1
|
Khatun J, Gelles JD, Chipuk JE. Dynamic death decisions: How mitochondrial dynamics shape cellular commitment to apoptosis and ferroptosis. Dev Cell 2024; 59:2549-2565. [PMID: 39378840 PMCID: PMC11469553 DOI: 10.1016/j.devcel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The incorporation of mitochondria into early eukaryotes established organelle-based biochemistry and enabled metazoan development. Diverse mitochondrial biochemistry is essential for life, and its homeostatic control via mitochondrial dynamics supports organelle quality and function. Mitochondrial crosstalk with numerous regulated cell death (RCD) pathways controls the decision to die. In this review, we will focus on apoptosis and ferroptosis, two distinct forms of RCD that utilize divergent signaling to kill a targeted cell. We will highlight how proteins and processes involved in mitochondrial dynamics maintain biochemically diverse subcellular compartments to support apoptosis and ferroptosis machinery, as well as unite disparate RCD pathways through dual control of organelle biochemistry and the decision to die.
Collapse
Affiliation(s)
- Jesminara Khatun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
2
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
Affiliation(s)
- Juan C Landoni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Tatjana Kleele
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETH), Zürich, Switzerland;
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Julius Winter
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Willi Stepp
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Suliana Manley
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| |
Collapse
|
3
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Bykov YS, Schuldiner M. Analysis of mitochondrial biogenesis and protein localization by genetic screens and automated imaging. Methods Enzymol 2024; 706:97-123. [PMID: 39455236 DOI: 10.1016/bs.mie.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Budding yeast is a laboratory model of a simple eukaryotic cell. Its compact genome is very easy to edit. This allowed to create systematic collections (libraries) of yeast strains where every gene is either perturbed or tagged. Here we review how such collections were used to study mitochondrial biology by doing genetic screens. First, we introduce the principles of yeast genome editing and the basics of its life cycle that are useful for genetic experiments. Then we overview what yeast strain collections were created over the past years. We also describe the creation and the usage of the new generation of SWAP-Tag (SWAT) collections that allow to create custom libraries. We outline the principles of changing the genetic background of whole collections in parallel, and the basics of synthetic genetic array (SGA) approach. Then we review the discoveries that were made using different types of genetic screens focusing on general mitochondrial functions, proteome, and protein targeting pathways. The development of new collections and screening techniques will continue to bring valuable insight into the function of mitochondria and other organelles.
Collapse
Affiliation(s)
- Yury S Bykov
- Quantitative Cell Biology, Rhineland-Palatinate Technical University, Kaiserslautern, Germany.
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Benaroya H. Mitochondria and MICOS - function and modeling. Rev Neurosci 2024; 35:503-531. [PMID: 38369708 DOI: 10.1515/revneuro-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/20/2024]
Abstract
An extensive review is presented on mitochondrial structure and function, mitochondrial proteins, the outer and inner membranes, cristae, the role of F1FO-ATP synthase, the mitochondrial contact site and cristae organizing system (MICOS), the sorting and assembly machinery morphology and function, and phospholipids, in particular cardiolipin. Aspects of mitochondrial regulation under physiological and pathological conditions are outlined, in particular the role of dysregulated MICOS protein subunit Mic60 in Parkinson's disease, the relations between mitochondrial quality control and proteins, and mitochondria as signaling organelles. A mathematical modeling approach of cristae and MICOS using mechanical beam theory is introduced and outlined. The proposed modeling is based on the premise that an optimization framework can be used for a better understanding of critical mitochondrial function and also to better map certain experiments and clinical interventions.
Collapse
Affiliation(s)
- Haym Benaroya
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
López-Ayllón BD, Marin S, Fernández MF, García-García T, Fernández-Rodríguez R, de Lucas-Rius A, Redondo N, Mendoza-García L, Foguet C, Grigas J, Calvet A, Villalba JM, Gómez MJR, Megías D, Mandracchia B, Luque D, Lozano JJ, Calvo C, Herrán UM, Thomson TM, Garrido JJ, Cascante M, Montoya M. Metabolic and mitochondria alterations induced by SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10. J Med Virol 2024; 96:e29752. [PMID: 38949191 DOI: 10.1002/jmv.29752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.
Collapse
Affiliation(s)
- Blanca D López-Ayllón
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - Marco Fariñas Fernández
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tránsito García-García
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Ana de Lucas-Rius
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Natalia Redondo
- Unit of Infectious Diseases, University Hospital '12 de Octubre', Institute for Health Research Hospital '12 de Octubre' (imas12), Madrid, Spain
- Centre for Biomedical Research Network on Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Laura Mendoza-García
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Carles Foguet
- British Heart Foundation Cardiovascular Epidemiology Unit and Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Juozas Grigas
- Laboratory of Immunology, Department of Anatomy and Physiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alba Calvet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - José Manuel Villalba
- Department of Cell Biology, Physiology and Immunology, Agrifood Campus of International Excellence, University of Córdoba, Córdoba, Spain
| | - María Josefa Rodríguez Gómez
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Megías
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| | - Biagio Mandracchia
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- ETSI Telecommunication, University of Valladolid, Valladolid, Spain
| | - Daniel Luque
- Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Juan José Lozano
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Cristina Calvo
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
| | - Unai Merino Herrán
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Timothy M Thomson
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Barcelona Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
- Translational Research and Computational Biology Laboratory, Faculty of Science and Engineering, Peruvian University Cayetano Heredia, Lima, Perú
| | - Juan J Garrido
- Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, Department of Genetics, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research, Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, Spain
| | - María Montoya
- Viral Immunology Lab, Molecular Biomedicine Department, BICS Unit. Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Kondadi AK, Reichert AS. Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk. Annu Rev Biophys 2024; 53:147-168. [PMID: 38166176 DOI: 10.1146/annurev-biophys-030822-020736] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Mitochondria are essential organelles performing important cellular functions ranging from bioenergetics and metabolism to apoptotic signaling and immune responses. They are highly dynamic at different structural and functional levels. Mitochondria have been shown to constantly undergo fusion and fission processes and dynamically interact with other organelles such as the endoplasmic reticulum, peroxisomes, and lipid droplets. The field of mitochondrial dynamics has evolved hand in hand with technological achievements including advanced fluorescence super-resolution nanoscopy. Dynamic remodeling of the cristae membrane within individual mitochondria, discovered very recently, opens up a further exciting layer of mitochondrial dynamics. In this review, we discuss mitochondrial dynamics at the following levels: (a) within an individual mitochondrion, (b) among mitochondria, and (c) between mitochondria and other organelles. Although the three tiers of mitochondrial dynamics have in the past been classified in a hierarchical manner, they are functionally connected and must act in a coordinated manner to maintain cellular functions and thus prevent various human diseases.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ,
| |
Collapse
|
8
|
Teixeira P, Galland R, Chevrollier A. Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic. Semin Cell Dev Biol 2024; 159-160:38-51. [PMID: 38310707 DOI: 10.1016/j.semcdb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria's structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?
Collapse
Affiliation(s)
- Pauline Teixeira
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France
| | - Rémi Galland
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Arnaud Chevrollier
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
9
|
Ding S, Li G, Fu T, Zhang T, Lu X, Li N, Geng Q. Ceramides and mitochondrial homeostasis. Cell Signal 2024; 117:111099. [PMID: 38360249 DOI: 10.1016/j.cellsig.2024.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Lipotoxicity arises from the accumulation of lipid intermediates in non-adipose tissue, precipitating cellular dysfunction and death. Ceramide, a toxic byproduct of excessive free fatty acids, has been widely recognized as a primary contributor to lipotoxicity, mediating various cellular processes such as apoptosis, differentiation, senescence, migration, and adhesion. As the hub of lipid metabolism, the excessive accumulation of ceramides inevitably imposes stress on the mitochondria, leading to the disruption of mitochondrial homeostasis, which is typified by adequate ATP production, regulated oxidative stress, an optimal quantity of mitochondria, and controlled mitochondrial quality. Consequently, this review aims to collate current knowledge and facts regarding the involvement of ceramides in mitochondrial energy metabolism and quality control, thereby providing insights for future research.
Collapse
Affiliation(s)
- Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Gilkerson R, Kaur H, Carrillo O, Ramos I. OMA1-Mediated Mitochondrial Dynamics Balance Organellar Homeostasis Upstream of Cellular Stress Responses. Int J Mol Sci 2024; 25:4566. [PMID: 38674151 PMCID: PMC11049825 DOI: 10.3390/ijms25084566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
In response to cellular metabolic and signaling cues, the mitochondrial network employs distinct sets of membrane-shaping factors to dynamically modulate organellar structures through a balance of fission and fusion. While these organellar dynamics mediate mitochondrial structure/function homeostasis, they also directly impact critical cell-wide signaling pathways such as apoptosis, autophagy, and the integrated stress response (ISR). Mitochondrial fission is driven by the recruitment of the cytosolic dynamin-related protein-1 (DRP1), while fusion is carried out by mitofusins 1 and 2 (in the outer membrane) and optic atrophy-1 (OPA1) in the inner membrane. This dynamic balance is highly sensitive to cellular stress; when the transmembrane potential across the inner membrane (Δψm) is lost, fusion-active OPA1 is cleaved by the overlapping activity with m-AAA protease-1 (OMA1 metalloprotease, disrupting mitochondrial fusion and leaving dynamin-related protein-1 (DRP1)-mediated fission unopposed, thus causing the collapse of the mitochondrial network to a fragmented state. OMA1 is a unique regulator of stress-sensitive homeostatic mitochondrial balance, acting as a key upstream sensor capable of priming the cell for apoptosis, autophagy, or ISR signaling cascades. Recent evidence indicates that higher-order macromolecular associations within the mitochondrial inner membrane allow these specialized domains to mediate crucial organellar functionalities.
Collapse
Affiliation(s)
- Robert Gilkerson
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
- Department of Health & Biomedical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Harpreet Kaur
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| | - Omar Carrillo
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| | - Isaiah Ramos
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (H.K.); (O.C.)
| |
Collapse
|
12
|
Stephan T, Stoldt S, Barbot M, Carney TD, Lange F, Bates M, Bou Dib P, Inamdar K, Shcherbata HR, Meinecke M, Riedel D, Dennerlein S, Rehling P, Jakobs S. Drosophila MIC10b can polymerize into cristae-shaping filaments. Life Sci Alliance 2024; 7:e202302177. [PMID: 38253420 PMCID: PMC10803214 DOI: 10.26508/lsa.202302177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Cristae are invaginations of the mitochondrial inner membrane that are crucial for cellular energy metabolism. The formation of cristae requires the presence of a protein complex known as MICOS, which is conserved across eukaryotic species. One of the subunits of this complex, MIC10, is a transmembrane protein that supports cristae formation by oligomerization. In Drosophila melanogaster, three MIC10-like proteins with different tissue-specific expression patterns exist. We demonstrate that CG41128/MINOS1b/DmMIC10b is the major MIC10 orthologue in flies. Its loss destabilizes MICOS, disturbs cristae architecture, and reduces the life span and fertility of flies. We show that DmMIC10b has a unique ability to polymerize into bundles of filaments, which can remodel mitochondrial crista membranes. The formation of these filaments relies on conserved glycine and cysteine residues, and can be suppressed by the co-expression of other Drosophila MICOS proteins. These findings provide new insights into the regulation of MICOS in flies, and suggest potential mechanisms for the maintenance of mitochondrial ultrastructure.
Collapse
Affiliation(s)
- Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Stoldt
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Mariam Barbot
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Travis D Carney
- Institute of Cell Biochemistry, Hannover Medical School, Hanover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, ME, USA
| | - Felix Lange
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mark Bates
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Optical Nanoscopy, Institute for Nanophotonics, Göttingen, Germany
| | - Peter Bou Dib
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Kaushik Inamdar
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hanover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, ME, USA
| | - Michael Meinecke
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Multidisciplinary Science, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Göttingen, Germany
| |
Collapse
|
13
|
Wu Y, Ren X, Shi P, Wu C. Regulation of mitochondrial structure by the actin cytoskeleton. Cytoskeleton (Hoboken) 2024; 81:206-214. [PMID: 37929797 DOI: 10.1002/cm.21804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Mitochondria are the powerhouse of the cell and play important roles in multiple cellular processes including cell metabolism, proliferation, and programmed cell death. Mitochondria are double-membrane organelles with the inner membrane folding inward to form cristae. Mitochondria networks undergo dynamic fission and fusion. Deregulation of mitochondrial structure has been linked to perturbed mitochondrial membrane potential and disrupted metabolism, as evidenced in tumorigenesis, neurodegenerative diseases, etc. Actin and its motors-myosins have long been known to generate mechanical forces and participate in short-distance cargo transport. Accumulating knowledge from biochemistry and live cell/electron microscope imaging has demonstrated the role of actin filaments in pre-constricting the mitochondria during fission. Recent studies have suggested the involvement of myosins in cristae maintenance and mitochondria quality control. Here, we review current findings and discuss future directions in the emerging fields of cytoskeletal regulation in cristae formation, mitochondrial dynamics, intracellular transport, and mitocytosis, with focus on the actin cytoskeleton and its motor proteins.
Collapse
Affiliation(s)
- Yihe Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyu Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng Shi
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
14
|
Kumar M, Sharma S, Kumar J, Barik S, Mazumder S. Mitochondrial electron transport chain in macrophage reprogramming: Potential role in antibacterial immune response. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100077. [PMID: 38572399 PMCID: PMC10987323 DOI: 10.1016/j.crimmu.2024.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Macrophages restrain microbial infection and reinstate tissue homeostasis. The mitochondria govern macrophage metabolism and serve as pivot in innate immunity, thus acting as immunometabolic regulon. Metabolic pathways produce electron flows that end up in mitochondrial electron transport chain (mtETC), made of super-complexes regulating multitude of molecular and biochemical processes. Cell-intrinsic and extrinsic factors influence mtETC structure and function, impacting several aspects of macrophage immunity. These factors provide the macrophages with alternate fuel sources and metabolites, critical to gain functional competence and overcoming pathogenic stress. Mitochondrial reactive oxygen species (mtROS) and oxidative phosphorylation (OXPHOS) generated through the mtETC are important innate immune attributes, which help macrophages in mounting antibacterial responses. Recent studies have demonstrated the role of mtETC in governing mitochondrial dynamics and macrophage polarization (M1/M2). M1 macrophages are important for containing bacterial pathogens and M2 macrophages promote tissue repair and wound healing. Thus, mitochondrial bioenergetics and metabolism are intimately coupled with innate immunity. In this review, we have addressed mtETC function as innate rheostats that regulate macrophage reprogramming and innate immune responses. Advancement in this field encourages further exploration and provides potential novel macrophage-based therapeutic targets to control unsolicited inflammation.
Collapse
Affiliation(s)
- Manmohan Kumar
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| | - Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Faculty of Life Sciences and Biotechnology, South Asian University, Delhi, India
| |
Collapse
|
15
|
Golombek M, Tsigaras T, Schaumkessel Y, Hänsch S, Weidtkamp-Peters S, Anand R, Reichert AS, Kondadi AK. Cristae dynamics is modulated in bioenergetically compromised mitochondria. Life Sci Alliance 2024; 7:e202302386. [PMID: 37957016 PMCID: PMC10643176 DOI: 10.26508/lsa.202302386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Cristae membranes have been recently shown to undergo intramitochondrial merging and splitting events. Yet, the metabolic and bioenergetic factors regulating them are unclear. Here, we investigated whether and how cristae morphology and dynamics are dependent on oxidative phosphorylation (OXPHOS) complexes, the mitochondrial membrane potential (ΔΨm), and the ADP/ATP nucleotide translocator. Advanced live-cell STED nanoscopy combined with in-depth quantification were employed to analyse cristae morphology and dynamics after treatment of mammalian cells with rotenone, antimycin A, oligomycin A, and CCCP. This led to formation of enlarged mitochondria along with reduced cristae density but did not impair cristae dynamics. CCCP treatment leading to ΔΨm abrogation even enhanced cristae dynamics showing its ΔΨm-independent nature. Inhibition of OXPHOS complexes was accompanied by reduced ATP levels but did not affect cristae dynamics. However, inhibition of ADP/ATP exchange led to aberrant cristae morphology and impaired cristae dynamics in a mitochondrial subset. In sum, we provide quantitative data of cristae membrane remodelling under different conditions supporting an important interplay between OXPHOS, metabolite exchange, and cristae membrane dynamics.
Collapse
Affiliation(s)
- Mathias Golombek
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thanos Tsigaras
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yulia Schaumkessel
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- Center for Advanced Imaging, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Freitag J, Stehlik T, Bange G. Mitochondria, Peroxisomes and Beyond-How Dual Targeting Regulates Organelle Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241264254. [PMID: 39364173 PMCID: PMC11447717 DOI: 10.1177/25152564241264254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 10/05/2024]
Abstract
Eukaryotic cells feature distinct membrane-enclosed organelles such as mitochondria and peroxisomes, each playing vital roles in cellular function and organization. These organelles are linked at membrane contact sites, facilitating interorganellar molecule and ion exchange. Most contact-forming proteins identified to date are membrane proteins or membrane-associated proteins, which can form very stable contacts. Recent findings suggest additional mechanistically distinct tethering events that arise from dual protein targeting. Proteins bearing targeting signals for multiple organelles, such as an N-terminal signal for mitochondria and a C-terminal signal for peroxisomes, function as tethers, fostering contacts by engaging targeting factors at both organelles. A number of dually targeted membrane proteins can contribute to contact site formation and transit from one organelle to the other as well. These interactions may enable the fine-tuning of organelle proximity, hence, adapting connections to meet varying physiological demands.
Collapse
Affiliation(s)
- Johannes Freitag
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Molecular Physiology of Microbes, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
17
|
Peng Y, Liu X, Liu X, Cheng X, Xia L, Qin L, Guan S, Wang Y, Wu X, Wu J, Yan D, Liu J, Zhang Y, Sun L, Liang J, Shang Y. RCCD1 promotes breast carcinogenesis through regulating hypoxia-associated mitochondrial homeostasis. Oncogene 2023; 42:3684-3697. [PMID: 37903896 DOI: 10.1038/s41388-023-02877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023]
Abstract
Regulator of chromosome condensation domain-containing protein 1 (RCCD1), previously reported as a partner of histone H3K36 demethylase KDM8 involved in chromosome segregation, has been identified as a potential driver for breast cancer in a recent transcriptome-wide association study. We report here that, unexpectedly, RCCD1 is also localized in mitochondria. We show that RCCD1 resides in the mitochondrial matrix, where it interacts with the mitochondrial contact site/cristae organizing system (MICOS) and mitochondrial DNA (mtDNA) to regulate mtDNA transcription, oxidative phosphorylation, and the production of reactive oxygen species. Interestingly, RCCD1 is upregulated under hypoxic conditions, leading to decreased generation of reactive oxygen species and alleviated apoptosis favoring cancer cell survival. We show that RCCD1 promotes breast cancer cell proliferation in vitro and accelerates breast tumor growth in vivo. Indeed, RCCD1 is overexpressed in breast carcinomas, and its level of expression is associated with aggressive breast cancer phenotypes and poor patient survival. Our study reveals an additional dimension of RCCD1 functionality in regulating mitochondrial homeostasis, whose dysregulation inflicts pathologic states such as breast cancer.
Collapse
Affiliation(s)
- Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Leyi Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Sudun Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Dong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Jianying Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
18
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
19
|
Mathys H, Peng Z, Boix CA, Victor MB, Leary N, Babu S, Abdelhady G, Jiang X, Ng AP, Ghafari K, Kunisky AK, Mantero J, Galani K, Lohia VN, Fortier GE, Lotfi Y, Ivey J, Brown HP, Patel PR, Chakraborty N, Beaudway JI, Imhoff EJ, Keeler CF, McChesney MM, Patel HH, Patel SP, Thai MT, Bennett DA, Kellis M, Tsai LH. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer's disease pathology. Cell 2023; 186:4365-4385.e27. [PMID: 37774677 PMCID: PMC10601493 DOI: 10.1016/j.cell.2023.08.039] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/20/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.
Collapse
Affiliation(s)
- Hansruedi Mathys
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Zhuyu Peng
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Carles A Boix
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Sudhagar Babu
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ghada Abdelhady
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Xueqiao Jiang
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Ayesha P Ng
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Kimia Ghafari
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alexander K Kunisky
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Julio Mantero
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kyriaki Galani
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vanshika N Lohia
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gabrielle E Fortier
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yasmine Lotfi
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jason Ivey
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hannah P Brown
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Pratham R Patel
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Nehal Chakraborty
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jacob I Beaudway
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Elizabeth J Imhoff
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cameron F Keeler
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maren M McChesney
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Haishal H Patel
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sahil P Patel
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Megan T Thai
- University of Pittsburgh Brain Institute and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
20
|
González-Arzola K, Díaz-Quintana A. Mitochondrial Factors in the Cell Nucleus. Int J Mol Sci 2023; 24:13656. [PMID: 37686461 PMCID: PMC10563088 DOI: 10.3390/ijms241713656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The origin of eukaryotic organisms involved the integration of mitochondria into the ancestor cell, with a massive gene transfer from the original proteobacterium to the host nucleus. Thus, mitochondrial performance relies on a mosaic of nuclear gene products from a variety of genomes. The concerted regulation of their synthesis is necessary for metabolic housekeeping and stress response. This governance involves crosstalk between mitochondrial, cytoplasmic, and nuclear factors. While anterograde and retrograde regulation preserve mitochondrial homeostasis, the mitochondria can modulate a wide set of nuclear genes in response to an extensive variety of conditions, whose response mechanisms often merge. In this review, we summarise how mitochondrial metabolites and proteins-encoded either in the nucleus or in the organelle-target the cell nucleus and exert different actions modulating gene expression and the chromatin state, or even causing DNA fragmentation in response to common stress conditions, such as hypoxia, oxidative stress, unfolded protein stress, and DNA damage.
Collapse
Affiliation(s)
- Katiuska González-Arzola
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla—Universidad Pablo de Olavide, 41092 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
| | - Antonio Díaz-Quintana
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, 41012 Seville, Spain
- Instituto de Investigaciones Químicas—cicCartuja, Universidad de Sevilla—C.S.I.C, 41092 Seville, Spain
| |
Collapse
|
21
|
Mani S, Ralph SJ, Swargiary G, Rani M, Wasnik S, Singh SP, Devi A. Therapeutic Targeting of Mitochondrial Plasticity and Redox Control to Overcome Cancer Chemoresistance. Antioxid Redox Signal 2023; 39:591-619. [PMID: 37470214 DOI: 10.1089/ars.2023.0379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Significance: Mitochondria are subcellular organelles performing essential metabolic functions contributing to cellular bioenergetics and regulation of cell growth or death. The basic mitochondrial function in fulfilling the need for cell growth and vitality is evidenced whereby cancer cells with depleted mitochondrial DNA (rho zero, p0 cells) no longer form tumors until newly recruited mitochondria are internalized into the rho zero cells. Herein lies the absolute dependency on mitochondria for tumor growth. Hence, mitochondria are key regulators of cell death (by apoptosis, necroptosis, or other forms of cell death) and are, therefore, important targets for anticancer therapy. Recent Advances: Mitochondrial plasticity regulating their state of fusion or fission is key to the chemoresistance properties of cancer cells by promoting pro-survival pathways, enabling the mitochondria to mitigate against the cellular stresses and extreme conditions within the tumor microenvironment caused by chemotherapy, hypoxia, or oxidative stress. Critical Issues: This review discusses many characteristics of mitochondria, the processes and pathways controlling the dynamic changes occurring in the morphology of mitochondria, the roles of reactive oxygen species, and their relationship with mitochondrial fission or fusion. It also examines the relationship of redox to mitophagy when mitochondria become compromised and its effect on cancer cell survival, stemness, and the changes accompanying malignant progression from primary tumors to metastatic disease. Future Directions: A challenging question that arises is whether the changes in mitochondrial dynamics and their regulation can provide opportunities for improving drug targeting during cancer treatment and enhancing survival outcomes. Antioxid. Redox Signal. 39, 591-619.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Stephen J Ralph
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia
| | - Geeta Swargiary
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Madhu Rani
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Samiksha Wasnik
- Department of Regenerative Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Shashi Prakash Singh
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Annu Devi
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
22
|
López-Doménech G, Kittler JT. Mitochondrial regulation of local supply of energy in neurons. Curr Opin Neurobiol 2023; 81:102747. [PMID: 37392672 PMCID: PMC11139648 DOI: 10.1016/j.conb.2023.102747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/03/2023]
Abstract
Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration.
Collapse
Affiliation(s)
- Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
23
|
Laval F, Coppin G, Twizere JC, Vidal M. Homo cerevisiae-Leveraging Yeast for Investigating Protein-Protein Interactions and Their Role in Human Disease. Int J Mol Sci 2023; 24:9179. [PMID: 37298131 PMCID: PMC10252790 DOI: 10.3390/ijms24119179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Understanding how genetic variation affects phenotypes represents a major challenge, particularly in the context of human disease. Although numerous disease-associated genes have been identified, the clinical significance of most human variants remains unknown. Despite unparalleled advances in genomics, functional assays often lack sufficient throughput, hindering efficient variant functionalization. There is a critical need for the development of more potent, high-throughput methods for characterizing human genetic variants. Here, we review how yeast helps tackle this challenge, both as a valuable model organism and as an experimental tool for investigating the molecular basis of phenotypic perturbation upon genetic variation. In systems biology, yeast has played a pivotal role as a highly scalable platform which has allowed us to gain extensive genetic and molecular knowledge, including the construction of comprehensive interactome maps at the proteome scale for various organisms. By leveraging interactome networks, one can view biology from a systems perspective, unravel the molecular mechanisms underlying genetic diseases, and identify therapeutic targets. The use of yeast to assess the molecular impacts of genetic variants, including those associated with viral interactions, cancer, and rare and complex diseases, has the potential to bridge the gap between genotype and phenotype, opening the door for precision medicine approaches and therapeutic development.
Collapse
Affiliation(s)
- Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Georges Coppin
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Jean-Claude Twizere
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- TERRA Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium
- Laboratory of Viral Interactomes, GIGA Institute, University of Liège, 4000 Liège, Belgium
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; (F.L.); (G.C.)
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Carnosic acid attenuated cytochrome c release through the mitochondrial structural protein Mic60 by PINK1 in SH-SY5Y cells. Food Chem Toxicol 2023; 173:113636. [PMID: 36708866 DOI: 10.1016/j.fct.2023.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Mitochondrial dysfunction has been implicated in Parkinson's disease. Mic60 is a critical component of mitochondrial crista remodeling and participates in maintaining mitochondrial structure and function. This study investigated whether the carnosic acid (CA) of rosemary protects the mitochondria of SH-SY5Y cells against the neurotoxicity of 6-hydroxydopamine (6-OHDA) by regulating Mic60. Our results showed that CA pretreatment reversed the reduction in the Mic60 and citrate synthase proteins, as well as the protein induction of PKA caused by 6-OHDA. Moreover, Mic60 and PINK1 siRNAs blocked the ability of CA to lessen the release of mitochondrial cytochrome c by 6-OHDA. As shown by immunoprecipitation assay, in 6-OHDA-treated cells, the interaction of Mic60 with its phosphorylated threonine residue was decreased, but the interaction with its phosphorylated serine residue was increased. PINK1 siRNA and forskolin, a PKA activator, reversed these interactions. Moreover, forskolin pretreatment prevented CA from rescuing the interaction of PINK1 and Mic60 and the reduction in cytochrome c release and mitophagy impairment in 6-OHDA-treated cells. In conclusion, CA prevents 6-OHDA-induced cytochrome c release by regulating Mic60 phosphorylation by PINK1 through a downregulation of PKA. The regulation of Mic60 by CA can be considered as a protective mechanism for the prevention of Parkinson's disease.
Collapse
|
25
|
Mitochondrial cristae in health and disease. Int J Biol Macromol 2023; 235:123755. [PMID: 36812974 DOI: 10.1016/j.ijbiomac.2023.123755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Mitochondria are centers of energy metabolism. The mitochondrial network is shaped by mitochondrial dynamics, including the processes of mitochondrial fission and fusion and cristae remodeling. The cristae folded by the inner mitochondrial membrane are sites of the mitochondrial oxidative phosphorylation (OXPHOS) system. However, the factors and their coordinated interplay in cristae remodeling and linked human diseases have not been fully demonstrated. In this review, we focus on key regulators of cristae structure, including the mitochondrial contact site and cristae organizing system, optic atrophy-1, mitochondrial calcium uniporter, and ATP synthase, which function in the dynamic remodeling of cristae. We summarized their contribution to sustaining functional cristae structure and abnormal cristae morphology, including a decreased number of cristae, enlarged cristae junctions, and cristae as concentric ring structures. These abnormalities directly impact cellular respiration and are caused by dysfunction or deletion of these regulators in diseases such as Parkinson's disease, Leigh syndrome, and dominant optic atrophy. Identifying the important regulators of cristae morphology and understanding their role in sustaining mitochondrial morphology could be applied to explore the pathologies of diseases and to develop relevant therapeutic tools.
Collapse
|
26
|
Liu T, Stephan T, Chen P, Keller-Findeisen J, Chen J, Riedel D, Yang Z, Jakobs S, Chen Z. Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain. Proc Natl Acad Sci U S A 2022; 119:e2215799119. [PMID: 36534799 PMCID: PMC9907107 DOI: 10.1073/pnas.2215799119] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Capturing mitochondria's intricate and dynamic structure poses a daunting challenge for optical nanoscopy. Different labeling strategies have been demonstrated for live-cell stimulated emission depletion (STED) microscopy of mitochondria, but orthogonal strategies are yet to be established, and image acquisition has suffered either from photodamage to the organelles or from rapid photobleaching. Therefore, live-cell nanoscopy of mitochondria has been largely restricted to two-dimensional (2D) single-color recordings of cancer cells. Here, by conjugation of cyclooctatetraene (COT) to a benzo-fused cyanine dye, we report a mitochondrial inner membrane (IM) fluorescent marker, PK Mito Orange (PKMO), featuring efficient STED at 775 nm, strong photostability, and markedly reduced phototoxicity. PKMO enables super-resolution (SR) recordings of IM dynamics for extended periods in immortalized mammalian cell lines, primary cells, and organoids. Photostability and reduced phototoxicity of PKMO open the door to live-cell three-dimensional (3D) STED nanoscopy of mitochondria for 3D analysis of the convoluted IM. PKMO is optically orthogonal with green and far-red markers, allowing multiplexed recordings of mitochondria using commercial STED microscopes. Using multi-color STED microscopy, we demonstrate that imaging with PKMO can capture interactions of mitochondria with different cellular components such as the endoplasmic reticulum (ER) or the cytoskeleton, Bcl-2-associated X protein (BAX)-induced apoptotic process, or crista phenotypes in genetically modified cells, all at sub-100 nm resolution. Thereby, this work offers a versatile tool for studying mitochondrial IM architecture and dynamics in a multiplexed manner.
Collapse
Affiliation(s)
- Tianyan Liu
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
| | - Peng Chen
- Peking University-Nanjing Institute of Translational Medicine, Nanjing211800, China
- Genvivo Biotech, Nanjing211800, China
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Göttingen37075, Germany
| | - Jingting Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
| | - Zhongtian Yang
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37077, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen37075, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Göttingen37075, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen37099, Germany
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
- Peking University-Nanjing Institute of Translational Medicine, Nanjing211800, China
- Genvivo Biotech, Nanjing211800, China
| |
Collapse
|
27
|
Miranda-Astudillo H, Ostolga-Chavarría M, Cardol P, González-Halphen D. Beyond being an energy supplier, ATP synthase is a sculptor of mitochondrial cristae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148569. [PMID: 35577152 DOI: 10.1016/j.bbabio.2022.148569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial F1FO-ATP synthase plays a key role in cellular bioenergetics; this enzyme is present in all eukaryotic linages except in amitochondriate organisms. Despite its ancestral origin, traceable to the alpha proteobacterial endosymbiotic event, the actual structural diversity of these complexes, due to large differences in their polypeptide composition, reflects an important evolutionary divergence between eukaryotic lineages. We discuss the effect of these structural differences on the oligomerization of the complex and the shape of mitochondrial cristae.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcos Ostolga-Chavarría
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pierre Cardol
- InBios/Phytosystems, Institut de Botanique, Université de Liège, Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
28
|
Purohit G, Viana MP, Khalimonchuk O. Protocol for engineering and validating a synthetic mitochondrial intermembrane bridge in mammalian cells. STAR Protoc 2022; 3:101454. [PMID: 35719722 PMCID: PMC9204730 DOI: 10.1016/j.xpro.2022.101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Membrane contact sites are recognized as critical means of intercompartmental communication. Here, we describe a protocol for engineering and validating a synthetic bridge between the inner and outer mitochondrial membranes to support functioning of the endogenous mitochondrial contact site and cristae organizing system (MICOS). A chimeric protein, MitoT, is stably expressed in cultured mammalian cells to bridge the mitochondrial membranes. This approach can be a valuable tool to study the function of the MICOS complex and associated proteins. For complete details on the use and execution of this protocol, please refer to Viana et al. (2021).
Collapse
Affiliation(s)
- Gunjan Purohit
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68503, USA,Corresponding author
| | | | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68503, USA,Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68503, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, USA,Corresponding author
| |
Collapse
|
29
|
Genin EC, Bannwarth S, Ropert B, Lespinasse F, Mauri-Crouzet A, Augé G, Fragaki K, Cochaud C, Donnarumma E, Lacas-Gervais S, Wai T, Paquis-Flucklinger V. CHCHD10 and SLP2 control the stability of the PHB complex: a key factor for motor neuron viability. Brain 2022; 145:3415-3430. [DOI: 10.1093/brain/awac197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
CHCHD10 is an amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) gene that encodes a mitochondrial protein whose precise function is unclear. Here we show that CHCHD10 interacts with the Stomatin-Like Protein 2 (SLP2) and participates to the stability of the Prohibitin (PHB) complex in the inner mitochondrial membrane. By using patient fibroblasts and mouse models expressing the same CHCHD10 variant (p.Ser59Leu), we show that SLP2 forms aggregates with prohibitins, found in vivo in the hippocampus and as aggresome-like inclusions in spinal motor neurons of Chchd10S59L/+ mice. Affected cells and tissues display instability of the PHB complex which participates at least in part to the activation of the OMA1 cascade with OPA1 processing leading to mitochondrial fragmentation, abnormal mitochondrial cristae morphogenesis and neuronal death found in spinal cord and the hippocampus of Chchd10S59L/+ animals. Destabilization of the PHB complex leads to the instability of the mitochondrial contact site and cristae organizing system (MICOS) complex, likely via the disruption of OPA1/Mitofilin interaction. Thus, SLP2/PHB aggregates and destabilization of the PHB complex are critical in the sequence of events leading to motor neuron death in CHCHD10S59L-related disease.
Collapse
Affiliation(s)
- Emmanuelle C. Genin
- Université Côte d’Azur , Inserm U1081, CNRS UMR7284, IRCAN, CHU de Nice, Nice, France
| | - Sylvie Bannwarth
- Université Côte d’Azur , Inserm U1081, CNRS UMR7284, IRCAN, CHU de Nice, Nice, France
| | - Baptiste Ropert
- Université Côte d’Azur , Inserm U1081, CNRS UMR7284, IRCAN, CHU de Nice, Nice, France
| | - Françoise Lespinasse
- Université Côte d’Azur , Inserm U1081, CNRS UMR7284, IRCAN, CHU de Nice, Nice, France
| | | | - Gaelle Augé
- Université Côte d’Azur , Inserm U1081, CNRS UMR7284, IRCAN, CHU de Nice, Nice, France
| | - Konstantina Fragaki
- Université Côte d’Azur , Inserm U1081, CNRS UMR7284, IRCAN, CHU de Nice, Nice, France
| | - Charlotte Cochaud
- Université Côte d’Azur , Inserm U1081, CNRS UMR7284, IRCAN, CHU de Nice, Nice, France
| | - Erminia Donnarumma
- Institut Pasteur Mitochondrial Biology Group, , CNRS UMR 3691, Paris, France
| | | | - Timothy Wai
- Institut Pasteur Mitochondrial Biology Group, , CNRS UMR 3691, Paris, France
| | | |
Collapse
|
30
|
Han C, Geng Q, Qin J, Li Y, Yu H. Activation of 5-Hydroxytryptamine 4 Receptor Improves Colonic Barrier Function by Triggering Mucin 2 Production in a Mouse Model of Type 1 Diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:876-886. [PMID: 35337837 DOI: 10.1016/j.ajpath.2022.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Diabetes leads to intestinal barrier dysfunction. 5-Hydroxytryptamine 4 receptor (5-HT4R) is distributed in the colonic mucosa, but little is known about the role of its activation in diabetes-evoked colonic barrier dysfunction. This study investigates whether activation of 5-HT4Rs on goblet cells (GCs) protects the colon from commensal bacterial translocation in diabetic mice. Expression of 5-HT4R detected inside the colonic epithelium by RNAscope in situ hybridization was further observed within the mucin 2 (MUC2)-immunoreactive GCs. In diabetic mice, neither 5-HT4R transcription nor protein levels were altered compared with those in nondiabetic mice. Bacterial translocation was characterized by 16S rRNA RNAscope in situ hybridization and manifested in both crypts and lamina propria of the colon in diabetic mice. Mucin production and MUC2 expression were significantly decreased in diabetic mice. Furthermore, the loss of mitochondrial cristae of GCs and the down-regulation of mitofilin, the core protein maintaining mitochondrial homeostasis, were observed in diabetic mice. Long-term treatment with 5-HT4R agonist in diabetic mice not only prevented bacterial penetration of the whole colonic mucosa but also promoted mucin production and MUC2 expression. Markedly, 5-HT4R agonist also restored the mitochondrial cristae of GCs and up-regulated mitofilin. However, co-administration of 5-HT4R antagonist abolished the effects of 5-HT4R agonist on diabetic mice. These findings indicate that 5-HT4R in colonic mucosa is an effective target for the treatment of diabetes-induced colonic mucous barrier dysfunction.
Collapse
Affiliation(s)
- Changhao Han
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Qinghua Geng
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Jingjing Qin
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Yulin Li
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Huarong Yu
- Department of Physiology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
31
|
Warnsmann V, Marschall LM, Meeßen AC, Wolters M, Schürmanns L, Basoglu M, Eimer S, Osiewacz HD. Disruption of the MICOS complex leads to an aberrant cristae structure and an unexpected, pronounced lifespan extension in Podospora anserina. J Cell Biochem 2022; 123:1306-1326. [PMID: 35616269 DOI: 10.1002/jcb.30278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/11/2022]
Abstract
Mitochondria are dynamic eukaryotic organelles involved in a variety of essential cellular processes including the generation of adenosine triphosphate (ATP) and reactive oxygen species as well as in the control of apoptosis and autophagy. Impairments of mitochondrial functions lead to aging and disease. Previous work with the ascomycete Podospora anserina demonstrated that mitochondrial morphotype as well as mitochondrial ultrastructure change during aging. The latter goes along with an age-dependent reorganization of the inner mitochondrial membrane leading to a change from lamellar cristae to vesicular structures. Particularly from studies with yeast, it is known that besides the F1 Fo -ATP-synthase and the phospholipid cardiolipin also the "mitochondrial contact site and cristae organizing system" (MICOS) complex, existing of the Mic60- and Mic10-subcomplex, is essential for proper cristae formation. In the present study, we aimed to understand the mechanistic basis of age-related changes in the mitochondrial ultrastructure. We observed that MICOS subunits are coregulated at the posttranscriptional level. This regulation partially depends on the mitochondrial iAAA-protease PaIAP. Most surprisingly, we made the counterintuitive observation that, despite the loss of lamellar cristae and of mitochondrial impairments, the ablation of MICOS subunits (except for PaMIC12) leads to a pronounced lifespan extension. Moreover, simultaneous ablation of subunits of both MICOS subcomplexes synergistically increases lifespan, providing formal genetic evidence that both subcomplexes affect lifespan by different and at least partially independent pathways. At the molecular level, we found that ablation of Mic10-subcomplex components leads to a mitohormesis-induced lifespan extension, while lifespan extension of Mic60-subcomplex mutants seems to be controlled by pathways involved in the control of phospholipid homeostasis. Overall, our data demonstrate that both MICOS subcomplexes have different functions and play distinct roles in the aging process of P. anserina.
Collapse
Affiliation(s)
- Verena Warnsmann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Lisa-Marie Marschall
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Anja C Meeßen
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Maike Wolters
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Lea Schürmanns
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Marion Basoglu
- Institute for Cell Biology and Neuroscience, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Stefan Eimer
- Institute for Cell Biology and Neuroscience, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| |
Collapse
|
32
|
Medlock AE, Hixon JC, Bhuiyan T, Cobine PA. Prime Real Estate: Metals, Cofactors and MICOS. Front Cell Dev Biol 2022; 10:892325. [PMID: 35669513 PMCID: PMC9163361 DOI: 10.3389/fcell.2022.892325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 12/23/2022] Open
Abstract
Metals are key elements for the survival and normal development of humans but can also be toxic to cells when mishandled. In fact, even mild disruption of metal homeostasis causes a wide array of disorders. Many of the metals essential to normal physiology are required in mitochondria for enzymatic activities and for the formation of essential cofactors. Copper is required as a cofactor in the terminal electron transport chain complex cytochrome c oxidase, iron is required for the for the formation of iron-sulfur (Fe-S) clusters and heme, manganese is required for the prevention of oxidative stress production, and these are only a few examples of the critical roles that mitochondrial metals play. Even though the targets of these metals are known, we are still identifying transporters, investigating the roles of known transporters, and defining regulators of the transport process. Mitochondria are dynamic organelles whose content, structure and localization within the cell vary in different tissues and organisms. Our knowledge of the impact that alterations in mitochondrial physiology have on metal content and utilization in these organelles is very limited. The rates of fission and fusion, the ultrastructure of the organelle, and rates of mitophagy can all affect metal homeostasis and cofactor assembly. This review will focus of the emerging areas of overlap between metal homeostasis, cofactor assembly and the mitochondrial contact site and cristae organizing system (MICOS) that mediates multiple aspects of mitochondrial physiology. Importantly the MICOS complexes may allow for localization and organization of complexes not only involved in cristae formation and contact between the inner and outer mitochondrial membranes but also acts as hub for metal-related proteins to work in concert in cofactor assembly and homeostasis.
Collapse
Affiliation(s)
- Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| | - J. Catrice Hixon
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
- *Correspondence: Paul A. Cobine,
| |
Collapse
|
33
|
Mechanical instability generated by Myosin 19 contributes to mitochondria cristae architecture and OXPHOS. Nat Commun 2022; 13:2673. [PMID: 35562374 PMCID: PMC9106661 DOI: 10.1038/s41467-022-30431-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2022] [Indexed: 01/02/2023] Open
Abstract
The folded mitochondria inner membrane-cristae is the structural foundation for oxidative phosphorylation (OXPHOS) and energy production. By mechanically simulating mitochondria morphogenesis, we speculate that efficient sculpting of the cristae is organelle non-autonomous. It has long been inferred that folding requires buckling in living systems. However, the tethering force for cristae formation and regulation has not been identified. Combining electron tomography, proteomics strategies, super resolution live cell imaging and mathematical modeling, we reveal that the mitochondria localized actin motor-myosin 19 (Myo19) is critical for maintaining cristae structure, by associating with the SAM-MICOS super complex. We discover that depletion of Myo19 or disruption of its motor activity leads to altered mitochondria membrane potential and decreased OXPHOS. We propose that Myo19 may act as a mechanical tether for effective ridging of the mitochondria cristae, thus sustaining the energy homeostasis essential for various cellular functions. The structure of the mitochondrial inner membrane, or cristae, is important for functional oxidative phosphorylation and energy production. Here, the authors show that loss of myosin 19 impairs cristae structure as well as energy production, connecting motor activity to membrane potential.
Collapse
|
34
|
Ma M, Liang SC, Diao KY, Wang Q, He Y. Mitofilin Mitigates Myocardial Damage in Acute Myocardial Infarction by Regulating Pyroptosis of Cardiomyocytes. Front Cardiovasc Med 2022; 9:823591. [PMID: 35586659 PMCID: PMC9108246 DOI: 10.3389/fcvm.2022.823591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Acute myocardial infarction (AMI) can lead to sudden cardiac death after prolonged ischemia or heart failure (HF) and impaired left ventricular pump function. However, the underlying mechanism remains largely unknown. The purpose of this study was to investigate the role of mitofilin in alleviating AMI. Methods Recombinant adenoviral vectors for mitofilin overexpression or mitofilin knockdown were constructed, respectively. A mouse AMI model was established and the effect of mitofilin on myocardial pyroptosis was examined by detecting the lactate dehydrogenase (LDH) level and inflammatory factors. Moreover, a cellular model of AMI was established by treating cardiomyocytes with hypoxia/reoxygenation (H/R). An enzyme-linked immunosorbent assay (ELISA) and a western blot analysis were used to detect the effect of mitofilin knockdown on the expression of pyroptosis-related factors. Furthermore, the regulatory role of mitofilin in PI3K/AKT pathway was evaluated by the western blot and PI3K inhibitor. Results Mitofilin was downregulated in the heart tissue of the AMI mice and H/R induced cardiomyocytes. The overexpression of mitofilin significantly alleviated AMI and reduced pyroptosis-related factors. Meanwhile, in cardiomyocytes, mitofilin knockdown aggravated cellular damages by promoting pyroptosis. Further analysis showed that the anti-pyroptotic effect of mitofilin was dependent on the activation of the PI3K/AKT signaling pathway. Conclusions Our study suggests that mitofilin regulates pyroptosis through the PI3K/AKT signaling pathway in cardiomyocytes to ameliorate AMI, which may serve as a therapeutic strategy for the management of AMI.
Collapse
Affiliation(s)
- Min Ma
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Cardiology, The Sixth People's Hospital of Chengdu, Chengdu, China
| | - Shi-chu Liang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Kai-yue Diao
- Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Wang
- Department of Cardiology, The Sixth People's Hospital of Chengdu, Chengdu, China
| | - Yong He
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Zhou J, Duan M, Wang X, Zhang F, Zhou H, Ma T, Yin Q, Zhang J, Tian F, Wang G, Yang C. A feedback loop engaging propionate catabolism intermediates controls mitochondrial morphology. Nat Cell Biol 2022; 24:526-537. [PMID: 35418624 DOI: 10.1038/s41556-022-00883-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
D-2-Hydroxyglutarate (D-2HG) is an α-ketoglutarate-derived mitochondrial metabolite that causes D-2-hydroxyglutaric aciduria, a devastating developmental disorder. How D-2HG adversely affects mitochondria is largely unknown. Here, we report that in Caenorhabditis elegans, loss of the D-2HG dehydrogenase DHGD-1 causes D-2HG accumulation and mitochondrial damage. The excess D-2HG leads to a build-up of 3-hydroxypropionate (3-HP), a toxic metabolite in mitochondrial propionate oxidation, by inhibiting the 3-HP dehydrogenase HPHD-1. We demonstrate that 3-HP binds the MICOS subunit MIC60 (encoded by immt-1) and inhibits its membrane-binding and membrane-shaping activities. We further reveal that dietary and gut bacteria affect mitochondrial health by modulating the host production of 3-HP. These findings identify a feedback loop that links the toxic effects of D-2HG and 3-HP on mitochondria, thus providing important mechanistic insights into human diseases related to D-2HG and 3-HP.
Collapse
Affiliation(s)
- Junxiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Duan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Xin Wang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hejiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Tengfei Ma
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiuyuan Yin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jie Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fei Tian
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
36
|
Yang Z, Wang L, Yang C, Pu S, Guo Z, Wu Q, Zhou Z, Zhao H. Mitochondrial Membrane Remodeling. Front Bioeng Biotechnol 2022; 9:786806. [PMID: 35059386 PMCID: PMC8763711 DOI: 10.3389/fbioe.2021.786806] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key regulators of many important cellular processes and their dysfunction has been implicated in a large number of human disorders. Importantly, mitochondrial function is tightly linked to their ultrastructure, which possesses an intricate membrane architecture defining specific submitochondrial compartments. In particular, the mitochondrial inner membrane is highly folded into membrane invaginations that are essential for oxidative phosphorylation. Furthermore, mitochondrial membranes are highly dynamic and undergo constant membrane remodeling during mitochondrial fusion and fission. It has remained enigmatic how these membrane curvatures are generated and maintained, and specific factors involved in these processes are largely unknown. This review focuses on the current understanding of the molecular mechanism of mitochondrial membrane architectural organization and factors critical for mitochondrial morphogenesis, as well as their functional link to human diseases.
Collapse
Affiliation(s)
- Ziyun Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, High-Tech Development Zone, Chengdu, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China.,Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Abstract
Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.
Collapse
Affiliation(s)
- Till Klecker
- Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | |
Collapse
|
38
|
Guerrero‐Castillo S, van Strien J, Brandt U, Arnold S. Ablation of mitochondrial DNA results in widespread remodeling of the mitochondrial complexome. EMBO J 2021; 40:e108648. [PMID: 34542926 PMCID: PMC8561636 DOI: 10.15252/embj.2021108648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.
Collapse
Affiliation(s)
- Sergio Guerrero‐Castillo
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- University Children's Research@Kinder‐UKEUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Joeri van Strien
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Center for Molecular and Biomolecular InformaticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Susanne Arnold
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
39
|
Shvetsova A, Masud AJ, Schneider L, Bergmann U, Monteuuis G, Miinalainen IJ, Hiltunen JK, Kastaniotis AJ. A hunt for OM45 synthetic petite interactions in Saccharomyces cerevisiae reveals a role for Miro GTPase Gem1p in cristae structure maintenance. Microbiologyopen 2021; 10:e1238. [PMID: 34713605 PMCID: PMC8501180 DOI: 10.1002/mbo3.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Om45 is a major protein of the yeast's outer mitochondrial membrane under respiratory conditions. However, the cellular role of the protein has remained obscure. Previously, deletion mutant phenotypes have not been found, and clear amino acid sequence similarities that would allow inferring its functional role are not available. In this work, we describe synthetic petite mutants of GEM1 and UGO1 that depend on the presence of OM45 for respiratory growth, as well as the identification of several multicopy suppressors of the synthetic petite phenotypes. In the analysis of our mutants, we demonstrate that Om45p and Gem1p have a collaborative role in the maintenance of mitochondrial morphology, cristae structure, and mitochondrial DNA maintenance. A group of multicopy suppressors rescuing the synthetic lethal phenotypes of the mutants on non-fermentable carbon sources additionally supports this result. Our results imply that the synthetic petite phenotypes we observed are due to the disturbance of the inner mitochondrial membrane and point to this mitochondrial sub-compartment as the main target of action of Om45p, Ugo1p, and the yeast Miro GTPase Gem1p.
Collapse
Affiliation(s)
- Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Ali J. Masud
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Laura Schneider
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
- Present address:
Department of Biochemistry and Developmental BiologyUniversity of HelsinkiHelsinkiFinland
| | - Ilkka J. Miinalainen
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - J. Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | | |
Collapse
|
40
|
Zhao F, Zou MH. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Front Cardiovasc Med 2021; 8:749756. [PMID: 34651031 PMCID: PMC8505727 DOI: 10.3389/fcvm.2021.749756] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles for cellular energy production, metabolic homeostasis, calcium homeostasis, cell proliferation, and apoptosis. About 99% of mammalian mitochondrial proteins are encoded by the nuclear genome, synthesized as precursors in the cytosol, and imported into mitochondria by mitochondrial protein import machinery. Mitochondrial protein import systems function not only as independent units for protein translocation, but also are deeply integrated into a functional network of mitochondrial bioenergetics, protein quality control, mitochondrial dynamics and morphology, and interaction with other organelles. Mitochondrial protein import deficiency is linked to various diseases, including cardiovascular disease. In this review, we describe an emerging class of protein or genetic variations of components of the mitochondrial import machinery involved in heart disease. The major protein import pathways, including the presequence pathway (TIM23 pathway), the carrier pathway (TIM22 pathway), and the mitochondrial intermembrane space import and assembly machinery, related translocases, proteinases, and chaperones, are discussed here. This review highlights the importance of mitochondrial import machinery in heart disease, which deserves considerable attention, and further studies are urgently needed. Ultimately, this knowledge may be critical for the development of therapeutic strategies in heart disease.
Collapse
Affiliation(s)
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
41
|
Almendro-Vedia V, Natale P, Valdivieso González D, Lillo MP, Aragones JL, López-Montero I. How rotating ATP synthases can modulate membrane structure. Arch Biochem Biophys 2021; 708:108939. [PMID: 34052190 DOI: 10.1016/j.abb.2021.108939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023]
Abstract
F1Fo-ATP synthase (ATP synthase) is a central membrane protein that synthetizes most of the ATP in the cell through a rotational movement driven by a proton gradient across the hosting membrane. In mitochondria, ATP synthases can form dimers through specific interactions between some subunits of the protein. The dimeric form of ATP synthase provides the protein with a spontaneous curvature that sustain their arrangement at the rim of the high-curvature edges of mitochondrial membrane (cristae). Also, a direct interaction with cardiolipin, a lipid present in the inner mitochondrial membrane, induces the dimerization of ATP synthase molecules along cristae. The deletion of those biochemical interactions abolishes the protein dimerization producing an altered mitochondrial function and morphology. Mechanically, membrane bending is one of the key deformation modes by which mitochondrial membranes can be shaped. In particular, bending rigidity and spontaneous curvature are important physical factors for membrane remodelling. Here, we discuss a complementary mechanism whereby the rotatory movement of the ATP synthase might modify the mechanical properties of lipid bilayers and contribute to the formation and regulation of the membrane invaginations.
Collapse
Affiliation(s)
- Víctor Almendro-Vedia
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - Paolo Natale
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - David Valdivieso González
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain
| | - M Pilar Lillo
- Departamento Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Serrano 119, 28006, Madrid, Spain
| | - Juan L Aragones
- Departamento de Física Teórica de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Centre (IFIMAC), Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041, Madrid, Spain.
| |
Collapse
|
42
|
Mitochondrial contact site and cristae organizing system (MICOS) machinery supports heme biosynthesis by enabling optimal performance of ferrochelatase. Redox Biol 2021; 46:102125. [PMID: 34517185 PMCID: PMC8441213 DOI: 10.1016/j.redox.2021.102125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023] Open
Abstract
Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied and its biosynthetic enzymes structurally characterized to varying extents. Nevertheless, understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Therefore, we investigated the molecular organization as well as the physical and genetic interactions of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and genetic analyses revealed dynamic association of Hem15 with Mic60, a core component of the mitochondrial contact site and cristae organizing system (MICOS). Loss of MICOS negatively impacts Hem15 activity, affects the size of the Hem15 high-mass complex, and results in accumulation of reactive and potentially toxic tetrapyrrole precursors that may cause oxidative damage. Restoring intermembrane connectivity in MICOS-deficient cells mitigates these cytotoxic effects. These data provide new insights into how heme biosynthetic machinery is organized and regulated, linking mitochondrial architecture-organizing factors to heme homeostasis.
Collapse
|
43
|
Zinsmaier KE. Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases 2021; 12:372-398. [PMID: 33183150 PMCID: PMC8583064 DOI: 10.1080/21541248.2020.1843957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Konrad E. Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
44
|
Bock T, Türk C, Aravamudhan S, Keufgens L, Bloch W, Rozsivalova DH, Romanello V, Nogara L, Blaauw B, Trifunovic A, Braun T, Krüger M. PERM1 interacts with the MICOS-MIB complex to connect the mitochondria and sarcolemma via ankyrin B. Nat Commun 2021; 12:4900. [PMID: 34385433 PMCID: PMC8361071 DOI: 10.1038/s41467-021-25185-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria subpopulations have distinct metabolic activity and sensitivity, though the mechanisms that localize SSM to peripheral areas of muscle fibers are poorly understood. A protein interaction study and complexome profiling identifies PERM1 interacts with the MICOS-MIB complex. Ablation of Perm1 in mice reduces muscle force, decreases mitochondrial membrane potential and complex I activity, and reduces the numbers of SSM in skeletal muscle. We demonstrate PERM1 interacts with the intracellular adaptor protein ankyrin B (ANKB) that connects the cytoskeleton to the plasma membrane. Moreover, we identify a C-terminal transmembrane helix that anchors PERM1 into the outer mitochondrial membrane. We conclude PERM1 functions in the MICOS-MIB complex and acts as an adapter to connect the mitochondria with the sarcolemma via ANKB.
Collapse
Affiliation(s)
- Theresa Bock
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Clara Türk
- BASF SE, Metabolomics and Proteomics, Ludwigshafen am Rhein, Germany
| | | | - Lena Keufgens
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Sport Medicine and Cardiovascular Research, German Sport University Cologne, Cologne, Germany
| | - Dieu Hien Rozsivalova
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Vanina Romanello
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, Padova, Italy
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, Padova, Italy
| | - Aleksandra Trifunovic
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
45
|
Mitochondrial DNA in innate immune responses against infectious diseases. Biochem Soc Trans 2021; 48:2823-2838. [PMID: 33155647 DOI: 10.1042/bst20200687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Mitochondrial DNA (mtDNA) can initiate an innate immune response when mislocalized in a compartment other than the mitochondrial matrix. mtDNA plays significant roles in regulating mitochondrial dynamics as well as mitochondrial unfolded protein response (UPR). The mislocalized extra-mtDNA can elicit innate immune response via cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway, inducing the expression of the interferon-stimulated genes (ISGs). Also, cytosolic damaged mtDNA is cleared up by various pathways which are responsible for participating in the activation of inflammatory responses. Four pathways of extra-mitochondrial mtDNA clearance are highlighted in this review - the inflammasome activation mechanism, neutrophil extracellular traps formation, recognition by Toll-like receptor 9 and transfer of mtDNA between cells packaged into extracellular vesicles. Anomalies in these pathways are associated with various diseases. We posit our review in the present pandemic situation and discuss how mtDNA elicits innate immune responses against different viruses and bacteria. This review gives a comprehensive picture of the role of extra-mitochondrial mtDNA in infectious diseases and speculates that research towards its understanding would help establish its therapeutic potential.
Collapse
|
46
|
Dudek J, Kutschka I, Maack C. Metabolic and Redox Regulation of Cardiovascular Stem Cell Biology and Pathology. Antioxid Redox Signal 2021; 35:163-181. [PMID: 33121253 DOI: 10.1089/ars.2020.8201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Cardiovascular stem cells are important for regeneration and repair of damaged tissue. Recent Advances: Pluripotent stem cells have a unique metabolism, which is adopted for their energetic and biosynthetic demand as rapidly proliferating cells. Stem cell differentiation requires an exceptional metabolic flexibility allowing for metabolic remodeling between glycolysis and oxidative phosphorylation. Critical Issues: Respiration is associated with the generation of reactive oxygen species (ROS) by the mitochondrial respiratory chain. But also the membrane-bound protein nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase, NOX) contributes to ROS levels. ROS not only play a significant role in stem cell differentiation and tissue renewal but also cause senescence and contribute to tissue aging. Future Directions: For utilization of stem cells in therapeutic approaches, a deep understanding of the molecular mechanisms how metabolism and the cellular redox state regulate stem cell differentiation is required. Modulating the redox state of stem cells using antioxidative agents may be suitable to enhance activity of endothelial progenitor cells. Antioxid. Redox Signal. 35, 163-181.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Ilona Kutschka
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
47
|
Mukherjee I, Ghosh M, Meinecke M. MICOS and the mitochondrial inner membrane morphology - when things get out of shape. FEBS Lett 2021; 595:1159-1183. [PMID: 33837538 DOI: 10.1002/1873-3468.14089] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
Mitochondria play a key role in cellular signalling, metabolism and energetics. Proper architecture and remodelling of the inner mitochondrial membrane are essential for efficient respiration, apoptosis and quality control in the cell. Several protein complexes including mitochondrial contact site and cristae organizing system (MICOS), F1 FO -ATP synthase, and Optic Atrophy 1 (OPA1), facilitate formation, maintenance and stability of cristae membranes. MICOS, the F1 FO -ATP synthase, OPA1 and inner membrane phospholipids such as cardiolipin and phosphatidylethanolamine interact with each other to organize the inner membrane ultra-structure and remodel cristae in response to the cell's demands. Functional alterations in these proteins or in the biosynthesis pathway of cardiolipin and phosphatidylethanolamine result in an aberrant inner membrane architecture and impair mitochondrial function. Mitochondrial dysfunction and abnormalities hallmark several human conditions and diseases including neurodegeneration, cardiomyopathies and diabetes mellitus. Yet, they have long been regarded as secondary pathological effects. This review discusses emerging evidence of a direct relationship between protein- and lipid-dependent regulation of the inner mitochondrial membrane morphology and diseases such as fatal encephalopathy, Leigh syndrome, Parkinson's disease, and cancer.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.,Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, Göttingen, Germany
| |
Collapse
|
48
|
Urbach J, Kondadi AK, David C, Naha R, Deinert K, Reichert AS, Anand R. Conserved GxxxG and WN motifs of MIC13 are essential for bridging two MICOS subcomplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183683. [PMID: 34271005 DOI: 10.1016/j.bbamem.2021.183683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 10/20/2022]
Abstract
Mitochondrial ultrastructure is highly adaptable and undergoes dynamic changes upon physiological and energetic cues. MICOS (mitochondrial contact site and cristae organizing system), a large oligomeric protein complex, maintains mitochondrial ultrastructure as it is required for formation of crista junctions (CJs) and contact sites. MIC13 acts as a critical bridge between two MICOS subcomplexes. Deletion of MIC13 causes loss of CJs resulting in cristae accumulating as concentric rings and specific destabilization of the MIC10-subcomplex. Mutations in MIC13 are associated with infantile lethal mitochondrial hepato-encephalopathy, yet functional regions within MIC13 were not known. To identify and characterize such regions, we systemically generated 20 amino-acids deletion variants across the length of MIC13. While deletion of many of these regions of MIC13 is dispensable for its stability, the N-terminal region and a stretch between amino acid residues 84 and 103 are necessary for the stability and functionality of MIC13. We could further locate conserved motifs within these regions and found that a GxxxG motif in the N-terminal transmembrane segment and an internal WN motif are essential for stability of MIC13, formation of the MIC10-subcomplex, interaction with MIC10- and MIC60-subcomplexes and maintenance of cristae morphology. The GxxxG motif is required for membrane insertion of MIC13. Overall, we systematically found important conserved residues of MIC13 that are required to perform the bridging between the two MICOS subcomplexes. The study improves our understanding of the basic molecular function of MIC13 and has implications for its role in the pathogenesis of a severe mitochondrial disease.
Collapse
Affiliation(s)
- Jennifer Urbach
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Céline David
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Ritam Naha
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Kim Deinert
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
49
|
High-resolution imaging reveals compartmentalization of mitochondrial protein synthesis in cultured human cells. Proc Natl Acad Sci U S A 2021; 118:2008778118. [PMID: 33526660 PMCID: PMC8017971 DOI: 10.1073/pnas.2008778118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mitochondria from various species, the OXPHOS complexes reside mainly in the invaginated cristae membranes, as opposed to the inner boundary membrane (IBM) that parallels the mitochondrial outer membrane. However, the IBM contains dynamic contact sites enriched for translocases that import proteins from the cytosol. As the majority of OXPHOS components are imported and need to be integrated in assembly with the mtDNA-encoded components, where does intramitochondrial translation occur? Here we report: 1) a method for visualizing protein synthesis in human mitochondria at super resolution; 2) that synthesis is enriched at cristae membranes, in preference to the IBM; and 3) that sites of translation are spatially separated from RNA granules where RNA processing, maturation, and mitoribosomal assembly occur. Human mitochondria contain their own genome, mitochondrial DNA, that is expressed in the mitochondrial matrix. This genome encodes 13 vital polypeptides that are components of the multisubunit complexes that couple oxidative phosphorylation (OXPHOS). The inner mitochondrial membrane that houses these complexes comprises the inner boundary membrane that runs parallel to the outer membrane, infoldings that form the cristae membranes, and the cristae junctions that separate the two. It is in these cristae membranes that the OXPHOS complexes have been shown to reside in various species. The majority of the OXPHOS subunits are nuclear-encoded and must therefore be imported from the cytosol through the outer membrane at contact sites with the inner boundary membrane. As the mitochondrially encoded components are also integral members of these complexes, where does protein synthesis occur? As transcription, mRNA processing, maturation, and at least part of the mitoribosome assembly process occur at the nucleoid and the spatially juxtaposed mitochondrial RNA granules, is protein synthesis also performed at the RNA granules close to these entities, or does it occur distal to these sites? We have adapted a click chemistry-based method coupled with stimulated emission depletion nanoscopy to address these questions. We report that, in human cells in culture, within the limits of our methodology, the majority of mitochondrial protein synthesis is detected at the cristae membranes and is spatially separated from the sites of RNA processing and maturation.
Collapse
|
50
|
Jansen RLM, Santana-Molina C, van den Noort M, Devos DP, van der Klei IJ. Comparative Genomics of Peroxisome Biogenesis Proteins: Making Sense of the PEX Proteins. Front Cell Dev Biol 2021; 9:654163. [PMID: 34095119 PMCID: PMC8172628 DOI: 10.3389/fcell.2021.654163] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
PEX genes encode proteins involved in peroxisome biogenesis and proliferation. Using a comparative genomics approach, we clarify the evolutionary relationships between the 37 known PEX proteins in a representative set of eukaryotes, including all common model organisms, pathogenic unicellular eukaryotes and human. A large number of previously unknown PEX orthologs were identified. We analyzed all PEX proteins, their conservation and domain architecture and defined the core set of PEX proteins that is required to make a peroxisome. The molecular processes in peroxisome biogenesis in different organisms were put into context, showing that peroxisomes are not static organelles in eukaryotic evolution. Organisms that lack peroxisomes still contain a few PEX proteins, which probably play a role in alternative processes. Finally, the relationships between PEX proteins of two large families, the Pex11 and Pex23 families, were analyzed, thereby contributing to the understanding of their complicated and sometimes incorrect nomenclature. We provide an exhaustive overview of this important eukaryotic organelle.
Collapse
Affiliation(s)
- Renate L M Jansen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Carlos Santana-Molina
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Marco van den Noort
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|