1
|
Hart RG, Kota D, Li F, Zhang M, Ramallo D, Price AJ, Otterpohl KL, Smith SJ, Dunn AR, Huising MO, Liu J, Chandrasekar I. Myosin II tension sensors visualize force generation within the actin cytoskeleton in living cells. J Cell Sci 2024; 137:jcs262281. [PMID: 39369303 DOI: 10.1242/jcs.262281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Nonmuscle myosin II (NMII) generates cytoskeletal forces that drive cell division, embryogenesis, muscle contraction and many other cellular functions. However, at present there is no method that can directly measure the forces generated by myosins in living cells. Here, we describe a Förster resonance energy transfer (FRET)-based tension sensor that can detect myosin-associated force along the filamentous actin network. Fluorescence lifetime imaging microscopy (FLIM)-FRET measurements indicate that the forces generated by NMII isoform B (NMIIB) exhibit significant spatial and temporal heterogeneity as a function of donor lifetime and fluorophore energy exchange. These measurements provide a proxy for inferred forces that vary widely along the actin cytoskeleton. This initial report highlights the potential utility of myosin-based tension sensors in elucidating the roles of cytoskeletal contractility in a wide variety of contexts.
Collapse
Affiliation(s)
- Ryan G Hart
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Divya Kota
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Fangjia Li
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Mengdi Zhang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Diego Ramallo
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Andrew J Price
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Karla L Otterpohl
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Steve J Smith
- Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Alexander R Dunn
- Department of Chemical Biology, Stanford University, Stanford, CA 94305, USA
| | - Mark O Huising
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Jing Liu
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 46907
| | - Indra Chandrasekar
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
2
|
Weißenbruch K, Mayor R. Actomyosin forces in cell migration: Moving beyond cell body retraction. Bioessays 2024; 46:e2400055. [PMID: 39093597 DOI: 10.1002/bies.202400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells. Here, we highlight the hierarchic assembly and self-regulatory network structure of the actomyosin system and explain how the kinetics of different nonmuscle myosin II (NM II) paralogs synergize during contractile force generation. Our aim is to emphasize how protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally integrated during different modes of migration, including chemotaxis and durotaxis. Finally, we hypothesize how different NM II paralogs might tune aspects of migration in vivo, highlighting future research directions.
Collapse
Affiliation(s)
- Kai Weißenbruch
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
3
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
4
|
Gong B, Johnston JD, Thiemicke A, de Marco A, Meyer T. Endoplasmic reticulum-plasma membrane contact gradients direct cell migration. Nature 2024; 631:415-423. [PMID: 38867038 PMCID: PMC11236710 DOI: 10.1038/s41586-024-07527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Directed cell migration is driven by the front-back polarization of intracellular signalling1-3. Receptor tyrosine kinases and other inputs activate local signals that trigger membrane protrusions at the front2,4-6. Equally important is a long-range inhibitory mechanism that suppresses signalling at the back to prevent the formation of multiple fronts7-9. However, the identity of this mechanism is unknown. Here we report that endoplasmic reticulum-plasma membrane (ER-PM) contact sites are polarized in single and collectively migrating cells. The increased density of these ER-PM contacts at the back provides the ER-resident PTP1B phosphatase more access to PM substrates, which confines receptor signalling to the front and directs cell migration. Polarization of the ER-PM contacts is due to microtubule-regulated polarization of the ER, with more RTN4-rich curved ER at the front and more CLIMP63-rich flattened ER at the back. The resulting ER curvature gradient leads to small and unstable ER-PM contacts only at the front. These contacts flow backwards and grow to large and stable contacts at the back to form the front-back ER-PM contact gradient. Together, our study suggests that the structural polarity mediated by ER-PM contact gradients polarizes cell signalling, directs cell migration and prolongs cell migration.
Collapse
Affiliation(s)
- Bo Gong
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| | - Jake D Johnston
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Alexander Thiemicke
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Alex de Marco
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tobias Meyer
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Chinthalapudi K, Heissler SM. Structure, regulation, and mechanisms of nonmuscle myosin-2. Cell Mol Life Sci 2024; 81:263. [PMID: 38878079 PMCID: PMC11335295 DOI: 10.1007/s00018-024-05264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/23/2024]
Abstract
Members of the myosin superfamily of molecular motors are large mechanochemical ATPases that are implicated in an ever-expanding array of cellular functions. This review focuses on mammalian nonmuscle myosin-2 (NM2) paralogs, ubiquitous members of the myosin-2 family of filament-forming motors. Through the conversion of chemical energy into mechanical work, NM2 paralogs remodel and shape cells and tissues. This process is tightly controlled in time and space by numerous synergetic regulation mechanisms to meet cellular demands. We review how recent advances in structural biology together with elegant biophysical and cell biological approaches have contributed to our understanding of the shared and unique mechanisms of NM2 paralogs as they relate to their kinetics, regulation, assembly, and cellular function.
Collapse
Affiliation(s)
- Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Garrido-Casado M, Asensio-Juárez G, Talayero VC, Vicente-Manzanares M. Engines of change: Nonmuscle myosin II in mechanobiology. Curr Opin Cell Biol 2024; 87:102344. [PMID: 38442667 DOI: 10.1016/j.ceb.2024.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
The emergence of mechanobiology has unveiled complex mechanisms by which cells adjust intracellular force production to their needs. Most communicable intracellular forces are generated by myosin II, an actin-associated molecular motor that transforms adenosine triphosphate (ATP) hydrolysis into contraction in nonmuscle and muscle cells. Myosin II-dependent force generation is tightly regulated, and deregulation is associated with specific pathologies. Here, we focus on the role of myosin II (nonmuscle myosin II, NMII) in force generation and mechanobiology. We outline the regulation and molecular mechanism of force generation by NMII, focusing on the actual outcome of contraction, that is, force application to trigger mechanosensitive events or the building of dissipative structures. We describe how myosin II-generated forces drive two major types of events: modification of the cellular morphology and/or triggering of genetic programs, which enhance the ability of cells to adapt to, or modify, their microenvironment. Finally, we address whether targeting myosin II to impair or potentiate its activity at the motor level is a viable therapeutic strategy, as illustrated by recent examples aimed at modulating cardiac myosin II function in heart disease.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain
| | - Vanessa C Talayero
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer/ Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
7
|
Liu Q, Cheng C, Huang J, Yan W, Wen Y, Liu Z, Zhou B, Guo S, Fang W. MYH9: A key protein involved in tumor progression and virus-related diseases. Biomed Pharmacother 2024; 171:116118. [PMID: 38181716 DOI: 10.1016/j.biopha.2023.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of non-muscle myosin IIA (NMIIA), which belongs to the myosin II subfamily of actin-based molecular motors. Previous studies have demonstrated that abnormal expression and mutations of MYH9 were correlated with MYH9-related diseases and tumors. Furthermore, earlier investigations identified MYH9 as a tumor suppressor. However, subsequent research revealed that MYH9 promoted tumorigenesis, progression and chemoradiotherapy resistance. Note-worthily, MYH9 has also been linked to viral infections, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Epstein-Barr virus, and hepatitis B virus, as a receptor or co-receptor. In addition, MYH9 promotes the development of hepatocellular carcinoma by interacting with the hepatitis B virus-encoding X protein. Finally, various findings highlighted the role of MYH9 in the development of these illnesses, especially in tumors. This review summarizes the involvement of the MYH9-regulated signaling network in tumors and virus-related diseases and presents possible drug interventions on MYH9, providing insights for the use of MYH9 as a therapeutic target for tumors and virus-mediated diseases.
Collapse
Affiliation(s)
- Qing Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology hospital, Shenzhen 518000, China
| | - Jiyu Huang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Yinhao Wen
- Department of Oncology, Pingxiang People's Hospital, Pingxiang 337000, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Key Laboratory of Protein Modification and Degradation, Basic School of Guangzhou Medical University, Guangzhou 510315, China.
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou 525200, China.
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; The People's Hospital of Gaozhou, Gaozhou 525200, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510315, China.
| |
Collapse
|
8
|
Newman D, Young LE, Waring T, Brown L, Wolanska KI, MacDonald E, Charles-Orszag A, Goult BT, Caswell PT, Sakuma T, Yamamoto T, Machesky LM, Morgan MR, Zech T. 3D matrix adhesion feedback controls nuclear force coupling to drive invasive cell migration. Cell Rep 2023; 42:113554. [PMID: 38100355 DOI: 10.1016/j.celrep.2023.113554] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/23/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Cell invasion is a multi-step process, initiated by the acquisition of a migratory phenotype and the ability to move through complex 3D extracellular environments. We determine the composition of cell-matrix adhesion complexes of invasive breast cancer cells in 3D matrices and identify an interaction complex required for invasive migration. βPix and myosin18A (Myo18A) drive polarized recruitment of non-muscle myosin 2A (NM2A) to adhesion complexes at the tips of protrusions. Actomyosin force engagement then displaces the Git1-βPix complex from paxillin, establishing a feedback loop for adhesion maturation. We observe active force transmission to the nucleus during invasive migration that is needed to pull the nucleus forward. The recruitment of NM2A to adhesions creates a non-muscle myosin isoform gradient, which extends from the protrusion to the nucleus. We postulate that this gradient facilitates coupling of cell-matrix interactions at the protrusive cell front with nuclear movement, enabling effective invasive migration and front-rear cell polarity.
Collapse
Affiliation(s)
- Daniel Newman
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lorna E Young
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Waring
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Louise Brown
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katarzyna I Wolanska
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ewan MacDonald
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Laura M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, UK; Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | - Mark R Morgan
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tobias Zech
- Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
9
|
Nanda S, Calderon A, Sachan A, Duong TT, Koch J, Xin X, Solouk-Stahlberg D, Wu YW, Nalbant P, Dehmelt L. Rho GTPase activity crosstalk mediated by Arhgef11 and Arhgef12 coordinates cell protrusion-retraction cycles. Nat Commun 2023; 14:8356. [PMID: 38102112 PMCID: PMC10724141 DOI: 10.1038/s41467-023-43875-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Rho GTPases play a key role in the spatio-temporal coordination of cytoskeletal dynamics during cell migration. Here, we directly investigate crosstalk between the major Rho GTPases Rho, Rac and Cdc42 by combining rapid activity perturbation with activity measurements in mammalian cells. These studies reveal that Rac stimulates Rho activity. Direct measurement of spatio-temporal activity patterns show that Rac activity is tightly and precisely coupled to local cell protrusions, followed by Rho activation during retraction. Furthermore, we find that the Rho-activating Lbc-type GEFs Arhgef11 and Arhgef12 are enriched at transient cell protrusions and retractions and recruited to the plasma membrane by active Rac. In addition, their depletion reduces activity crosstalk, cell protrusion-retraction dynamics and migration distance and increases migration directionality. Thus, our study shows that Arhgef11 and Arhgef12 facilitate exploratory cell migration by coordinating cell protrusion and retraction by coupling the activity of the associated regulators Rac and Rho.
Collapse
Affiliation(s)
- Suchet Nanda
- Fakultät für Chemie und Chemische Biologie, TU Dortmund University, 44227, Dortmund, Germany
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Abram Calderon
- Fakultät für Chemie und Chemische Biologie, TU Dortmund University, 44227, Dortmund, Germany
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Arya Sachan
- Fakultät für Chemie und Chemische Biologie, TU Dortmund University, 44227, Dortmund, Germany
| | - Thanh-Thuy Duong
- Fakultät für Chemie und Chemische Biologie, TU Dortmund University, 44227, Dortmund, Germany
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Johannes Koch
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Xiaoyi Xin
- SciLifeLab and Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, 90187, Umeå, Sweden
| | - Djamschid Solouk-Stahlberg
- Fakultät für Chemie und Chemische Biologie, TU Dortmund University, 44227, Dortmund, Germany
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - Yao-Wen Wu
- SciLifeLab and Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, 90187, Umeå, Sweden
| | - Perihan Nalbant
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany.
| | - Leif Dehmelt
- Fakultät für Chemie und Chemische Biologie, TU Dortmund University, 44227, Dortmund, Germany.
| |
Collapse
|
10
|
García-Quintáns N, Sacristán S, Márquez-López C, Sánchez-Ramos C, Martinez-de-Benito F, Siniscalco D, González-Guerra A, Camafeita E, Roche-Molina M, Lytvyn M, Morera D, Guillen MI, Sanguino MA, Sanz-Rosa D, Martín-Pérez D, Garcia R, Bernal JA. MYH10 activation rescues contractile defects in arrhythmogenic cardiomyopathy (ACM). Nat Commun 2023; 14:6461. [PMID: 37833253 PMCID: PMC10575922 DOI: 10.1038/s41467-023-41981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The most prevalent genetic form of inherited arrhythmogenic cardiomyopathy (ACM) is caused by mutations in desmosomal plakophilin-2 (PKP2). By studying pathogenic deletion mutations in the desmosomal protein PKP2, here we identify a general mechanism by which PKP2 delocalization restricts actomyosin network organization and cardiac sarcomeric contraction in this untreatable disease. Computational modeling of PKP2 variants reveals that the carboxy-terminal (CT) domain is required for N-terminal domain stabilization, which determines PKP2 cortical localization and function. In mutant PKP2 cells the expression of the interacting protein MYH10 rescues actomyosin disorganization. Conversely, dominant-negative MYH10 mutant expression mimics the pathogenic CT-deletion PKP2 mutant causing actin network abnormalities and right ventricle systolic dysfunction. A chemical activator of non-muscle myosins, 4-hydroxyacetophenone (4-HAP), also restores normal contractility. Our findings demonstrate that activation of MYH10 corrects the deleterious effect of PKP2 mutant over systolic cardiac contraction, with potential implications for ACM therapy.
Collapse
Affiliation(s)
| | - Silvia Sacristán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Fernando Martinez-de-Benito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - David Siniscalco
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | | | - Emilio Camafeita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mariya Lytvyn
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Morera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María I Guillen
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María A Sanguino
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Universidad Europea, Madrid, Spain
| | | | - Ricardo Garcia
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
11
|
Qian W, Yamaguchi N, Lis P, Cammer M, Knaut H. Pulses of RhoA Signaling Stimulate Actin Polymerization and Flow in Protrusions to Drive Collective Cell Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560679. [PMID: 37873192 PMCID: PMC10592895 DOI: 10.1101/2023.10.03.560679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In animals, cells often move as collectives to shape organs, close wounds, or-in the case of disease-metastasize. To accomplish this, cells need to generate force to propel themselves forward. The motility of singly migrating cells is driven largely by an interplay between Rho GTPase signaling and the actin network (Yamada and Sixt, 2019). Whether cells migrating as collectives use the same machinery for motility is unclear. Using the zebrafish posterior lateral line primordium as a model for collective cell migration, we find that active RhoA and myosin II cluster on the basal sides of the primordium cells and are required for primordium motility. Positive and negative feedbacks cause RhoA and myosin II activities to pulse. These pulses of RhoA signaling stimulate actin polymerization at the tip of the protrusions and myosin II-dependent actin flow and protrusion retraction at the base of the protrusions, and deform the basement membrane underneath the migrating primordium. This suggests that RhoA-induced actin flow on the basal sides of the cells constitutes the motor that pulls the primordium forward, a scenario that likely underlies collective migration in other-but not all (Bastock and Strutt, 2007; Lebreton and Casanova, 2013; Matthews et al., 2008)-contexts.
Collapse
Affiliation(s)
- Weiyi Qian
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
- These authors contributed equally to this work
| | - Naoya Yamaguchi
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
- These authors contributed equally to this work
| | - Patrycja Lis
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
| | - Michael Cammer
- Microscopy laboratory, New York University Grossman School of Medicine, New York, United States
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
| |
Collapse
|
12
|
Brondolin M, Herzog D, Sultan S, Warburton F, Vigilante A, Knight RD. Migration and differentiation of muscle stem cells are coupled by RhoA signalling during regeneration. Open Biol 2023; 13:230037. [PMID: 37726092 PMCID: PMC10508982 DOI: 10.1098/rsob.230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Skeletal muscle is highly regenerative and is mediated by a population of migratory adult muscle stem cells (muSCs). Effective muscle regeneration requires a spatio-temporally regulated response of the muSC population to generate sufficient muscle progenitor cells that then differentiate at the appropriate time. The relationship between muSC migration and cell fate is poorly understood and it is not clear how forces experienced by migrating cells affect cell behaviour. We have used zebrafish to understand the relationship between muSC cell adhesion, behaviour and fate in vivo. Imaging of pax7-expressing muSCs as they respond to focal injuries in trunk muscle reveals that they migrate by protrusive-based means. By carefully characterizing their behaviour in response to injury we find that they employ an adhesion-dependent mode of migration that is regulated by the RhoA kinase ROCK. Impaired ROCK activity results in reduced expression of cell cycle genes and increased differentiation in regenerating muscle. This correlates with changes to focal adhesion dynamics and migration, revealing that ROCK inhibition alters the interaction of muSCs to their local environment. We propose that muSC migration and differentiation are coupled processes that respond to changes in force from the environment mediated by RhoA signalling.
Collapse
Affiliation(s)
- Mirco Brondolin
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Dylan Herzog
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Sami Sultan
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| | - Fiona Warburton
- Oral Clinical Research Unit, King's College London, London, London SE1 9RT, UK
| | | | - Robert D. Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK
| |
Collapse
|
13
|
Weißenbruch K, Fladung M, Grewe J, Baulesch L, Schwarz US, Bastmeyer M. Nonmuscle myosin IIA dynamically guides regulatory light chain phosphorylation and assembly of nonmuscle myosin IIB. Eur J Cell Biol 2022; 101:151213. [DOI: 10.1016/j.ejcb.2022.151213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
|
14
|
Vaidžiulytė K, Macé AS, Battistella A, Beng W, Schauer K, Coppey M. Persistent cell migration emerges from a coupling between protrusion dynamics and polarized trafficking. eLife 2022; 11:69229. [PMID: 35302488 PMCID: PMC8963884 DOI: 10.7554/elife.69229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
Migrating cells present a variety of paths, from random to highly directional ones. While random movement can be explained by basal intrinsic activity, persistent movement requires stable polarization. Here, we quantitatively address emergence of persistent migration in (hTERT)–immortalizedRPE1 (retinal pigment epithelial) cells over long timescales. By live cell imaging and dynamic micropatterning, we demonstrate that the Nucleus-Golgi axis aligns with direction of migration leading to efficient cell movement. We show that polarized trafficking is directed toward protrusions with a 20-min delay, and that migration becomes random after disrupting internal cell organization. Eventually, we prove that localized optogenetic Cdc42 activation orients the Nucleus-Golgi axis. Our work suggests that polarized trafficking stabilizes the protrusive activity of the cell, while protrusive activity orients this polarity axis, leading to persistent cell migration. Using a minimal physical model, we show that this feedback is sufficient to recapitulate the quantitative properties of cell migration in the timescale of hours.
Collapse
Affiliation(s)
| | | | | | | | - Kristine Schauer
- Tumor Cell Dynamics Unit, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
15
|
Chandra A, Butler MT, Bear JE, Haugh JM. Modeling cell protrusion predicts how myosin II and actin turnover affect adhesion-based signaling. Biophys J 2022; 121:102-118. [PMID: 34861242 PMCID: PMC8758409 DOI: 10.1016/j.bpj.2021.11.2889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Orchestration of cell migration is essential for development, tissue regeneration, and the immune response. This dynamic process integrates adhesion, signaling, and cytoskeletal subprocesses across spatial and temporal scales. In mesenchymal cells, adhesion complexes bound to extracellular matrix mediate both biochemical signal transduction and physical interaction with the F-actin cytoskeleton. Here, we present a mathematical model that offers insight into both aspects, considering spatiotemporal dynamics of nascent adhesions, active signaling molecules, mechanical clutching, actin treadmilling, and nonmuscle myosin II contractility. At the core of the model is a positive feedback loop, whereby adhesion-based signaling promotes generation of barbed ends at, and protrusion of, the cell's leading edge, which in turn promotes formation and stabilization of nascent adhesions. The model predicts a switch-like transition and optimality of membrane protrusion, determined by the balance of actin polymerization and retrograde flow, with respect to extracellular matrix density. The model, together with new experimental measurements, explains how protrusion can be modulated by mechanical effects (nonmuscle myosin II contractility and adhesive bond stiffness) and F-actin turnover.
Collapse
Affiliation(s)
- Ankit Chandra
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Mitchell T Butler
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - James E Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
16
|
Peng Y, Chen Z, He Y, Li P, Chen Y, Chen X, Jiang Y, Qin X, Li S, Li T, Wu C, Yang H, You F, Liu Y. Non-muscle myosin II isoforms orchestrate substrate stiffness sensing to promote cancer cell contractility and migration. Cancer Lett 2022; 524:245-258. [PMID: 34715250 DOI: 10.1016/j.canlet.2021.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
The stiffening of the extracellular matrix (ECM) during tumor progression results in an increase in cancer cell motility. In cell migration, two major isoforms of non-muscle myosin II (NMII), NMIIA and NMIIB, are expressed and assembled into the cytoskeleton. However, the isoform-specific regulatory roles of NMIIA and NMIIB as well as the underlying mechanisms in response to mechanical cues of the ECM are still elusive. Here, based on polyacrylamide (PAA) gels with tunable elastic modulus, we mimicked the mechanical properties of tumor tissue at different stages of breast cancer in vitro and investigated the distinct roles of NMII isoforms in the regulation of substrate stiffness. We demonstrate that NMIIA is engaged in establishing cell polarity by facilitating lamellipodia formation, focal adhesion turnover, and actin polymerization at the cell leading edge, while NMIIB is recruited to the cell perinuclear region and contributes to traction force generation and polarized distribution, both in a substrate stiffness-dependent manner. We further validated that substrate stiffness modulates the distribution and activation of NMII isoforms via the Rac1/p-PAK1/pS1916-NMIIA and PKCζ/pS1935-NMIIB signaling pathways in a site- and kinase-specific phosphoregulation manner. Our study is helpful for understanding the mechanotransduction of cancer cells and provides inspiration for molecular targets in antimetastatic therapy.
Collapse
Affiliation(s)
- Yueting Peng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Zhongyuan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yuchen He
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Yu Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
17
|
Weißenbruch K, Grewe J, Hippler M, Fladung M, Tremmel M, Stricker K, Schwarz US, Bastmeyer M. Distinct roles of nonmuscle myosin II isoforms for establishing tension and elasticity during cell morphodynamics. eLife 2021; 10:71888. [PMID: 34374341 PMCID: PMC8391736 DOI: 10.7554/elife.71888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously coated surfaces, in collagen gels, and on micropatterned substrates. In contrast to homogenously coated surfaces, a structured environment supports a cellular phenotype with invaginated actin arcs even in the absence of NM IIA-induced contractility. A quantitative shape analysis of cells on micropatterns combined with a scale-bridging mathematical model reveals that NM IIA is essential to build up cellular tension during initial stages of force generation, while NM IIB is necessary to elastically stabilize NM IIA-generated tension. A dynamic cell stretch/release experiment in a three-dimensional scaffold confirms these conclusions and in addition reveals a novel role for NM IIC, namely the ability to establish tensional homeostasis.
Collapse
Affiliation(s)
- Kai Weißenbruch
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Justin Grewe
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Marc Hippler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Magdalena Fladung
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Moritz Tremmel
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Kathrin Stricker
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ulrich Sebastian Schwarz
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
18
|
Garrido-Casado M, Asensio-Juárez G, Vicente-Manzanares M. Nonmuscle Myosin II Regulation Directs Its Multiple Roles in Cell Migration and Division. Annu Rev Cell Dev Biol 2021; 37:285-310. [PMID: 34314591 DOI: 10.1146/annurev-cellbio-042721-105528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Gloria Asensio-Juárez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
19
|
Baldwin SA, Van Bruggen SM, Koelbl JM, Appalabhotla R, Bear JE, Haugh JM. Microfluidic devices fitted with "flowver" paper pumps generate steady, tunable gradients for extended observation of chemotactic cell migration. BIOMICROFLUIDICS 2021; 15:044101. [PMID: 34290842 PMCID: PMC8282348 DOI: 10.1063/5.0054764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/19/2021] [Indexed: 05/11/2023]
Abstract
Microfluidics approaches have gained popularity in the field of directed cell migration, enabling control of the extracellular environment and integration with live-cell microscopy; however, technical hurdles remain. Among the challenges are the stability and predictability of the environment, which are especially critical for the observation of fibroblasts and other slow-moving cells. Such experiments require several hours and are typically plagued by the introduction of bubbles and other disturbances that naturally arise in standard microfluidics protocols. Here, we report on the development of a passive pumping strategy, driven by the high capillary pressure and evaporative capacity of paper, and its application to study fibroblast chemotaxis. The paper pumps-flowvers (flow + clover)-are inexpensive, compact, and scalable, and they allow nearly bubble-free operation, with a predictable volumetric flow rate on the order of μl/min, for several hours. To demonstrate the utility of this approach, we combined the flowver pumping strategy with a Y-junction microfluidic device to generate a chemoattractant gradient landscape that is both stable (6+ h) and predictable (by finite-element modeling calculations). Integrated with fluorescence microscopy, we were able to recapitulate previous, live-cell imaging studies of fibroblast chemotaxis to platelet derived growth factor (PDGF), with an order-of-magnitude gain in throughput. The increased throughput of single-cell analysis allowed us to more precisely define PDGF gradient conditions conducive for chemotaxis; we were also able to interpret how the orientation of signaling through the phosphoinositide 3-kinase pathway affects the cells' sensing of and response to conducive gradients.
Collapse
Affiliation(s)
- Scott A. Baldwin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Shawn M. Van Bruggen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Joseph M. Koelbl
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Ravikanth Appalabhotla
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - James E. Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jason M. Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| |
Collapse
|
20
|
Llorente-González C, González-Rodríguez M, Vicente-Manzanares M. Targeting cytoskeletal phosphorylation in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:292-308. [PMID: 36046434 PMCID: PMC9400739 DOI: 10.37349/etat.2021.00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation of cytoskeletal proteins regulates the dynamics of polymerization, stability, and disassembly of the different types of cytoskeletal polymers. These control the ability of cells to migrate and divide. Mutations and alterations of the expression levels of multiple protein kinases are hallmarks of most forms of cancer. Thus, altered phosphorylation of cytoskeletal proteins is observed in most cancer cells. These alterations potentially control the ability of cancer cells to divide, invade and form distal metastasis. This review highlights the emergent role of phosphorylation in the control of the function of the different cytoskeletal polymers in cancer cells. It also addresses the potential effect of targeted inhibitors in the normalization of cytoskeletal function.
Collapse
Affiliation(s)
- Clara Llorente-González
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Marta González-Rodríguez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
21
|
Megakaryocyte migration defects due to nonmuscle myosin IIA mutations underlie thrombocytopenia in MYH9-related disease. Blood 2021; 135:1887-1898. [PMID: 32315395 DOI: 10.1182/blood.2019003064] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Megakaryocytes (MKs), the precursor cells for platelets, migrate from the endosteal niche of the bone marrow (BM) toward the vasculature, extending proplatelets into sinusoids, where circulating blood progressively fragments them into platelets. Nonmuscle myosin IIA (NMIIA) heavy chain gene (MYH9) mutations cause macrothrombocytopenia characterized by fewer platelets with larger sizes leading to clotting disorders termed myosin-9-related disorders (MYH9-RDs). MYH9-RD patient MKs have proplatelets with thicker and fewer branches that produce fewer and larger proplatelets, which is phenocopied in mouse Myh9-RD models. Defective proplatelet formation is considered to be the principal mechanism underlying the macrothrombocytopenia phenotype. However, MYH9-RD patient MKs may have other defects, as NMII interactions with actin filaments regulate physiological processes such as chemotaxis, cell migration, and adhesion. How MYH9-RD mutations affect MK migration and adhesion in BM or NMIIA activity and assembly prior to proplatelet production remain unanswered. NMIIA is the only NMII isoform expressed in mature MKs, permitting exploration of these questions without complicating effects of other NMII isoforms. Using mouse models of MYH9-RD (NMIIAR702C+/-GFP+/-, NMIIAD1424N+/-, and NMIIAE1841K+/-) and in vitro assays, we investigated MK distribution in BM, chemotaxis toward stromal-derived factor 1, NMIIA activity, and bipolar filament assembly. Results indicate that different MYH9-RD mutations suppressed MK migration in the BM without compromising bipolar filament formation but led to divergent adhesion phenotypes and NMIIA contractile activities depending on the mutation. We conclude that MYH9-RD mutations impair MK chemotaxis by multiple mechanisms to disrupt migration toward the vasculature, impairing proplatelet release and causing macrothrombocytopenia.
Collapse
|
22
|
Patel S, McKeon D, Sao K, Yang C, Naranjo NM, Svitkina TM, Petrie RJ. Myosin II and Arp2/3 cross-talk governs intracellular hydraulic pressure and lamellipodia formation. Mol Biol Cell 2021; 32:579-589. [PMID: 33502904 PMCID: PMC8101460 DOI: 10.1091/mbc.e20-04-0227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human fibroblasts can switch between lamellipodia-dependent and -independent migration mechanisms on two-dimensional surfaces and in three-dimensional (3D) matrices. RhoA GTPase activity governs the switch from low-pressure lamellipodia to high-pressure lobopodia in response to the physical structure of the 3D matrix. Inhibiting actomyosin contractility in these cells reduces intracellular pressure and reverts lobopodia to lamellipodial protrusions via an unknown mechanism. To test the hypothesis that high pressure physically prevents lamellipodia formation, we manipulated pressure by activating RhoA or changing the osmolarity of the extracellular environment and imaged cell protrusions. We find RhoA activity inhibits Rac1-mediated lamellipodia formation through two distinct pathways. First, RhoA boosts intracellular pressure by increasing actomyosin contractility and water influx but acts upstream of Rac1 to inhibit lamellipodia formation. Increasing osmotic pressure revealed a second RhoA pathway, which acts through nonmuscle myosin II (NMII) to disrupt lamellipodia downstream from Rac1 and elevate pressure. Interestingly, Arp2/3 inhibition triggered a NMII-dependent increase in intracellular pressure, along with lamellipodia disruption. Together, these results suggest that actomyosin contractility and water influx are coordinated to increase intracellular pressure, and RhoA signaling can inhibit lamellipodia formation via two distinct pathways in high-pressure cells.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Donna McKeon
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Kimheak Sao
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Nicole M Naranjo
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ryan J Petrie
- Department of Biology, Drexel University, Philadelphia, PA 19104
| |
Collapse
|
23
|
Liu J, Liu Z, Chen K, Chen W, Fang X, Li M, Zhou X, Ding N, Lei H, Guo C, Qian T, Wang Y, Liu L, Chen Y, Zhao H, Sun Y, Deng Y, Wu C. Kindlin-2 promotes rear focal adhesion disassembly and directional persistence during cell migration. J Cell Sci 2021; 134:jcs244616. [PMID: 33277381 DOI: 10.1242/jcs.244616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/22/2020] [Indexed: 01/13/2023] Open
Abstract
Cell migration involves front-to-rear asymmetric focal adhesion (FA) dynamics, which facilitates trailing edge detachment and directional persistence. Here, we show that kindlin-2 is crucial for FA sliding and disassembly in migrating cells. Loss of kindlin-2 markedly reduced FA number and selectively impaired rear FA sliding and disassembly, resulting in defective rear retraction and reduced directional persistence during cell migration. Kindlin-2-deficient cells failed to develop serum-induced actomyosin-dependent tension at FAs. At the molecular level, kindlin-2 directly interacted with myosin light chain kinase (MYLK, hereafter referred to as MLCK), which was enhanced in response to serum stimulation. Serum deprivation inhibited rear FA disassembly, which was released in response to serum stimulation. Overexpression of the MLCK-binding kindlin-2 F0F1 fragment (amino acid residues 1-167), which inhibits the interaction of endogenous kindlin-2 with MLCK, phenocopied kindlin-2 deficiency-induced migration defects. Inhibition of MLCK, like loss of kindlin-2, also impaired trailing-edge detachment, rear FA disassembly and directional persistence. These results suggest a role of kindlin-2 in promoting actomyosin contractility at FAs, leading to increased rear FA sliding and disassembly, and directional persistence during cell migration.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongzhen Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keng Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiyuan Fang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Li
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuening Zhou
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Ding
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan Lei
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tao Qian
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yilin Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nan Kai University, Tianjin, 300071, China
| | - Yonglong Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ying Sun
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
24
|
1'H-Indole-3'-Carbonyl-Thiazole-4-Carboxylic Acid Methyl Ester Blocked Human Glioma Cell Invasion via Aryl Hydrocarbon Receptor's Regulation of Cytoskeletal Contraction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2616930. [PMID: 33083460 PMCID: PMC7556083 DOI: 10.1155/2020/2616930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022]
Abstract
Blocking glioma cell invasion has been challenging due to cancer cells that can swiftly switch their migration mode, and agents that can block more than one migration mode are sought after. We found that small molecule 2-(1H-indole-3-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous aryl hydrocarbon receptor (AHR) agonist, can block more than one mode of glioma cell migration, based on cultured cell behavior captured by videos. Data from wound-healing assays and mouse xenograft glioma models corroborated ITE's migration-inhibiting effects while knocking down AHR by siRNA abolished these effects. To identify genes that mediated ITE-AHR's effect, we first collected gene expression changes upon ITE treatment by RNA-seq, then compared them against literature reported migration-related genes in glioma and that were potentially regulated by AHR. MYH9, a component of nonmuscle myosin IIA (NMIIA), was confirmed to be reduced by ITE treatment. When MYH9 was overexpressed in the glioma cells, a good correlation was observed between the expression level and the cell migration ability, determined by wound-healing assay. Correspondingly, overexpression of MYH9 abrogated ITE's migration-inhibiting effects, indicating that ITE-AHR inhibited cell migration via inhibiting MYH9 expression. MYH9 is essential for cell migration in 3D confined space and not a discovered target of AHR; the fact that ITE affects MYH9 via AHR opens a new research and development avenue.
Collapse
|
25
|
Abedrabbo M, Ravid S. Scribble, Lgl1, and myosin II form a complex in vivo to promote directed cell migration. Mol Biol Cell 2020; 31:2234-2248. [PMID: 32697665 PMCID: PMC7550706 DOI: 10.1091/mbc.e19-11-0657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Scribble (Scrib) and Lethal giant larvae 1 (Lgl1) are conserved polarity proteins that play important roles in different forms of cell polarity. The roles of Scrib and Lgl1 in apical-basal cell polarity have been studied extensively, but little is known about their roles in the cell polarity of migrating cells. Furthermore, the effect of Scrib and Lgl1 interaction on cell polarity is largely unknown. In this study, we show that Scrib, through its leucine-rich repeat domain, forms a complex in vivo with Lgl1. Scrib also forms a complex with myosin II, and Scrib, Lgl1, and myosin II colocalize at the leading edge of migrating cells. The cellular localization and the cytoskeletal association of Scrib and Lgl1 are interdependent, as depletion of either protein affects its counterpart. In addition, depletion of either Scrib or Lgl1 disrupts the cellular localization of myosin II. We show that depletion of either Scrib or Lgl1 affects cell adhesion through the inhibition of focal adhesion disassembly. Finally, we show that Scrib and Lgl1 are required for proper cell polarity of migrating cells. These results provide new insights into the mechanism regulating the cell polarity of migrating cells by Scrib, Lgl1, and myosin II.
Collapse
Affiliation(s)
- Maha Abedrabbo
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Shoshana Ravid
- Department of Biochemistry and Molecular Biology, The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
26
|
Quantitative Phase Imaging of Spreading Fibroblasts Identifies the Role of Focal Adhesion Kinase in the Stabilization of the Cell Rear. Biomolecules 2020; 10:biom10081089. [PMID: 32707896 PMCID: PMC7463699 DOI: 10.3390/biom10081089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cells attaching to the extracellular matrix spontaneously acquire front-rear polarity. This self-organization process comprises spatial activation of polarity signaling networks and the establishment of a protruding cell front and a non-protruding cell rear. Cell polarization also involves the reorganization of cell mass, notably the nucleus that is positioned at the cell rear. It remains unclear, however, how these processes are regulated. Here, using coherence-controlled holographic microscopy (CCHM) for non-invasive live-cell quantitative phase imaging (QPI), we examined the role of the focal adhesion kinase (FAK) and its interacting partner Rack1 in dry mass distribution in spreading Rat2 fibroblasts. We found that FAK-depleted cells adopt an elongated, bipolar phenotype with a high central body mass that gradually decreases toward the ends of the elongated processes. Further characterization of spreading cells showed that FAK-depleted cells are incapable of forming a stable rear; rather, they form two distally positioned protruding regions. Continuous protrusions at opposite sides results in an elongated cell shape. In contrast, Rack1-depleted cells are round and large with the cell mass sharply dropping from the nuclear area towards the basal side. We propose that FAK and Rack1 act differently yet coordinately to establish front-rear polarity in spreading cells.
Collapse
|
27
|
Asensio-Juárez G, Llorente-González C, Vicente-Manzanares M. Linking the Landscape of MYH9-Related Diseases to the Molecular Mechanisms that Control Non-Muscle Myosin II-A Function in Cells. Cells 2020; 9:E1458. [PMID: 32545517 PMCID: PMC7348894 DOI: 10.3390/cells9061458] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The MYH9 gene encodes the heavy chain (MHCII) of non-muscle myosin II A (NMII-A). This is an actin-binding molecular motor essential for development that participates in many crucial cellular processes such as adhesion, cell migration, cytokinesis and polarization, maintenance of cell shape and signal transduction. Several types of mutations in the MYH9 gene cause an array of autosomal dominant disorders, globally known as MYH9-related diseases (MYH9-RD). These include May-Hegglin anomaly (MHA), Epstein syndrome (EPS), Fechtner syndrome (FTS) and Sebastian platelet syndrome (SPS). Although caused by different MYH9 mutations, all patients present macrothrombocytopenia, but may later display other pathologies, including loss of hearing, renal failure and presenile cataracts. The correlation between the molecular and cellular effects of the different mutations and clinical presentation are beginning to be established. In this review, we correlate the defects that MYH9 mutations cause at a molecular and cellular level (for example, deficient filament formation, altered ATPase activity or actin-binding) with the clinical presentation of the syndromes in human patients. We address why these syndromes are tissue restricted, and the existence of possible compensatory mechanisms, including residual activity of mutant NMII-A and/ or the formation of heteropolymers or co-polymers with other NMII isoforms.
Collapse
Affiliation(s)
| | | | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (G.A.-J.); (C.L.-G.)
| |
Collapse
|
28
|
Aguilar-Cuenca R, Llorente-González C, Chapman JR, Talayero VC, Garrido-Casado M, Delgado-Arévalo C, Millán-Salanova M, Shabanowitz J, Hunt DF, Sellers JR, Heissler SM, Vicente-Manzanares M. Tyrosine Phosphorylation of the Myosin Regulatory Light Chain Controls Non-muscle Myosin II Assembly and Function in Migrating Cells. Curr Biol 2020; 30:2446-2458.e6. [PMID: 32502416 DOI: 10.1016/j.cub.2020.04.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Active non-muscle myosin II (NMII) enables migratory cell polarization and controls dynamic cellular processes, such as focal adhesion formation and turnover and cell division. Filament assembly and force generation depend on NMII activation through the phosphorylation of Ser19 of the regulatory light chain (RLC). Here, we identify amino acid Tyr (Y) 155 of the RLC as a novel regulatory site that spatially controls NMII function. We show that Y155 is phosphorylated in vitro by the Tyr kinase domain of epidermal growth factor (EGF) receptor. In cells, phosphorylation of Y155, or its phospho-mimetic mutation (Glu), prevents the interaction of RLC with the myosin heavy chain (MHCII) to form functional NMII units. Conversely, Y155 mutation to a structurally similar but non-phosphorylatable amino acid (Phe) restores the more dynamic cellular functions of NMII, such as myosin filament formation and nascent adhesion assembly, but not those requiring stable actomyosin bundles, e.g., focal adhesion elongation or migratory front-back polarization. In live cells, phospho-Y155 RLC is prominently featured in protrusions, where it prevents NMII assembly. Our data indicate that Y155 phosphorylation constitutes a novel regulatory mechanism that contributes to the compartmentalization of NMII assembly and function in live cells.
Collapse
Affiliation(s)
- Rocío Aguilar-Cuenca
- Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; Universidad Autónoma de Madrid School of Medicine, 28006 Madrid, Spain
| | - Clara Llorente-González
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Jessica R Chapman
- Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA
| | - Vanessa C Talayero
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Marina Garrido-Casado
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Cristina Delgado-Arévalo
- Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain; Universidad Autónoma de Madrid School of Medicine, 28006 Madrid, Spain
| | - María Millán-Salanova
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA
| | - Donald F Hunt
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA; Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA
| | - James R Sellers
- Cell Biology and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
29
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
30
|
McKenzie AJ, Svec KV, Williams TF, Howe AK. Protein kinase A activity is regulated by actomyosin contractility during cell migration and is required for durotaxis. Mol Biol Cell 2019; 31:45-58. [PMID: 31721649 PMCID: PMC6938270 DOI: 10.1091/mbc.e19-03-0131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Dynamic subcellular regulation of protein kinase A (PKA) activity is important for the motile behavior of many cell types, yet the mechanisms governing PKA activity during cell migration remain largely unknown. The motility of SKOV-3 epithelial ovarian cancer (EOC) cells has been shown to be dependent both on localized PKA activity and, more recently, on mechanical reciprocity between cellular tension and extracellular matrix rigidity. Here, we investigated the possibility that PKA is regulated by mechanical signaling during migration. We find that localized PKA activity in migrating cells rapidly decreases upon inhibition of actomyosin contractility (specifically, of myosin ATPase, Rho kinase, or myosin light-chain kinase activity). Moreover, PKA activity is spatially and temporally correlated with cellular traction forces in migrating cells. Additionally, PKA is rapidly and locally activated by mechanical stretch in an actomyosin contractility-dependent manner. Finally, inhibition of PKA activity inhibits mechanically guided migration, also known as durotaxis. These observations establish PKA as a locally regulated effector of cellular mechanotransduction and as a regulator of mechanically guided cell migration.
Collapse
Affiliation(s)
- Andrew J McKenzie
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Kathryn V Svec
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Tamara F Williams
- Department of Pharmacology.,University of Vermont Cancer Center, and
| | - Alan K Howe
- Department of Pharmacology.,University of Vermont Cancer Center, and.,Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
31
|
Heuzé ML, Sankara Narayana GHN, D'Alessandro J, Cellerin V, Dang T, Williams DS, Van Hest JC, Marcq P, Mège RM, Ladoux B. Myosin II isoforms play distinct roles in adherens junction biogenesis. eLife 2019; 8:46599. [PMID: 31486768 PMCID: PMC6756789 DOI: 10.7554/elife.46599] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/05/2019] [Indexed: 12/27/2022] Open
Abstract
Adherens junction (AJ) assembly under force is essential for many biological processes like epithelial monolayer bending, collective cell migration, cell extrusion and wound healing. The acto-myosin cytoskeleton acts as a major force-generator during the de novo formation and remodeling of AJ. Here, we investigated the role of non-muscle myosin II isoforms (NMIIA and NMIIB) in epithelial junction assembly. NMIIA and NMIIB differentially regulate biogenesis of AJ through association with distinct actin networks. Analysis of junction dynamics, actin organization, and mechanical forces of control and knockdown cells for myosins revealed that NMIIA provides the mechanical tugging force necessary for cell-cell junction reinforcement and maintenance. NMIIB is involved in E-cadherin clustering, maintenance of a branched actin layer connecting E-cadherin complexes and perijunctional actin fibres leading to the building-up of anisotropic stress. These data reveal unanticipated complementary functions of NMIIA and NMIIB in the biogenesis and integrity of AJ.
Collapse
Affiliation(s)
- Mélina L Heuzé
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | | | - Joseph D'Alessandro
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Victor Cellerin
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Tien Dang
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - David S Williams
- Department of Chemistry, College of Science, Swansea University, Swansea, United Kingdom
| | - Jan Cm Van Hest
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, Sorbonne Université and CNRS UMR 7636, Paris, France
| | - René-Marc Mège
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| | - Benoit Ladoux
- Institut Jacques Monod, Université de Paris and CNRS UMR 7592, Paris, France
| |
Collapse
|
32
|
Wu SK, Priya R. Spatio-Temporal Regulation of RhoGTPases Signaling by Myosin II. Front Cell Dev Biol 2019; 7:90. [PMID: 31192208 PMCID: PMC6546806 DOI: 10.3389/fcell.2019.00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/13/2019] [Indexed: 01/06/2023] Open
Abstract
RhoGTPase activation of non-muscle myosin II regulates cell division, extrusion, adhesion, migration, and tissue morphogenesis. However, the regulation of myosin II and mechanotransduction is not straightforward. Increasingly, the role of myosin II on the feedback regulation of RhoGTPase signaling is emerging. Indeed, myosin II controls RhoGTPase signaling through multiple mechanisms, namely contractility driven advection, scaffolding, and sequestration of signaling molecules. Here we discuss these mechanisms by which myosin II regulates RhoGTPase signaling in cell adhesion, migration, and tissue morphogenesis.
Collapse
Affiliation(s)
- Selwin K Wu
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
33
|
Dias KB, Flores APC, Hildebrand LC, de Oliveira MG, Lamers ML, Rados PV, Magnusson AS, Filho MS. Non-muscle myosin II as a predictive factor in head and neck squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 2019; 24:e346-e353. [PMID: 31011146 PMCID: PMC6530949 DOI: 10.4317/medoral.22898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background The present study attempted to provide information regarding non-muscle myosin II (MII) isoforms immunoreactivity in patients with head and neck squamous cell carcinoma (HNSCC) and analysis of the patients’ clinical status after 5 years of monitoring. Material and Methods A semiquantitative analysis of the immunoreactivity of the MII isoforms was performed in 54 surgical specimens and its correlation with clinical and pathological variables and prognosis was verified. Data were analyzed using chi-square, Mann-Whitney and Kruskal-Wallis tests. To evaluate the survival over the total monitoring time and any connection with the proteins studied, the Kaplan-Meier analysis was used. P values ≤0.05 were considered statistically significant. Results In the advanced stages of pathological tumor-node-metastasis, the expression of MIIB in adjacent non-neoplastic epithelial tissues tended to increase (p = 0.057). In tumoral zones there was an association of high expression among the three isoforms (MIIA/MIIB p=0,001, MIIB/MIIC p=0,006 and MIIA/MIIC p=0,012). Negative clinical evolution in patients was directly correlated to increased MIIC expression in the tumoral zone of invasion in HNSCC (p = 0.017). Based on clinical evolution after the monitoring period, patients with tumors expressing MIIC had poorer prognoses (p = 0.048). Conclusions The present study suggests that MIIB expression in non-neoplastic adjacent epithelial tissues may indicate a potential for regional metastasis and that MIIC expression in the tumoral zone of invasion is predictive of negative evolution of the disease. Key words:Head and neck squamous cell carcinoma, oral cancer, myosin type II, non-muscle myosin, immunohistochemistry.
Collapse
Affiliation(s)
- K-B Dias
- Departmentof Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Av Ramiro Barcelos 2492/503, 90035-003 - Porto Alegre, Rio Grande do Sul, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Formin homology proteins (formins) are a highly conserved family of cytoskeletal remodeling proteins that are involved in a diverse array of cellular functions. Formins are best known for their ability to regulate actin dynamics, but the same functional domains also govern stability and organization of microtubules. It is thought that this dual activity allows them to coordinate the activity of these two major cytoskeletal networks and thereby influence cellular architecture. Golgi ribbon assembly is dependent upon cooperative interactions between actin filaments and cytoplasmic microtubules originating both at the Golgi itself and from the centrosome. Similarly, centrosome assembly, centriole duplication, and centrosome positioning are also reliant on a dialogue between both cytoskeletal networks. As presented in this chapter, a growing body of evidence suggests that multiple formin proteins play essential roles in these central cellular processes.
Collapse
Affiliation(s)
- John Copeland
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
35
|
Cao Y, Lei Y, Luo Y, Tan T, Du B, Zheng Y, Sun L, Liang Q. The actomyosin network is influenced by NMHC IIA and regulated by Crp F46, which is involved in controlling cell migration. Exp Cell Res 2018; 373:119-131. [PMID: 30336116 DOI: 10.1016/j.yexcr.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
When a cell migrates, the centrosome positions between the nucleus and the leading edge of migration via the microtubule system. The protein CrpF46 (centrosome-related protein F46) has a known role during mitosis and centrosome duplication. However, how CrpF46 efficiently regulates centrosome-related cell migration is unclear. Here, we report that knockdown of CrpF46 resulted in the disruption of microtubule arrangement, with impaired centrosomal reorientation, and slowed down cell migration. In cells that express low levels of CrpF46, stress fibers were weakened, which could be rescued by recovering Flag-CrpF46. We also found that CrpF46 interacted with non-muscle myosin high chain IIA (NMHC IIA) and that its three coiled-coil domains are pivotal for its binding to NMHC IIA. Additionally, analyses of phosphorylation of NMHC IIA and RLC (regulatory light chain) demonstrated that CrpF46 was associated with myosin IIA during filament formation. Indirect immunofluorescence images indicated that NM IIA filaments were inhibited when CrpF46 was under-expressed. Thus, CrpF46 regulates cell migration by centrosomal reorientation and altering the function of the actomyosin network by controlling specific phosphorylation of myosin.
Collapse
Affiliation(s)
- Yang Cao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yan Lei
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yang Luo
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Tan Tan
- School of Pharmacology and Biology, University of South China, Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, Hengyang 421001, PR China
| | - Baochen Du
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yanbo Zheng
- The Institute of Medical Biotechnology (IMB) of the Chinese Academy of Medical Sciences, Beijing 100050, PR China
| | - Le Sun
- AbMax Biotechnology Co., Beijing 101111, PR China
| | - Qianjin Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
36
|
de Beco S, Vaidžiulytė K, Manzi J, Dalier F, di Federico F, Cornilleau G, Dahan M, Coppey M. Optogenetic dissection of Rac1 and Cdc42 gradient shaping. Nat Commun 2018; 9:4816. [PMID: 30446664 PMCID: PMC6240110 DOI: 10.1038/s41467-018-07286-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022] Open
Abstract
During cell migration, Rho GTPases spontaneously form spatial gradients that define the front and back of cells. At the front, active Cdc42 forms a steep gradient whereas active Rac1 forms a more extended pattern peaking a few microns away. What are the mechanisms shaping these gradients, and what is the functional role of the shape of these gradients? Here we report, using a combination of optogenetics and micropatterning, that Cdc42 and Rac1 gradients are set by spatial patterns of activators and deactivators and not directly by transport mechanisms. Cdc42 simply follows the distribution of Guanine nucleotide Exchange Factors, whereas Rac1 shaping requires the activity of a GTPase-Activating Protein, β2-chimaerin, which is sharply localized at the tip of the cell through feedbacks from Cdc42 and Rac1. Functionally, the spatial extent of Rho GTPases gradients governs cell migration, a sharp Cdc42 gradient maximizes directionality while an extended Rac1 gradient controls the speed. A steep gradient of Cdc42 is at the front of migrating cells, whereas the active Rac1 gradient is graded. Here the authors show that Cdc42 gradients follow the distribution of GEFs and govern direction of migration, while Rac1 gradients require the activity of the GAP β2-chimaerin and control cell speed.
Collapse
Affiliation(s)
- S de Beco
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - K Vaidžiulytė
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - J Manzi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - F Dalier
- PASTEUR, Département de chimie, École normale supérieure, CNRS UMR 8640, PSL Research University, Sorbonne Université, 75005, Paris, France
| | - F di Federico
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - G Cornilleau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - M Dahan
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - M Coppey
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
37
|
Coordination of cell migration mediated by site-dependent cell-cell contact. Proc Natl Acad Sci U S A 2018; 115:10678-10683. [PMID: 30275335 PMCID: PMC6196508 DOI: 10.1073/pnas.1807543115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Contact inhibition of locomotion (CIL), the repulsive response of cells upon cell-cell contact, has been the predominant paradigm for contact-mediated responses. However, it is difficult for CIL alone to account for the complex behavior of cells within a multicellular environment, where cells often migrate in cohorts such as sheets, clusters, and streams. Although cell-cell adhesion and mechanical interactions play a role, how individual cells coordinate their migration within a multicellular environment remains unclear. Using micropatterned substrates to guide cell migration and manipulate cell-cell contact, we show that contacts between different regions of cells elicit different responses. Repulsive responses were limited to interaction with the head of a migrating cell, while contact with the tail of a neighboring cell promoted migration toward the tail. The latter behavior, termed contact following of locomotion (CFL), required the Wnt signaling pathway. Inhibition of the Wnt pathway disrupted not only CFL but also collective migration of epithelial cells, without affecting the migration of individual cells. In contrast, inhibition of myosin II with blebbistatin disrupted the migration of both individual epithelial cells and collectives. We propose that CFL, in conjunction with CIL, plays a major role in guiding and coordinating cell migration within a multicellular environment.
Collapse
|
38
|
Otterpohl KL, Hart RG, Evans C, Surendran K, Chandrasekar I. Nonmuscle myosin 2 proteins encoded by Myh9, Myh10, and Myh14 are uniquely distributed in the tubular segments of murine kidney. Physiol Rep 2018; 5. [PMID: 29208685 PMCID: PMC5727274 DOI: 10.14814/phy2.13513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
The diverse epithelial cell types of the kidneys are segregated into nephron segments and the collecting ducts in order to endow each tubular segment with unique functions. The rich diversity of the epithelial cell types is highlighted by the unique membrane channels and receptors expressed within each nephron segment. Our previous work identified a critical role for Myh9 and Myh10 in mammalian endocytosis. Here, we examined the expression patterns of Nonmuscle myosin 2 (NM2) heavy chains encoded by Myh9, Myh10, and Myh14 in mouse kidneys as these genes may confer unique nephron segment‐specific membrane transport properties. Interestingly, we found that each segment of the renal tubules predominately expressed only two of the three NM2 isoforms, with isoform‐specific subcellular localization, and different levels of expression within a nephron segment. Additionally, we identify Myh14 to be restricted to the intercalated cells and Myh10 to be restricted to the principal cells within the collecting ducts and connecting segments. We speculate that the distinct expression pattern of the NM2 proteins likely reflects the diversity of the intracellular trafficking machinery present within the different renal tubular epithelial segments.
Collapse
Affiliation(s)
- Karla L Otterpohl
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA
| | - Ryan G Hart
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA
| | - Claire Evans
- Molecular Pathology Core, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group - Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, USD Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Indra Chandrasekar
- Enabling Technologies Group - Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, USD Sanford School of Medicine, Sioux Falls, South Dakota, USA
| |
Collapse
|
39
|
Actin-Based Cell Protrusion in a 3D Matrix. Trends Cell Biol 2018; 28:823-834. [PMID: 29970282 PMCID: PMC6158345 DOI: 10.1016/j.tcb.2018.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Cell migration controls developmental processes (gastrulation and tissue patterning), tissue homeostasis (wound repair and inflammatory responses), and the pathobiology of diseases (cancer metastasis and inflammation). Understanding how cells move in physiologically relevant environments is of major importance, and the molecular machinery behind cell movement has been well studied on 2D substrates, beginning over half a century ago. Studies over the past decade have begun to reveal the mechanisms that control cell motility within 3D microenvironments – some similar to, and some highly divergent from those found in 2D. In this review we focus on migration and invasion of cells powered by actin, including formation of actin-rich protrusions at the leading edge, and the mechanisms that control nuclear movement in cells moving in a 3D matrix. Cell migration has been well studied in 2D, but how this relates to movement in physiological 3D tissues and matrix is not clear, particularly in vertebrate interstitial matrix. In 3D matrix cells actin polymerisation directly contributes to the formation of lamellipodia to facilitate migration and invasion (mesenchymal movement), analogous to 2D migration; actomyosin contractility promotes bleb formation to indirectly promote protrusion (amoeboid movement). Mesenchymal migration can be characterised by polymerisation of actin to form filopodial protrusions, in the absence of lamellipodia. Translocation of the nucleus is emerging as a critical step due to the constrictive environment of 3D matrices, and the mechanisms that transmit force to the nucleus and allow movement are beginning to be uncovered.
Collapse
|
40
|
Lee S, Kassianidou E, Kumar S. Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation. Mol Biol Cell 2018; 29:1992-2004. [PMID: 29927349 PMCID: PMC6232976 DOI: 10.1091/mbc.e18-02-0106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actomyosin stress fibers (SFs) support cell shape and migration by directing intracellular tension to the extracellular matrix (ECM) via focal adhesions. Migrating cells exhibit three SF subtypes (dorsal SFs, transverse arcs, and ventral SFs), which differ in their origin, location, and ECM connectivity. While each subtype is hypothesized to play unique structural roles, this idea has not been directly tested at the single-SF level. Here, we interrogate the mechanical properties of single SFs of each subtype based on their retraction kinetics following laser incision. While each SF subtype bears distinct mechanical properties, these properties are highly interdependent, with incision of dorsal fibers producing centripetal recoil of adjacent transverse arcs and the retraction of incised transverse arcs being limited by attachment points to dorsal SFs. These observations hold whether cells are allowed to spread freely or are confined to crossbow ECM patterns. Consistent with this interdependence, subtype-specific knockdown of dorsal SFs (palladin) or transverse arcs (mDia2) influences ventral SF retraction. These altered mechanics are partially phenocopied in cells cultured on ECM microlines that preclude assembly of dorsal SFs and transverse arcs. Our findings directly demonstrate that different SF subtypes play distinct roles in generating tension and form a mechanically interdependent network.
Collapse
Affiliation(s)
- Stacey Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Elena Kassianidou
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762
| | - Sanjay Kumar
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1762
| |
Collapse
|
41
|
Kuragano M, Uyeda TQP, Kamijo K, Murakami Y, Takahashi M. Different contributions of nonmuscle myosin IIA and IIB to the organization of stress fiber subtypes in fibroblasts. Mol Biol Cell 2018; 29:911-922. [PMID: 29467250 PMCID: PMC5896930 DOI: 10.1091/mbc.e17-04-0215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
We demonstrated that myosin IIA and IIB are essential for the formation of transverse arcs and ventral stress fibers, respectively. Furthermore, we illustrated the roles of both isoforms in lamellar flattening and also raised the possibility that actin filaments in ventral stress fibers are in a stretched conformation.
Collapse
Affiliation(s)
- Masahiro Kuragano
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Taro Q. P. Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Keiju Kamijo
- Department of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Yota Murakami
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masayuki Takahashi
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
42
|
Nonmuscle myosin IIA and IIB differentially contribute to intrinsic and directed migration of human embryonic lung fibroblasts. Biochem Biophys Res Commun 2018; 498:25-31. [DOI: 10.1016/j.bbrc.2018.02.171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 11/19/2022]
|
43
|
Rajagopal V, Holmes WR, Lee PVS. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1407. [PMID: 29195023 PMCID: PMC5836888 DOI: 10.1002/wsbm.1407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/19/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state-of-the-art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed-forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - William R. Holmes
- Department of Physics and AstronomyVanderbilt UniversityNashvilleTNUSA
| | - Peter Vee Sin Lee
- Cell and Tissue Biomechanics Laboratory, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
44
|
Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nat Commun 2018; 9:515. [PMID: 29410425 PMCID: PMC5802837 DOI: 10.1038/s41467-018-02904-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/05/2018] [Indexed: 01/06/2023] Open
Abstract
Subcellular fine-tuning of the actomyosin cytoskeleton is a prerequisite for polarized cell migration. We identify LSP (lymphocyte-specific protein) 1 as a critical regulator of actomyosin contractility in primary macrophages. LSP1 regulates adhesion and migration, including the parameters cell area and speed, and also podosome turnover, oscillation and protrusive force. LSP1 recruits myosin IIA and its regulators, including myosin light chain kinase and calmodulin, and competes with supervillin, a myosin hyperactivator, for myosin regulators, and for actin isoforms, notably β-actin. Actin isoforms are anisotropically distributed in myosin IIA-expressing macrophages, and contribute to the differential recruitment of LSP1 and supervillin, thus enabling an actomyosin symmetry break, analogous to the situation in cells expressing two myosin II isoforms. Collectively, these results show that the cellular pattern of actin isoforms builds the basis for the differential distribution of two actomyosin machineries with distinct properties, leading to the establishment of discrete zones of actomyosin contractility. The actomyosin cytoskeleton plays an important role in polarised cell migration. Here the authors identify lymphocyte-specific protein (LSP)-1 as a regulator of actomyosin contractility in macrophages, by competing with supervillin for myosin IIA activators acting specifically on the β-actin isoform.
Collapse
|
45
|
Catenins Steer Cell Migration via Stabilization of Front-Rear Polarity. Dev Cell 2017; 43:463-479.e5. [PMID: 29103954 DOI: 10.1016/j.devcel.2017.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
Abstract
Cell migration plays a pivotal role in morphogenetic and pathogenetic processes. To achieve directional migration, cells must establish a front-to-rear axis of polarity. Here we show that components of the cadherin-catenin complex function to stabilize this front-rear polarity. Neural crest and glioblastoma cells undergo directional migration in vivo or in vitro. During this process, αE-catenin accumulated at lamellipodial membranes and then moved toward the rear with the support of a tyrosine-phosphorylated β-catenin. This relocating αE-catenin bound to p115RhoGEF, leading to gathering of active RhoA in front of the nucleus where myosin-IIB arcs assemble. When catenins or p115RhoGEF were removed, cells lost the polarized myosin-IIB assembly, as well as the capability for directional movement. These results suggest that, apart from its well-known function in cell adhesion, the β-catenin/αE-catenin complex regulates directional cell migration by restricting active RhoA to perinuclear regions and controlling myosin-IIB dynamics at these sites.
Collapse
|
46
|
Venhuizen JH, Zegers MM. Making Heads or Tails of It: Cell-Cell Adhesion in Cellular and Supracellular Polarity in Collective Migration. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027854. [PMID: 28246177 DOI: 10.1101/cshperspect.a027854] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Collective cell migration is paramount to morphogenesis and contributes to the pathogenesis of cancer. To migrate directionally and reach their site of destination, migrating cells must distinguish a front and a rear. In addition to polarizing individually, cell-cell interactions in collectively migrating cells give rise to a higher order of polarity, which allows them to move as a supracellular unit. Rather than just conferring adhesion, emerging evidence indicates that cadherin-based adherens junctions intrinsically polarize the cluster and relay mechanical signals to establish both intracellular and supracellular polarity. In this review, we discuss the various functions of adherens junctions in polarity of migrating cohorts.
Collapse
Affiliation(s)
- Jan-Hendrik Venhuizen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Mirjam M Zegers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
47
|
Kubow KE, Shuklis VD, Sales DJ, Horwitz AR. Contact guidance persists under myosin inhibition due to the local alignment of adhesions and individual protrusions. Sci Rep 2017; 7:14380. [PMID: 29085052 PMCID: PMC5662575 DOI: 10.1038/s41598-017-14745-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 12/28/2022] Open
Abstract
Contact guidance—cell polarization by anisotropic substrate features—is integral to numerous physiological processes; however the complexities of its regulation are only beginning to be discovered. In particular, cells polarize to anisotropic features under non-muscle myosin II (MII) inhibition, despite MII ordinarily being essential for polarized cell migration. Here, we investigate the ability of cells to sense and respond to fiber alignment in the absence of MII activity. We find that contact guidance is determined at the level of individual protrusions, which are individually guided by local fiber orientation, independent of MII. Protrusion stability and persistence are functions of adhesion lifetime, which depends on fiber orientation. Under MII inhibition, adhesion lifetime no longer depends on fiber orientation; however the ability of protrusions to form closely spaced adhesions sequentially without having to skip over gaps in adhesive area, biases protrusion formation along fibers. The co-alignment of multiple protrusions polarizes the entire cell; if the fibers are not aligned, contact guidance of individual protrusions still occurs, but does not produce overall cell polarization. These results describe how aligned features polarize a cell independently of MII and demonstrate how cellular contact guidance is built on the local alignment of adhesions and individual protrusions.
Collapse
Affiliation(s)
- Kristopher E Kubow
- Department of Biology, James Madison University, Harrisonburg, VA, USA. .,Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| | | | - Dominic J Sales
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - A Rick Horwitz
- Allen Institute for Cell Science, Seattle, WA, USA.,Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
48
|
Shutova MS, Asokan SB, Talwar S, Assoian RK, Bear JE, Svitkina TM. Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility. J Cell Biol 2017; 216:2877-2889. [PMID: 28701425 PMCID: PMC5584186 DOI: 10.1083/jcb.201705167] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 01/21/2023] Open
Abstract
Nonmuscle myosin II (NMII) is uniquely responsible for cell contractility and thus defines multiple aspects of cell behavior. To generate contraction, NMII molecules polymerize into bipolar minifilaments. Different NMII paralogs are often coexpressed in cells and can copolymerize, suggesting that they may cooperate to facilitate cell motility. However, whether such cooperation exists and how it may work remain unknown. We show that copolymerization of NMIIA and NMIIB followed by their differential turnover leads to self-sorting of NMIIA and NMIIB along the front-rear axis, thus producing a polarized actin-NMII cytoskeleton. Stress fibers newly formed near the leading edge are enriched in NMIIA, but over time, they become progressively enriched with NMIIB because of faster NMIIA turnover. In combination with retrograde flow, this process results in posterior accumulation of more stable NMIIB-rich stress fibers, thus strengthening cell polarity. By copolymerizing with NMIIB, NMIIA accelerates the intrinsically slow NMIIB dynamics, thus increasing cell motility and traction and enabling chemotaxis.
Collapse
Affiliation(s)
- Maria S Shutova
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Sreeja B Asokan
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shefali Talwar
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA
| | - James E Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | |
Collapse
|
49
|
Zheng CG, Zhang F, Bao XM, Wu SY, Wang P, Zhou JN, Gao Y, Teng HL, Wang Y, Huang ZH. Polarized Distribution of Active Myosin II Regulates Directional Migration of Cultured Olfactory Ensheathing Cells. Sci Rep 2017; 7:4701. [PMID: 28680155 PMCID: PMC5498622 DOI: 10.1038/s41598-017-04914-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/22/2017] [Indexed: 11/09/2022] Open
Abstract
Migration of olfactory ensheathing cells (OECs) is critical for development of olfactory system and essential for neural regeneration after OEC transplantation into nerve injury site. However, the molecular mechanisms underlying the regulation of directional migration of OECs remain unclear. In this study, we found that in migrating OECs, phosphorylated myosin light chain (p-MLC, active myosin II) displayed a polarized distribution, with the leading front exhibiting higher than soma and trailing process. Over-expression of GFP-MLC significantly reduced OEC migration. Moreover, decreasing this front-to-rear difference of myosin II activity by the frontal application of a ML-7 (myosin II inhibitors) gradient induced the collapse of leading front and reversed soma translocation of OECs, whereas, increasing this front-to-rear difference of myosin II activity by the rear application of a ML-7 or BDM gradient or the frontal application of a Caly (myosin II activator) gradient accelerated the soma translocation of OECs. Finally, myosin II as a downstream signaling of repulsive factor Slit-2 mediated the reversal of soma translocation induced by Slit-2. Taken together, these results suggest that the polarized distribution of active myosin II regulates the directional migration of OECs during spontaneous migration or upon to extracellular stimulation such as Slit-2.
Collapse
Affiliation(s)
- Cheng-Gen Zheng
- Department of Cardiology, Chun'an First People's Hospital (Zhejiang Province People's Hospital Chun'an Branch), Hangzhou, 311700, China
| | - Fan Zhang
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiao-Mei Bao
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shi-Yang Wu
- Department of Spine Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Wang
- Department of Spine Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jia-Nan Zhou
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuan Gao
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hong-Lin Teng
- Department of Spine Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Ying Wang
- Department of Cardiology, Chun'an First People's Hospital (Zhejiang Province People's Hospital Chun'an Branch), Hangzhou, 311700, China. .,Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China. .,Department of Transfusion Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, 310053, China.
| | - Zhi-Hui Huang
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
50
|
Petrov D, Dahan I, Cohen-Kfir E, Ravid S. aPKCζ affects directed cell migration through the regulation of myosin light chain phosphorylation. Cell Adh Migr 2017; 11:347-359. [PMID: 27541056 DOI: 10.1080/19336918.2016.1225631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell motility is an essential cellular process for a variety of biological events. It requires cross-talk between the signaling and the cytoskeletal systems. Despite the recognized importance of aPKCζ for cell motility, there is little understanding of the mechanism by which aPKCζ mediates extracellular signals to the cytoskeleton. In the present study, we report that aPKCζ is required for the cellular organization of acto-non-muscle myosin II (NMII) cytoskeleton, for proper cell adhesion and directed cell migration. We show that aPKCζ mediates EGF-dependent RhoA activation and recruitment to the cell membrane. We also show that aPKCζ mediates EGF-dependent myosin light chain (MRLC) phosphorylation that is carried out by Rho-associated protein kinase (ROCK), and that aPKCζ is required for EGF-dependent phosphorylation and inhibition of the myosin phosphatase targeting subunit (MYPT). Finally, we show that aPKCζ mediates the spatial organization of the acto-NMII cytoskeleton in response to EGF stimulation. Our data suggest that aPKCζ is an essential component regulator of acto-NMII cytoskeleton organization leading to directed cell migration, and is a mediator of the EGF signal to the cytoskeleton.
Collapse
Affiliation(s)
- Daria Petrov
- a Department of Biochemistry and Molecular Biology , The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School , Jerusalem , Israel
| | - Inbal Dahan
- a Department of Biochemistry and Molecular Biology , The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School , Jerusalem , Israel
| | - Einav Cohen-Kfir
- a Department of Biochemistry and Molecular Biology , The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School , Jerusalem , Israel
| | - Shoshana Ravid
- a Department of Biochemistry and Molecular Biology , The Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School , Jerusalem , Israel
| |
Collapse
|