many cellular contexts, intracellular actomyosin networks must generate directional forces to carry out cellular tasks such as migration and endocytosis, which play important roles during normal developmental processes. A number of different actin binding proteins have been identified that form linear or branched actin, and that regulate these filaments through activities such as bundling, crosslinking, and depolymerization to create a wide variety of functional actin assemblies. The helical nature of actin filaments allows them to better accommodate tensile stresses by untwisting, as well as to bend to great curvatures without breaking. Interestingly, this latter property, the bending of actin filaments, is emerging as an exciting new feature for determining dynamic actin configurations and functions. Indeed, recent studies using in vitro assays have found that proteins including IQGAP, Cofilin, Septins, Anillin, α-Actinin, Fascin, and Myosins-alone or in combination-can influence the bending or curvature of actin filaments. This bending increases the number and types of dynamic assemblies that can be generated, as well as the spectrum of their functions. Intriguingly, in some cases, actin bending creates directionality within a cell, resulting in a chiral cell shape. This actin-dependent cell chirality is highly conserved in vertebrates and invertebrates and is essential for cell migration and breaking L-R symmetry of tissues/organs. Here, we review how different types of actin binding protein can bend actin filaments, induce curved filament geometries, and how they impact on cellular functions.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
8
|
How torque on formins is relaxed strongly affects cellular swirling. Biophys J 2022; 121:2952-2961. [PMID: 35773996 PMCID: PMC9388394 DOI: 10.1016/j.bpj.2022.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/05/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Chirality is a common and essential characteristic at varied scales of living organisms. By adapting the rotational clutch-filament model we previously developed, we investigate the effect of torque relaxation of a formin on cellular chiral swirling. Since it is still unclear how the torque on a formin is exactly relaxed, we probe three types of torque relaxation, as suggested in the literature. Our analysis indicates that, when a formin periodically undergoes positive and negative rotation during processive capping to relax the torque, cells hardly rotate. When the switch between the positive and the negative rotation during the processive capping is randomly regulated by the torque, our analysis indicates that cells can only slightly rotate either counterclockwise or clockwise. When a formin relaxes the torque by transiently loosening its contact either with the membrane at its anchored site or with the actin filament, we find that cells can prominently rotate either counterclockwise or clockwise, in good consistency with the experiment. Thus, our studies indicate that how the torque on a formin is relaxed strongly affects cellular swirling and suggest an efficient type of torque relaxation in switching cellular swirling.
Collapse
|
9
|
Chang M, Lee OC, Bu G, Oh J, Yunn NO, Ryu SH, Kwon HB, Kolomeisky AB, Shim SH, Doh J, Jeon JH, Lee JB. Formation of cellular close-ended tunneling nanotubes through mechanical deformation. SCIENCE ADVANCES 2022; 8:eabj3995. [PMID: 35353579 PMCID: PMC8967236 DOI: 10.1126/sciadv.abj3995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Membrane nanotubes or tunneling nanotubes (TNTs) that connect cells have been recognized as a previously unidentified pathway for intercellular transport between distant cells. However, it is unknown how this delicate structure, which extends over tens of micrometers and remains robust for hours, is formed. Here, we found that a TNT develops from a double filopodial bridge (DFB) created by the physical contact of two filopodia through helical deformation of the DFB. The transition of a DFB to a close-ended TNT is most likely triggered by disruption of the adhesion of two filopodia by mechanical energy accumulated in a twisted DFB when one of the DFB ends is firmly attached through intercellular cadherin-cadherin interactions. These studies pinpoint the mechanistic questions about TNTs and elucidate a formation mechanism.
Collapse
Affiliation(s)
- Minhyeok Chang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - O-chul Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Gayun Bu
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jaeho Oh
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Na-Oh Yunn
- POSTECH Biotech Center, Pohang 37673, Korea
| | - Sung Ho Ryu
- Department of Life Sciences, POSTECH, Pohang 37673, Korea
| | - Hyung-Bae Kwon
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Sang-Hee Shim
- Department of Chemistry, Korea University, Seoul 02481, Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Jae-Hyung Jeon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Asia Pacific Center for Theoretical Physics (APCTP), Pohang 37673, Korea
- Corresponding author. (J.-B.L.); (J.-H.J.)
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Asia Pacific Center for Theoretical Physics (APCTP), Pohang 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang 37673, Korea
- Corresponding author. (J.-B.L.); (J.-H.J.)
| |
Collapse
|
10
|
Filopodia rotate and coil by actively generating twist in their actin shaft. Nat Commun 2022; 13:1636. [PMID: 35347113 PMCID: PMC8960877 DOI: 10.1038/s41467-022-28961-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Filopodia are actin-rich structures, present on the surface of eukaryotic cells. These structures play a pivotal role by allowing cells to explore their environment, generate mechanical forces or perform chemical signaling. Their complex dynamics includes buckling, pulling, length and shape changes. We show that filopodia additionally explore their 3D extracellular space by combining growth and shrinking with axial twisting and buckling. Importantly, the actin core inside filopodia performs a twisting or spinning motion which is observed for a range of cell types spanning from earliest development to highly differentiated tissue cells. Non-equilibrium physical modeling of actin and myosin confirm that twist is an emergent phenomenon of active filaments confined in a narrow channel which is supported by measured traction forces and helical buckles that can be ascribed to accumulation of sufficient twist. These results lead us to conclude that activity induced twisting of the actin shaft is a general mechanism underlying fundamental functions of filopodia. The authors show how tubular surface structures in all cell types, have the ability to twist and perform rotary sweeping motion to explore the extracellular environment. This has implications for migration, sensing and cell communication.
Collapse
|
11
|
Zhang S, Saunders T. Mechanical processes underlying precise and robust cell matching. Semin Cell Dev Biol 2021; 120:75-84. [PMID: 34130903 DOI: 10.1016/j.semcdb.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022]
Abstract
During the development of complicated multicellular organisms, the robust formation of specific cell-cell connections (cell matching) is required for the generation of precise tissue structures. Mismatches or misconnections can lead to various diseases. Diverse mechanical cues, including differential adhesion and temporally varying cell contractility, are involved in regulating the process of cell-cell recognition and contact formation. Cells often start the process of cell matching through contact via filopodia protrusions, mediated by specific adhesion interactions at the cell surface. These adhesion interactions give rise to differential mechanical signals that can be further perceived by the cells. In conjunction with contractions generated by the actomyosin networks within the cells, this differentially coded adhesion information can be translated to reposition and sort cells. Here, we review the role of these different cell matching components and suggest how these mechanical factors cooperate with each other to facilitate specificity in cell-cell contact formation.
Collapse
Affiliation(s)
- Shaobo Zhang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Timothy Saunders
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore; Warwick Medical School, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
12
|
CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left-right symmetry breaking. Proc Natl Acad Sci U S A 2021; 118:2021814118. [PMID: 33972425 PMCID: PMC8157923 DOI: 10.1073/pnas.2021814118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Proper left-right symmetry breaking is essential for animal development, and in many cases, this process is actomyosin-dependent. In Caenorhabditis elegans embryos active torque generation in the actomyosin layer promotes left-right symmetry breaking by driving chiral counterrotating cortical flows. While both Formins and Myosins have been implicated in left-right symmetry breaking and both can rotate actin filaments in vitro, it remains unclear whether active torques in the actomyosin cortex are generated by Formins, Myosins, or both. We combined the strength of C. elegans genetics with quantitative imaging and thin film, chiral active fluid theory to show that, while Non-Muscle Myosin II activity drives cortical actomyosin flows, it is permissive for chiral counterrotation and dispensable for chiral symmetry breaking of cortical flows. Instead, we find that CYK-1/Formin activation in RhoA foci is instructive for chiral counterrotation and promotes in-plane, active torque generation in the actomyosin cortex. Notably, we observe that artificially generated large active RhoA patches undergo rotations with consistent handedness in a CYK-1/Formin-dependent manner. Altogether, we conclude that CYK-1/Formin-dependent active torque generation facilitates chiral symmetry breaking of actomyosin flows and drives organismal left-right symmetry breaking in the nematode worm.
Collapse
|
13
|
Yao X, Wang X, Ding J. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater 2021; 126:92-108. [PMID: 33684535 DOI: 10.1016/j.actbio.2021.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Consistent left-right (LR) asymmetry or chirality is critical for embryonic development and function maintenance. While chirality on either molecular or organism level has been well established, that on the cellular level has remained an open question for a long time. Although it remains unclear whether chirality exists universally on the cellular level, valuable efforts have recently been made to explore this fundamental topic pertinent to both cell biology and biomaterial science. The development of material fabrication techniques, surface patterning, in particular, has afforded a unique platform to study cell-material interactions. By using patterning techniques, chirality on the cellular level has been examined for cell clusters and single cells in vitro in well-designed experiments. In this review, we first introduce typical fabrication techniques of surface patterning suitable for cell studies and then summarize the main aspects of preliminary evidence of cell chirality on patterned surfaces to date. We finally indicate the limitations of the studies conducted thus far and describe the perspectives of future research in this challenging field. STATEMENT OF SIGNIFICANCE: While both biomacromolecules and organisms can exhibit chirality, it is not yet conclusive whether a cell has left-right (LR) asymmetry. It is important yet challenging to study and reveal the possible existence of cell chirality. By using the technique of surface patterning, the recent decade has witnessed progress in the exploration of possible cell chirality within cell clusters and single cells. Herein, some important preliminary evidence of cell chirality is collected and analyzed. The open questions and perspectives are also described to promote further investigations of cell chirality in biomaterials.
Collapse
|
14
|
Zebrafish Melanophores Suggest Novel Functions of Cell Chirality in Tissue Formation. Symmetry (Basel) 2021. [DOI: 10.3390/sym13010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several types of cells show left–right asymmetric behavior, unidirectional rotation, or spiral movements. For example, neutrophil-like differentiated HL60 (dHL60) cells show leftward bias in response to chemoattractant. Neurons extend neurites, creating a clockwise spiral. Platelet cells shows unidirectional spiral arrangements of actin fibers. In the microfabricated culture environment, groups of C2C12 cells (mouse myoblast cell line) were autonomously aligned in a counter-clockwise spiral pattern, and isolated C2C12 cells showed unidirectional spiral pattern of the actin skeleton. This biased directionality suggested that these cells have inherent cell chirality. In addition to these cells, we recently found that melanophores of zebrafish also have an intrinsic cellular chirality that was shown by their counter-clockwise self-rotation. Although this cell chirality is obvious, the function of the cell chirality is still unclear. In this review, we compare the cell chirality of melanophores of zebrafish with other cell chirality and consider the function of cell chirality in morphogenesis.
Collapse
|
15
|
Statistical Validation Verifies That Enantiomorphic States of Chiral Cells Are Determinant Dictating the Left- or Right-Handed Direction of the Hindgut Rotation in Drosophila. Symmetry (Basel) 2020. [DOI: 10.3390/sym12121991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the left–right (LR) asymmetric development of invertebrates, cell chirality is crucial. A left- or right-handed cell structure directs morphogenesis with corresponding LR-asymmetry. In Drosophila, cell chirality is thought to drive the LR-asymmetric development of the embryonic hindgut and other organs. This hypothesis is supported only by an apparent concordance between the LR-directionality of cell chirality and hindgut rotation and by computer simulations that connect the two events. In this article, we mathematically evaluated the causal relationship between the chirality of the hindgut epithelial cells and the LR-direction of hindgut rotation. Our logistic model, drawn from several Drosophila genotypes, significantly explained the correlation between the enantiomorphic (sinistral or dextral) state of chiral cells and the LR-directionality of hindgut rotation—even in individual live mutant embryos with stochastically determined cell chirality and randomized hindgut rotation, suggesting that the mechanism by which cell chirality forms is irrelevant to the direction of hindgut rotation. Thus, our analysis showed that cell chirality, which forms before hindgut rotation, is both sufficient and required for the subsequent rotation, validating the hypothesis that cell chirality causally defines the LR-directionality of hindgut rotation.
Collapse
|
16
|
Xiao M, Ulloa Severino FP, Iseppon F, Cheng G, Torre V, Tang M. 3D Free-Standing Ordered Graphene Network Geometrically Regulates Neuronal Growth and Network Formation. NANO LETTERS 2020; 20:7043-7051. [PMID: 32915578 DOI: 10.1021/acs.nanolett.0c02107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The control of cell-microenvironment interactions plays a pivotal role in constructing specific scaffolds for tissue engineering. Here, we fabricated a 3D free-standing ordered graphene (3D-OG) network with a precisely defined pattern. When primary cortical cells are cultured on 3D-OG scaffolds, they form well-defined 3D connections. Astrocytes have a more ramified shape similar to that seen in vivo because of the nanosized ripples and wrinkles on the surface of graphene skeleton. Neurons have axons and dendrites aligned along the graphene skeleton, allowing the formation of neuronal networks with highly controlled connections. Neuronal networks have higher electrical activity with functional signaling over a long distance along the graphene skeleton. Our study, for the first time, investigated the geometrical cues on ordered neuronal growth and network formation with the support of graphene in 3D, which therefore advanced the development of customized scaffolds for brain-machine interfaces or neuroprosthetic devices.
Collapse
Affiliation(s)
- Miao Xiao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215000, China
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste 34136, Italy
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Francesco Paolo Ulloa Severino
- Cell Biology Department, Duke University Medical Center, 335 Nanaline Duke Building, Durham, North Carolina 27710, United States
| | - Federico Iseppon
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Guosheng Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Vincent Torre
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste 34136, Italy
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingliang Tang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
17
|
Tang BL. RAB39B's role in membrane traffic, autophagy, and associated neuropathology. J Cell Physiol 2020; 236:1579-1592. [PMID: 32761840 DOI: 10.1002/jcp.29962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Neuropathological disorders are increasingly associated with dysfunctions in neuronal membrane traffic and autophagy, with defects among members of the Rab family of small GTPases implicated. Mutations in the human Xq28 localized gene RAB39B have been associated with X-linked neurodevelopmental defects including macrocephaly, intellectual disability, autism spectrum disorder (ASD), as well as rare cases of early-onset Parkinson's disease (PD). Despite the finding that RAB39B regulates GluA2 trafficking and could thus influence synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit composition, reasons for the wide-ranging neuropathological consequences associated with RAB39B defects have been unclear. Recent studies have now unraveled possible mechanisms underlying the neuropathological roles of this brain-enriched small GTPase. Studies in RAB39B knockout mice showed that RAB39B interacts with components of Class I phosphatidylinositol-3-kinase (PI3K) signaling. In its absence, the PI3K-AKT-mechanistic target of rapamycin signaling pathway in neural progenitor cells (NPCs) is hyperactivated, which promotes NPC proliferation, leading to macrocephaly and ASD. Pertaining to early-onset PD, a complex of C9orf72, Smith-Magenis syndrome chromosome region candidate 8 and WD repeat domain 41 that functions in autophagy has been identified as a guanine nucleotide exchange factor of RAB39B. Here, recent findings that have shed light on our mechanistic understanding of RAB39B's role in neurodevelopmental and neurodegenerative pathologies are reviewed. Caveats and unanswered questions are also discussed, and future perspectives outlined.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
18
|
Padhi A, Singh K, Franco-Barraza J, Marston DJ, Cukierman E, Hahn KM, Kapania RK, Nain AS. Force-exerting perpendicular lateral protrusions in fibroblastic cell contraction. Commun Biol 2020; 3:390. [PMID: 32694539 PMCID: PMC7374753 DOI: 10.1038/s42003-020-01117-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aligned extracellular matrix fibers enable fibroblasts to undergo myofibroblastic activation and achieve elongated shapes. Activated fibroblasts are able to contract, perpetuating the alignment of these fibers. This poorly understood feedback process is critical in chronic fibrosis conditions, including cancer. Here, using fiber networks that serve as force sensors, we identify "3D perpendicular lateral protrusions" (3D-PLPs) that evolve from lateral cell extensions named twines. Twines originate from stratification of cyclic-actin waves traversing the cell and swing freely in 3D to engage neighboring fibers. Once engaged, a lamellum forms and extends multiple secondary twines, which fill in to form a sheet-like PLP, in a force-entailing process that transitions focal adhesions to activated (i.e., pathological) 3D-adhesions. The specific morphology of PLPs enables cells to increase contractility and force on parallel fibers. Controlling geometry of extracellular networks confirms that anisotropic fibrous environments support 3D-PLP formation and function, suggesting an explanation for cancer-associated desmoplastic expansion.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Karanpreet Singh
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Janusz Franco-Barraza
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Marston
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Edna Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Klaus M Hahn
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rakesh K Kapania
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
19
|
The many implications of actin filament helicity. Semin Cell Dev Biol 2019; 102:65-72. [PMID: 31862222 DOI: 10.1016/j.semcdb.2019.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
One of the best known features of actin filaments is their helical structure. A number of essential properties emerge from this molecular arrangement of actin subunits. Here, we give an overview of the mechanical and biochemical implications of filament helicity, at different scales. In particular, a number of recent studies have highlighted the role of filament helicity in the adaptation to and the generation of mechanical torsion, and in the modulation of the filament's interaction with very different actin-binding proteins (such as myosins, cross-linkers, formins, and cofilin). Helicity can thus be seen as a key factor for the regulation of actin assembly, and as a link between biochemical regulators and their mechanical context. In addition, actin filament helicity appears to play an essential role in the establishment of chirality at larger scales, up to the organismal scale. Altogether, helicity appears to be an essential feature contributing to the regulation of actin assembly dynamics, and to actin's ability to organize cells at a larger scale.
Collapse
|
20
|
Cells with Broken Left–Right Symmetry: Roles of Intrinsic Cell Chirality in Left–Right Asymmetric Epithelial Morphogenesis. Symmetry (Basel) 2019. [DOI: 10.3390/sym11040505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chirality is a fundamental feature in biology, from the molecular to the organismal level. An animal has chirality in the left–right asymmetric structure and function of its body. In general, chirality occurring at the molecular and organ/organism scales has been studied separately. However, recently, chirality was found at the cellular level in various species. This “cell chirality” can serve as a link between molecular chirality and that of an organ or animal. Cell chirality is observed in the structure, motility, and cytoplasmic dynamics of cells and the mechanisms of cell chirality formation are beginning to be understood. In all cases studied so far, proteins that interact chirally with F-actin, such as formin and myosin I, play essential roles in cell chirality formation or the switching of a cell’s enantiomorphic state. Thus, the chirality of F-actin may represent the ultimate origin of cell chirality. Links between cell chirality and left–right body asymmetry are also starting to be revealed in various animal species. In this review, the mechanisms of cell chirality formation and its roles in left–right asymmetric development are discussed, with a focus on the fruit fly Drosophila, in which many of the pioneering studies were conducted.
Collapse
|
21
|
Ishibashi T, Hatori R, Maeda R, Nakamura M, Taguchi T, Matsuyama Y, Matsuno K. E and ID proteins regulate cell chirality and left-right asymmetric development in Drosophila. Genes Cells 2019; 24:214-230. [PMID: 30624823 DOI: 10.1111/gtc.12669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023]
Abstract
How left-right (LR) asymmetric forms in the animal body is a fundamental problem in Developmental Biology. Although the mechanisms for LR asymmetry are well studied in some species, they are still poorly understood in invertebrates. We previously showed that the intrinsic LR asymmetry of cells (designated as cell chirality) drives LR asymmetric development in the Drosophila embryonic hindgut, although the machinery of the cell chirality formation remains elusive. Here, we found that the Drosophila homologue of the Id gene, extra macrochaetae (emc), is required for the normal LR asymmetric morphogenesis of this organ. Id proteins, including Emc, are known to interact with and inhibit E-box-binding proteins (E proteins), such as Drosophila Daughterless (Da). We found that the suppression of da by wild-type emc was essential for cell chirality formation and for normal LR asymmetric development of the embryonic hindgut. Myosin ID (MyoID), which encodes the Drosophila Myosin ID protein, is known to regulate cell chirality. We further showed that Emc-Da regulates cell chirality formation, in which Emc functions upstream of or parallel to MyoID. Abnormal Id-E protein regulation is involved in various human diseases. Our results suggest that defects in cell shape may contribute to the pathogenesis of such diseases.
Collapse
Affiliation(s)
- Tomoki Ishibashi
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Ryo Hatori
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Reo Maeda
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | | | - Tomohiro Taguchi
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoko Matsuyama
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
22
|
Chiral Neuronal Motility: The Missing Link between Molecular Chirality and Brain Asymmetry. Symmetry (Basel) 2019. [DOI: 10.3390/sym11010102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Left–right brain asymmetry is a fundamental property observed across phyla from invertebrates to humans, but the mechanisms underlying its formation are still largely unknown. Rapid progress in our knowledge of the formation of body asymmetry suggests that brain asymmetry might be controlled by the same mechanisms. However, most of the functional brain laterality, including language processing and handedness, does not share common mechanisms with visceral asymmetry. Accumulating evidence indicates that asymmetry is manifested as chirality at the single cellular level. In neurons, the growth cone filopodia at the tips of neurites exhibit a myosin V-dependent, left-helical, and right-screw rotation, which drives the clockwise circular growth of neurites on adhesive substrates. Here, I propose an alternative model for the formation of brain asymmetry that is based on chiral neuronal motility. According to this chiral neuron model, the molecular chirality of actin filaments and myosin motors is converted into chiral neuronal motility, which is in turn transformed into the left–right asymmetry of neural circuits and lateralized brain functions. I also introduce automated, numerical, and quantitative methods to analyze the chirality and the left–right asymmetry that would enable the efficient testing of the model and to accelerate future investigations in this field.
Collapse
|
23
|
Philip RV, Harrison RE. A tent pole twist on membrane ruffles. J Cell Biol 2018; 217:3774-3775. [PMID: 30305313 PMCID: PMC6219709 DOI: 10.1083/jcb.201810022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Macropinocytosis or "cell drinking" involves the elaboration of membrane ruffles that enclose and internalize extracellular fluids. Using lattice light sheet microscopy, Condon et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201804137) reveal the presence of parallel membrane protrusions termed "tent poles" that flank and direct membrane ruffle formation.
Collapse
|
24
|
Vesicular movements in the growth cone. Neurochem Int 2018; 119:71-76. [DOI: 10.1016/j.neuint.2017.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 01/03/2023]
|
25
|
Condon ND, Heddleston JM, Chew TL, Luo L, McPherson PS, Ioannou MS, Hodgson L, Stow JL, Wall AA. Macropinosome formation by tent pole ruffling in macrophages. J Cell Biol 2018; 217:3873-3885. [PMID: 30150290 PMCID: PMC6219714 DOI: 10.1083/jcb.201804137] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 12/26/2022] Open
Abstract
Condon et al. use lattice light-sheet microscopy to analyze live macrophages and
define a new model of macropinosome formation and closure through tent pole
ruffles. The ruffles, which are enhanced by LPS and regulated by Rab13, are
erected and supported by F-actin tent poles that cross over and twist to
constrict the forming macropinosomes. Pathogen-mediated activation of macrophages arms innate immune responses that
include enhanced surface ruffling and macropinocytosis for environmental
sampling and receptor internalization and signaling. Activation of macrophages
with bacterial lipopolysaccharide (LPS) generates prominent dorsal ruffles,
which are precursors for macropinosomes. Very rapid, high-resolution imaging of
live macrophages with lattice light sheet microscopy (LLSM) reveals new features
and actions of dorsal ruffles, which redefine the process of macropinosome
formation and closure. We offer a new model in which ruffles are erected and
supported by F-actin tent poles that cross over and twist to constrict the
forming macropinosomes. This process allows for formation of large
macropinosomes induced by LPS. We further describe the enrichment of active
Rab13 on tent pole ruffles and show that CRISPR deletion of Rab13 results in
aberrant tent pole ruffles and blocks the formation of large LPS-induced
macropinosomes. Based on the exquisite temporal and spatial resolution of LLSM,
we can redefine the ruffling and macropinosome processes that underpin innate
immune responses.
Collapse
Affiliation(s)
- Nicholas D Condon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| | - John M Heddleston
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Maria S Ioannou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | - Jennifer L Stow
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| | - Adam A Wall
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Pham TQ, Kawaue T, Hoshi T, Tanaka Y, Miyata T, Sano A. Role of extrinsic mechanical force in the development of the RA-I tactile mechanoreceptor. Sci Rep 2018; 8:11085. [PMID: 30038295 PMCID: PMC6056429 DOI: 10.1038/s41598-018-29390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 11/25/2022] Open
Abstract
Rapidly adapting type I (RA-I) mechanoreceptors play an important role in sensing the low-frequency vibration aspects of touch. The structure of the RA-I mechanoreceptor is extremely complex regardless of its small size, limiting our understanding of its mechanotransduction. As a result of the emergence of bioengineering, we previously proposed an in vitro bioengineering approach for RA-I receptors to overcome this limitation. Currently, the in vitro bioengineering approach for the RA-I receptor is not realizable given the lack of knowledge of its morphogenesis. This paper demonstrates our first attempt to interpret the cellular morphogenesis of the RA-I receptor. We found indications of extrinsic mechanical force nearby the RA-I receptor in the developing fingertip. Using a mechanical compression device, the axon of dorsal root ganglion (DRG) neurons buckled in vitro into a profile that resembled the morphology of the RA-I receptor. This work encourages further implementation of this bioengineering approach in tactile receptor-related research.
Collapse
Affiliation(s)
- Trung Quang Pham
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
| | - Takumi Kawaue
- Department of Anatomy and Cell Biology, Nagoya University, Nagoya, 466-8550, Japan
| | | | - Yoshihiro Tanaka
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University, Nagoya, 466-8550, Japan
| | - Akihito Sano
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| |
Collapse
|
27
|
Inaki M, Sasamura T, Matsuno K. Cell Chirality Drives Left-Right Asymmetric Morphogenesis. Front Cell Dev Biol 2018; 6:34. [PMID: 29666795 PMCID: PMC5891590 DOI: 10.3389/fcell.2018.00034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/14/2018] [Indexed: 12/23/2022] Open
Abstract
Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila, we discovered that cells can have an intrinsic chirality to their structure, and that this “cell chirality” is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF (Myo31DF), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans, chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine.
Collapse
Affiliation(s)
- Mikiko Inaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Takeshi Sasamura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kenji Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
28
|
Tamada A, Igarashi M. Revealing chiral cell motility by 3D Riesz transform-differential interference contrast microscopy and computational kinematic analysis. Nat Commun 2017; 8:2194. [PMID: 29259161 PMCID: PMC5736583 DOI: 10.1038/s41467-017-02193-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 11/22/2022] Open
Abstract
Left–right asymmetry is a fundamental feature of body plans, but its formation mechanisms and roles in functional lateralization remain unclear. Accumulating evidence suggests that left–right asymmetry originates in the cellular chirality. However, cell chirality has not yet been quantitatively investigated, mainly due to the absence of appropriate methods. Here we combine 3D Riesz transform-differential interference contrast (RT-DIC) microscopy and computational kinematic analysis to characterize chiral cellular morphology and motility. We reveal that filopodia of neuronal growth cones exhibit 3D left-helical motion with retraction and right-screw rotation. We next apply the methods to amoeba Dictyostelium discoideum and discover right-handed clockwise cell migration on a 2D substrate and right-screw rotation of subcellular protrusions along the radial axis in a 3D substrate. Thus, RT-DIC microscopy and the computational kinematic analysis are useful and versatile tools to reveal the mechanisms of left–right asymmetry formation and the emergence of lateralized functions. The lack of an appropriate method has hampered quantitative measurements of cell chirality. Here, the authors combine Riesz transform-differential interference contrast microscopy and computational kinematic analysis to reveal chiral cell motility of neuronal growth cone filopodia and cellular slime mold.
Collapse
Affiliation(s)
- Atsushi Tamada
- Center for Transdisciplinary Research, Institute for Research Promotion, Niigata University, Niigata, 951-8510, Japan. .,Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan. .,Decoding and Controlling Brain Information, Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| | - Michihiro Igarashi
- Center for Transdisciplinary Research, Institute for Research Promotion, Niigata University, Niigata, 951-8510, Japan.,Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| |
Collapse
|
29
|
McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0409. [PMID: 27821521 DOI: 10.1098/rstb.2015.0409] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/25/2022] Open
Abstract
Consistent left-right (LR) asymmetry is a fundamental aspect of the bodyplan across phyla, and errors of laterality form an important class of human birth defects. Its molecular underpinning was first discovered as a sequential pathway of left- and right-sided gene expression that controlled positioning of the heart and visceral organs. Recent data have revised this picture in two important ways. First, the physical origin of chirality has been identified; cytoskeletal dynamics underlie the asymmetry of single-cell behaviour and patterning of the LR axis. Second, the pathway is not linear: early disruptions that alter the normal sidedness of upstream asymmetric genes do not necessarily induce defects in the laterality of the downstream genes or in organ situs Thus, the LR pathway is a unique example of two fascinating aspects of biology: the interplay of physics and genetics in establishing large-scale anatomy, and regulative (shape-homeostatic) pathways that correct molecular and anatomical errors over time. Here, we review aspects of asymmetry from its intracellular, cytoplasmic origins to the recently uncovered ability of the LR control circuitry to achieve correct gene expression and morphology despite reversals of key 'determinant' genes. We provide novel functional data, in Xenopus laevis, on conserved elements of the cytoskeleton that drive asymmetry, and comparatively analyse it together with previously published results in the field. Our new observations and meta-analysis demonstrate that despite aberrant expression of upstream regulatory genes, embryos can progressively normalize transcriptional cascades and anatomical outcomes. LR patterning can thus serve as a paradigm of how subcellular physics and gene expression cooperate to achieve developmental robustness of a body axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Gary McDowell
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Suvithan Rajadurai
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA.,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| | - Michael Levin
- Biology Department, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA .,Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155-4243, USA
| |
Collapse
|
30
|
Wan LQ, Chin AS, Worley KE, Ray P. Cell chirality: emergence of asymmetry from cell culture. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0413. [PMID: 27821525 DOI: 10.1098/rstb.2015.0413] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2016] [Indexed: 11/12/2022] Open
Abstract
Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left-right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA .,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.,Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Amanda S Chin
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Kathryn E Worley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Poulomi Ray
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
31
|
Nussenzveig HM. Cell membrane biophysics with optical tweezers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:499-514. [PMID: 29164289 DOI: 10.1007/s00249-017-1268-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 11/13/2017] [Indexed: 10/24/2022]
Abstract
Membrane elastic properties play important roles in regulating cell shape, motility, division and differentiation. Here I review optical tweezer (OT) investigations of membrane surface tension and bending modulus, emphasizing didactic aspects and insights provided for cell biology. OT measurements employ membrane-attached microspheres to extract long cylindrical nanotubes named tethers. The Helfrich-Canham theory yields elastic parameters in terms of tether radius and equilibrium extraction force. It assumes initial point-like microsphere attachment and no cytoskeleton content within tethers. Experimental force-displacement curves reveal violations of those assumptions, and I discuss proposed explanations of such discrepancies, as well as recommended OT protocols. Measurements of elastic parameters for predominant cell types in the central nervous system yield correlations between their values and cell function. Micro-rheology OT experiments extend these correlations to viscoelastic parameters. The results agree with a quasi-universal phenomenological scaling law and are interpreted in terms of the soft glass rheology model. Spontaneously-generated cell nanotube protrusions are also briefly reviewed, emphasizing common features with tethers. Filopodia as well as tunneling nanotubes (TNT), which connect distant cells and allow transfers between their cytoplasms, are discussed, including OT tether pulling from TNTs which mediate communication among bacteria, even of different species. Pathogens, including bacteria, viruses and prions, opportunistically exploit TNTs for cell-to-cell transmission of infection, indicating that TNTs have an ancient evolutionary origin.
Collapse
Affiliation(s)
- H Moysés Nussenzveig
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil. .,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.
| |
Collapse
|
32
|
Abstract
BACKGROUND Early postnatal exposure to general anesthetic agents causes a lasting impairment in learning and memory in animal models. One hypothesis to explain this finding is that exposure to anesthetic agents during critical points in neural development disrupts the formation of brain circuitry. Here, we explore the effects of sevoflurane on the neuronal growth cone, a specialization at the growing end of axons and dendrites that is responsible for the targeted growth that underlies connectivity between neurons. METHODS Dissociated neuronal cultures were prepared from embryonic mouse neocortex. Time-lapse images of live growth cones exposed to anesthetics were taken using differential interference contrast microscopy, and the rate of change of the area of the lamellipodia and the speed of the filopodial tip were quantified as measures of motility. The involvement of the p75 neurotropin receptor (p75NTR) was tested using inhibitors applied to the media and by a coimmunoprecipitation assay. RESULTS The rate of lamellipodial area change and filopodial tip velocity in both axonal and dendritic growth cones was significantly reduced with sevoflurane exposure between 2% and 6%. Motility could be substantially restored by treatment with Y27632 and TAT-peptide 5, which are inhibitors of Rho Kinase and p75NTR, respectively. Sevoflurane results in reduced coimmunoprecipitation of Rho-Guanosine-5'-diphosphate dissociation inhibitor after pulldown with p75NTR. CONCLUSIONS Sevoflurane interferes with growth cone motility, which is a critical process in brain circuitry formation. Our data suggest that this may occur through an action on the p75NTR, which promotes growth inhibitory signaling by the Rho pathway.
Collapse
|
33
|
Meiri A, Ebeling CG, Martineau J, Zalevsky Z, Gerton JM, Menon R. Interference based localization of single emitters. OPTICS EXPRESS 2017; 25:17174-17191. [PMID: 28789212 PMCID: PMC5557332 DOI: 10.1364/oe.25.017174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/26/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The ability to localize precisely a single optical emitter is important for particle tracking applications and super resolution microscopy. It is known that for a traditional microscope the ability to localize such an emitter is limited by the photon count. Here we analyze the ability to improve such localization by imposing interference fringes. We show here that a simple grating interferometer can introduce such improvement in certain circumstances and analyze what is required to increase the localization precision further.
Collapse
Affiliation(s)
- Amihai Meiri
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Carl G. Ebeling
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Martineau
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Zeev Zalevsky
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Jordan M. Gerton
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Rajesh Menon
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
34
|
Jiang H, Ding H, Pu M, Hou Z. Emergence of collective dynamical chirality for achiral active particles. SOFT MATTER 2017; 13:836-841. [PMID: 28067390 DOI: 10.1039/c6sm02335e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Emergence of collective dynamical chirality (CDC) at mesoscopic scales plays a key role in many formation processes of chiral structures in nature, which may also provide possible routines for people to fabricate complex chiral architectures. So far, most of the reported CDCs have been found in systems of active objects with individual structure chirality or/and dynamical chirality, and whether CDC can arise from simple and achiral units is still an attractive mystery. Here, we report a spontaneous formation of CDC in a system of both dynamically and structurally achiral particles motivated by active motion of cells adhered onto a substrate. Active motion, confinement and hydrodynamic interaction are found to be the three key factors. Detailed analysis shows that the system can support abundant collective dynamical behaviors, including rotating droplets, rotating bubbles, CDC oscillations, arrays of collective rotations, and interesting transitions such as chirality transition, structure transition and state reentrance.
Collapse
Affiliation(s)
- Huijun Jiang
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Huai Ding
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Mingfeng Pu
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhonghuai Hou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
35
|
Luxenburg C, Geiger B. Multiscale View of Cytoskeletal Mechanoregulation of Cell and Tissue Polarity. Handb Exp Pharmacol 2017; 235:263-284. [PMID: 27807694 DOI: 10.1007/164_2016_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of cells to generate, maintain, and repair tissues with complex architecture, in which distinct cells function as coherent units, relies on polarity cues. Polarity can be described as an asymmetry along a defined axis, manifested at the molecular, structural, and functional levels. Several types of cell and tissue polarities were described in the literature, including front-back, apical-basal, anterior-posterior, and left-right polarity. Extensive research provided insights into the specific regulators of each polarization process, as well as into generic elements that affect all types of polarities. The actin cytoskeleton and the associated adhesion structures are major regulators of most, if not all, known forms of polarity. Actin filaments exhibit intrinsic polarity and their ability to bind many proteins including the mechanosensitive adhesion and motor proteins, such as myosins, play key roles in cell polarization. The actin cytoskeleton can generate mechanical forces and together with the associated adhesions, probe the mechanical, structural, and chemical properties of the environment, and transmit signals that impact numerous biological processes, including cell polarity. In this article we highlight novel mechanisms whereby the mechanical forces and actin-adhesion complexes regulate cell and tissue polarity in a variety of natural and experimental systems.
Collapse
Affiliation(s)
- Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
36
|
Abstract
A new study reports that dynamic actin fibers in cells on circular islands self-organize into a swirling counter-clockwise pattern and describes a basic cytoskeletal mechanism for the establishment of left-right asymmetry that is based on myosin contraction and twisting of the formin-actin filament.
Collapse
Affiliation(s)
- Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; Department of Biology, New York University, 100 Washington Square East, 1009 Silver Center, New York, NY 10003, USA.
| | - Ben Fogelson
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| |
Collapse
|
37
|
Mechanosensing is critical for axon growth in the developing brain. Nat Neurosci 2016; 19:1592-1598. [PMID: 27643431 PMCID: PMC5531257 DOI: 10.1038/nn.4394] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.
Collapse
|
38
|
Surfing along Filopodia: A Particle Transport Revealed by Molecular-Scale Fluctuation Analyses. Biophys J 2016; 108:2114-25. [PMID: 25954870 DOI: 10.1016/j.bpj.2015.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 01/08/2023] Open
Abstract
Filopodia perform cellular functions such as environmental sensing or cell motility, but they also grab for particles and withdraw them leading to an increased efficiency of phagocytic uptake. Remarkably, withdrawal of micron-sized particles is also possible without noticeable movements of the filopodia. Here, we demonstrate that polystyrene beads connected by optical tweezers to the ends of adherent filopodia of J774 macrophages, are transported discontinuously toward the cell body. After a typical resting time of 1-2 min, the cargo is moved with alternating velocities, force constants, and friction constants along the surface of the filopodia. This surfing-like behavior along the filopodium is recorded by feedback-controlled interferometric three-dimensional tracking of the bead motions at 10-100 kHz. We measured transport velocities of up to 120 nm/s and transport forces of ∼ 70 pN. Small changes in position, fluctuation width, and temporal correlation, which are invisible in conventional microscopy, indicate molecular reorganization of transport-relevant proteins in different phases of the entire transport process. A detailed analysis implicates a controlled particle transport with fingerprints of a nanoscale unbinding/binding behavior. The manipulation and analysis methods presented in our study may also be helpful in other fields of cellular biophysics.
Collapse
|
39
|
Leijnse N, Oddershede LB, Bendix PM. An updated look at actin dynamics in filopodia. Cytoskeleton (Hoboken) 2016; 72:71-9. [PMID: 25786787 DOI: 10.1002/cm.21216] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/10/2022]
Abstract
Cells dynamically interact with and probe their environment by growing finger-like structures named filopodia. The dynamics of filopodia are mainly caused by the actin rich core or shaft which sits inside the filopodial membrane and continuously undergoes changes like growth, shrinking, bending, and rotation. Recent experiments combining advanced imaging and manipulation tools have provided detailed quantitative data on the correlation between mechanical properties of filopodia, their molecular composition, and the dynamic architecture of the actin structure. These experiments have revealed how retrograde flow and twisting of the actin shaft within filopodia can generate traction on external substrates. Previously, the mechanism behind filopodial pulling was mainly attributed to retrograde flow of actin, but recent experiments have shown that rotational dynamics can also contribute to the traction force. Although force measurements have indicated a step-like behavior in filopodial pulling, no direct evidence has been provided to link this behavior to a molecular motor like myosin. Therefore, the underlying biochemical and mechanical mechanisms behind filopodial force generation still remain to be resolved.
Collapse
Affiliation(s)
- Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | | |
Collapse
|
40
|
Naganathan SR, Middelkoop TC, Fürthauer S, Grill SW. Actomyosin-driven left-right asymmetry: from molecular torques to chiral self organization. Curr Opin Cell Biol 2016; 38:24-30. [DOI: 10.1016/j.ceb.2016.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
|
41
|
Dimonte A, Adamatzky A, Erokhin V, Levin M. On chirality of slime mould. Biosystems 2015; 140:23-7. [PMID: 26747637 DOI: 10.1016/j.biosystems.2015.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/23/2015] [Accepted: 12/25/2015] [Indexed: 11/24/2022]
Abstract
Left-right patterning and lateralised behaviour is an ubiquitous aspect of plants and animals. The mechanisms linking cellular chirality to the large-scale asymmetry of multicellular structures are incompletely understood, and it has been suggested that the chirality of living cells is hardwired in their cytoskeleton. We examined the question of biased asymmetry in a unique organism: the slime mould Physarum polycephalum, which is unicellular yet possesses macroscopic, complex structure and behaviour. In laboratory experiment using a T-shape, we found that Physarum turns right in more than 74% of trials. The results are in agreement with previously published studies on asymmetric movement of muscle cells, neutrophils, liver cells and growing neural filaments, and for the first time reveal the presence of consistently-biased laterality in the fungi kingdom. Exact mechanisms of the slime mould's direction preference remain unknown.
Collapse
|
42
|
Cytoskeletal Symmetry Breaking and Chirality: From Reconstituted Systems to Animal Development. Symmetry (Basel) 2015. [DOI: 10.3390/sym7042062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
43
|
Sato K, Hiraiwa T, Shibata T. Cell Chirality Induces Collective Cell Migration in Epithelial Sheets. PHYSICAL REVIEW LETTERS 2015; 115:188102. [PMID: 26565500 DOI: 10.1103/physrevlett.115.188102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Indexed: 06/05/2023]
Abstract
During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show that when the interface tension is strengthened in a direction that is tilted from the body axis, cell rearrangements occur in such a way that unidirectional movement is induced. We use a vertex model to demonstrate that such anisotropic tension can generate the unidirectional motion of cell sheets. Our results suggest that cell chirality facilitates collective cell migration during tissue morphogenesis.
Collapse
Affiliation(s)
- Katsuhiko Sato
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Tetsuya Hiraiwa
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Physics, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Tatsuo Shibata
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| |
Collapse
|
44
|
Leijnse N, Oddershede LB, Bendix PM. Dynamic buckling of actin within filopodia. Commun Integr Biol 2015; 8:e1022010. [PMID: 26479403 PMCID: PMC4594262 DOI: 10.1080/19420889.2015.1022010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 11/24/2022] Open
Abstract
Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted on external substrates.1 These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling in conjunction with rotation enables the cell to explore a much larger 3-dimensional space and allows for more complex, and possibly stronger, interactions with the external environment.2 Here we focus on how bending of the filopodial actin dynamically correlates with pulling on an optically trapped microsphere which acts like an external substrate attached to the filopodial tip. There is a clear correlation between presence of actin near the tip and exertion of a traction force, thus demonstrating that the traction force is transduced along the actin shaft inside the filopodium. By extending a filopodium and holding it while measuring the cellular response, we also monitor and analyze the waiting times for the first buckle observed in the fluorescently labeled actin shaft.
Collapse
Affiliation(s)
- Natascha Leijnse
- Niels Bohr Institute; University of Copenhagen ; Copenhagen, Denmark
| | - Lene B Oddershede
- Niels Bohr Institute; University of Copenhagen ; Copenhagen, Denmark
| | - Poul M Bendix
- Niels Bohr Institute; University of Copenhagen ; Copenhagen, Denmark
| |
Collapse
|
45
|
Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol 2015; 17:445-57. [DOI: 10.1038/ncb3137] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022]
|
46
|
Abstract
Cells can interact with their surroundings via filopodia, which are membrane protrusions that extend beyond the cell body. Filopodia are essential during dynamic cellular processes like motility, invasion, and cell-cell communication. Filopodia contain cross-linked actin filaments, attached to the surrounding cell membrane via protein linkers such as integrins. These actin filaments are thought to play a pivotal role in force transduction, bending, and rotation. We investigated whether, and how, actin within filopodia is responsible for filopodia dynamics by conducting simultaneous force spectroscopy and confocal imaging of F-actin in membrane protrusions. The actin shaft was observed to periodically undergo helical coiling and rotational motion, which occurred simultaneously with retrograde movement of actin inside the filopodium. The cells were found to retract beads attached to the filopodial tip, and retraction was found to correlate with rotation and coiling of the actin shaft. These results suggest a previously unidentified mechanism by which a cell can use rotation of the filopodial actin shaft to induce coiling and hence axial shortening of the filopodial actin bundle.
Collapse
|
47
|
Naganathan SR, Fürthauer S, Nishikawa M, Jülicher F, Grill SW. Active torque generation by the actomyosin cell cortex drives left-right symmetry breaking. eLife 2014; 3:e04165. [PMID: 25517077 PMCID: PMC4269833 DOI: 10.7554/elife.04165] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/12/2014] [Indexed: 12/11/2022] Open
Abstract
Many developmental processes break left-right (LR) symmetry with a consistent handedness. LR asymmetry emerges early in development, and in many species the primary determinant of this asymmetry has been linked to the cytoskeleton. However, the nature of the underlying chirally asymmetric cytoskeletal processes has remained elusive. In this study, we combine thin-film active chiral fluid theory with experimental analysis of the C. elegans embryo to show that the actomyosin cortex generates active chiral torques to facilitate chiral symmetry breaking. Active torques drive chiral counter-rotating cortical flow in the zygote, depend on myosin activity, and can be altered through mild changes in Rho signaling. Notably, they also execute the chiral skew event at the 4-cell stage to establish the C. elegans LR body axis. Taken together, our results uncover a novel, large-scale physical activity of the actomyosin cytoskeleton that provides a fundamental mechanism for chiral morphogenesis in development.
Collapse
Affiliation(s)
- Sundar Ram Naganathan
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sebastian Fürthauer
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Masatoshi Nishikawa
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Stephan W Grill
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
48
|
Yamanaka H, Kondo S. Rotating pigment cells exhibit an intrinsic chirality. Genes Cells 2014; 20:29-35. [PMID: 25345494 DOI: 10.1111/gtc.12194] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/29/2014] [Indexed: 11/26/2022]
Abstract
In multicellular organisms, cell properties, such as shape, size and function are important in morphogenesis and physiological functions. Recently, 'cellular chirality' has attracted attention as a cellular property because it can cause asymmetry in the bodies of animals. In recent in vitro studies, the left-right bias of cellular migration and of autonomous arrangement of cells under some specific culture conditions were discovered. However, it is difficult to identify the molecular mechanism underlying their intrinsic chirality because the left-right bias observed to date is subtle or is manifested in the stable orientation of cells. Here, we report that zebrafish (Danio rerio) melanophores exhibit clear cellular chirality by unidirectional counterclockwise rotational movement under isolated conditions without any special settings. The chirality is intrinsic to melanophores because the direction of the cellular rotation was not affected by the type of extracellular matrix. We further found that the cellular rotation was generated as a counter action of the clockwise movement of actin cytoskeleton. It suggested that the mechanism that directs actin cytoskeleton in the clockwise direction is pivotal for determining cellular chirality.
Collapse
Affiliation(s)
- Hiroaki Yamanaka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0781, Japan
| | | |
Collapse
|
49
|
Igarashi M. Proteomic identification of the molecular basis of mammalian CNS growth cones. Neurosci Res 2014; 88:1-15. [PMID: 25066522 DOI: 10.1016/j.neures.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/02/2014] [Indexed: 11/28/2022]
Abstract
The growth cone, which is a unique structure with high motility that forms at the tips of extending axons and dendrites, is crucial to neuronal network formation. Axonal growth of the mammalian CNS is most likely achieved by the complicated coordination of cytoskeletal rearrangement and vesicular trafficking via many proteins. Before recent advances, no methods to identify numerous proteins existed; however, proteomics revolutionarily resolved such problems. In this review, I summarize the profiles of the mammalian growth cone proteins revealed by proteomics as the molecular basis of the growth cone functions, with molecular mapping. These results should be used as a basis for understanding the mechanisms of the complex mammalian CNS developmental process.
Collapse
Affiliation(s)
- Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Trans-disciplinary Program, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|
50
|
Takatsuki H, Bengtsson E, Månsson A. Persistence length of fascin-cross-linked actin filament bundles in solution and the in vitro motility assay. Biochim Biophys Acta Gen Subj 2014; 1840:1933-42. [PMID: 24418515 DOI: 10.1016/j.bbagen.2014.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Bundles of unipolar actin filaments (F-actin), cross-linked via the actin-binding protein fascin, are important in filopodia of motile cells and stereocilia of inner ear sensory cells. However, such bundles are also useful as shuttles in myosin-driven nanotechnological applications. Therefore, and for elucidating aspects of biological function, we investigate if the bundle tendency to follow straight paths (quantified by path persistence length) when propelled by myosin motors is directly determined by material properties quantified by persistence length of thermally fluctuating bundles. METHODS Fluorescent bundles, labeled with rhodamine-phalloidin, were studied at fascin:actin molar ratios: 0:1 (F-actin), 1:7, 1:4 and 1:2. Persistence lengths (Lp) were obtained by fitting the cosine correlation function (CCF) to a single exponential function: <cos(θ(0)-θ(s))>=exp(-s/(2Lp)) where θ(s) is tangent angle; s: path or contour lengths. < > denotes averaging over filaments. RESULTS Bundle-Lp (bundles<15μm long) increased from ~10 to 150μm with increased fascin:actin ratio. The increase was similar for path-Lp (path<15μm), with highly linear correlation. For longer bundle paths, the CCF-decay deviated from a single exponential, consistent with superimposition of the random path with a circular path as suggested by theoretical analysis. CONCLUSIONS Fascin-actin bundles have similar path-Lp and bundle-Lp, both increasing with fascin:actin ratio. Path-Lp is determined by the flexural rigidity of the bundle. GENERAL SIGNIFICANCE The findings give general insight into mechanics of cytoskeletal polymers that interact with molecular motors, aid rational development of nanotechnological applications and have implications for structure and in vivo functions of fascin-actin bundles.
Collapse
Affiliation(s)
- Hideyo Takatsuki
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar SE-391 82, Sweden
| | - Elina Bengtsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar SE-391 82, Sweden
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar SE-391 82, Sweden.
| |
Collapse
|