1
|
Liebing E, Krug SM, Neurath MF, Siegmund B, Becker C. Wall of Resilience: How the Intestinal Epithelium Prevents Inflammatory Onslaught in the Gut. Cell Mol Gastroenterol Hepatol 2024; 19:101423. [PMID: 39461590 PMCID: PMC11720114 DOI: 10.1016/j.jcmgh.2024.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
The intestinal epithelium forms the boundary between the intestinal immune system in the lamina propria and the outside world, the intestinal lumen, which contains a diverse array of microbial and environmental antigens. Composed of specialized cells, this epithelial monolayer has an exceptional turnover rate. Differentiated epithelial cells are released into the intestinal lumen within a few days, at the villus tip, a process that requires strict regulation. Dysfunction of the epithelial barrier increases the intestinal permeability and paves the way for luminal antigens to pass into the intestinal serosa. Stem cells at the bottom of Lieberkühn crypts provide a constant supply of mature epithelial cells. Differentiated intestinal epithelial cells exhibit a diverse array of mechanisms that enable communication with surrounding cells, fortification against microorganisms, and orchestration of nutrient absorption and hormonal balance. Furthermore, tight junctions regulate paracellular permeability properties, and their disruption can lead to an impairment of the intestinal barrier, allowing inflammation to develop or further progress. Intestinal epithelial cells provide a communication platform through which they maintain homeostasis with a spectrum of entities including immune cells, neuronal cells, and connective tissue cells. This homeostasis can be disrupted in disease, such as inflammatory bowel disease. Patients suffering from inflammatory bowel disease show an impaired gut barrier, dysregulated cellular communication, and aberrant proliferation and demise of cells. This review summarizes the individual cellular and molecular mechanisms pivotal for upholding the integrity of the intestinal epithelial barrier and shows how these can be disrupted in diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Eva Liebing
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany.
| |
Collapse
|
2
|
Cao J, Wu M, Mo W, Zhao M, Gu L, Wang X, Zhang B, Cao J. Upregulation of PRRX2 by silencing Marveld3 as a protective mechanism against radiation-induced ferroptosis in skin cells. Mol Med 2024; 30:182. [PMID: 39434056 PMCID: PMC11494952 DOI: 10.1186/s10020-024-00958-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Radiation-induced skin injury (RISI) represents a significant complication in patients receiving radiotherapy and individuals exposed to nuclear accidents, characterized by a protracted wound-healing process relative to injuries from other etiologies. Current preventive and management approaches remain inadequate. Consequently, investigating efficacious intervention strategies that target the disease's progression characteristics holds significant practical importance. METHODS Small interfering RNA (siRNA) and overexpression plasmid were used to modulate the expression of Marvel domain containing 3 (Marveld3) and paired related homeobox 2 (PRRX2). Protein and mRNA levels were estimated by Western Blot and real-time PCR, respectively. Intracellular levels of Malondialdehyde (MDA), a terminal product of lipid peroxidation, were measured following the manufacturer's protocol for MDA assay kit. Similarly, intracellular levels of ferrous iron (Fe2+) and reactive oxygen species (ROS) were determined using their respective assay kits. Lipid peroxidation status within the cells was evaluated via BODIPY staining. Immunohistochemistry was conducted to ascertain the expression of PRRX2 in skin tissues collected at various time points following irradiation of rats. The H-score method was used to evaluate the percentage of positively stained cells and staining intensity. RNA sequencing, Gene Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted by OE Biotech Company. RESULTS In this study, our findings indicated that Marveld3 suppression could effectively inhibit lipid peroxidation levels in irradiated skin cells, concomitantly reducing intracellular Fe2+ content. Additionally, the silencing of Marveld3 effectively abrogated the impact of a ferroptosis agonist on cellular viability, resulting in the upregulation of 66 and 178 genes, as well as the downregulation of 188 and 31 genes in irradiated HaCaT and WS1 cells, respectively. Among the differentially expressed genes, the PRRX2 which was found to be involved in the process of ferroptosis, exhibited statistically significant upregulation. And the upregulation of PRRX2 expression may attenuate radiation-induced lipid peroxidation in skin cells, thereby functioning as a potential stress-responsive mechanism to counteract radiation effects. CONCLUSIONS This study elucidates the role of Marveld3 in radiation-induced ferroptosis in skin cells. Inhibition of Marveld3 led to the upregulation of PRRX2, which subsequently resulted in a reduction of Fe2+ and ROS levels, as well as the suppression of lipid peroxidation. These effects collectively mitigated the occurrence of ferroptosis.
Collapse
Affiliation(s)
- Jinming Cao
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Mengyao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Mo
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Min Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liming Gu
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xi Wang
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jianping Cao
- School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Zhang W, Lan F, Zhou Q, Gu S, Li X, Wen C, Yang N, Sun C. Host genetics and gut microbiota synergistically regulate feed utilization in egg-type chickens. J Anim Sci Biotechnol 2024; 15:123. [PMID: 39245742 PMCID: PMC11382517 DOI: 10.1186/s40104-024-01076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/14/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Feed efficiency is a crucial economic trait in poultry industry. Both host genetics and gut microbiota influence feed efficiency. However, the associations between gut microbiota and host genetics, as well as their combined contributions to feed efficiency in laying hens during the late laying period, remain largely unclear. METHODS In total, 686 laying hens were used for whole-genome resequencing and liver transcriptome sequencing. 16S rRNA gene sequencing was conducted on gut chyme (duodenum, jejunum, ileum, and cecum) and fecal samples from 705 individuals. Bioinformatic analysis was performed by integrating the genome, transcriptome, and microbiome to screen for key genetic variations, genes, and gut microbiota associated with feed efficiency. RESULTS The heritability of feed conversion ratio (FCR) and residual feed intake (RFI) was determined to be 0.28 and 0.48, respectively. The ileal and fecal microbiota accounted for 15% and 10% of the FCR variance, while the jejunal, cecal, and fecal microbiota accounted for 20%, 11%, and 10% of the RFI variance. Through SMR analysis based on summary data from liver eQTL mapping and GWAS, we further identified four protein-coding genes, SUCLA2, TNFSF13B, SERTM1, and MARVELD3, that influence feed efficiency in laying hens. The SUCLA2 and TNFSF13B genes were significantly associated with SNP 1:25664581 and SNP rs312433097, respectively. SERTM1 showed significant associations with rs730958360 and 1:33542680 and is a potential causal gene associated with the abundance of Corynebacteriaceae in feces. MARVELD3 was significantly associated with the 1:135348198 and was significantly correlated with the abundance of Enterococcus in ileum. Specifically, a lower abundance of Enterococcus in ileum and a higher abundance of Corynebacteriaceae in feces were associated with better feed efficiency. CONCLUSIONS This study confirms that both host genetics and gut microbiota can drive variations in feed efficiency. A small portion of the gut microbiota often interacts with host genes, collectively enhancing feed efficiency. Therefore, targeting both the gut microbiota and host genetic variation by supporting more efficient taxa and selective breeding could improve feed efficiency in laying hens during the late laying period.
Collapse
Affiliation(s)
- Wenxin Zhang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Fangren Lan
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Qianqian Zhou
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaochang Li
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Congjiao Sun
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Wang S, He Y, Wang J, Luo E. Re-exploration of immunotherapy targeting EMT of hepatocellular carcinoma: Starting from the NF-κB pathway. Biomed Pharmacother 2024; 174:116566. [PMID: 38631143 DOI: 10.1016/j.biopha.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancies worldwide, and its high morbidity and mortality have brought a heavy burden to the global public health system. Due to the concealment of its onset, the limitation of treatment, the acquisition of multi-drug resistance and radiation resistance, the treatment of HCC cannot achieve satisfactory results. Epithelial mesenchymal transformation (EMT) is a key process that induces progression, distant metastasis, and therapeutic resistance to a variety of malignant tumors, including HCC. Therefore, targeting EMT has become a promising tumor immunotherapy method for HCC. The NF-κB pathway is a key regulatory pathway for EMT. Targeting this pathway has shown potential to inhibit HCC infiltration, invasion, distant metastasis, and therapeutic resistance. At present, there are still some controversies about this pathway and new ideas of combined therapy, which need to be further explored. This article reviews the progress of immunotherapy in improving EMT development in HCC cells by exploring the mechanism of regulating EMT.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - Yan He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Jun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - En Luo
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
5
|
Saviano A, Roehlen N, Baumert TF. Tight Junction Proteins as Therapeutic Targets to Treat Liver Fibrosis and Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:180-190. [PMID: 38648796 DOI: 10.1055/s-0044-1785646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In the last decade tight junction proteins exposed at the surface of liver or cancer cells have been uncovered as mediators of liver disease biology: Claudin-1 and Occludin are host factors for hepatitis C virus entry and Claudin-1 has been identified as a driver for liver fibrosis and hepatocellular carcinoma (HCC). Moreover, Claudins have emerged as therapeutic targets for liver disease and HCC. CLDN1 expression is upregulated in liver fibrosis and HCC. Monoclonal antibodies (mAbs) targeting Claudin-1 have completed preclinical proof-of-concept studies for treatment of liver fibrosis and HCC and are currently in clinical development for advanced liver fibrosis. Claudin-6 overexpression is associated with an HCC aggressive phenotype and treatment resistance. Claudin-6 mAbs or chimeric antigen receptor-T cells therapies are currently being clinically investigated for Claudin-6 overexpressing tumors. In conclusion, targeting Claudin proteins offers a novel clinical opportunity for the treatment of patients with advanced liver fibrosis and HCC.
Collapse
Affiliation(s)
- Antonio Saviano
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Natascha Roehlen
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas F Baumert
- Inserm, U1110, Institute of Translational Medicine and Liver Disease, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Service d'hépato-gastroentérologie, Pôle Hépato-digestif, Institut-Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
6
|
Chira S, Ciocan C, Bica C, Calin GA, Berindan-Neagoe I. Artificial miRNAs derived from miR-181 family members have potential in cancer therapy due to an altered spectrum of target mRNAs. FEBS Lett 2023; 597:1989-2005. [PMID: 37283340 DOI: 10.1002/1873-3468.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023]
Abstract
miRNAs are a class of noncoding RNAs with gene regulation properties, and they function as key factors in cell homeostasis. The interaction of miRNAs with their target mRNAs is largely considered to rely on sequence complementarity; however, some evidence indicates that mature miRNAs can adopt diverse conformations with implications for their function. Using the oncogenic miR-181 family as a study model, we suggest that a potential relationship between the primary sequence and secondary structure of miRNAs may have an impact on the number and spectrum of targeted cellular transcripts. We further emphasize that specific alterations in miR-181 primary sequences might impose certain constraints on target gene selection compared with the wild-type sequences, leading to the targeting of new transcripts with upregulated function in cancer.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cecilia Bica
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - George A Calin
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA
- The RNA Interference and Non-codingRNA Center, MD Anderson Cancer Center, Texas State University, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Zhou Q, Cui J, Liu Y, Gu L, Teng X, Tang Y. EGCG alleviated Mn exposure-caused carp kidney damage via trpm2-NLRP3-TNF-α-JNK pathway: Oxidative stress, inflammation, and tight junction dysfunction. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108582. [PMID: 36754155 DOI: 10.1016/j.fsi.2023.108582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 05/12/2023]
Abstract
Manganese (Mn), an essential trace metal element in organisms. However, with extensive use of Mn in industry and agriculture, Mn becomes a heavy metal pollutant in water. (-)-epigallocatechin gallate (EGCG), an tea polyphenols, can alleviate metal toxicity. Kidney is an important detoxifying organ, but toxic mechanism of Mn to kidneys is unclear, which needs further research. Carp is an Asian important economical species for fisheries and a biological model for studying environmental toxicology. Thus, we established excess Mn and EGCG-supplemented carp model to explore molecular mechanism of EGCG alleviating Mn-caused carp kidney damage. In this experiment, we set a control group (the Con group), a Mn treatment group (the Mn group, 90 mg/L Mn), a EGCG supplement group (the EG group, 75 mg/kg EGCG), and a combined group (the Mn + EG group, 90 mg/L Mn and 75 mg/kg EGCG). Transcriptome, qRT-PCR, kit, and morphology method results indicated that excess Mn caused oxidative stress, inflammatory damage, and tight junction dysfunction in carp kidneys. Excess Mn-triggered oxidative stress caused tight junction dysfunction via trpm2-NLRP3-TNF-α-JNK pathway and inflammation. EGCG reversed the harm of Mn to fish through the above mechanism. The findings of this study provided the evidence of EGCG-alleviated Mn poisoning and offered new ideas for reducing heavy metal environmental pollution risk.
Collapse
Affiliation(s)
- Qin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Lepeng Gu
- College of Animal Science and Technology, Northeast Agricultural University, China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, China.
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, China.
| |
Collapse
|
8
|
Structure Composition and Intracellular Transport of Clathrin-Mediated Intestinal Transmembrane Tight Junction Protein. Inflammation 2023; 46:18-34. [PMID: 36050591 DOI: 10.1007/s10753-022-01724-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Tight junctions (TJs) are located in the apical region of the junctions between epithelial cells and are widely found in organs such as the brain, retina, intestinal epithelium, and endothelial system. As a mechanical barrier of the intestinal mucosa, TJs can not only maintain the integrity of intestinal epithelial cells but also maintain intestinal mucosal permeability by regulating the entry of ions and molecules into paracellular channels. Therefore, the formation disorder or integrity destruction of TJs can induce damage to the intestinal epithelial barrier, ultimately leading to the occurrence of various gastrointestinal diseases, such as inflammatory bowel disease (IBD), gastroesophageal reflux disease (GERD), and irritable bowel syndrome (IBS). However, a large number of studies have shown that TJs protein transport disorder from the endoplasmic reticulum to the apical membrane can lead to TJs formation disorder, in addition to disruption of TJs integrity caused by external pathological factors and reduction of TJs protein synthesis. In this review, we focus on the structural composition of TJs, the formation of clathrin-coated vesicles containing transmembrane TJs from the Golgi apparatus, and the transport process from the Golgi apparatus to the plasma membrane via microtubules and finally fusion with the plasma membrane. At present, the mechanism of the intracellular transport of TJ proteins remains unclear. More studies are needed in the future to focus on the sorting of TJs protein vesicles, regulation of transport processes, and recycling of TJ proteins, etc.
Collapse
|
9
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
10
|
ZO-1 Guides Tight Junction Assembly and Epithelial Morphogenesis via Cytoskeletal Tension-Dependent and -Independent Functions. Cells 2022; 11:cells11233775. [PMID: 36497035 PMCID: PMC9740252 DOI: 10.3390/cells11233775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Formation and maintenance of tissue barriers require the coordination of cell mechanics and cell-cell junction assembly. Here, we combined methods to modulate ECM stiffness and to measure mechanical forces on adhesion complexes to investigate how tight junctions regulate cell mechanics and epithelial morphogenesis. We found that depletion of the tight junction adaptor ZO-1 disrupted junction assembly and morphogenesis in an ECM stiffness-dependent manner and led to a stiffness-dependant reorganisation of active myosin. Both junction formation and morphogenesis were rescued by inhibition of actomyosin contractility. ZO-1 depletion also impacted mechanical tension at cell-matrix and E-cadherin-based cell-cell adhesions. The effect on E-cadherin also depended on ECM stiffness and correlated with effects of ECM stiffness on actin cytoskeleton organisation. However, ZO-1 knockout also revealed tension-independent functions of ZO-1. ZO-1-deficient cells could assemble functional barriers at low tension, but their tight junctions remained corrupted with strongly reduced and discontinuous recruitment of junctional components. Our results thus reveal that reciprocal regulation between ZO-1 and cell mechanics controls tight junction assembly and epithelial morphogenesis, and that, in a second, tension-independent step, ZO-1 is required to assemble morphologically and structurally fully assembled and functionally normal tight junctions.
Collapse
|
11
|
Goncalves A, Antonetti DA. Transgenic animal models to explore and modulate the blood brain and blood retinal barriers of the CNS. Fluids Barriers CNS 2022; 19:86. [PMID: 36320068 PMCID: PMC9628113 DOI: 10.1186/s12987-022-00386-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
The unique environment of the brain and retina is tightly regulated by blood-brain barrier and the blood-retinal barrier, respectively, to ensure proper neuronal function. Endothelial cells within these tissues possess distinct properties that allow for controlled passage of solutes and fluids. Pericytes, glia cells and neurons signal to endothelial cells (ECs) to form and maintain the barriers and control blood flow, helping to create the neurovascular unit. This barrier is lost in a wide range of diseases affecting the central nervous system (CNS) and retina such as brain tumors, stroke, dementia, and in the eye, diabetic retinopathy, retinal vein occlusions and age-related macular degeneration to name prominent examples. Recent studies directly link barrier changes to promotion of disease pathology and degradation of neuronal function. Understanding how these barriers form and how to restore these barriers in disease provides an important point for therapeutic intervention. This review aims to describe the fundamentals of the blood-tissue barriers of the CNS and how the use of transgenic animal models led to our current understanding of the molecular framework of these barriers. The review also highlights examples of targeting barrier properties to protect neuronal function in disease states.
Collapse
Affiliation(s)
- Andreia Goncalves
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St Rm, Ann Arbor, MI, 7317, USA
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St Rm, Ann Arbor, MI, 7317, USA.
| |
Collapse
|
12
|
Dietary Alpha-Ketoglutarate Partially Abolishes Adverse Changes in the Small Intestine after Gastric Bypass Surgery in a Rat Model. Nutrients 2022; 14:nu14102062. [PMID: 35631203 PMCID: PMC9146360 DOI: 10.3390/nu14102062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/03/2023] Open
Abstract
Alpha-ketoglutarate (AKG) is one of the key metabolites that play a crucial role in cellular energy metabolism. Bariatric surgery is a life-saving procedure, but it carries many gastrointestinal side effects. The present study investigated the beneficial effects of dietary AKG on the structure, integrity, and absorption surface of the small intestine after bariatric surgery. Male 7-week-old Sprague Dowley rats underwent gastric bypass surgery, after which they received AKG, 0.2 g/kg body weight/day, administered in drinking water for 6 weeks. Changes in small intestinal morphology, including histomorphometric parameters of enteric plexuses, immunolocalization of claudin 3, MarvelD3, occludin and zonula ocludens 1 in the intestinal mucosa, and selected hormones, were evaluated. Proliferation, mucosal and submucosal thickness, number of intestinal villi and Paneth cells, and depth of crypts were increased; however, crypt activity, the absorption surface, the expression of claudin 3, MarvelD3, occludin and zonula ocludens 1 in the intestinal epithelium were decreased after gastric bypass surgery. Alpha-ketoglutarate supplementation partially improved intestinal structural parameters and epithelial integrity in rats undergoing this surgical procedure. Dietary AKG can abolish adverse functional changes in the intestinal mucosa, enteric nervous system, hormonal response, and maintenance of the intestinal barrier that occurred after gastric bypass surgery.
Collapse
|
13
|
Ba-Alawi W, Kadambat Nair S, Li B, Mammoliti A, Smirnov P, Mer AS, Penn LZ, Haibe-Kains B. Bimodal gene expression in cancer patients provides interpretable biomarkers for drug sensitivity. Cancer Res 2022; 82:2378-2387. [PMID: 35536872 DOI: 10.1158/0008-5472.can-21-2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/24/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Identifying biomarkers predictive of cancer cell response to drug treatment constitutes one of the main challenges in precision oncology. Recent large-scale cancer pharmacogenomic studies have opened new avenues of research to develop predictive biomarkers by profiling thousands of human cancer cell lines at the molecular level and screening them with hundreds of approved drugs and experimental chemical compounds. Many studies have leveraged these data to build predictive models of response using various statistical and machine learning methods. However, a common pitfall to these methods is the lack of interpretability as to how they make predictions, hindering the clinical translation of these models. To alleviate this issue, we used the recent logic modeling approach to develop a new machine learning pipeline that explores the space of bimodally expressed genes in multiple large in vitro pharmacogenomic studies and builds multivariate, nonlinear, yet interpretable logic-based models predictive of drug response. The performance of this approach was showcased in a compendium of the three largest in vitro pharmacogenomic data sets to build robust and interpretable models for 101 drugs that span 17 drug classes with high validation rates in independent datasets. These results along with in vivo and clinical validation, support a better translation of gene expression biomarkers between model systems using bimodal gene expression.
Collapse
Affiliation(s)
| | | | - Bo Li
- University of Toronto, Toronto, Canada
| | | | | | | | - Linda Z Penn
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Weiß F, Czichos C, Knobe L, Voges L, Bojarski C, Michel G, Fromm M, Krug SM. MarvelD3 Is Upregulated in Ulcerative Colitis and Has Attenuating Effects during Colitis Indirectly Stabilizing the Intestinal Barrier. Cells 2022; 11:cells11091541. [PMID: 35563847 PMCID: PMC9102383 DOI: 10.3390/cells11091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
In inflammatory bowel disease (IBD), the impaired intestinal barrier is mainly characterized by changes in tight junction protein expression. The functional role of the tight junction-associated MARVEL protein MARVELD3 (MD3) in IBD is yet unknown. (i) In colon biopsies from IBD patients we analyzed MD3 expression and (ii) in human colon HT-29/B6 cells we studied the signaling pathways of different IBD-relevant cytokines. (iii) We generated a mouse model with intestinal overexpression of MD3 and investigated functional effects of MD3 upregulation. Colitis, graded by the disease activity index, was induced by dextran sodium sulfate (DSS) and the intestinal barrier was characterized electrophysiologically. MD3 was upregulated in human ulcerative colitis and MD3 expression could be increased in HT-29/B6 cells by IL-13 via the IL13Rα1/STAT pathway. In mice DSS colitis, MD3 overexpression had an ameliorating, protective effect. It was not based on direct enhancement of paracellular barrier properties, but rather on regulatory mechanisms not solved yet in detail. However, as MD3 is involved in regulatory functions such as proliferation and cell survival, we conclude that the protective effects are hardly targeting the intestinal barrier directly but are based on regulatory processes supporting stabilization of the intestinal barrier.
Collapse
Affiliation(s)
- Franziska Weiß
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (F.W.); (C.C.); (L.K.); (L.V.); (M.F.)
| | - Carolina Czichos
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (F.W.); (C.C.); (L.K.); (L.V.); (M.F.)
| | - Lukas Knobe
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (F.W.); (C.C.); (L.K.); (L.V.); (M.F.)
| | - Lena Voges
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (F.W.); (C.C.); (L.K.); (L.V.); (M.F.)
| | - Christian Bojarski
- Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Geert Michel
- Transgenic Technologies, Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany;
| | - Michael Fromm
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (F.W.); (C.C.); (L.K.); (L.V.); (M.F.)
| | - Susanne M. Krug
- Clinical Physiology/Nutritional Medicine, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany; (F.W.); (C.C.); (L.K.); (L.V.); (M.F.)
- Correspondence:
| |
Collapse
|
15
|
Mattola S, Salokas K, Aho V, Mäntylä E, Salminen S, Hakanen S, Niskanen EA, Svirskaite J, Ihalainen TO, Airenne KJ, Kaikkonen-Määttä M, Parrish CR, Varjosalo M, Vihinen-Ranta M. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins. PLoS Pathog 2022; 18:e1010353. [PMID: 35395063 PMCID: PMC9020740 DOI: 10.1371/journal.ppat.1010353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/20/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodeling and damage response. Studies of mutant viral genomes with truncated forms of the NS2 protein suggested a change in host chromatin accessibility. Moreover, further studies with NS2 mutants indicated that NS2 performs functions that affect the quantity and distribution of proteins linked to DNA damage response. Notably, mutation in the splice donor site of the NS2 led to a preferred formation of small viral replication center foci instead of the large coalescent centers seen in wild-type infection. Collectively, our results provide insights into potential roles of CPV NS2 in controlling chromatin remodeling and DNA damage response during parvoviral replication. Parvoviruses are small, nonenveloped DNA viruses, that besides being noteworthy pathogens in many animal species, including humans, are also being developed as vectors for gene and cancer therapy. Canine parvovirus is an autonomously replicating parvovirus that encodes two nonstructural proteins, NS1 and NS2. NS1 is required for viral DNA replication and packaging, as well as gene expression. However, very little is known about the function of NS2. Our studies indicate that NS2 serves a previously undefined important function in chromatin modification and DNA damage responses. Therefore, it appears that although both NS1 and NS2 are needed for a productive infection they play very different roles in the process.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Einari A. Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Julija Svirskaite
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kari J. Airenne
- Kuopio Center for Gene and Cell Therapy (KCT), Kuopio, Finland
| | | | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, University of Cornell, Ithaca, New York, United States of America
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- * E-mail:
| |
Collapse
|
16
|
Smyth T, Georas SN. Effects of ozone and particulate matter on airway epithelial barrier structure and function: a review of in vitro and in vivo studies. Inhal Toxicol 2021; 33:177-192. [PMID: 34346824 DOI: 10.1080/08958378.2021.1956021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The airway epithelium represents a crucial line of defense against the spread of inhaled pathogens. As the epithelium is the first part of the body to be exposed to the inhaled environment, it must act as both a barrier to and sentinel against any inhaled agents. Despite its vital role in limiting the spread of inhaled pathogens, the airway epithelium is also regularly exposed to air pollutants which disrupt its normal function. Here we review the current understanding of the structure and composition of the airway epithelial barrier, as well as the impact of inhaled pollutants, including the reactive gas ozone and particulate matter, on epithelial function. We discuss the current in vitro, rodent model, and human exposure findings surrounding the impact of various inhaled pollutants on epithelial barrier function, mucus production, and mucociliary clearance. Detailed information on how inhaled pollutants impact epithelial structure and function will further our understanding of the adverse health effects of air pollution exposure.
Collapse
Affiliation(s)
- Timothy Smyth
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Steve N Georas
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
Li Y, Li T, Zhou D, Wei J, Li Z, Li X, Jia S, Ouyang Q, Qi S, Chen Z, Zhang B, Yu J, Jia J, Xu A, Huang J. Role of tight junction-associated MARVEL protein marvelD3 in migration and epithelial-mesenchymal transition of hepatocellular carcinoma. Cell Adh Migr 2021; 15:249-260. [PMID: 34338154 PMCID: PMC8331009 DOI: 10.1080/19336918.2021.1958441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
MarvelD3, a recently identified tight junction membrane protein, could be associated with hepatocellular carcinoma (HCC). We aimed to investigate the role of marvelD3 in Epithelial-Mesenchymal Transition (EMT) and migration of HCC and explore the underlying molecular mechanisms. First, we assessed marvlD3 expression in HCC and normal liver tissues and found loss of marvelD3 expression was significantly correlated with the occurrence and TNM stage of HCC. Second, we detected that marvelD3 was downregulated in HCC cells with transforming growth factor β1 and snail/slug-induced EMT. Finally, we analyzed expression of marvelD3 protein was significantly associated with EMT and the NF-κB signaling pathway. Our study demonstrated that MarvelD3 inhibited EMT and migration of HCC cells along with inhibiting NF-κB signaling pathway.Abbreviations: HCC, Hepatocellular carcinoma; TJ, Tight junction; MARVEL, MAL and related proteins for vesicle trafficking and membrane link; EMT, Epithelial-mesenchymal transition; NF-κB, Nuclear factor kappa B; TAMPs, Tight junction-associated marvel proteins; TGF-β1, Transforming growth factor-β1; MMP9, matrix metallopeptidase 9; RT-PCR, Real-time PCR; IHC, Immunohistochemistry; IF, Immunofluorescence.
Collapse
Affiliation(s)
- Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Teng Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Donghu Zhou
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia Wei
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenkun Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siyu Jia
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qin Ouyang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saiping Qi
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Yu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Heymans C, Delcorte O, Spourquet C, Villacorte-Tabelin M, Dupasquier S, Achouri Y, Mahibullah S, Lemoine P, Balda MS, Matter K, Pierreux CE. Spatio-temporal expression pattern and role of the tight junction protein MarvelD3 in pancreas development and function. Sci Rep 2021; 11:14519. [PMID: 34267243 PMCID: PMC8282860 DOI: 10.1038/s41598-021-93654-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
Tight junction complexes are involved in the establishment and maintenance of cell polarity and the regulation of signalling pathways, controlling biological processes such as cell differentiation and cell proliferation. MarvelD3 is a tight junction protein expressed in adult epithelial and endothelial cells. In Xenopus laevis, MarvelD3 morphants present differentiation defects of several ectodermal derivatives. In vitro experiments further revealed that MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behaviour and survival. In this work, we found that MarvelD3 is expressed from early developmental stages in the exocrine and endocrine compartments of the pancreas, as well as in endothelial cells of this organ. We thoroughly characterized MarvelD3 expression pattern in developing pancreas and evaluated its function by genetic ablation. Surprisingly, inactivation of MarvelD3 in mice did not alter development and differentiation of the pancreatic tissue. Moreover, tight junction formation and organization, cell polarization, and activity of the JNK-pathway were not impacted by the deletion of MarvelD3.
Collapse
Affiliation(s)
| | - Ophélie Delcorte
- Cell Biology Unit, de Duve Institute, UCLouvain, Woluwe, Belgium
| | | | - Mylah Villacorte-Tabelin
- Cell Biology Unit, de Duve Institute, UCLouvain, Woluwe, Belgium
- PRISM, MSU-IIT, Iligan City, Philippines
| | | | | | - Siam Mahibullah
- Cell Biology Unit, de Duve Institute, UCLouvain, Woluwe, Belgium
| | - Pascale Lemoine
- Cell Biology Unit, de Duve Institute, UCLouvain, Woluwe, Belgium
| | | | | | | |
Collapse
|
19
|
Cao J, Zhong L, Feng Y, Qian K, Xiao Y, Wang G, Tu W, Yue L, Zhang Q, Yang H, Jiao Y, Zhu W, Cao J. Activated Beta-Catenin Signaling Ameliorates Radiation-Induced Skin Injury by Suppressing Marvel D3 Expression. Radiat Res 2021; 195:173-190. [PMID: 33045079 DOI: 10.1667/rade-20-00050.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/04/2020] [Indexed: 11/03/2022]
Abstract
Radiation-induced skin injury remains a serious concern for cancer radiotherapy, radiation accidents and occupational exposure, and the damage mainly occurs due to apoptosis and reactive oxygen species (ROS) generation. There is currently no effective treatment for this disorder. The β-catenin signaling pathway is involved in the repair and regeneration of injured tissues. However, the role of the β-catenin signaling pathway in radiation-induced skin injury has not been reported. In this study, we demonstrated that the β-catenin signaling pathway was activated in response to radiation and that its activation by Wnt3a, a ligand-protein involved in the β-catenin signaling pathway, inhibited apoptosis and the production of ROS in irradiated human keratinocyte HaCaT cells and skin fibroblast WS1 cells. Additionally, Wnt3a promoted cell migration after irradiation. In a mouse model of full-thickness skin wounds combined with total-body irradiation, Wnt3a was shown to facilitate skin wound healing. The results from RNA-Seq revealed that 24 genes were upregulated and 154 were downregulated in Wnt3a-treated irradiated skin cells, and these dysregulated genes were mainly enriched in the tight junction pathway. Among them, Marvel D3 showed the most obvious difference. We further found that the activated β-catenin signaling pathway stimulated the phosphorylation of JNK by silencing Marvel D3. Treatment of irradiated cells with SP600125, a JNK inhibitor, augmented ROS production and impeded cell migration. Furthermore, treatment with Wnt3a or transfection with Marvel D3-specific siRNAs could reverse the above effects. Taken together, these findings illustrate that activated β-catenin signaling stimulates the activation of JNK by negatively regulating Marvel D3 to ameliorate radiation-induced skin injury.
Collapse
Affiliation(s)
- Jinming Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Li Zhong
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Yang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Kun Qian
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Yuji Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Gaoren Wang
- Nantong Tumor Hospital, Nantong University, Nantong 226000 China
| | - Wenling Tu
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051 China
| | - Ling Yue
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Qi Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Yang Jiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123 China.,State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 China
| |
Collapse
|
20
|
Beal R, Alonso-Carriazo Fernandez A, Grammatopoulos DK, Matter K, Balda MS. ARHGEF18/p114RhoGEF Coordinates PKA/CREB Signaling and Actomyosin Remodeling to Promote Trophoblast Cell-Cell Fusion During Placenta Morphogenesis. Front Cell Dev Biol 2021; 9:658006. [PMID: 33842485 PMCID: PMC8027320 DOI: 10.3389/fcell.2021.658006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/03/2021] [Indexed: 12/04/2022] Open
Abstract
Coordination of cell-cell adhesion, actomyosin dynamics and gene expression is crucial for morphogenetic processes underlying tissue and organ development. Rho GTPases are main regulators of the cytoskeleton and adhesion. They are activated by guanine nucleotide exchange factors in a spatially and temporally controlled manner. However, the roles of these Rho GTPase activators during complex developmental processes are still poorly understood. ARHGEF18/p114RhoGEF is a tight junction-associated RhoA activator that forms complexes with myosin II, and regulates actomyosin contractility. Here we show that p114RhoGEF/ARHGEF18 is required for mouse syncytiotrophoblast differentiation and placenta development. In vitro and in vivo experiments identify that p114RhoGEF controls expression of AKAP12, a protein regulating protein kinase A (PKA) signaling, and is required for PKA-induced actomyosin remodeling, cAMP-responsive element binding protein (CREB)-driven gene expression of proteins required for trophoblast differentiation, and, hence, trophoblast cell-cell fusion. Our data thus indicate that p114RhoGEF links actomyosin dynamics and cell-cell junctions to PKA/CREB signaling, gene expression and cell-cell fusion.
Collapse
Affiliation(s)
- Robert Beal
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Dimitris K Grammatopoulos
- Translational and Experimental Medicine, Warwick Medical School, Coventry, United Kingdom.,Department of Pathology, Institute of Precision Diagnostics and Translational Medicine, University Hospital Coventry and Warwickshire National Health Service (NHS) Trust, Coventry, United Kingdom
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
21
|
Ma J, Wang J, Feng Y, Zhang L, Hu H, Wang Q, Chu C, Qu J, Wang Y, Li Y. Silencing MAP3K1 expression inhibits the proliferation of goat hair follicle stem cells. In Vitro Cell Dev Biol Anim 2021; 57:428-437. [PMID: 33748907 DOI: 10.1007/s11626-021-00557-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
The Yangtze River Delta White Goat is the only goat breed in the world that can produce superior-quality brush hair. Previous studies have shown that some genes are expressed differentially in the skin tissues between the goats produced superior-quality and normal-quality brush hair. Studies also have shown that different gene play varied roles in regulating the proliferation and apoptosis of hair follicle stem cells. However, the biological function of MAP3K1 (mitogen-activated protein kinase kinase kinase 1) gene in hair follicle stem cells is not fully understood. This study aims to investigate the role of MAP3K1 knockdown during the proliferation and apoptosis of hair follicle stem cells. RT-qPCR and Western blot were used to detect mRNA gene and protein expression level, CCK-8 and EdU assays were used to detect cell proliferation, and cell cycle and apoptosis were detected by flow cytometry. The results showed that the MAP3K1 expression level was significantly higher in the skin tissue of produced superior-quality brush hair than that in produced normal-quality brush hair. Moreover, functional studies indicated that si-MAP3K1 significantly inhibits the proliferation of hair follicle stem cells that came from a superior goat and promotes its apoptosis. Based on aforementioned assays, we speculated that MAP3K1 might play a regulatory effect in superior-quality brush hair traits.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yunkui Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Liuming Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Huiru Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Changjiang Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jingwen Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanhu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yongjun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
22
|
Hartmann C, Schwietzer YA, Otani T, Furuse M, Ebnet K. Physiological functions of junctional adhesion molecules (JAMs) in tight junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183299. [DOI: 10.1016/j.bbamem.2020.183299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022]
|
23
|
Abstract
The protein kinase MEKK1 activates stress-signaling pathways in response to various cellular stressors, including chemotherapies that disrupt dynamics of the tubulin cytoskeleton. We show that MEKK1 contains a previously uncharacterized domain that can preferentially bind to the curved tubulin heterodimer—which is found in soluble tubulin and at sites of microtubule assembly and disassembly. Mutations that interfere with MEKK1−tubulin binding disrupt microtubule networks in migrating cells and are enriched in patient-derived tumor sequences. These results suggest that MEKK1−tubulin binding may be relevant to cancer progression, and the efficacy of microtubule-disrupting chemotherapies that require the activity of MEKK1. The MEKK1 protein is a pivotal kinase activator of responses to cellular stress. Activation of MEKK1 can trigger various responses, including mitogen-activated protein (MAP) kinases, NF-κB signaling, or cell migration. Notably, MEKK1 activity is triggered by microtubule-targeting chemotherapies, among other stressors. Here we show that MEKK1 contains a previously unidentified tumor overexpressed gene (TOG) domain. The MEKK1 TOG domain binds to tubulin heterodimers—a canonical function of TOG domains—but is unusual in that it appears alone rather than as part of a multi-TOG array, and has structural features distinct from previously characterized TOG domains. MEKK1 TOG demonstrates a clear preference for binding curved tubulin heterodimers, which exist in soluble tubulin and at sites of microtubule polymerization and depolymerization. Mutations disrupting tubulin binding decrease microtubule density at the leading edge of polarized cells, suggesting that tubulin binding may play a role in MEKK1 activity at the cellular periphery. We also show that MEKK1 mutations at the tubulin-binding interface of the TOG domain recur in patient-derived tumor sequences, suggesting selective enrichment of tumor cells with disrupted MEKK1–microtubule association. Together, these findings provide a direct link between the MEKK1 protein and tubulin, which is likely to be relevant to cancer cell migration and response to microtubule-modulating therapies.
Collapse
|
24
|
Haas AJ, Zihni C, Ruppel A, Hartmann C, Ebnet K, Tada M, Balda MS, Matter K. Interplay between Extracellular Matrix Stiffness and JAM-A Regulates Mechanical Load on ZO-1 and Tight Junction Assembly. Cell Rep 2020; 32:107924. [PMID: 32697990 PMCID: PMC7383227 DOI: 10.1016/j.celrep.2020.107924] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/08/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
Tight-junction-regulated actomyosin activity determines epithelial and endothelial tension on adherens junctions and drives morphogenetic processes; however, whether or not tight junctions themselves are under tensile stress is not clear. Here, we use a tension sensor based on ZO-1, a scaffolding protein that links the junctional membrane to the cytoskeleton, to determine if tight junctions carry a mechanical load. Our data indicate that ZO-1 is under mechanical tension and that forces acting on ZO-1 are regulated by extracellular matrix (ECM) stiffness and the junctional adhesion molecule JAM-A. JAM-A depletion stimulates junctional recruitment of p114RhoGEF/ARHGEF18, mechanical tension on ZO-1, and traction forces at focal adhesions. p114RhoGEF is required for activation of junctional actomyosin activity and tight junction integrity on stiff but not soft ECM. Thus, junctional ZO-1 bears a mechanical load, and junction assembly is regulated by interplay between the physical properties of the ECM and adhesion-regulated signaling at tight junctions.
Collapse
Affiliation(s)
- Alexis J Haas
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Ceniz Zihni
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Artur Ruppel
- LiPhy, CNRS, Université Grenoble Alpes, Grenoble 38000, France
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity," Institute of Medical Biochemistry, ZMBE, University of Münster, Münster 48149, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity," Institute of Medical Biochemistry, ZMBE, University of Münster, Münster 48149, Germany
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| |
Collapse
|
25
|
Downstream Effectors of ILK in Cisplatin-Resistant Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12040880. [PMID: 32260415 PMCID: PMC7226328 DOI: 10.3390/cancers12040880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Despite good responses to first-line treatment with platinum-based combination chemotherapy, most ovarian cancer patients will relapse and eventually develop platinum-resistant disease with poor prognosis. Although reports suggest that integrin-linked kinase (ILK) is a potential target for ovarian cancer treatment, identification of ILK downstream effectors has not been fully explored. The purpose of this study was to investigate the molecular and biological effects of targeting ILK in cisplatin-resistant ovarian cancer. Western blot analysis showed that phosphorylation levels of ILK were higher in cisplatin-resistant compared with cisplatin-sensitive ovarian cancer cells. Further immunohistochemical analysis of ovarian cancer patient samples showed a significant increase in phosphorylated ILK levels in the tumor tissue when compared to normal ovarian epithelium. Targeting ILK by small-interfering RNA (siRNA) treatment reduced cisplatin-resistant cell growth and invasion ability, and increased apoptosis. Differential gene expression analysis by RNA sequencing (RNA-Seq) upon ILK-siRNA transfection followed by Ingenuity Pathway Analysis (IPA) and survival analysis using the Kaplan-Meier plotter database identified multiple target genes involved in cell growth, apoptosis, invasion, and metastasis, including several non-coding RNAs. Taken together, results from this study support ILK as an attractive target for ovarian cancer and provide potential ILK downstream effectors with prognostic and therapeutic value.
Collapse
|
26
|
González-Mariscal L, Miranda J, Gallego-Gutiérrez H, Cano-Cortina M, Amaya E. Relationship between apical junction proteins, gene expression and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183278. [PMID: 32240623 DOI: 10.1016/j.bbamem.2020.183278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
The apical junctional complex (AJC) is a cell-cell adhesion system present at the upper portion of the lateral membrane of epithelial cells integrated by the tight junction (TJ) and the adherens junction (AJ). This complex is crucial to initiate and stabilize cell-cell adhesion, to regulate the paracellular transit of ions and molecules and to maintain cell polarity. Moreover, we now consider the AJC as a hub of signal transduction that regulates cell-cell adhesion, gene transcription and cell proliferation and differentiation. The molecular components of the AJC are multiple and diverse and depending on the cellular context some of the proteins in this complex act as tumor suppressors or as promoters of cell transformation, migration and metastasis outgrowth. Here, we describe these new roles played by TJ and AJ proteins and their potential use in cancer diagnostics and as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Misael Cano-Cortina
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Elida Amaya
- Department of Physiology, Biophysics and Neuroscience, Center of Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
27
|
Contributions of Myosin Light Chain Kinase to Regulation of Epithelial Paracellular Permeability and Mucosal Homeostasis. Int J Mol Sci 2020; 21:ijms21030993. [PMID: 32028590 PMCID: PMC7037368 DOI: 10.3390/ijms21030993] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
Intestinal barrier function is required for the maintenance of mucosal homeostasis. Barrier dysfunction is thought to promote progression of both intestinal and systemic diseases. In many cases, this barrier loss reflects increased permeability of the paracellular tight junction as a consequence of myosin light chain kinase (MLCK) activation and myosin II regulatory light chain (MLC) phosphorylation. Although some details about MLCK activation remain to be defined, it is clear that this triggers perijunctional actomyosin ring (PAMR) contraction that leads to molecular reorganization of tight junction structure and composition, including occludin endocytosis. In disease states, this process can be triggered by pro-inflammatory cytokines including tumor necrosis factor-α (TNF), interleukin-1β (IL-1β), and several related molecules. Of these, TNF has been studied in the greatest detail and is known to activate long MLCK transcription, expression, enzymatic activity, and recruitment to the PAMR. Unfortunately, toxicities associated with inhibition of MLCK expression or enzymatic activity make these unsuitable as therapeutic targets. Recent work has, however, identified a small molecule that prevents MLCK1 recruitment to the PAMR without inhibiting enzymatic function. This small molecule, termed Divertin, restores barrier function after TNF-induced barrier loss and prevents disease progression in experimental chronic inflammatory bowel disease.
Collapse
|
28
|
Díaz-Coránguez M, Liu X, Antonetti DA. Tight Junctions in Cell Proliferation. Int J Mol Sci 2019; 20:E5972. [PMID: 31783547 PMCID: PMC6928848 DOI: 10.3390/ijms20235972] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/23/2022] Open
Abstract
Tight junction (TJ) proteins form a continuous intercellular network creating a barrier with selective regulation of water, ion, and solutes across endothelial, epithelial, and glial tissues. TJ proteins include the claudin family that confers barrier properties, members of the MARVEL family that contribute to barrier regulation, and JAM molecules, which regulate junction organization and diapedesis. In addition, the membrane-associated proteins such as MAGUK family members, i.e., zonula occludens, form the scaffold linking the transmembrane proteins to both cell signaling molecules and the cytoskeleton. Most studies of TJ have focused on the contribution to cell-cell adhesion and tissue barrier properties. However, recent studies reveal that, similar to adherens junction proteins, TJ proteins contribute to the control of cell proliferation. In this review, we will summarize and discuss the specific role of TJ proteins in the control of epithelial and endothelial cell proliferation. In some cases, the TJ proteins act as a reservoir of critical cell cycle modulators, by binding and regulating their nuclear access, while in other cases, junctional proteins are located at cellular organelles, regulating transcription and proliferation. Collectively, these studies reveal that TJ proteins contribute to the control of cell proliferation and differentiation required for forming and maintaining a tissue barrier.
Collapse
Affiliation(s)
| | | | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI 48105, USA; (M.D.-C.); (X.L.)
| |
Collapse
|
29
|
Chivero ET, Ahmad R, Thangaraj A, Periyasamy P, Kumar B, Kroeger E, Feng D, Guo ML, Roy S, Dhawan P, Singh AB, Buch S. Cocaine Induces Inflammatory Gut Milieu by Compromising the Mucosal Barrier Integrity and Altering the Gut Microbiota Colonization. Sci Rep 2019; 9:12187. [PMID: 31434922 PMCID: PMC6704112 DOI: 10.1038/s41598-019-48428-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/26/2019] [Indexed: 12/28/2022] Open
Abstract
Cocaine use disorder (CUD), a major health crisis, has traditionally been considered a complication of the CNS; however, it is also closely associated with malnourishment and deteriorating gut health. In light of emerging studies on the potential role of gut microbiota in neurological disorders, we sought to understand the causal association between CUD and gut dysbiosis. Using a comprehensive approach, we confirmed that cocaine administration in mice resulted in alterations of the gut microbiota. Furthermore, cocaine-mediated gut dysbiosis was associated with upregulation of proinflammatory mediators including NF-κB and IL-1β. In vivo and in vitro analyses confirmed that cocaine altered gut-barrier composition of the tight junction proteins while also impairing epithelial permeability by potentially involving the MAPK/ERK1/2 signaling. Taken together, our findings unravel a causal link between CUD, gut-barrier dysfunction and dysbiosis and set a stage for future development of supplemental strategies for the management of CUD-associated gut complications.
Collapse
Affiliation(s)
- Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elisa Kroeger
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dan Feng
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sabita Roy
- Department of Surgery, University of Miami, Florida, FL, 33136, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- VA Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- VA Nebraska Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
30
|
Liu Y, Mu S, Li X, Liang Y, Wang L, Ma X. Unfractionated Heparin Alleviates Sepsis-Induced Acute Lung Injury by Protecting Tight Junctions. J Surg Res 2019; 238:175-185. [DOI: 10.1016/j.jss.2019.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 01/03/2023]
|
31
|
Zhang J, Chen J, Robinson C. Cellular and Molecular Events in the Airway Epithelium Defining the Interaction Between House Dust Mite Group 1 Allergens and Innate Defences. Int J Mol Sci 2018; 19:E3549. [PMID: 30423826 PMCID: PMC6274810 DOI: 10.3390/ijms19113549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
Serodominant group 1 allergens of house dust mites (HDMs) are cysteine protease digestive enzymes. By increasing the detection of any allergen by dendritic antigen presenting cells, upregulating inflammatory signalling molecules, and activating cells crucial to the transition from innate to acquired immune responses, the proteolytic activity of these HDM allergens also underlies their behaviour as inhalant allergens. The significance of this property is underlined by the attenuation of allergic responses to HDMs by novel inhibitors in experimental models. The group 1 HDM allergens act as prothrombinases, enabling them to operate the canonical stimulation of protease activated receptors 1 and 4. This leads to the ligation of Toll-like receptor 4, which is an indispensable component in HDM allergy development, and reactive oxidant-regulated gene expression. Intermediate steps involve epidermal growth factor receptor ligation, activation of a disintegrin and metalloproteases, and the opening of pannexons. Elements of this transduction pathway are shared with downstream signalling from biosensors which bind viral RNA, suggesting a mechanistic linkage between allergens and respiratory viruses in disease exacerbations. This review describes recent progress in the characterisation of an arterial route which links innate responses to inhaled allergens to events underpinning the progression of allergy to unrelated allergens.
Collapse
Affiliation(s)
- Jihui Zhang
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jie Chen
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| | - Clive Robinson
- Institute for Infection & Immunity, St George's, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom.
| |
Collapse
|
32
|
Viceconte N, Dheur MS, Majerova E, Pierreux CE, Baurain JF, van Baren N, Decottignies A. Highly Aggressive Metastatic Melanoma Cells Unable to Maintain Telomere Length. Cell Rep 2018. [PMID: 28636941 DOI: 10.1016/j.celrep.2017.05.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Unlimited replicative potential is one of the hallmarks of cancer cells. In melanoma, hTERT (telomerase reverse transcriptase) is frequently overexpressed because of activating mutations in its promoter, suggesting that telomerase is necessary for melanoma development. We observed, however, that a subset of melanoma metastases and derived cell lines had no telomere maintenance mechanism. Early passages of the latter displayed long telomeres that progressively shortened and fused before cell death. We propose that, during melanoma formation, oncogenic mutations occur in precursor melanocytes with long telomeres, providing cells with sufficient replicative potential, thereby bypassing the need to re-activate telomerase. Our data further support the emerging idea that long telomeres promote melanoma formation. These observations are important when considering anticancer therapies targeting telomerase.
Collapse
Affiliation(s)
- Nikenza Viceconte
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Marie-Sophie Dheur
- Cellular Genetics, de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Eva Majerova
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Christophe E Pierreux
- Cell Unit, de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium
| | - Jean-François Baurain
- Medical Oncology, Institut Roi Albert II, Cliniques universitaires Saint-Luc, Brussels 1200, Belgium
| | - Nicolas van Baren
- Cellular Genetics, de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium; Ludwig Institute for Cancer Research, Brussels 1200, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Université catholique de Louvain, Brussels 1200, Belgium.
| |
Collapse
|
33
|
A Boolean network of the crosstalk between IGF and Wnt signaling in aging satellite cells. PLoS One 2018; 13:e0195126. [PMID: 29596489 PMCID: PMC5875862 DOI: 10.1371/journal.pone.0195126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 12/29/2022] Open
Abstract
Aging is a complex biological process, which determines the life span of an organism. Insulin-like growth factor (IGF) and Wnt signaling pathways govern the process of aging. Both pathways share common downstream targets that allow competitive crosstalk between these branches. Of note, a shift from IGF to Wnt signaling has been observed during aging of satellite cells. Biological regulatory networks necessary to recreate aging have not yet been discovered. Here, we established a mathematical in silico model that robustly recapitulates the crosstalk between IGF and Wnt signaling. Strikingly, it predicts critical nodes following a shift from IGF to Wnt signaling. These findings indicate that this shift might cause age-related diseases.
Collapse
|
34
|
Bareja A, Hodgkinson CP, Soderblom E, Waitt G, Dzau VJ. The proximity-labeling technique BioID identifies sorting nexin 6 as a member of the insulin-like growth factor 1 (IGF1)-IGF1 receptor pathway. J Biol Chem 2018. [PMID: 29530981 DOI: 10.1074/jbc.ra118.002406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The insulin-like growth factor 1 receptor (IGF1R) is a receptor tyrosine kinase with critical roles in various biological processes. Recent results from clinical trials targeting IGF1R indicate that IGF1R signaling pathways are more complex than previously thought. Moreover, it has become increasingly clear that the function of many proteins can be understood only in the context of a network of interactions. To that end, we sought to profile IGF1R-protein interactions with the proximity-labeling technique BioID. We applied BioID by generating a HEK293A cell line that stably expressed the BirA* biotin ligase fused to the IGF1R. Following stimulation by IGF1, biotinylated proteins were analyzed by MS. This screen identified both known and previously unknown interactors of IGF1R. One of the novel interactors was sorting nexin 6 (SNX6), a protein that forms part of the retromer complex, which is involved in intracellular protein sorting. Using co-immunoprecipitation, we confirmed that IGF1R and SNX6 physically interact. SNX6 knockdown resulted in a dramatic diminution of IGF1-mediated ERK1/2 phosphorylation, but did not affect IGF1R internalization. Bioluminescence resonance energy transfer experiments indicated that the SNX6 knockdown perturbed the association between IGF1R and the key adaptor proteins insulin receptor substrate 1 (IRS1) and SHC adaptor protein 1 (SHC1). Intriguingly, even in the absence of stimuli, SNX6 overexpression significantly increased Akt phosphorylation. Our study confirms the utility of proximity-labeling methods, such as BioID, to screen for interactors of cell-surface receptors and has uncovered a role of one of these interactors, SNX6, in the IGF1R signaling cascade.
Collapse
Affiliation(s)
- Akshay Bareja
- From the Duke Cardiovascular Research Center, the Mandel Center for Hypertension and Atherosclerosis Research, and
| | - Conrad P Hodgkinson
- From the Duke Cardiovascular Research Center, the Mandel Center for Hypertension and Atherosclerosis Research, and
| | - Erik Soderblom
- the Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27710
| | - Greg Waitt
- the Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27710
| | - Victor J Dzau
- From the Duke Cardiovascular Research Center, the Mandel Center for Hypertension and Atherosclerosis Research, and
| |
Collapse
|
35
|
Pearce SC, Al-Jawadi A, Kishida K, Yu S, Hu M, Fritzky LF, Edelblum KL, Gao N, Ferraris RP. Marked differences in tight junction composition and macromolecular permeability among different intestinal cell types. BMC Biol 2018; 16:19. [PMID: 29391007 PMCID: PMC5793346 DOI: 10.1186/s12915-018-0481-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mammalian small intestinal tight junctions (TJ) link epithelial cells to one another and function as a permselective barrier, strictly modulating the passage of ions and macromolecules through the pore and leak pathways, respectively, thereby preventing the absorption of harmful compounds and microbes while allowing regulated transport of nutrients and electrolytes. Small intestinal epithelial permeability is ascribed primarily to the properties of TJs between adjoining enterocytes (ENTs), because there is almost no information on TJ composition and the paracellular permeability of nonenterocyte cell types that constitute a small but significant fraction of the intestinal epithelia. RESULTS Here we directed murine intestinal crypts to form specialized organoids highly enriched in intestinal stem cells (ISCs), absorptive ENTs, secretory goblet cells, or Paneth cells. The morphological and morphometric characteristics of these cells in organoids were similar to those in vivo. The expression of certain TJ proteins varied with cell type: occludin and tricellulin levels were high in both ISCs and Paneth cells, while claudin-1, -2, and -7 expression was greatest in Paneth cells, ISCs, and ENTs, respectively. In contrast, the distribution of claudin-15, zonula occludens 1 (ZO-1), and E-cadherin was relatively homogeneous. E-cadherin and claudin-7 marked mainly the basolateral membrane, while claudin-2, ZO-1, and occludin resided in the apical membrane. Remarkably, organoids enriched in ENTs or goblet cells were over threefold more permeable to 4 and 10 kDa dextran compared to those containing stem and Paneth cells. The TJ-regulator larazotide prevented the approximately tenfold increases in dextran flux induced by the TJ-disrupter AT1002 into organoids of different cell types, indicating that this ZO toxin nonselectively increases permeability. Forced dedifferentiation of mature ENTs results in the reacquisition of ISC-like characteristics in TJ composition and dextran permeability, suggesting that the post-differentiation properties of TJs are not hardwired. CONCLUSIONS Differentiation of adult intestinal stem cells into mature secretory and absorptive cell types causes marked, but potentially reversible, changes in TJ composition, resulting in enhanced macromolecular permeability of the TJ leak pathway between ENTs and between goblet cells. This work advances our understanding of how cell differentiation affects the paracellular pathway of epithelia.
Collapse
Affiliation(s)
- Sarah C Pearce
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
- Present address: Performance Nutrition Team, Combat Feeding Directorate, US Army, 15 General Greene Ave, Natick, MA, 01760-5018, USA
| | - Arwa Al-Jawadi
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Kunihiro Kishida
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
- Present address: Department of Science and Technology on Food Safety, Kindai University, Wakayama, 649-6493, Japan
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Life Science Center, 225 University Avenue, Newark, NJ, 07102, USA
| | - Madeleine Hu
- Department of Pathology & Laboratory Medicine, Center for Inflammation and Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Luke F Fritzky
- Advanced Microscopic Imaging Core Facility, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Karen L Edelblum
- Department of Pathology & Laboratory Medicine, Center for Inflammation and Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Life Science Center, 225 University Avenue, Newark, NJ, 07102, USA
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| |
Collapse
|
36
|
Vacca B, Sanchez-Heras E, Steed E, Busson SL, Balda MS, Ohnuma SI, Sasai N, Mayor R, Matter K. Control of neural crest induction by MarvelD3-mediated attenuation of JNK signalling. Sci Rep 2018; 8:1204. [PMID: 29352236 PMCID: PMC5775312 DOI: 10.1038/s41598-018-19579-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022] Open
Abstract
Tight junctions are required for the formation of tissue barriers and function as suppressors of signalling mechanisms that control gene expression and cell behaviour; however, little is known about the physiological and developmental importance of such signalling functions. Here, we demonstrate that depletion of MarvelD3, a transmembrane protein of tight junctions, disrupts neural crest formation and, consequently, development of neural crest-derived tissues during Xenopus embryogenesis. Using embryos and explant cultures combined with a small molecule inhibitor or mutant mRNAs, we show that MarvelD3 is required to attenuate JNK signalling during neural crest induction and that inhibition of JNK pathway activation is sufficient to rescue the phenotype induced by MarvelD3 depletion. Direct JNK stimulation disrupts neural crest development, supporting the importance of negative regulation of JNK. Our data identify the junctional protein MarvelD3 as an essential regulator of early vertebrate development and neural crest induction and, thereby, link tight junctions to the control and timing of JNK signalling during early development.
Collapse
Affiliation(s)
- Barbara Vacca
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | | | - Emily Steed
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.,Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, D-81377, Munich, Germany
| | - Sophie L Busson
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Maria S Balda
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Shin-Ichi Ohnuma
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Noriaki Sasai
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
| |
Collapse
|
37
|
Qian H, Tao Y, Jiang L, Wang Y, Lan T, Wu M, Pang J, Appiah-Kubi K, Chen Y, Wu Y. PKG II effectively reversed EGF-induced protein expression alterations in human gastric cancer cell lines. Cell Biol Int 2017; 42:435-442. [PMID: 29150923 DOI: 10.1002/cbin.10912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/16/2017] [Indexed: 01/02/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays an important role in gastric cancer (GC) progression. Our previous data demonstrated that type II cGMP-dependent protein kinase (PKG II) could block the EGF-EGFR axis as well as down-stream signaling pathways, for example, MAPK, PI3 K, and PLC in GC cells. However, the exact mechanisms of PKG II against cancer remain unclear. Therefore, the present work was to address the above question. Human GC cell line AGS was infected with adenoviral construct encoding cDNA of PKG II (Ad-PKG II) to up-regulate PKG II and then treated with 8-pCPT-cGMP. Two-dimensional electrophoresis (2-DE) was used to analyze the changes of protein expression in the cells. The results showed that 17 proteins had more than twofold changes in EGF-treated group compared with control. However, Ad-PKG II could effectively reversed the changes. Furthermore, far upstream element-binding protein 1 (FUBP1) and MarvelD3 were chosen and PKG II activation reversed EGF/EGFR-induced up-regulation of FUBP1 and downregulation of MarvelD3, respectively. MarvelD3 silence effectively abolished the inhibitory effect of PKG II on EGF-triggered migration. These data indicated that the inhibitory effect of PKG II partially was associated with MarvelD3.
Collapse
Affiliation(s)
- Hai Qian
- Medical School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Yan Tao
- Medical School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Lu Jiang
- Medical School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Ying Wang
- Medical School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Ting Lan
- Medical School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Min Wu
- Medical School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Ji Pang
- Medical School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Kwaku Appiah-Kubi
- Department of Applied Biology, University for Development Studies, Navrongo, Ghana
| | - Yongchang Chen
- Medical School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Yan Wu
- Medical School, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, P. R. China
| |
Collapse
|
38
|
Van Itallie CM, Anderson JM. Phosphorylation of tight junction transmembrane proteins: Many sites, much to do. Tissue Barriers 2017; 6:e1382671. [PMID: 29083946 DOI: 10.1080/21688370.2017.1382671] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phosphorylation is a dynamic post-translational modification that can alter protein structure, localization, protein-protein interactions and stability. All of the identified tight junction transmembrane proteins can be multiply phosphorylated, but only in a few cases are the consequences of phosphorylation at specific sites well characterized. The goal of this review is to highlight some of the best understood examples of phosphorylation changes in the integral membrane tight junction proteins in the context of more general overview of the effects of phosphorylation throughout the proteome. We expect as that structural information for the tight junction proteins becomes more widely available and the molecular modeling algorithms improve, so will our understanding of the relevance of phosphorylation changes at single and multiple sites in tight junction proteins.
Collapse
Affiliation(s)
- Christina M Van Itallie
- a National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , MD , USA
| | - James M Anderson
- a National Heart, Lung and Blood Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
39
|
Zhang Y, Gao X, Chen S, Zhao M, Chen J, Liu R, Cheng S, Qi M, Wang S, Liu W. Cyclin-dependent kinase 5 contributes to endoplasmic reticulum stress induced podocyte apoptosis via promoting MEKK1 phosphorylation at Ser280 in diabetic nephropathy. Cell Signal 2016; 31:31-40. [PMID: 28024901 DOI: 10.1016/j.cellsig.2016.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/01/2016] [Accepted: 12/23/2016] [Indexed: 11/28/2022]
Abstract
Endoplasmic reticulum (ER) stress has been reported to be associated with podocyte apoptosis in diabetic nephropathy, but the mechanism of ER signaling in podocyte apoptosis hasn't been fully understood. Our previous studies have demonstrated that Cyclin-dependent kinase 5 (Cdk5) was associated with podocyte apoptosis in diabetic nephropathy. The present study was designed to examine whether and how Cdk5 activity plays a role in ER stress induced podocyte apoptosis in diabetic nephropathy. The results showed that along with induction of Cdk5 and apoptosis, GRP78 and its two sensors as well as CHOP and cleaved caspase-12 were induced in high glucose treated podocytes. These responses were attenuated by treated salubrinal. The ER stress inducer, tunicamycin, also up-regulated the kinase activity and protein expression of Cdk5 in podocytes accompanied with the increasing of GRP78. On the other hand, Cdk5 phosphorylates MEKK1 at Ser280 in tunicamycin treated podocytes, and together, they increase the JNK phosphorylation. Moreover, disruption of this pathway can decrease the podocyte apoptosis induced by tunicamycin. Therefore, our study proved that Cdk5 may play an important role in ER stress induced podocyte apoptosis through MEKK1/JNK pathway in diabetic nephropathy.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Diagnostics, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiang Gao
- Department of Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Shuanggang Chen
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Min Zhao
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Chen
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Liu
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Shengyang Cheng
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengyuan Qi
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Shuo Wang
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Wei Liu
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
40
|
Vacca B, Sanchez-Heras E, Steed E, Balda MS, Ohnuma SI, Sasai N, Mayor R, Matter K. MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus. Biol Open 2016; 5:1631-1641. [PMID: 27870636 PMCID: PMC5155527 DOI: 10.1242/bio.018945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis.
Collapse
Affiliation(s)
- Barbara Vacca
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | | | - Emily Steed
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Maria S Balda
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Shin-Ichi Ohnuma
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Noriaki Sasai
- Division of Biomedical Sciences, Developmental Biomedical Science Laboratory, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
41
|
Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology 2016; 151:616-32. [PMID: 27436072 PMCID: PMC5317033 DOI: 10.1053/j.gastro.2016.07.008] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte-epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation.
Collapse
Affiliation(s)
- Anny-Claude Luissint
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
42
|
Lu H, Ning X, Tao X, Ren J, Song X, Tao W, Zhu L, Han L, Tao T, Yang J. MEKK1 Associated with Neuronal Apoptosis Following Intracerebral Hemorrhage. Neurochem Res 2016; 41:3308-3321. [PMID: 27662850 DOI: 10.1007/s11064-016-2063-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/24/2016] [Accepted: 09/12/2016] [Indexed: 01/08/2023]
Abstract
The JNKs have been implicated in a variety of biological functions in mammalian cells, including apoptosis and the responses to stress. However, the physiological role of these pathways in the intracerebral hemorrhage (ICH) has not been fully elucidated. In this study, we identified a MAPK kinase kinase (MAPKKK), MEKK1, may be involved in neuronal apoptosis in the processes of ICH through the activation of JNKs. From the results of western blot, immunohistochemistry and immunofluorescence, we obtained a significant up-regulation of MEKK1 in neurons adjacent to the hematoma following ICH. Increasing MEKK1 level was found to be accompanied with the up-regulation of p-JNK 3, p53, and c-jun. Besides, MEKK1 co-localized well with p-JNK in neurons, indicating its potential role in neuronal apoptosis. What's more, our in vitro study, using MEKK1 siRNA interference in PC12 cells, further confirmed that MEKK1 might exert its pro-apoptotic function on neuronal apoptosis through extrinsic pathway. Thus, MEKK1 may play a role in promoting the brain damage following ICH.
Collapse
Affiliation(s)
- Hongjian Lu
- Department of Rehabilitation, The Second Peoples Hospital of Nantong, Affiliated of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiaojin Ning
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xuelei Tao
- Department of Rehabilitation, The Second Peoples Hospital of Nantong, Affiliated of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jianbing Ren
- Department of Rehabilitation, The Second Peoples Hospital of Nantong, Affiliated of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xinjian Song
- Department of Rehabilitation, The Second Peoples Hospital of Nantong, Affiliated of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Weidong Tao
- Department of Rehabilitation, The Second Peoples Hospital of Nantong, Affiliated of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Liang Zhu
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Lijian Han
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Tao Tao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China. .,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Jianbin Yang
- Department of Rehabilitation, The Second Peoples Hospital of Nantong, Affiliated of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
43
|
Filling the Void: Proximity-Based Labeling of Proteins in Living Cells. Trends Cell Biol 2016; 26:804-817. [PMID: 27667171 DOI: 10.1016/j.tcb.2016.09.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
There are inherent limitations with traditional methods to study protein behavior or to determine the constituency of proteins in discrete subcellular compartments. In response to these limitations, several methods have recently been developed that use proximity-dependent labeling. By fusing proteins to enzymes that generate reactive molecules, most commonly biotin, proximate proteins are covalently labeled to enable their isolation and identification. In this review we describe current methods for proximity-dependent labeling in living cells and discuss their applications and future use in the study of protein behavior.
Collapse
|
44
|
Varnaitė R, MacNeill SA. Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID. Proteomics 2016; 16:2503-2518. [PMID: 27329485 PMCID: PMC5053326 DOI: 10.1002/pmic.201600123] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/23/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022]
Abstract
Proximity-dependent biotin identification (BioID) is a recently developed method that allows the identification of proteins in the close vicinity of a protein of interest in living cells. BioID relies on fusion of the protein of interest with a mutant form of the biotin ligase enzyme BirA (BirA*) that is capable of promiscuously biotinylating proximal proteins irrespective of whether these interact directly or indirectly with the fusion protein or are merely located in the same subcellular neighborhood. The covalent addition of biotin allows the labeled proteins to be purified from cell extracts on the basis of their affinity for streptavidin and identified by mass spectrometry. To date, BioID has been successfully applied to study a variety of proteins and processes in mammalian cells and unicellular eukaryotes and has been shown to be particularly suited to the study of insoluble or inaccessible cellular structures and for detecting weak or transient protein associations. Here, we provide an introduction to BioID, together with a detailed summary of where and how the method has been applied to date, and briefly discuss technical aspects involved in the planning and execution of a BioID study.
Collapse
Affiliation(s)
- Renata Varnaitė
- School of Biology, University of St Andrews, North Haugh, St Andrews, Scotland, UK
| | - Stuart A MacNeill
- School of Biology, University of St Andrews, North Haugh, St Andrews, Scotland, UK.
| |
Collapse
|
45
|
Zihni C, Mills C, Matter K, Balda MS. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 2016; 17:564-80. [PMID: 27353478 DOI: 10.1038/nrm.2016.80] [Citation(s) in RCA: 935] [Impact Index Per Article: 103.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelia and endothelia separate different tissue compartments and protect multicellular organisms from the outside world. This requires the formation of tight junctions, selective gates that control paracellular diffusion of ions and solutes. Tight junctions also form the border between the apical and basolateral plasma-membrane domains and are linked to the machinery that controls apicobasal polarization. Additionally, signalling networks that guide diverse cell behaviours and functions are connected to tight junctions, transmitting information to and from the cytoskeleton, nucleus and different cell adhesion complexes. Recent advances have broadened our understanding of the molecular architecture and cellular functions of tight junctions.
Collapse
Affiliation(s)
- Ceniz Zihni
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Clare Mills
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
46
|
The Contribution of Ig-Superfamily and MARVEL D Tight Junction Proteins to Cancer Pathobiology. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0105-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Balda MS, Matter K. Tight junctions as regulators of tissue remodelling. Curr Opin Cell Biol 2016; 42:94-101. [PMID: 27236618 DOI: 10.1016/j.ceb.2016.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022]
Abstract
Formation of tissue barriers by epithelial and endothelial cells requires neighbouring cells to interact via intercellular junctions, which includes tight junctions. Tight junctions form a semipermeable paracellular diffusion barrier and act as signalling hubs that guide cell behaviour and differentiation. Components of tight junctions are also expressed in cell types not forming tight junctions, such as cardiomyocytes, where they associate with facia adherens and/or gap junctions. This review will focus on tight junction proteins and their importance in tissue homeostasis and remodelling with a particular emphasis on what we have learned from animal models and human diseases.
Collapse
Affiliation(s)
- Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
48
|
Kim DI, Jensen SC, Noble KA, Kc B, Roux KH, Motamedchaboki K, Roux KJ. An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell 2016; 27:1188-96. [PMID: 26912792 PMCID: PMC4831873 DOI: 10.1091/mbc.e15-12-0844] [Citation(s) in RCA: 551] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/16/2016] [Indexed: 12/20/2022] Open
Abstract
A smaller promiscuous biotin ligase for proximity biotinylation called BioID2 enables more-selective targeting of fusion proteins, requires less biotin supplementation, exhibits enhanced labeling of proximate proteins, and demonstrates the use of a flexible linker to modulate the biotin-labeling radius. The BioID method uses a promiscuous biotin ligase to detect protein–protein associations as well as proximate proteins in living cells. Here we report improvements to the BioID method centered on BioID2, a substantially smaller promiscuous biotin ligase. BioID2 enables more-selective targeting of fusion proteins, requires less biotin supplementation, and exhibits enhanced labeling of proximate proteins. Thus BioID2 improves the efficiency of screening for protein–protein associations. We also demonstrate that the biotinylation range of BioID2 can be considerably modulated using flexible linkers, thus enabling application-specific adjustment of the biotin-labeling radius.
Collapse
Affiliation(s)
- Dae In Kim
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Samuel C Jensen
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Kyle A Noble
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Birendra Kc
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Kenneth H Roux
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Khatereh Motamedchaboki
- Sanford-Burnham Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104 Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| |
Collapse
|
49
|
Abstract
The nuclear envelope (NE) is a critical cellular structure whose constituents and roles in a myriad of cellular processes seem ever expanding. To determine the underlying mechanisms by which the NE constituents participate in various cellular events, it is necessary to understand the nature of their protein-protein associations. BioID (proximity-dependent biotin identification) is a recently established method to generate a history of protein-protein associations as they occur over time in living cells. BioID is based on fusion of a bait protein to a promiscuous biotin ligase. Expression of the BioID fusion protein in a relevant cellular environment enables biotinylation of vicinal and interacting proteins of the bait protein, permitting isolation and identification by conventional biotin-affinity capture and mass-spec analysis. In this way, BioID provides unique capabilities to identify protein-protein associations at the NE. In this chapter we provide a detailed protocol for the application of BioID to the study of NE proteins.
Collapse
Affiliation(s)
- Dae In Kim
- Sanford Research, Sanford Children's Health Research Center, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Samuel C Jensen
- Sanford Research, Sanford Children's Health Research Center, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
| | - Kyle J Roux
- Sanford Research, Sanford Children's Health Research Center, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
50
|
Fu Y, Lv P, Yan G, Fan H, Cheng L, Zhang F, Dang Y, Wu H, Wen B. MacroH2A1 associates with nuclear lamina and maintains chromatin architecture in mouse liver cells. Sci Rep 2015; 5:17186. [PMID: 26603343 PMCID: PMC4658601 DOI: 10.1038/srep17186] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
In the interphase nucleus, chromatin is organized into three-dimensional conformation to coordinate genome functions. The lamina-chromatin association is important to facilitate higher-order chromatin in mammalian cells, but its biological significances and molecular mechanisms remain poorly understood. One obstacle is that the list of lamina-associated proteins remains limited, presumably due to the inherent insolubility of lamina proteins. In this report, we identified 182 proteins associated with lamin B1 (a constitutive component of lamina) in mouse hepatocytes, by adopting virus-based proximity-dependent biotin identification. These proteins are functionally related to biological processes such as chromatin organization. As an example, we validated the association between lamin B1 and core histone macroH2A1, a histone associated with repressive chromatin. Furthermore, we mapped Lamina-associated domains (LADs) in mouse liver cells and found that boundaries of LADs are enriched for macroH2A. More interestingly, knocking-down of macroH2A1 resulted in the release of heterochromatin foci marked by histone lysine 9 trimethylation (H3K9me3) and the decondensation of global chromatin structure. However, down-regulation of lamin B1 led to redistribution of macroH2A1. Taken together, our data indicated that macroH2A1 is associated with lamina and is required to maintain chromatin architecture in mouse liver cells.
Collapse
Affiliation(s)
- Yuhua Fu
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Pin Lv
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoquan Yan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Chemistry, Fudan University, Shanghai, 200433
| | - Hui Fan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Cheng
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yongjun Dang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Bo Wen
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|