1
|
Quintana TA, Brewer MT, Chelladurai JRJ. Transcriptional responses to in vitro macrocyclic lactone exposure in Toxocara canis larvae using RNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629602. [PMID: 39763735 PMCID: PMC11702694 DOI: 10.1101/2024.12.20.629602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Toxocara canis, the causative agent of zoonotic toxocariasis in humans, is a parasitic roundworm of canids with a complex lifecycle. While macrocyclic lactones (MLs) are successful at treating adult T. canis infections when used at FDA-approved doses in dogs, they fail to kill somatic third-stage larvae. In this study, we profiled the transcriptome of third-stage larvae derived from larvated eggs and treated in vitro with 10 μM of the MLs - ivermectin and moxidectin with Illumina sequencing. We analyzed transcriptional changes in comparison with untreated control larvae. In ivermectin-treated larvae, we identified 608 differentially expressed genes (DEGs), of which 453 were upregulated and 155 were downregulated. In moxidectin-treated larvae, we identified 1,413 DEGs, of which 902 were upregulated and 511 were downregulated. Notably, many DEGs were involved in critical biological processes and pathways including transcriptional regulation, energy metabolism, neuronal structure and function, physiological processes such as reproduction, excretory/secretory molecule production, host-parasite response mechanisms, and parasite elimination. We also assessed the expression of known ML targets and transporters, including glutamate-gated chloride channels (GluCls), and ATP-binding cassette (ABC) transporters, subfamily B, with a particular focus on P-glycoproteins (P-gps). We present gene names for previously uncharacterized T. canis GluCl genes using phylogenetic analysis of nematode orthologs to provide uniform gene nomenclature. Our study revealed that the expression of Tca-glc-3 and six ABCB genes, particularly four P-gps, were significantly altered in response to ML treatment. Compared to controls, Tca-glc-3, Tca-Pgp-11.2, and Tca-Pgp-13.2 were downregulated in ivermectin-treated larvae, while Tca-abcb1, Tca-abcb7, Tca-Pgp-11.2, and Tca-Pgp-13.2 were downregulated in moxidectin-treated larvae. Conversely, Tca-abcb9.1 and Tca-Pgp-11.3 were upregulated in moxidectin-treated larvae. These findings suggest that MLs broadly impact transcriptional regulation in T. canis larvae.
Collapse
Affiliation(s)
- Theresa A Quintana
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| | - Matthew T Brewer
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA
| | - Jeba R Jesudoss Chelladurai
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL
| |
Collapse
|
2
|
Batra R, Krumsiek J, Wang X, Allen M, Blach C, Kastenmüller G, Arnold M, Ertekin-Taner N, Kaddurah-Daouk R. Comparative brain metabolomics reveals shared and distinct metabolic alterations in Alzheimer's disease and progressive supranuclear palsy. Alzheimers Dement 2024; 20:8294-8307. [PMID: 39439201 DOI: 10.1002/alz.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Metabolic dysregulation is a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). Although metabolic dysregulation is a common link between these two tauopathies, a comprehensive brain metabolic comparison of the diseases has not yet been performed. METHODS We analyzed 342 postmortem brain samples from the Mayo Clinic Brain Bank and examined 658 metabolites in the cerebellar cortex and the temporal cortex between the two tauopathies. RESULTS Our findings indicate that both diseases display oxidative stress associated with lipid metabolism, mitochondrial dysfunction linked to lysine metabolism, and an indication of tau-induced polyamine stress response. However, specific to AD, we detected glutathione-related neuroinflammation, deregulations of enzymes tied to purines, and cognitive deficits associated with vitamin B. DISCUSSION Our findings underscore vast alterations in the brain's metabolome, illuminating shared neurodegenerative pathways and disease-specific traits in AD and PSP. HIGHLIGHTS First high-throughput metabolic comparison of Alzheimer's diesease (AD) versus progressive supranuclear palsy (PSP) in brain tissue. Cerebellar cortex (CER) shows substantial AD-related metabolic changes, despite limited proteinopathy. AD impacts both CER and temporal cortex (TCX); PSP's changes are primarily in CER. AD and PSP share metabolic alterations despite major pathological differences.
Collapse
Affiliation(s)
- Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Lu J, Qin H, Liang L, Fang J, Hao K, Song Y, Sun T, Hui G, Xie Y, Zhao Y. Yam protein ameliorates cyclophosphamide-induced intestinal immunosuppression by regulating gut microbiota and its metabolites. Int J Biol Macromol 2024; 279:135415. [PMID: 39245119 DOI: 10.1016/j.ijbiomac.2024.135415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Yam is a dual-purpose crop used in both medicine and food that is commonly used as a dietary supplement in food processing. Since yam proteins are often lost during the production of yam starch, elucidating the functionally active value of yam proteins is an important guideline for fully utilizing yam in industrial production processes. This study aimed to explore the potential protective effect of yam protein (YP) on cyclophosphamide (CTX)-induced immunosuppression in mice. The results showed that YP can reduce immune damage caused by CTX by reversing immunoglobulins (IgA, IgG and IgM), cytokines (TNF-α, IL-6, etc.) in the intestines of mice. Moreover, YPs were found to prevent CTX-induced microbiota dysbiosis by enhancing the levels of beneficial bacteria within the microbiome, such as Lactobacillus, and lowering those of Desulfovibrio_R and Helicobacter_A. Metabolomics analyses showed that YP significantly altered differential metabolites (tryptophan, etc.) and metabolic pathways (ABC transporter protein, etc.) associated with immune responses in the gut. Furthermore, important connections were noted between particular microbiomes and metabolites, shedding light on the immunoprotective effects of YPs by regulating gut flora and metabolism. These findings deepen our understanding of the functional properties of YPs and lay a solid foundation for the utilization of yam.
Collapse
Affiliation(s)
- Jiahong Lu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Huacong Qin
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Lili Liang
- Obstetrics and Gynecology Diagnosis and Treatment Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130031, China
| | - Jiaqi Fang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Kaiwen Hao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuting Song
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianxia Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ge Hui
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
4
|
Lian J, Xia L, Wang G, Wu W, Yi P, Li M, Su X, Chen Y, Li X, Dou F, Wang Z. Multi-omics evaluation of clinical-grade human umbilical cord-derived mesenchymal stem cells in synergistic improvement of aging related disorders in a senescence-accelerated mouse model. Stem Cell Res Ther 2024; 15:383. [PMID: 39468666 PMCID: PMC11520580 DOI: 10.1186/s13287-024-03986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The prevalence of age-related disorders, particularly in neurological and cardiovascular systems, is an increasing global health concern. Mesenchymal stem cell (MSC) therapy, particularly using human umbilical cord-derived MSCs (HUCMSCs), has shown promise in mitigating these disorders. This study investigates the effects of HUCMSCs on aging-related conditions in a senescence-accelerated mouse model (SAMP8), with a focus on DNA damage, gut microbiota alterations, and metabolic changes. METHODS SAMP8 mice were treated with clinical-grade HUCMSCs via intraperitoneal injections. Behavioral and physical assessments were conducted to evaluate cognitive and motor functions. The Single-Strand Break Mapping at Nucleotide Genome Level (SSiNGLe) method was employed to assess DNA single-strand breaks (SSBs) across the genome, with particular attention to exonic regions and transcription start sites. Gut microbiota composition was analyzed using 16S rRNA sequencing, and carboxyl metabolomic profiling was performed to identify changes in circulating metabolites. RESULTS HUCMSC treatment significantly improved motor coordination and reduced anxiety in SAMP8 mice. SSiNGLe analysis revealed a notable reduction in DNA SSBs in MSC-treated mice, especially in critical genomic regions, suggesting that HUCMSCs may mitigate age-related DNA damage. The functional annotation of the DNA breaktome indicated a potential link between reduced DNA damage and altered metabolic pathways. Additionally, beneficial alterations in gut microbiota were observed, including an increase in short-chain fatty acid (SCFA)-producing bacteria, which correlated with improved metabolic profiles. CONCLUSION The administration of HUCMSCs in SAMP8 mice not only reduces DNA damage but also induces favorable changes in gut microbiota and metabolism. The observed alterations in DNA break patterns, along with specific changes in microbiota and metabolic profiles, suggest that these could serve as potential biomarkers for evaluating the efficacy of HUCMSCs in treating age-related disorders. This highlights a promising avenue for the development of new therapeutic strategies that leverage these biomarkers, to enhance the effectiveness of HUCMSC-based treatments for aging-associated diseases.
Collapse
Affiliation(s)
- Jiabian Lian
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Lu Xia
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Guohao Wang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Weijing Wu
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Ping Yi
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Meilin Li
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Xufeng Su
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Yushuo Chen
- Laboratory of Nutrition and Food Safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Xun Li
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Zhanxiang Wang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
5
|
Chu Z, Hu Z, Yang F, Zhou Y, Tang Y, Luo F. Didymin Ameliorates Dextran Sulfate Sodium (DSS)-Induced Ulcerative Colitis by Regulating Gut Microbiota and Amino Acid Metabolism in Mice. Metabolites 2024; 14:547. [PMID: 39452928 PMCID: PMC11509612 DOI: 10.3390/metabo14100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Didymin is a dietary flavonoid derived from citrus fruits and has been shown to have extensive biological functions, especially anti-inflammatory effects, but its mechanism is unclear. The purpose of this study was to investigate the potential mechanism of didymin that alleviates ulcerative colitis. Methods and Results: Our results indicated that didymin could alleviate the symptoms of ulcerative colitis, as it inhibited the expressions of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Didymin also promoted the expressions of claudin-1 and zona occludens-1(ZO-1), which are closely related with restoring colon barrier function. Didymin also increased the abundance of Firmicutes and Verrucomicobiota, while decreasing the abundance of Bacteroidota and Proteobacteria. Meanwhile, didymin significantly altered the levels of metabolites related to arginine synthesis and metabolism, and lysine degradation in the colitis mice. Utilizing network pharmacology and molecular docking, our results showed that the metabolites L-ornithine and saccharin could interact with signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-B (NF-κB). In this in vitro study, L-ornithine could reduce the expressions of transcription factors STAT3 and NF-κB, and it also inhibited the expressions of IL-6 and IL-1β in the lipopolysaccharides (LPS) induced in RAW264.7 cells, while saccharin had the opposite effect. Conclusions: Taken together, didymin can regulate gut microbiota and alter metabolite products, which can modulate STAT3 and NF-κB pathways and inhibit the expressions of inflammatory factors and inflammatory response in the DSS-induced colitis mice.
Collapse
Affiliation(s)
| | | | | | | | | | - Feijun Luo
- Hunan Provincial Key Laboratory of Deeply Processing and Quality Control of Cereals and Oils, Hunan Provincial Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Process and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China; (Z.C.); (Z.H.); (F.Y.); (Y.Z.); (Y.T.)
| |
Collapse
|
6
|
Dong Z, Wang X, Wang P, Bai M, Wang T, Chu Y, Qin Y. Idiopathic Pulmonary Fibrosis Caused by Damaged Mitochondria and Imbalanced Protein Homeostasis in Alveolar Epithelial Type II Cell. Adv Biol (Weinh) 2024:e2400297. [PMID: 39390651 DOI: 10.1002/adbi.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/21/2024] [Indexed: 10/12/2024]
Abstract
Alveolar epithelial Type II (ATII) cells are closely associated with early events of Idiopathic pulmonary fibrosis (IPF). Proteostasis dysfunction, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction are known causes of decreased proliferation of alveolar epithelial cells and the secretion of pro-fibrotic mediators. Here, a large body of evidence is systematized and a cascade relationship between protein homeostasis, endoplasmic reticulum stress, mitochondrial dysfunction, and fibrotropic cytokines is proposed, providing a theoretical basis for ATII cells dysfunction as a possible pathophysiological initiating event for idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhaoxiong Dong
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
- Institute of Biophysics, Chinese Academy of Sciences 15 Datun Road, Chaoyang District, Beijing, 100101, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Xiaolong Wang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
| | - Peiwen Wang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Mingjian Bai
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100101, China
| | - Tianyu Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100101, China
| | - Yanhui Chu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yan Qin
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
- Institute of Biophysics, Chinese Academy of Sciences 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
7
|
Galis P, Bartosova L, Farkasova V, Bartekova M, Ferenczyova K, Rajtik T. Update on clinical and experimental management of diabetic cardiomyopathy: addressing current and future therapy. Front Endocrinol (Lausanne) 2024; 15:1451100. [PMID: 39140033 PMCID: PMC11319149 DOI: 10.3389/fendo.2024.1451100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2 diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the absence of any previous cardiovascular pathology in diabetic patients. Although it is still lacking an exact definition as it combines aspects of both pathologies - T2DM and heart failure, more evidence comes forward that declares DCM as one complex disease that should be treated separately. It is the ambiguous pathological phenotype, symptoms or biomarkers that makes DCM hard to diagnose and screen for its early onset. This re-view provides an updated look on the novel advances in DCM diagnosis and treatment in the experimental and clinical settings. Management of patients with DCM proposes a challenge by itself and we aim to help navigate and advice clinicians with early screening and pharmacotherapy of DCM.
Collapse
Affiliation(s)
- Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Kristina Ferenczyova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
8
|
Li Z, Jiang Y, Khan M, Xue B, Zhao X, Fu B, Li W, Danzeng B, Ni X, Shao Q, Ouyang Y. Dietary Energy and Protein Levels Influence the Mutton Quality and Metabolomic Profile of the Yunshang Black Goat. Foods 2024; 13:2271. [PMID: 39063355 PMCID: PMC11275359 DOI: 10.3390/foods13142271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to evaluate the impact of dietary energy and protein levels on the meat quality and metabolomic profile of Yunshang black goats. For this, 80 Yunshang black goats (male, 6 months old, with a mean live body weight of 35.82 ± 2.79 kg) were used in a completely randomized design with a 2 × 2 factorial dietary arrangement. The dietary treatments were (1) high energy (9.74 MJ/kg) with high protein (12.99%) (HEHP), (2) high energy (9.76 MJ/kg) with low protein (10.01%) (HELP), (3) low energy (8.18 MJ/kg) with high protein (13.04%) (LEHP), and (4) low energy (8.14 MJ/kg) with low protein (10.05%) (LELP). The experiment lasted 64 days, including 14 days for dietary adaptation and a 50-day feeding trial. At the end of the experiment, four animals from each treatment were slaughtered to assess their meat quality and metabolomic profiles. The pH value was greater for the goats fed the LELP diet compared with the other treatments. The LEHP-fed group's meat was brighter (L*) than that of the other three groups. The HEHP-fed group had considerably more tender meat (p < 0.05) compared with the LEHP-fed group. Moreover, 72 and 183 differentiated metabolites were detected in the longissimus muscle samples by using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, respectively. The hydropathy and volatilities of raw meat were different (p < 0.05), suggesting changes in the meat flavor because of the dietary treatments. Based on the results, it can be concluded that feeding a high-energy- and high-protein-containing diet improved the tenderness, flavor, and fatty acid contents of mutton.
Collapse
Affiliation(s)
- Zijian Li
- Yunnan Animal Sciences and Veterinary Institute, Kunming 650224, China; (Z.L.); (Y.J.); (M.K.); (X.Z.); (B.F.); (W.L.); (B.D.); (X.N.); (Q.S.)
| | - Yanting Jiang
- Yunnan Animal Sciences and Veterinary Institute, Kunming 650224, China; (Z.L.); (Y.J.); (M.K.); (X.Z.); (B.F.); (W.L.); (B.D.); (X.N.); (Q.S.)
| | - Muhammad Khan
- Yunnan Animal Sciences and Veterinary Institute, Kunming 650224, China; (Z.L.); (Y.J.); (M.K.); (X.Z.); (B.F.); (W.L.); (B.D.); (X.N.); (Q.S.)
| | - Bai Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Xiaoqi Zhao
- Yunnan Animal Sciences and Veterinary Institute, Kunming 650224, China; (Z.L.); (Y.J.); (M.K.); (X.Z.); (B.F.); (W.L.); (B.D.); (X.N.); (Q.S.)
| | - Binlong Fu
- Yunnan Animal Sciences and Veterinary Institute, Kunming 650224, China; (Z.L.); (Y.J.); (M.K.); (X.Z.); (B.F.); (W.L.); (B.D.); (X.N.); (Q.S.)
| | - Weijuan Li
- Yunnan Animal Sciences and Veterinary Institute, Kunming 650224, China; (Z.L.); (Y.J.); (M.K.); (X.Z.); (B.F.); (W.L.); (B.D.); (X.N.); (Q.S.)
| | - Baiji Danzeng
- Yunnan Animal Sciences and Veterinary Institute, Kunming 650224, China; (Z.L.); (Y.J.); (M.K.); (X.Z.); (B.F.); (W.L.); (B.D.); (X.N.); (Q.S.)
| | - Xiaojun Ni
- Yunnan Animal Sciences and Veterinary Institute, Kunming 650224, China; (Z.L.); (Y.J.); (M.K.); (X.Z.); (B.F.); (W.L.); (B.D.); (X.N.); (Q.S.)
| | - Qingyong Shao
- Yunnan Animal Sciences and Veterinary Institute, Kunming 650224, China; (Z.L.); (Y.J.); (M.K.); (X.Z.); (B.F.); (W.L.); (B.D.); (X.N.); (Q.S.)
| | - Yina Ouyang
- Yunnan Animal Sciences and Veterinary Institute, Kunming 650224, China; (Z.L.); (Y.J.); (M.K.); (X.Z.); (B.F.); (W.L.); (B.D.); (X.N.); (Q.S.)
| |
Collapse
|
9
|
Fresnais L, Perin O, Riu A, Grall R, Ott A, Fromenty B, Gallardo JC, Stingl M, Frainay C, Jourdan F, Poupin N. A strategy to detect metabolic changes induced by exposure to chemicals from large sets of condition-specific metabolic models computed with enumeration techniques. BMC Bioinformatics 2024; 25:234. [PMID: 38992584 PMCID: PMC11238488 DOI: 10.1186/s12859-024-05845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND The growing abundance of in vitro omics data, coupled with the necessity to reduce animal testing in the safety assessment of chemical compounds and even eliminate it in the evaluation of cosmetics, highlights the need for adequate computational methodologies. Data from omics technologies allow the exploration of a wide range of biological processes, therefore providing a better understanding of mechanisms of action (MoA) related to chemical exposure in biological systems. However, the analysis of these large datasets remains difficult due to the complexity of modulations spanning multiple biological processes. RESULTS To address this, we propose a strategy to reduce information overload by computing, based on transcriptomics data, a comprehensive metabolic sub-network reflecting the metabolic impact of a chemical. The proposed strategy integrates transcriptomic data to a genome scale metabolic network through enumeration of condition-specific metabolic models hence translating transcriptomics data into reaction activity probabilities. Based on these results, a graph algorithm is applied to retrieve user readable sub-networks reflecting the possible metabolic MoA (mMoA) of chemicals. This strategy has been implemented as a three-step workflow. The first step consists in building cell condition-specific models reflecting the metabolic impact of each exposure condition while taking into account the diversity of possible optimal solutions with a partial enumeration algorithm. In a second step, we address the challenge of analyzing thousands of enumerated condition-specific networks by computing differentially activated reactions (DARs) between the two sets of enumerated possible condition-specific models. Finally, in the third step, DARs are grouped into clusters of functionally interconnected metabolic reactions, representing possible mMoA, using the distance-based clustering and subnetwork extraction method. The first part of the workflow was exemplified on eight molecules selected for their known human hepatotoxic outcomes associated with specific MoAs well described in the literature and for which we retrieved primary human hepatocytes transcriptomic data in Open TG-GATEs. Then, we further applied this strategy to more precisely model and visualize associated mMoA for two of these eight molecules (amiodarone and valproic acid). The approach proved to go beyond gene-based analysis by identifying mMoA when few genes are significantly differentially expressed (2 differentially expressed genes (DEGs) for amiodarone), bringing additional information from the network topology, or when very large number of genes were differentially expressed (5709 DEGs for valproic acid). In both cases, the results of our strategy well fitted evidence from the literature regarding known MoA. Beyond these confirmations, the workflow highlighted potential other unexplored mMoA. CONCLUSION The proposed strategy allows toxicology experts to decipher which part of cellular metabolism is expected to be affected by the exposition to a given chemical. The approach originality resides in the combination of different metabolic modelling approaches (constraint based and graph modelling). The application to two model molecules shows the strong potential of the approach for interpretation and visual mining of complex omics in vitro data. The presented strategy is freely available as a python module ( https://pypi.org/project/manamodeller/ ) and jupyter notebooks ( https://github.com/LouisonF/MANA ).
Collapse
Affiliation(s)
- Louison Fresnais
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France.
| | - Olivier Perin
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Anne Riu
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Romain Grall
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Alban Ott
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Bernard Fromenty
- Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1317, UMR_S 1241, INSERM, Univ Rennes, INRAE, 35000, Rennes, France
| | - Jean-Clément Gallardo
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Maximilian Stingl
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Clément Frainay
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fabien Jourdan
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Nathalie Poupin
- UMR1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
10
|
Geng F, Wu M, Yang P, Li X, Pan X, Wang Y, Lü J. Engineered probiotic cocktail with two cascade metabolic Escherichia coli for the treatment of hyperlysinemia. Front Microbiol 2024; 15:1366017. [PMID: 38873158 PMCID: PMC11169572 DOI: 10.3389/fmicb.2024.1366017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Engineering probiotics have emerged as a potential strategy for the treatment of metabolic diseases. However, due to the exceptional complexity of these metabolic disorders and the intricate relationship between gut microbes, it is difficult to achieve an ideal therapeutic effect in a specific metabolic disorder using only a single engineered strain. In this work, we proposed a probiotic cocktail strategy by engineering two cascade metabolic bacteria to treat hyperlysinemia, an inherited lysine metabolic disorder with loss of α-aminoadipate semialdehyde synthase (AASS) activity. A probiotic E. coli Nissle 1917 strain EcNT (pTLS) with a heterologous enzyme pathway in Saccharomyces cerevisiae was engineered to metabolize the excess lysine. Another one EcNT (pK25) was engineered to consume the products of lysine metabolism. The bacterial cocktail enables the maintenance of a metabolic cascade with AASS-like functional activity to maintain the blood lysine concentrations and downstream metabolites. In vitro experimental results showed that the cocktail bacteria had a better metabolic capacity and metabolites balance at a ratio of EcNT (pTLS) and EcNT (pK25) of 1:2. Feeding of the cocktail bacteria to the mouse model effectively reduced the concentration of lysine and balanced saccharopine in the plasma of hyperlysinemia-like mice. These findings not only provide a promising strategy of probiotic stains for the treatment of hyperlysinemia but also highlight the potential of engineered cascade cocktails to intervene and even cure other inherited metabolic diseases.
Collapse
Affiliation(s)
- Feng Geng
- College of Pharmacy, Binzhou Medical University, Yantai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Mingyu Wu
- College of Pharmacy, Binzhou Medical University, Yantai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Pan Yang
- College of Pharmacy, Binzhou Medical University, Yantai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Xueling Li
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- College of Public Health, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaohong Pan
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yadi Wang
- College of Pharmacy, Binzhou Medical University, Yantai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Junhong Lü
- College of Pharmacy, Binzhou Medical University, Yantai, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
11
|
Wen J, Feng Y, Xue L, Yuan S, Chen Q, Luo A, Wang S, Zhang J. High-fat diet-induced L-saccharopine accumulation inhibits estradiol synthesis and damages oocyte quality by disturbing mitochondrial homeostasis. Gut Microbes 2024; 16:2412381. [PMID: 39410876 PMCID: PMC11485700 DOI: 10.1080/19490976.2024.2412381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
High-fat diet (HFD) has been linked to female infertility. However, the specific age at which HFD impacts ovarian function and the underlying mechanisms remain poorly understood. Here, we administered a HFD to female mice at various developmental stages: pre-puberty (4 weeks old), post-puberty (6 weeks old), young adult (9 weeks old), and middle age (32 weeks old). Our observations indicated that ovarian function was most significantly compromised when HFD was initiated at post-puberty. Consequently, post-puberty mice were chosen for further investigation. Through transplantation of fecal bacteria from the HFD mice to the mice on a normal diet, we confirmed that gut microbiota dysbiosis contributed to HFD-induced deteriorated fertility and disrupted estradiol synthesis. Utilizing untargeted and targeted metabolomics analyses, we identified L-saccharopine as a key metabolite, which was enriched in the feces, serum, and ovaries of HFD and HFD-FMT mice. Subsequent in vitro and in vivo experiments demonstrated that L-saccharopine disrupted mitochondrial homeostasis by impeding AMPKα/MFF-mediated mitochondrial fission. This disruption ultimately hindered estradiol synthesis and compromised oocyte quality. AICAR, an activator of AMPKα, ameliorated L-saccharopine induced mitochondrial damage in granulosa cells and oocytes, thereby enhancing E2 synthesis and improving oocyte quality. Collectively, our findings indicate that the accumulation of L-saccharopine may play a pivotal role in mediating HFD-induced ovarian dysfunction. This highlights the potential therapeutic benefits of targeting the gut microbiota-metabolite-ovary axis to address HFD-induced ovarian dysfunction.
Collapse
Affiliation(s)
- Jingyi Wen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yanzhi Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
12
|
Suciu I, Delp J, Gutbier S, Suess J, Henschke L, Celardo I, Mayer TU, Amelio I, Leist M. Definition of the Neurotoxicity-Associated Metabolic Signature Triggered by Berberine and Other Respiratory Chain Inhibitors. Antioxidants (Basel) 2023; 13:49. [PMID: 38247474 PMCID: PMC10812665 DOI: 10.3390/antiox13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
To characterize the hits from a phenotypic neurotoxicity screen, we obtained transcriptomics data for valinomycin, diethylstilbestrol, colchicine, rotenone, 1-methyl-4-phenylpyridinium (MPP), carbaryl and berberine (Ber). For all compounds, the concentration triggering neurite degeneration correlated with the onset of gene expression changes. The mechanistically diverse toxicants caused similar patterns of gene regulation: the responses were dominated by cell de-differentiation and a triggering of canonical stress response pathways driven by ATF4 and NRF2. To obtain more detailed and specific information on the modes-of-action, the effects on energy metabolism (respiration and glycolysis) were measured. Ber, rotenone and MPP inhibited the mitochondrial respiratory chain and they shared complex I as the target. This group of toxicants was further evaluated by metabolomics under experimental conditions that did not deplete ATP. Ber (204 changed metabolites) showed similar effects as MPP and rotenone. The overall metabolic situation was characterized by oxidative stress, an over-abundance of NADH (>1000% increase) and a re-routing of metabolism in order to dispose of the nitrogen resulting from increased amino acid turnover. This unique overall pattern led to the accumulation of metabolites known as biomarkers of neurodegeneration (saccharopine, aminoadipate and branched-chain ketoacids). These findings suggest that neurotoxicity of mitochondrial inhibitors may result from an ensemble of metabolic changes rather than from a simple ATP depletion. The combi-omics approach used here provided richer and more specific MoA data than the more common transcriptomics analysis alone. As Ber, a human drug and food supplement, mimicked closely the mode-of-action of known neurotoxicants, its potential hazard requires further investigation.
Collapse
Affiliation(s)
- Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
- Graduate School of Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Johannes Delp
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Simon Gutbier
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Julian Suess
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Lars Henschke
- Graduate School of Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
- Department of Molecular Genetics, University of Konstanz, 78464 Konstanz, Germany
| | - Ivana Celardo
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| | - Thomas U. Mayer
- Department of Molecular Genetics, University of Konstanz, 78464 Konstanz, Germany
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
13
|
Chen S, Su X, Zhu J, Xiao L, Cong Y, Yang L, Du Z, Huang X. Metabolic plasticity sustains the robustness of Caenorhabditis elegans embryogenesis. EMBO Rep 2023; 24:e57440. [PMID: 37885348 PMCID: PMC10702823 DOI: 10.15252/embr.202357440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Embryogenesis is highly dependent on maternally loaded materials, particularly those used for energy production. Different environmental conditions and genetic backgrounds shape embryogenesis. The robustness of embryogenesis in response to extrinsic and intrinsic changes remains incompletely understood. By analyzing the levels of two major nutrients, glycogen and neutral lipids, we discovered stage-dependent usage of these two nutrients along with mitochondrial morphology changes during Caenorhabditis elegans embryogenesis. ATGL, the rate-limiting lipase in cellular lipolysis, is expressed and required in the hypodermis to regulate mitochondrial function and support embryogenesis. The embryonic lethality of atgl-1 mutants can be suppressed by reducing sinh-1/age-1-akt signaling, likely through modulating glucose metabolism to maintain sustainable glucose consumption. The embryonic lethality of atgl-1(xd314) is also affected by parental nutrition. Parental glucose and oleic acid supplements promote glycogen storage in atgl-1(xd314) embryos to compensate for the impaired lipolysis. The rescue by parental vitamin B12 supplement is likely through enhancing mitochondrial function in atgl-1 mutants. These findings reveal that metabolic plasticity contributes to the robustness of C. elegans embryogenesis.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xing Su
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinglin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Leilei Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Tianjian Laboratory of Advanced Biomedical SciencesZhengzhouChina
| |
Collapse
|
14
|
Tan Y, Chrysopoulou M, Rinschen MM. Integrative physiology of lysine metabolites. Physiol Genomics 2023; 55:579-586. [PMID: 37781739 DOI: 10.1152/physiolgenomics.00061.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Lysine is an essential amino acid that serves as a building block in protein synthesis. Beside this, the metabolic activity of lysine has only recently been unraveled. Lysine metabolism is tissue specific and is linked to several renal, cardiovascular, and endocrinological diseases through human metabolomics datasets. As a free molecule, lysine takes part in the antioxidant response and engages in protein modifications, and its chemistry shapes both proteome and metabolome. In the proteome, it is an acceptor for a plethora of posttranslational modifications. In the metabolome, it can be modified, conjugated, and degraded. Here, we provide an update on integrative physiology of mammalian lysine metabolites such as α-aminoadipic acid, saccharopine, pipecolic acid, and lysine conjugates such as acetyl-lysine, and sugar-lysine conjugates such as advanced glycation end products. We also comment on their emerging associative and mechanistic links to renal disease, hypertension, diabetes, and cancer.
Collapse
Affiliation(s)
- Yifan Tan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- III Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Luo X, Xu M, Guo W. Adult neurogenesis research in China. Dev Growth Differ 2023; 65:534-545. [PMID: 37899611 DOI: 10.1111/dgd.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023]
Abstract
Neural stem cells are multipotent stem cells that generate functional newborn neurons through a process called neurogenesis. Neurogenesis in the adult brain is tightly regulated and plays a pivotal role in the maintenance of brain function. Disruption of adult neurogenesis impairs cognitive function and is correlated with numerous neurologic disorders. Deciphering the mechanisms underlying adult neurogenesis not only advances our understanding of how the brain functions, but also offers new insight into neurologic diseases and potentially contributes to the development of effective treatments. The field of adult neurogenesis is experiencing significant growth in China. Chinese researchers have demonstrated a multitude of factors governing adult neurogenesis and revealed the underlying mechanisms of and correlations between adult neurogenesis and neurologic disorders. Here, we provide an overview of recent advancements in the field of adult neurogenesis due to Chinese scientists.
Collapse
Affiliation(s)
- Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Yeganeh M, Auray‐Blais C, Maranda B, Sabovic A, DeVita RJ, Lazarus MB, Houten SM. A case of hyperlysinemia identified by urine newborn screening. JIMD Rep 2023; 64:440-445. [PMID: 37927488 PMCID: PMC10623103 DOI: 10.1002/jmd2.12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Hyperlysinemia is a rare autosomal recessive deficiency of 2-aminoadipic semialdehyde synthase (AASS) affecting the initial step in lysine degradation. It is thought to be a benign biochemical abnormality, but reports on cases remain scarce. The description of additional cases, in particular, those identified without ascertainment bias, may help counseling of new cases in the future. It may also help to establish the risks associated with pharmacological inhibition of AASS, a potential therapeutic strategy that is under investigation for other inborn errors of lysine degradation. We describe the identification of a hyperlysinemia case identified in the Provincial Neonatal Urine Screening Program in Sherbrooke, Quebec. This case presented with a profile of cystinuria but with a very high increase in urinary lysine. A diagnosis of hyperlysinemia was confirmed through biochemical testing and the identification of biallelic variants in AASS. The p.R146W and p.T371I variants are novel and affect the folding of the lysine-2-oxoglutarate domain of AASS. The 11-month-old boy is currently doing well without any therapeutic interventions. The identification of this case through newborn urine screening further establishes that hyperlysinemia is a biochemical abnormality with limited clinical consequences and may not require any intervention.
Collapse
Affiliation(s)
- Mehdi Yeganeh
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Centre Hospitalier Universitaire de Québec, Centre Mère‐Enfant SoleilUniversité LavalQuébec CityQuébecCanada
| | - Christiane Auray‐Blais
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Centre de recherche—CIUSSS de l'Estrie‐CHUSUniversité de SherbrookeSherbrookeQuébecCanada
| | - Bruno Maranda
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Centre de recherche—CIUSSS de l'Estrie‐CHUSUniversité de SherbrookeSherbrookeQuébecCanada
| | - Amanda Sabovic
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Robert J. DeVita
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Michael B. Lazarus
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Drug Discovery InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sander M. Houten
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
17
|
Ryu Y, Hwang JS, Bo Noh K, Park SH, Seo JH, Shin YJ. Adipose Mesenchymal Stem Cell-Derived Exosomes Promote the Regeneration of Corneal Endothelium Through Ameliorating Senescence. Invest Ophthalmol Vis Sci 2023; 64:29. [PMID: 37850944 PMCID: PMC10593138 DOI: 10.1167/iovs.64.13.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
Purpose Human corneal endothelial cells (hCECs) have been considered unable to regenerate in vivo, resulting in corneal decompensation after significant loss of hCECs. adipose-derived mesenchymal stem cell (ASC)-derived exosomes can regenerate tissues and organs. In this study, we investigated whether ASC-derived exosomes could protect and regenerate CECs. Methods We performed cell viability and cell-cycle analyses to evaluate the effect of ASC-derived exosomes on the regeneration capacity of cultured hCECs. Transforming growth factor-β (TGF-β) and hydrogen peroxide (H2O2) were used to induce biological stress in CECs. The effect of ASC-derived exosomes on CECs was investigated in vivo. ASC-derived exosomes were introduced into rat CECs using electroporation, and rat corneas were injured using cryoinjury. Next-generation sequencing analysis was performed to compare the differentially expressed microRNAs (miRNAs) between ASC-derived and hCEC-derived exosomes. Results ASC-derived exosomes induced CEC proliferation and suppressed TGF-β- or H2O2-induced oxidative stress and senescence. ASC-derived exosomes protect hCECs against TGF-β- or H2O2-induced endothelial-mesenchymal transition and mitophagy. In an in vivo study, ASC-derived exosomes promoted wound healing of rat CECs and protected the corneal endothelium against cryoinjury-induced corneal endothelium damage. Next-generation sequencing analysis revealed differentially expressed miRNAs for ASC-derived and hCEC-derived exosomes. They are involved in lysine degradation, adherens junction, the TGF-β signaling pathway, the p53 signaling pathway, the Hippo signaling pathway, the forkhead box O (FoxO) signaling pathway, regulation of actin cytoskeleton, and RNA degradation based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Conclusions ASC-derived exosomes promoted wound healing and regeneration of endothelial cells by inducing a shift in the cell cycle and suppressing senescence and autophagy.
Collapse
Affiliation(s)
- Yunkyoung Ryu
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Kyung Bo Noh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Se Hie Park
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Wang L, Li L, Wang Z, Zhang P, Zhang J. Gut Microbiota Combined with Metabolomics Reveal the Mechanisms of Sika Deer Antler Protein on Cisplatin-Induced Hepatorenal Injury in Mice. Molecules 2023; 28:6463. [PMID: 37764239 PMCID: PMC10537820 DOI: 10.3390/molecules28186463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin is a widely used antineoplastic drug, though its adverse effects, particularly its hepatorenal toxicity, limit its long-term application. Sika deer antler is a valuable traditional Chinese medicine (TCM) documented to possess the capacity for tonifying the kidney and regulating the liver, of which the sika deer antler protein is an important active ingredient. In this study, two protein fractions, SVPr1 and SVPr2, of sika deer antler were purified and administered to mice treated with cisplatin, and serum metabolome and fecal microbiota were measured using ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and 16S rRNA gene sequencing. SVPr1 and SVPr2 significantly ameliorated cisplatin-induced liver and kidney injury and reduced mitochondrial dysfunction, oxidative stress, inflammatory response, and apoptosis. In addition, SVPr1 and SVPr2 impacted the gut microbiota structure of mice, significantly increasing the relative abundances of Lactobacillus, which deserves to be scrutinized. Moreover, SVPr1 and SVPr2 antagonism of cisplatin-induced hepatorenal injury may be related to the regulation of lysine degradation, tryptophan metabolism, and riboflavin metabolism pathways, significantly altering the levels of L-saccharopine, L-lysine, L-kynurenine, 3-methylindole, xanthurenic acid, riboflavin, and D-ribulose-5-phosphate. A correlation between the differential metabolites and Lactobacillus was identified. These findings increased the knowledge of the gut microbiota-metabolites axis mediated by SVPr1 and SVPr2, and may be able to contribute to the development of new therapeutic strategies for the simultaneous prevention and treatment of liver and kidney injury from cisplatin treatment.
Collapse
Affiliation(s)
- Lulu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
- School of Medicine, Changchun Sci-Tech University, Changchun 130600, China
| | - Lei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| | - Zhenyi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| | - Pu Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| | - Jing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.W.); (L.L.); (Z.W.); (P.Z.)
| |
Collapse
|
19
|
Batra R, Krumsiek J, Wang X, Allen M, Blach C, Kastenmüller G, Arnold M, Ertekin-Taner N, Kaddurah-Daouk RF. Comparative brain metabolomics reveals shared and distinct metabolic alterations in Alzheimer's disease and progressive supranuclear palsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.25.23293055. [PMID: 37546878 PMCID: PMC10402214 DOI: 10.1101/2023.07.25.23293055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Metabolic dysregulation is a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). While metabolic dysregulation is a common link between these two tauopathies, a comprehensive brain metabolic comparison of the diseases has not yet been performed. We analyzed 342 postmortem brain samples from the Mayo Clinic Brain Bank and examined 658 metabolites in the cerebellar cortex and the temporal cortex between the two tauopathies. Our findings indicate that both diseases display oxidative stress associated with lipid metabolism, mitochondrial dysfunction linked to lysine metabolism, and an indication of tau-induced polyamine stress response. However, specific to AD, we detected glutathione-related neuroinflammation, deregulations of enzymes tied to purines, and cognitive deficits associated with vitamin B. Taken together, our findings underscore vast alterations in the brain's metabolome, illuminating shared neurodegenerative pathways and disease-specific traits in AD and PSP.
Collapse
Affiliation(s)
- Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Rima F Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
20
|
Annunziato M, Bashirova N, Eeza MNH, Lawson A, Benetti D, Stieglitz JD, Matysik J, Alia A, Berry JP. High-Resolution Magic Angle Spinning (HRMAS) NMR Identifies Oxidative Stress and Impairment of Energy Metabolism by Zearalenone in Embryonic Stages of Zebrafish ( Danio rerio), Olive Flounder ( Paralichthys olivaceus) and Yellowtail Snapper ( Ocyurus chrysurus). Toxins (Basel) 2023; 15:397. [PMID: 37368698 DOI: 10.3390/toxins15060397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Zearalenone (ZEA) is a mycotoxin, commonly found in agricultural products, linked to adverse health impacts in humans and livestock. However, less is known regarding effects on fish as both ecological receptors and economically relevant "receptors" through contamination of aquaculture feeds. In the present study, a metabolomics approach utilizing high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was applied to intact embryos of zebrafish (Danio rerio), and two marine fish species, olive flounder (Paralichthys olivaceus) and yellowtail snapper (Ocyurus chrysurus), to investigate the biochemical pathways altered by ZEA exposure. Following the assessment of embryotoxicity, metabolic profiling of embryos exposed to sub-lethal concentrations showed significant overlap between the three species and, specifically, identified metabolites linked to hepatocytes, oxidative stress, membrane disruption, mitochondrial dysfunction, and impaired energy metabolism. These findings were further supported by analyses of tissue-specific production of reactive oxygen species (ROS) and lipidomics profiling and enabled an integrated model of ZEA toxicity in the early life stages of marine and freshwater fish species. The metabolic pathways and targets identified may, furthermore, serve as potential biomarkers for monitoring ZEA exposure and effects in fish in relation to ecotoxicology and aquaculture.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
| | - Muhamed N H Eeza
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
| | - Ariel Lawson
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA
| | - Daniel Benetti
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, FL 33149, USA
| | - John D Stieglitz
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, FL 33149, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, 2333 Leiden, The Netherlands
| | - John P Berry
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA
| |
Collapse
|
21
|
Dai X, Bai R, Xie B, Xiang J, Miao X, Shi Y, Yu F, Cong B, Wen D, Ma C. A Metabolomics-Based Study on the Discriminative Classification Models and Toxicological Mechanism of Estazolam Fatal Intoxication. Metabolites 2023; 13:metabo13040567. [PMID: 37110225 PMCID: PMC10144813 DOI: 10.3390/metabo13040567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Fatal intoxication with sedative-hypnotic drugs is increasing yearly. However, the plasma drug concentration data for fatal intoxication involving these substances are not systematic and even overlap with the intoxication group. Therefore, developing a more precise and trustworthy approach to determining the cause of death is necessary. This study analyzed mice plasma and brainstem samples using the liquid chromatography-high resolution tandem mass spectrometry (LC-HR MS/MS)-based metabolomics method to create discriminative classification models for estazolam fatal intoxication (EFI). The most perturbed metabolic pathway between the EFI and EIND (estazolam intoxication non-death) was examined, Both EIND and EFI groups were administered 500 mg of estazolam per 100 g of body weight. Mice that did not die beyond 8 hours were treated with cervical dislocation and were classified into the EIND groups; the lysine degradation pathway was verified by qPCR (Quantitative Polymerase Chain Reaction), metabolite quantitative and TEM (transmission electron microscopy) analysis. Non-targeted metabolomics analysis with EFI were the experimental group and four hypoxia-related non-drug-related deaths (NDRDs) were the control group. Mass spectrometry data were analyzed with Compound Discoverer (CD) 3.1 software and multivariate statistical analyses were performed using the online software MetaboAnalyst 5.0. After a series of analyses, the results showed the discriminative classification model in plasma was composed of three endogenous metabolites: phenylacetylglycine, creatine and indole-3-lactic acid, and in the brainstem was composed of palmitic acid, creatine, and indole-3-lactic acid. The specificity validation results showed that both classification models distinguished between the other four sedatives-hypnotics, with an area under ROC curve (AUC) of 0.991, and the classification models had an extremely high specificity. When comparing different doses of estazolam, the AUC value of each group was larger than 0.80, and the sensitivity was also high. Moreover, the stability results showed that the AUC value was equal to or very close to 1 in plasma samples stored at 4 °C for 0, 1, 5, 10 and 15 days; the predictive power of the classification model was stable within 15 days. The results of lysine degradation pathway validation revealed that the EFI group had the highest lysine and saccharopine concentrations (mean (ng/mg) = 1.089 and 1.2526, respectively) when compared to the EIND and control group, while the relative expression of SDH (saccharopine dehydrogenase) showed significantly lower in the EFI group (mean = 1.206). Both of these results were statistically significant. Furthermore, TEM analysis showed that the EFI group had the more severely damaged mitochondria. This work gives fresh insights into the toxicological processes of estazolam and a new method for identifying EFI-related causes of mortality.
Collapse
Affiliation(s)
- Xiaohui Dai
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Rui Bai
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Bing Xie
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Jiahong Xiang
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Xingang Miao
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
- Forensic Science Centre of WATSON, Guangzhou 510440, China
| | - Yan Shi
- Shanghai Key Laboratory Medicine, Department of Forensic Toxicology, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, China
| | - Feng Yu
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Bin Cong
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Di Wen
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Chunling Ma
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| |
Collapse
|
22
|
Lagies S, Pan D, Mohl DA, Plattner DA, Gentle IE, Kammerer B. Mitochondrial Metabolomics of Sym1-Depleted Yeast Cells Revealed Them to Be Lysine Auxotroph. Cells 2023; 12:692. [PMID: 36899826 PMCID: PMC10000845 DOI: 10.3390/cells12050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Metabolomics has expanded from cellular to subcellular level to elucidate subcellular compartmentalization. By applying isolated mitochondria to metabolome analysis, the hallmark of mitochondrial metabolites has been unraveled, showing compartment-specific distribution and regulation of metabolites. This method was employed in this work to study a mitochondrial inner membrane protein Sym1, whose human ortholog MPV17 is related to mitochondria DNA depletion syndrome. Gas chromatography-mass spectrometry-based metabolic profiling was combined with targeted liquid chromatography-mass spectrometry analysis to cover more metabolites. Furthermore, we applied a workflow employing ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry with a powerful chemometrics platform, focusing on only significantly changed metabolites. This workflow highly reduced the complexity of acquired data without losing metabolites of interest. Consequently, forty-one novel metabolites were identified in addition to the combined method, of which two metabolites, 4-guanidinobutanal and 4-guanidinobutanoate, were identified for the first time in Saccharomyces cerevisiae. With compartment-specific metabolomics, we identified sym1Δ cells as lysine auxotroph. The highly reduced carbamoyl-aspartate and orotic acid indicate a potential role of the mitochondrial inner membrane protein Sym1 in pyrimidine metabolism.
Collapse
Affiliation(s)
- Simon Lagies
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Daqiang Pan
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Pharmaceutical Science, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel A. Mohl
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Dietmar A. Plattner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Ian E. Gentle
- Institute of Medical Microbiology and Hygiene, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Kammerer
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, 79104 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
23
|
Feng X, Wang X, Zhou L, Pang S, Tang H. The impact of glucose on mitochondria and life span is determined by the integrity of proline catabolism in Caenorhabditis elegans. J Biol Chem 2023; 299:102881. [PMID: 36626986 PMCID: PMC9932108 DOI: 10.1016/j.jbc.2023.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Mutations in genes involved in mitochondrial proline catabolism lead to the rare genetic disorder hyperprolinemia in humans. We have previously reported that mutations of proline catabolic genes in Caenorhabditis elegans impair mitochondrial homeostasis and shorten life span, and that these effects surprisingly occur in a diet type-dependent manner. Therefore, we speculated that a specific dietary component may mitigate the adverse effects of defective proline catabolism. Here, we discovered that high dietary glucose, which is generally detrimental to health, actually improves mitochondrial homeostasis and life span in C. elegans with faulty proline catabolism. Mechanistically, defective proline catabolism results in a shift of glucose catabolism toward the pentose phosphate pathway, which is crucial for cellular redox balance. This shift helps to maintain mitochondrial reactive oxygen species homeostasis and to extend life span, as suppression of the pentose phosphate pathway enzyme GSPD-1 prevents the favorable effects of high glucose. In addition, we demonstrate that this crosstalk between proline and glucose catabolism is mediated by the transcription factor DAF-16. Altogether, these findings suggest that a glucose-rich diet may be advantageous in certain situations and might represent a potentially viable treatment strategy for disorders involving impaired proline catabolism.
Collapse
Affiliation(s)
- Xi Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xinyu Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Zhou
- School of Life Sciences, Chongqing University, Chongqing, China,State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
24
|
Van Winkle LJ. Perspective: Might Maternal Dietary Monosodium Glutamate (MSG) Consumption Impact Pre- and Peri-Implantation Embryos and Their Subsequent Development? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13611. [PMID: 36294193 PMCID: PMC9602898 DOI: 10.3390/ijerph192013611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
MSG alters metabolism, especially in the brain, when administered to experimental animals via gavage or similar means. Such administration is, however, not applicable to humans. More recently, though, MSG was shown to have these effects even when added to the food of mammals. Moreover, the levels of MSG in food needed to cause these metabolic changes are the same as those needed for optimum flavor enhancement. Near physiological concentrations of glutamate also cause mammalian blastocysts to develop with fewer cells, especially in their inner cell masses, when these embryos are cultured with this amino acid. We propose that consumption of MSG in food may overwhelm the otherwise well-regulated glutamate signaling needed for optimal development by pre- and peri-implantation mammalian embryos. In addition to immediate changes in cellular proliferation and differentiation as embryos develop, MSG ingestion during early pregnancy might result in undesirable conditions, including metabolic syndrome, in adults. Since these conditions are often the result of epigenetic changes, they could become transgenerational. In light of these possibilities, we suggest several studies to test the merit of our hypothesis.
Collapse
Affiliation(s)
- Lon J. Van Winkle
- Department of Biochemistry, Midwestern University, Downers Grove, IL 60515, USA;
- Department of Medical Humanities, Rocky Vista University, 8401 S. Chambers Road, Parker, CO 80112, USA
| |
Collapse
|
25
|
Leandro J, Khamrui S, Suebsuwong C, Chen PJ, Secor C, Dodatko T, Yu C, Sanchez R, DeVita RJ, Houten SM, Lazarus MB. Characterization and structure of the human lysine-2-oxoglutarate reductase domain, a novel therapeutic target for treatment of glutaric aciduria type 1. Open Biol 2022; 12:220179. [PMID: 36128717 PMCID: PMC9490328 DOI: 10.1098/rsob.220179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 12/26/2022] Open
Abstract
In humans, a single enzyme 2-aminoadipic semialdehyde synthase (AASS) catalyses the initial two critical reactions in the lysine degradation pathway. This enzyme evolved to be a bifunctional enzyme with both lysine-2-oxoglutarate reductase (LOR) and saccharopine dehydrogenase domains (SDH). Moreover, AASS is a unique drug target for inborn errors of metabolism such as glutaric aciduria type 1 that arise from deficiencies downstream in the lysine degradation pathway. While work has been done to elucidate the SDH domain structurally and to develop inhibitors, neither has been done for the LOR domain. Here, we purify and characterize LOR and show that it is activated by alkylation of cysteine 414 by N-ethylmaleimide. We also provide evidence that AASS is rate-limiting upon high lysine exposure of mice. Finally, we present the crystal structure of the human LOR domain. Our combined work should enable future efforts to identify inhibitors of this novel drug target.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chalada Suebsuwong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng-Jen Chen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Genomics, Inc, Stamford, CT 06902, USA
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B. Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
26
|
Rahayu DP, De Mori A, Yusuf R, Draheim R, Lalatsa A, Roldo M. Enhancing the antibacterial effect of chitosan to combat orthopaedic implant-associated infections. Carbohydr Polym 2022; 289:119385. [DOI: 10.1016/j.carbpol.2022.119385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/02/2022]
|
27
|
Weyandt N, Aghdam SA, Brown AMV. Discovery of Early-Branching Wolbachia Reveals Functional Enrichment on Horizontally Transferred Genes. Front Microbiol 2022; 13:867392. [PMID: 35547116 PMCID: PMC9084900 DOI: 10.3389/fmicb.2022.867392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wolbachia is a widespread endosymbiont of insects and filarial nematodes that profoundly influences host biology. Wolbachia has also been reported in rhizosphere hosts, where its diversity and function remain poorly characterized. The discovery that plant-parasitic nematodes (PPNs) host Wolbachia strains with unknown roles is of interest evolutionarily, ecologically, and for agriculture as a potential target for developing new biological controls. The goal of this study was to screen communities for PPN endosymbionts and analyze genes and genomic patterns that might indicate their role. Genome assemblies revealed 1 out of 16 sampled sites had nematode communities hosting a Wolbachia strain, designated wTex, that has highly diverged as one of the early supergroup L strains. Genome features, gene repertoires, and absence of known genes for cytoplasmic incompatibility, riboflavin, biotin, and other biosynthetic functions placed wTex between mutualist C + D strains and reproductive parasite A + B strains. Functional terms enriched in group L included protoporphyrinogen IX, thiamine, lysine, fatty acid, and cellular amino acid biosynthesis, while dN/dS analysis suggested the strongest purifying selection on arginine and lysine metabolism, and vitamin B6, heme, and zinc ion binding, suggesting these as candidate roles in PPN Wolbachia. Higher dN/dS pathways between group L, wPni from aphids, wFol from springtails, and wCfeT from cat fleas suggested distinct functional changes characterizing these early Wolbachia host transitions. PPN Wolbachia had several putative horizontally transferred genes, including a lysine biosynthesis operon like that of the mitochondrial symbiont Midichloria, a spirochete-like thiamine synthesis operon shared only with wCfeT, an ATP/ADP carrier important in Rickettsia, and a eukaryote-like gene that may mediate plant systemic acquired resistance through the lysine-to-pipecolic acid system. The Discovery of group L-like variants from global rhizosphere databases suggests diverse PPN Wolbachia strains remain to be discovered. These findings support the hypothesis of plant-specialization as key to shaping early Wolbachia evolution and present new functional hypotheses, demonstrating promise for future genomics-based rhizosphere screens.
Collapse
Affiliation(s)
- Nicholas Weyandt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Shiva A Aghdam
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
28
|
Zhou J, Duan M, Wang X, Zhang F, Zhou H, Ma T, Yin Q, Zhang J, Tian F, Wang G, Yang C. A feedback loop engaging propionate catabolism intermediates controls mitochondrial morphology. Nat Cell Biol 2022; 24:526-537. [PMID: 35418624 DOI: 10.1038/s41556-022-00883-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
D-2-Hydroxyglutarate (D-2HG) is an α-ketoglutarate-derived mitochondrial metabolite that causes D-2-hydroxyglutaric aciduria, a devastating developmental disorder. How D-2HG adversely affects mitochondria is largely unknown. Here, we report that in Caenorhabditis elegans, loss of the D-2HG dehydrogenase DHGD-1 causes D-2HG accumulation and mitochondrial damage. The excess D-2HG leads to a build-up of 3-hydroxypropionate (3-HP), a toxic metabolite in mitochondrial propionate oxidation, by inhibiting the 3-HP dehydrogenase HPHD-1. We demonstrate that 3-HP binds the MICOS subunit MIC60 (encoded by immt-1) and inhibits its membrane-binding and membrane-shaping activities. We further reveal that dietary and gut bacteria affect mitochondrial health by modulating the host production of 3-HP. These findings identify a feedback loop that links the toxic effects of D-2HG and 3-HP on mitochondria, thus providing important mechanistic insights into human diseases related to D-2HG and 3-HP.
Collapse
Affiliation(s)
- Junxiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Duan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Xin Wang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hejiang Zhou
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Tengfei Ma
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiuyuan Yin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jie Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fei Tian
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
29
|
Mitochondrial shape alteration by metabolites. Nat Cell Biol 2022; 24:410-412. [PMID: 35418623 DOI: 10.1038/s41556-022-00889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Annunziato M, Eeza MNH, Bashirova N, Lawson A, Matysik J, Benetti D, Grosell M, Stieglitz JD, Alia A, Berry JP. An integrated systems-level model of the toxicity of brevetoxin based on high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) metabolic profiling of zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149858. [PMID: 34482148 DOI: 10.1016/j.scitotenv.2021.149858] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Coryphaena hippurus), the latter representing an ecologically and geographically relevant marine species of fish, which identified acute embryotoxicity at environmentally relevant (i.e., parts-per-billion) concentrations in both species. HRMAS NMR analysis of intact zebrafish embryos exposed to sub-lethal concentrations of PbTx-2 afforded well-resolved spectra, and in turn, identification of 38 metabolites of which 28 were found to be significantly altered, relative to controls. Metabolites altered by PbTx-2 exposure specifically included those associated with (1) neuronal excitotoxicity, as well as associated neural homeostasis, and (2) interrelated pathways of carbohydrate and energy metabolism. Metabolomics studies, thereby, enabled a systems-level model of PbTx toxicity which integrated multiple metabolic, molecular and cellular pathways, in relation to environmentally relevant concentrations of the toxin, providing insight to not only targets and mechanisms, but potential biomarkers pertinent to environmental risk assessment and monitoring strategies.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Muhamed N H Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Narmin Bashirova
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Daniel Benetti
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - A Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333 Leiden, the Netherlands.
| | - John P Berry
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA; Biomolecular Science Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
31
|
Jibrin MO, Liu Q, Guingab-Cagmat J, Jones JB, Garrett TJ, Zhang S. Metabolomics Insights into Chemical Convergence in Xanthomonas perforans and Metabolic Changes Following Treatment with the Small Molecule Carvacrol. Metabolites 2021; 11:879. [PMID: 34940636 PMCID: PMC8706651 DOI: 10.3390/metabo11120879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/20/2023] Open
Abstract
Microbes are natural chemical factories and their metabolome comprise diverse arrays of chemicals. The genus Xanthomonas comprises some of the most important plant pathogens causing devastating yield losses globally and previous studies suggested that species in the genus are untapped chemical minefields. In this study, we applied an untargeted metabolomics approach to study the metabolome of a globally spread important xanthomonad, X. perforans. The pathogen is difficult to manage, but recent studies suggest that the small molecule carvacrol was efficient in disease control. Bacterial strains were treated with carvacrol, and samples were taken at time intervals (1 and 6 h). An untreated control was also included. There were five replicates for each sample and samples were prepared for metabolomics profiling using the standard procedure. Metabolomics profiling was carried out using a thermo Q-Exactive orbitrap mass spectrometer with Dionex ultra high-performance liquid chromatography (UHPLC) and an autosampler. Annotation of significant metabolites using the Metabolomics Standards Initiative level 2 identified an array of novel metabolites that were previously not reported in Xanthomonas perforans. These metabolites include methoxybrassinin and cyclobrassinone, which are known metabolites of brassicas; sarmentosin, a metabolite of the Passiflora-heliconiine butterfly system; and monatin, a naturally occurring sweetener found in Sclerochiton ilicifolius. To our knowledge, this is the first report of these metabolites in a microbial system. Other significant metabolites previously identified in non-Xanthomonas systems but reported in this study include maculosin; piperidine; β-carboline alkaloids, such as harman and derivatives; and several important medically relevant metabolites, such as valsartan, metharbital, pirbuterol, and ozagrel. This finding is consistent with convergent evolution found in reported biological systems. Analyses of the effect of carvacrol in time-series and associated pathways suggest that carvacrol has a global effect on the metabolome of X. perforans, showing marked changes in metabolites that are critical in energy biosynthesis and degradation pathways, amino acid pathways, nucleic acid pathways, as well as the newly identified metabolites whose pathways are unknown. This study provides the first insight into the X. perforans metabolome and additionally lays a metabolomics-guided foundation for characterization of novel metabolites and pathways in xanthomonad systems.
Collapse
Affiliation(s)
- Mustafa Ojonuba Jibrin
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
- Department of Crop Protection, Ahmadu Bello University, Zaria 810103, Nigeria
| | - Qingchun Liu
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
| | - Joy Guingab-Cagmat
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (J.G.-C.); (T.J.G.)
| | - Jeffrey B. Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (J.G.-C.); (T.J.G.)
| | - Shouan Zhang
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
32
|
Pasquadibisceglie A, Polticelli F. Structural determinants of ligands recognition by the human mitochondrial basic amino acids transporter SLC25A29. Insights from molecular dynamics simulations of the c-state. Comput Struct Biotechnol J 2021; 19:5600-5612. [PMID: 34849194 PMCID: PMC8598871 DOI: 10.1016/j.csbj.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
In mitochondria, metabolic processes require the trafficking of solutes and organic molecules, such as amino acids. This task is accomplished by the Mitochondrial Carrier Family members (also known as SLC25), among which the SLC25A29 is responsible for the translocation of basic amino acids. In this regard, nitric oxide levels originated by the arginine mitochondrial catabolism have been shown to strongly affect cancer cells' metabolic status. Furthermore, the metabolic disease saccharopinuria has been linked to a mitochondrial dysregulation caused by a toxic intermediate of the lysine catabolism. In both cases, a reduction of the activity of SLC25A29 has been shown to ameliorate these pathological conditions. However, no detailed structural data are available on SLC25A29. In the present work, molecular modelling, docking and dynamics simulations have been employed to analyse the structural determinants of ligands recognition by SLC25A29 in the c-state. Results confirm and reinforce earlier predictions that Asn73, Arg160 and Glu161, and Arg257 represent the ligand contact points I, II, and III, respectively, and that Arg160, Trp204 and Arg257 form a stable interaction, likely critical for ligand binding and translocation. These results are discussed in view of the experimental data available for SLC25A29 and other homologous carriers of the same family.
Collapse
Affiliation(s)
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, 00146 Rome, Italy.,National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
33
|
Zhou HX, Liu H, Han X, Nie SJ, Zhang RP, Yu JY, Li SH. Application of UPLC-QTOF-MS in Analysis of Non-targeted Urine Metabolomics in Rats with Yunaconitine Poisoning. FA YI XUE ZA ZHI 2021; 37:653-660. [PMID: 35187917 DOI: 10.12116/j.issn.1004-5619.2020.301003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To explore the possible mechanism of Yunaconitine poisoning by studying the changes of urine metabolic profile in rats chronically poisoned by Yunaconitine via non-targeted metabolomics. METHODS A rat model of Yunaconitine poisoning was established, and a metabolomics method based on UPLC-QTOF-MS technology was used to obtain the urine metabolic profile. Principal component analysis (PCA), orthogonal projections to latent structures-discriminant analysis (OPLS-DA), variable importance in projection (VIP) value greater than 1, fold change (FC) value greater than 3 or less than 0.33 and P value less than 0.05 were used to screen potential biomarkers related to the toxicity of Yunaconitine. The metabolic pathway analysis was performed through the MetaboAnalyst website and pathological changes of related tissues were observed. RESULTS Sixteen potential biomarkers including L-isoleucine were screened, which mainly involved six metabolic pathways including the biosynthesis and degradation of valine, leucine and isoleucine, pentose and glucuronate interconversions, and propanoate metabolism, alanine, aspartate and glutamate metabolism, tyrosine metabolism. Pathological studies showed that rat toxic change in nervous system, liver and cardiac caused by Yunaconitine. CONCLUSIONS Yunaconitine may cause neurotoxicity, hepatotoxicity and cardiotoxicity by affecting amino acid and glucose metabolism.
Collapse
Affiliation(s)
- Hui-Xia Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Huan Liu
- Judicial Expertise Center, Kunming Medical University, Kunming 650500, China
| | - Xue Han
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Sheng-Jie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Rong-Ping Zhang
- School of Medicine, Kunming Medical University, Kunming 650500, China
- School of Traditional Chinese Pharmacy, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Jian-Yun Yu
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Shu-Hua Li
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
34
|
A pair of transporters controls mitochondrial Zn 2+ levels to maintain mitochondrial homeostasis. Protein Cell 2021; 13:180-202. [PMID: 34687432 PMCID: PMC8901913 DOI: 10.1007/s13238-021-00881-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022] Open
Abstract
Zn2+ is required for the activity of many mitochondrial proteins, which regulate mitochondrial dynamics, apoptosis and mitophagy. However, it is not understood how the proper mitochondrial Zn2+ level is achieved to maintain mitochondrial homeostasis. Using Caenorhabditis elegans, we reveal here that a pair of mitochondrion-localized transporters controls the mitochondrial level of Zn2+. We demonstrate that SLC-30A9/ZnT9 is a mitochondrial Zn2+ exporter. Loss of SLC-30A9 leads to mitochondrial Zn2+ accumulation, which damages mitochondria, impairs animal development and shortens the life span. We further identify SLC-25A25/SCaMC-2 as an important regulator of mitochondrial Zn2+ import. Loss of SLC-25A25 suppresses the abnormal mitochondrial Zn2+ accumulation and defective mitochondrial structure and functions caused by loss of SLC-30A9. Moreover, we reveal that the endoplasmic reticulum contains the Zn2+ pool from which mitochondrial Zn2+ is imported. These findings establish the molecular basis for controlling the correct mitochondrial Zn2+ levels for normal mitochondrial structure and functions.
Collapse
|
35
|
Al-Shekaili HH, Petkau TL, Pena I, Lengyell TC, Verhoeven-Duif NM, Ciapaite J, Bosma M, van Faassen M, Kema IP, Horvath G, Ross C, Simpson EM, Friedman JM, van Karnebeek C, Leavitt BR. A novel mouse model for pyridoxine-dependent epilepsy due to antiquitin deficiency. Hum Mol Genet 2021; 29:3266-3284. [PMID: 32969477 DOI: 10.1093/hmg/ddaa202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disease caused by mutations in the ALDH7A1 gene leading to blockade of the lysine catabolism pathway. PDE is characterized by recurrent seizures that are resistant to conventional anticonvulsant treatment but are well-controlled by pyridoxine (PN). Most PDE patients also suffer from neurodevelopmental deficits despite adequate seizure control with PN. To investigate potential pathophysiological mechanisms associated with ALDH7A1 deficiency, we generated a transgenic mouse strain with constitutive genetic ablation of Aldh7a1. We undertook extensive biochemical characterization of Aldh7a1-KO mice consuming a low lysine/high PN diet. Results showed that KO mice accumulated high concentrations of upstream lysine metabolites including ∆1-piperideine-6-carboxylic acid (P6C), α-aminoadipic semialdehyde (α-AASA) and pipecolic acid both in brain and liver tissues, similar to the biochemical picture in ALDH7A1-deficient patients. We also observed preliminary evidence of a widely deranged amino acid profile and increased levels of methionine sulfoxide, an oxidative stress biomarker, in the brains of KO mice, suggesting that increased oxidative stress may be a novel pathobiochemical mechanism in ALDH7A1 deficiency. KO mice lacked epileptic seizures when fed a low lysine/high PN diet. Switching mice to a high lysine/low PN diet led to vigorous seizures and a quick death in KO mice. Treatment with PN controlled seizures and improved survival of high-lysine/low PN fed KO mice. This study expands the spectrum of biochemical abnormalities that may be associated with ALDH7A1 deficiency and provides a proof-of-concept for the utility of the model to study PDE pathophysiology and to test new therapeutics.
Collapse
Affiliation(s)
- Hilal H Al-Shekaili
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Izabella Pena
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tess C Lengyell
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Jolita Ciapaite
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Marjolein Bosma
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriella Horvath
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Colin Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth M Simpson
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jan M Friedman
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Autophagy and Mitophagy-Related Pathways at the Crossroads of Genetic Pathways Involved in Familial Sarcoidosis and Host-Pathogen Interactions Induced by Coronaviruses. Cells 2021; 10:cells10081995. [PMID: 34440765 PMCID: PMC8393644 DOI: 10.3390/cells10081995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Sarcoidosis is a multisystem disease characterized by the development and accumulation of granulomas, the hallmark of an inflammatory process induced by environmental and/or infectious and or genetic factors. This auto-inflammatory disease mainly affects the lungs, the gateway to environmental aggressions and viral infections. We have shown previously that genetic predisposition to sarcoidosis occurring in familial cases is related to a large spectrum of pathogenic variants with, however, a clustering around mTOR (mammalian Target Of Rapamycin)-related pathways and autophagy regulation. The context of the COVID-19 pandemic led us to evaluate whether such genetic defects may increase the risk of a severe course of SARS-CoV2 infection in patients with sarcoidosis. We extended a whole exome screening to 13 families predisposed to sarcoidosis and crossed the genes sharing mutations with the list of genes involved in the SARS-CoV2 host-pathogen protein-protein interactome. A similar analysis protocol was applied to a series of 100 healthy individuals. Using ENRICH.R, a comprehensive gene set enrichment web server, we identified the functional pathways represented in the set of genes carrying deleterious mutations and confirmed the overrepresentation of autophagy- and mitophagy-related functions in familial cases of sarcoidosis. The same protocol was applied to the set of genes common to sarcoidosis and the SARS-CoV2-host interactome and found a significant enrichment of genes related to mitochondrial factors involved in autophagy, mitophagy, and RIG-I-like (Retinoic Acid Inducible Gene 1) Receptor antiviral response signaling. From these results, we discuss the hypothesis according to which sarcoidosis is a model for studying genetic abnormalities associated with host response to viral infections as a consequence of defects in autophagy and mitophagy processes.
Collapse
|
37
|
Su X, Yu J, Wang N, Zhao S, Han W, Chen D, Li L, Li L. High-Coverage Metabolome Analysis Reveals Significant Diet Effects of Autoclaved and Irradiated Feed on Mouse Fecal and Urine Metabolomics. Mol Nutr Food Res 2021; 65:e2100110. [PMID: 33861501 DOI: 10.1002/mnfr.202100110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Using metabolomics to study the relations of nutrition and health requires stringent control of the experimental conditions used in an animal model. This work investigates the diet effects of autoclaved and irradiated feed on mouse urine and fecal metabolomics. METHODS AND RESULTS C57BL/6 mice are fed normal-irradiation sterilized diet (n = 9), autoclave sterilized diet (n = 9), and high-irradiation sterilized diet (n = 9) for 4 weeks. Differential chemical isotope labeling liquid chromatography mass spectrometry is used to quantify the metabolome variations of urine and feces collected at five time points. Significant differences are observed in urine or fecal metabolomes of mice fed autoclaved diet versus mice fed high-irradiation diet or fed normal-irradiation diet, while the differences are small between the mice fed normal-irradiation and high-irradiation diet. Correlation studies of metabolite changes of diet- and aging-related biomarkers indicate a large overlap of significantly affected metabolites by the two factors. CONCLUSIONS Diet can be a confounding factor that needs to be carefully considered when a metabolomics study is designed and metabolomic results of a mouse model of nutritional or other biological study are interpreted. Using the same sterilized diet for a given metabolomics project is essential to control the diet effect.
Collapse
Affiliation(s)
- Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Nan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Shuang Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Wei Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
38
|
Norioka R, Tobisawa S, Nishigori R, Kuhara T, Yazaki M, Nagao M, Ohura T, Takai Y, Funai A, Miyamoto K, Kawata A, Takahashi K. Saccharopinuria accompanied by hyperammonemia and hypercitrullinemia presented with elderly-onset epilepsy, progressive cognitive decline, and gait ataxia. Intractable Rare Dis Res 2021; 10:126-130. [PMID: 33996359 PMCID: PMC8122307 DOI: 10.5582/irdr.2021.01003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report a case of saccharopinuria with hyperammonemia and hypercitrullinemia in a Japanese woman who presented with elderly-onset epilepsy, progressive cognitive decline, and gait ataxia. Blood amino acid analysis revealed an increase in citrulline, cystine, and lysine levels, and urine amino acid analysis showed increased citrulline and cystine levels. Urine metabolomics revealed an increased saccharopine level, leading to the definitive diagnosis of saccharopinuria. In western blots of liver biopsy samples, normal citrin levels were observed, suggesting that adult-onset citrullinemia type 2 (CTLN2) was not present. In addition, decreased argininosuccinate synthetase (ASS) levels were observed, and ASS1 gene, a causative gene for citrullinemia type 1 (CTLN1), was analyzed, but no gene mutations were found. Because the causes of hypercitrullinemia were not clear, it might be secondary to saccharopinuria. Muscle biopsy findings of the biceps brachii revealed diminished cytochrome c oxidase (COX) activity, mitochondrial abnormalities on electron microscopy and p62- positive structures in immunohistochemical analyses. Saccharopinuria is generally considered a benign metabolic variant, but our case showed elevated lysine and saccharopine levels causing ornithine circuit damage, mitochondrial dysfunction, and autophagy disorders. This may lead to so far unknown neurological disorders.
Collapse
Affiliation(s)
- Ryohei Norioka
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
- Address correspondence to:Ryohei Norioka, Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183- 0042, Japan. E-mail:
| | - Shinsuke Tobisawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Ryusei Nishigori
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomiko Kuhara
- Japan Clinical Metabolomics Institute, Ishikawa, Japan
| | - Masahide Yazaki
- Neurohealth Innovation Division, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Masayoshi Nagao
- Department of Pediatrics, Hokkaido Medical Center, Hokkaido, Japan
| | - Toshihiro Ohura
- Division of Clinical Laboratory, Sendai City Hospital, Sendai, Japan
| | - Yasuyuki Takai
- Department of Ophthalmology, Juntendo University Urayasu Hospital, Tokyo, Japan
| | - Asuka Funai
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kazuhito Miyamoto
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Akihiro Kawata
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
39
|
Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduct Target Ther 2021; 6:154. [PMID: 33888680 PMCID: PMC8062677 DOI: 10.1038/s41392-021-00549-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence suggests that ketogenic diets (KDs) mediate the rise of circulating ketone bodies and exert a potential anti-inflammatory effect; however, the consequences of this unique diet on colitis remain unknown. We performed a series of systematic studies using a dextran sulfate sodium (DSS) animal model of inflammatory colitis. Animals were fed with a KD, low-carbohydrate diet (LCD), or normal diet (ND). Germ-free mice were utilized in validation experiments. Colon tissues were analyzed by transcriptome sequencing, RT2 profiler PCR array, histopathology, and immunofluorescence. Serum samples were analyzed by metabolic assay kit. Fecal samples were analyzed by 16S rRNA gene sequencing, liquid chromatography–mass spectrometry and gas chromatography–mass spectrometry. We observed that KD alleviated colitis by altering the gut microbiota and metabolites in a manner distinct from LCD. Quantitative diet experiments confirmed the unique impact of KD relative to LCD with a reproducible increase in Akkermansia, whereas the opposite was observed for Escherichia/Shigella. After colitis induction, the KD protected intestinal barrier function, and reduced the production of RORγt+CD3− group 3 innate lymphoid cells (ILC3s) and related inflammatory cytokines (IL-17α, IL-18, IL-22, Ccl4). Finally, fecal microbiota transplantation into germ-free mice revealed that the KD- mediated colitis inhibition and ILC3 regulation were dependent on the modification of gut microbiota. Taken together, our study presents a global view of microbiome-metabolomics changes that occur during KD colitis treatment, and identifies the regulation of gut microbiome and ILC3s as novel targets involving in IBD dietary therapy.
Collapse
|
40
|
Lukasheva EV, Makletsova MG, Lukashev AN, Babayeva G, Arinbasarova AY, Medentsev AG. Fungal Enzyme l-Lysine α-Oxidase Affects the Amino Acid Metabolism in the Brain and Decreases the Polyamine Level. Pharmaceuticals (Basel) 2020; 13:E398. [PMID: 33212812 PMCID: PMC7698073 DOI: 10.3390/ph13110398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 11/16/2022] Open
Abstract
The fungal glycoprotein l-lysine α-oxidase (LO) catalyzes the oxidative deamination of l-lysine (l-lys). LO may be internalized in the intestine and shows antitumor, antibacterial, and antiviral effects in vivo. The main mechanisms of its effects have been shown to be depletion of the essential amino acid l-lys and action of reactive oxidative species produced by the reaction. Here, we report that LO penetrates into the brain and is retained there for up to 48 h after intravenous injection, which might be explained by specific pharmacokinetics. LO actively intervenes in amino acid metabolism in the brain. The most significant impact of LO was towards amino acids, which are directly exposed to its action (l-lys, l-orn, l-arg). In addition, the enzyme significantly affected the redistribution of amino acids directly associated with the tricarboxylic acid (TCA) cycle (l-asp and l-glu). We discovered that the depletion of l-orn, the precursor of polyamines (PA), led to a significant and long-term decrease in the concentration of polyamines, which are responsible for regulation of many processes including cell proliferation. Thus, LO may be used to reduce levels of l-lys and PA in the brain.
Collapse
Affiliation(s)
- Elena V. Lukasheva
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia;
| | - Marina G. Makletsova
- Department of Biology and General Pathology, Don State Technical University, Gagarin Square 1, Rostov-on-Don 344011, Russia;
| | - Alexander N. Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), 20 M. Pirogovskaya str., Moscow 119435, Russia;
| | - Gulalek Babayeva
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia;
| | - Anna Yu. Arinbasarova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Pr. Nauki, Pushchino, Moscow Region 142290, Russia; (A.Y.A.); (A.G.M.)
| | - Alexander G. Medentsev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Pr. Nauki, Pushchino, Moscow Region 142290, Russia; (A.Y.A.); (A.G.M.)
| |
Collapse
|
41
|
Leandro J, Dodatko T, DeVita RJ, Chen H, Stauffer B, Yu C, Houten SM. Deletion of 2-aminoadipic semialdehyde synthase limits metabolite accumulation in cell and mouse models for glutaric aciduria type 1. J Inherit Metab Dis 2020; 43:1154-1164. [PMID: 32567100 DOI: 10.1002/jimd.12276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022]
Abstract
Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by acute encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. We investigated the efficacy of substrate reduction through inhibition of 2-aminoadipic semialdehyde synthase (AASS), an enzyme upstream of the defective glutaryl-CoA dehydrogenase (GCDH), in a cell line and mouse model of GA1. We show that loss of AASS function in GCDH-deficient HEK-293 cells leads to an approximately fivefold reduction in the established GA1 clinical biomarker glutarylcarnitine. In the GA1 mouse model, deletion of Aass leads to a 4.3-, 3.8-, and 3.2-fold decrease in the glutaric acid levels in urine, brain, and liver, respectively. Parallel decreases were observed in urine and brain 3-hydroxyglutaric acid levels, and plasma, urine, and brain glutarylcarnitine levels. These in vivo data demonstrate that the saccharopine pathway is the main source of glutaric acid production in the brain and periphery of a mouse model for GA1, and support the notion that pharmacological inhibition of AASS may represent an attractive strategy to treat GA1.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai New York, New York, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Brandon Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
42
|
Naseer MI, Abdulkareem AA, Jan MM, Chaudhary AG, Alharazy S, AlQahtani MH. Next generation sequencing reveals novel homozygous frameshift in PUS7 and splice acceptor variants in AASS gene leading to intellectual disability, developmental delay, dysmorphic feature and microcephaly. Saudi J Biol Sci 2020; 27:3125-3131. [PMID: 33100873 PMCID: PMC7569139 DOI: 10.1016/j.sjbs.2020.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Intellectual developmental disorder with abnormal behavior, microcephaly and short stature (IDDABS), (OMIM# 618342) is an autosomal recessive condition described as developmental delay, poor or absent speech, intellectual disability, short stature, mild to progressive microcephaly, delayed psychomotor development, hyperactivity, seizure, along with mild to swear aggressive behavior. Homozygous frameshift mutation in Pseudouridine Synthase 7, Putative; (PUS7) OMIM# 616,261 NM_019042.3 and splice acceptor variants in Alpha-Aminoadipic Semialdehyde Synthase; (AASS) OMIM# 605,113 NM_005763.3 was funded. Whole exome sequencing (WES) technique was used as tool to identify the molecular diagnostic test. Different bioinformatics analysis done for WES data and we identified two novel mutations one as frameshift mutation c.606_607delGA, p.Ser282CysfsTer9 in the PUS7 gene and splice acceptor variants c.1767–1 G > A in the AASS gene has been reported. The pattern of family segregation maintained the pathogenicity of this variation associated with abnormal behavior, intellectual developmental disorder, microcephaly along with short stature IDDABS. Further, the WES data was validated in the family having other affected individuals and healthy controls (n = 100) was done using Sanger sequencing. Finally, our results further explained the role of WES in the disease diagnosis and elucidated that the mutation in PUS7 and AASS genes may lead an important role for the development of IDDABS in Saudi family.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | | | - Mohammed M Jan
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Box 80215, Jeddah 21589, Saudi Arabia
| | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Genetics, King Fahad General Hospital, 21589 Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Shatha Alharazy
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad H AlQahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Demir S, Kaplan O, Celebier M, Sag E, Bilginer Y, Lay I, Ozen S. Predictive biomarkers of IgA vasculitis with nephritis by metabolomic analysis. Semin Arthritis Rheum 2020; 50:1238-1244. [PMID: 33065418 DOI: 10.1016/j.semarthrit.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND IgA vasculitis (IgAV) is the most common vasculitis of childhood. Renal involvement defines late morbidity of the disease. A better understanding of the pathophysiology of the progression to kidney disease and predictive biomarkers are required for better management of IgAV and its nephritis (IgAVN). OBJECTIVES An untargeted metabolomics approach was performed to reveal the underlying molecular mechanism of disease pathogenesis and to define potential biomarkers from plasma samples from IgAV and IgAVN patients. METHODS Forty-five active IgAV patients (H) and six healthy controls (C) were enrolled in the study. Plasma samples were collected on the same day of diagnosis and before any immunosuppressive treatment was initiated. At the time of diagnosis and sample collection, none of the patients had renal involvement. We used Quadrupole Time of Flight Mass Spectrometry (Q-TOF LC/MS) to investigate the alterations in plasma metabolomic profiles. Three separate pools were created: healthy controls (group C), active IgAV patients who did not develop renal involvement (group H), and patients who developed IgAVN at follow up (group N). Peak picking, grouping, and comparison parts were performed via XCMS (https://xcmsonline.scripps.edu/) software. RESULTS At follow-up, IgAVN developed in 6 out of 45 IgAV patients. The median time of renal involvement development is 23 days (range 5-45 days). Of these, 3 had nephritic proteinuria, one had nephrotic proteinuria, and 2 had microscopic hematuria. There were no significant differences in gender, age, clinical manifestations, and laboratory findings between the six patients who developed renal involvement and those who did not. In multivariate analysis, there was no significant association between any of the defined demographic and clinical characteristics (male sex, gastrointestinal system involvement, joint involvement, CRP, WBC, PLT) and the occurrence of renal involvement. Totally 2618 peaks were detected for group H, N, and C. Among them, 355 peaks were found to be statistically significant and reliable (p<0.05), and 155 of these peaks were found to be changed (fold change >1.5) between the groups C and H, and 66 peaks were found to be changed (fold change >1.5) between the groups H and N. The number of the peaks on the intersection of the peaks found to be different between the groups (C and H) and (H and N) was 39. Based on putative identification results, 15 putatively identified metabolites matched with 11 peaks were presented as biomarker candidates after careful evaluation with a clinical perspective. CONCLUSION We suggest that DHAP (18:0), prostaglandin D2/I2, porphobilinogen, 5-methyltetrahydrofolic acid, and N-Acetyl-4-O-acetylneuraminic acid/N-Acetyl-7-O-acetylneuraminic acid may serve as biomarkers for predicting kidney disease. Future studies with larger groups of IgAV patients are needed to validate the identified metabolic profile.
Collapse
Affiliation(s)
- Selcan Demir
- Hacettepe University Faculty of Medicine, Department of Pediatric Rheumatology, Ankara, Turkey
| | - Ozan Kaplan
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Hacettepe University, Faculty of Pharmacy Drug and Cosmetic R&D and Quality Control Laboratory (HUNIKAL), Ankara, Turkey
| | - Mustafa Celebier
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Hacettepe University, Faculty of Pharmacy Drug and Cosmetic R&D and Quality Control Laboratory (HUNIKAL), Ankara, Turkey
| | - Erdal Sag
- Hacettepe University Faculty of Medicine, Department of Pediatric Rheumatology, Ankara, Turkey
| | - Yelda Bilginer
- Hacettepe University Faculty of Medicine, Department of Pediatric Rheumatology, Ankara, Turkey
| | - Incilay Lay
- Hacettepe University Faculty of Medicine, Department of Medical Biochemistry, Ankara, Turkey; Hacettepe University Hospitals, Clinical Pathology Laboratory, Ankara, Turkey
| | - Seza Ozen
- Hacettepe University Faculty of Medicine, Department of Pediatric Rheumatology, Ankara, Turkey.
| |
Collapse
|
44
|
Corpus Callosum Agenesis: An Insight into the Etiology and Spectrum of Symptoms. Brain Sci 2020; 10:brainsci10090625. [PMID: 32916978 PMCID: PMC7565833 DOI: 10.3390/brainsci10090625] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Brain hemispheres are connected by commissural structures, which consist of white matter fiber tracts that spread excitatory stimuli to various regions of the cortex. This allows an interaction between the two cerebral halves. The largest commissure is the corpus callosum (CC) which is located inferior to the longitudinal fissure, serving as its lower border. Sometimes this structure is not completely developed, which results in the condition known as agenesis of the corpus callosum (ACC). The aim of this paper was to review the latest discoveries related to the genetic and metabolic background of ACC, including the genotype/phenotype correlations as well as the clinical and imaging symptomatology. Due to various factors, including genetic defects and metabolic diseases, the development of CC may be impaired in many ways, which results in complete or partial ACC. This creates several clinical implications, depending on the specificity of the malformation and other defects in patients. Epilepsy, motor impairment and intellectual disability are the most prevalent. However, an asymptomatic course of the disease is even more common. ACC presents with characteristic images on ultrasound and magnetic resonance imaging (MRI).
Collapse
|
45
|
Leandro J, Houten SM. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol Genet Metab 2020; 131:14-22. [PMID: 32768327 DOI: 10.1016/j.ymgme.2020.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
46
|
Ignatenko O, Nikkanen J, Kononov A, Zamboni N, Ince-Dunn G, Suomalainen A. Mitochondrial spongiotic brain disease: astrocytic stress and harmful rapamycin and ketosis effect. Life Sci Alliance 2020; 3:3/9/e202000797. [PMID: 32737078 PMCID: PMC7409372 DOI: 10.26508/lsa.202000797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Astrocyte-specific mtDNA depletion causes spongiotic encephalopathy, aggravated by ketogenic diet or rapamycin. Astrocytes, but not neurons, drive mitochondrial integrated stress response in the CNS. Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a group of severe, tissue-specific diseases of childhood with unknown pathogenesis. Brain-specific MDS manifests as devastating spongiotic encephalopathy with no curative therapy. Here, we report cell type–specific stress responses and effects of rapamycin treatment and ketogenic diet (KD) in mice with spongiotic encephalopathy mimicking human MDS, as these interventions were reported to improve some mitochondrial disease signs or symptoms. These mice with astrocyte-specific knockout of Twnk gene encoding replicative mtDNA helicase Twinkle (TwKOastro) show wide-spread cell-autonomous astrocyte activation and mitochondrial integrated stress response (ISRmt) induction with major metabolic remodeling of the brain. Mice with neuronal-specific TwKO show no ISRmt. Both KD and rapamycin lead to rapid deterioration and weight loss of TwKOastro and premature trial termination. Although rapamycin had no robust effects on TwKOastro brain pathology, KD exacerbated spongiosis, gliosis, and ISRmt. Our evidence emphasizes that mitochondrial disease treatments and stress responses are tissue- and disease specific. Furthermore, rapamycin and KD are deleterious in MDS-linked spongiotic encephalopathy, pointing to a crucial role of diet and metabolism for mitochondrial disease progression.
Collapse
Affiliation(s)
- Olesia Ignatenko
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Joni Nikkanen
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | | | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Gulayse Ince-Dunn
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland .,Neuroscience Center, University of Helsinki, Helsinki, Finland.,HUSlab, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
47
|
Estaras M, Ameur FZ, Estévez M, Díaz-Velasco S, Gonzalez A. The lysine derivative aminoadipic acid, a biomarker of protein oxidation and diabetes-risk, induces production of reactive oxygen species and impairs trypsin secretion in mouse pancreatic acinar cells. Food Chem Toxicol 2020; 145:111594. [PMID: 32738373 DOI: 10.1016/j.fct.2020.111594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
We have examined the effects of α-aminoadipic acid, an oxidized derivative from the amino acid lysine, on the physiology of mouse pancreatic acinar cells. Changes in intracellular free-Ca2+ concentration, the generation of reactive oxygen species, the levels of carbonyls and thiobarbituric-reactive substances, cellular metabolic activity and trypsin secretion were studied. Stimulation of mouse pancreatic cells with cholecystokinin (1 nM) evoked a transient increase in [Ca2+]i. In the presence of α-amoniadipic acid increases in [Ca2+]i were observed. In the presence of the compound, cholecystokinin induced a Ca2+ response that was smaller compared with that observed when cholecystokinin was applied alone. Stimulation of cells with cholecystokinin in the absence of Ca2+ in the extracellular medium abolished further mobilization of Ca2+ by α-aminoadipic acid. In addition, potential pro-oxidant conditions, reflected as increases in ROS generation, oxidation of proteins and lipids, were noted in the presence of α-aminoadipic acid. Finally, the compound impaired trypsin secretion induced by the secretagogue cholecystokinin. We conclude that the oxidized derivative from the amino acid lysine induces pro-oxidative conditions and the impairment of enzyme secretion in pancreatic acinar cells. α-aminoadipic acid thus creates a situation that could potentially lead to disorders in the physiology of the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1 Ahmed BenBella, Algeria
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Silvia Díaz-Velasco
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
48
|
Beier UH, Hartung EA, Concors S, Hernandez PT, Wang Z, Perry C, Baur JA, Denburg MR, Hancock WW, Gade TP, Levine MH. Tissue metabolic profiling shows that saccharopine accumulates during renal ischemic-reperfusion injury, while kynurenine and itaconate accumulate in renal allograft rejection. Metabolomics 2020; 16:65. [PMID: 32367163 PMCID: PMC7450764 DOI: 10.1007/s11306-020-01682-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
To examine metabolic differences between renal allograft acute cellular rejection (ACR) and ischemic-reperfusion injury (IRI), we transplanted MHC-mismatched kidneys and induced 28 min warm-IRI, and collected the ACR and IRI kidneys as well as their respective native and collateral control kidneys. We extracted metabolites from the kidney tissues and found the lysine catabolite saccharopine 12.5-fold enriched in IRI kidneys, as well as the immunometabolites itaconate and kynurenine in ACR kidneys. Saccharopine accumulation is known to be toxic to mitochondria and may contribute to IRI pathophysiology, while itaconate and kynurenine may be reflective of counterregulatory responses to immune activation in ACR.
Collapse
Affiliation(s)
- Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erum A Hartung
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Seth Concors
- Department of Transplant Surgery, Penn Transplant Institute, Perelman School of Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, 3400 Spruce Street, 2 Ravdin Courtyard, Philadelphia, PA, 19104, USA
| | - Paul T Hernandez
- Department of Transplant Surgery, Penn Transplant Institute, Perelman School of Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, 3400 Spruce Street, 2 Ravdin Courtyard, Philadelphia, PA, 19104, USA
| | - Zhonglin Wang
- Department of Transplant Surgery, Penn Transplant Institute, Perelman School of Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, 3400 Spruce Street, 2 Ravdin Courtyard, Philadelphia, PA, 19104, USA
| | - Caroline Perry
- Department of Physiology and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph A Baur
- Department of Physiology and Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michelle R Denburg
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Biesecker Center for Pediatric Liver Disease, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Terence P Gade
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew H Levine
- Department of Transplant Surgery, Penn Transplant Institute, Perelman School of Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, 3400 Spruce Street, 2 Ravdin Courtyard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Tang R, Wang X, Zhou J, Zhang F, Zhao S, Gan Q, Zhao L, Wang F, Zhang Q, Zhang J, Wang G, Yang C. Defective arginine metabolism impairs mitochondrial homeostasis in Caenorhabditiselegans. J Genet Genomics 2020; 47:145-156. [PMID: 32305173 DOI: 10.1016/j.jgg.2020.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022]
Abstract
Arginine catabolism involves enzyme-dependent reactions in both mitochondria and the cytosol, defects in which may lead to hyperargininemia, a devastating developmental disorder. It is largely unknown if defective arginine catabolism has any effects on mitochondria. Here we report that normal arginine catabolism is essential for mitochondrial homeostasis in Caenorhabditiselegans. Mutations of the arginase gene argn-1 lead to abnormal mitochondrial enlargement and reduced adenosine triphosphate (ATP) production in C. elegans hypodermal cells. ARGN-1 localizes to mitochondria and its loss causes arginine accumulation, which disrupts mitochondrial dynamics. Heterologous expression of human ARG1 or ARG2 rescued the mitochondrial defects of argn-1 mutants. Importantly, genetic inactivation of the mitochondrial basic amino acid transporter SLC-25A29 or the mitochondrial glutamate transporter SLC-25A18.1 fully suppressed the mitochondrial defects caused by argn-1 mutations. These findings suggest that mitochondrial damage probably contributes to the pathogenesis of hyperargininemia and provide clues for developing therapeutic treatments for hyperargininemia.
Collapse
Affiliation(s)
- Ruofeng Tang
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Wang
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxiang Zhou
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Zhao
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiwen Gan
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Zhao
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengyang Wang
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Zhang
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Zhang
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chonglin Yang
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, 650021, China.
| |
Collapse
|
50
|
Fu H, Zhou H, Yu X, Xu J, Zhou J, Meng X, Zhao J, Zhou Y, Chisholm AD, Xu S. Wounding triggers MIRO-1 dependent mitochondrial fragmentation that accelerates epidermal wound closure through oxidative signaling. Nat Commun 2020; 11:1050. [PMID: 32103012 PMCID: PMC7044169 DOI: 10.1038/s41467-020-14885-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Organisms respond to tissue damage through the upregulation of protective responses which restore tissue structure and metabolic function. Mitochondria are key sources of intracellular oxidative metabolic signals that maintain cellular homeostasis. Here we report that tissue and cellular wounding triggers rapid and reversible mitochondrial fragmentation. Elevated mitochondrial fragmentation either in fzo-1 fusion-defective mutants or after acute drug treatment accelerates actin-based wound closure. Wounding triggered mitochondrial fragmentation is independent of the GTPase DRP-1 but acts via the mitochondrial Rho GTPase MIRO-1 and cytosolic Ca2+. The fragmented mitochondria and accelerated wound closure of fzo-1 mutants are dependent on MIRO-1 function. Genetic and transcriptomic analyzes show that enhanced mitochondrial fragmentation accelerates wound closure via the upregulation of mtROS and Cytochrome P450. Our results reveal how mitochondrial dynamics respond to cellular and tissue injury and promote tissue repair. Mitochondria are important organelles that generate and respond to signals to maintain cellular homeostasis. Here the authors show that wounding triggers GTPase MIRO-1- and calcium-dependent mitochondrial fragmentation, which aids tissue wound repair through cytochrome P450 and mitochondrial reactive oxygen species.
Collapse
Affiliation(s)
- Hongying Fu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Hengda Zhou
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,The Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, 314400, Zhejiang, China
| | - Xinghai Yu
- Department of System Biology, School of Life Science, Wuhan University, 430072, Wuhan, China
| | - Jingxiu Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,The Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, 314400, Zhejiang, China
| | - Jinghua Zhou
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xinan Meng
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Jianzhi Zhao
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yu Zhou
- Department of System Biology, School of Life Science, Wuhan University, 430072, Wuhan, China
| | - Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine and Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,The Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, 314400, Zhejiang, China. .,Women's Hospital of Zhejiang University, School of Medicine Hangzhou, 310058, Hangzhou, China.
| |
Collapse
|