1
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
2
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
3
|
Chaudhry MZ, Borkner L, Kulkarni U, Berberich-Siebelt F, Cicin-Sain L. NFAT signaling is indispensable for persistent memory responses of MCMV-specific CD8+ T cells. PLoS Pathog 2024; 20:e1012025. [PMID: 38346075 PMCID: PMC10890734 DOI: 10.1371/journal.ppat.1012025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/23/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cytomegalovirus (CMV) induces a unique T cell response, where antigen-specific populations do not contract, but rather inflate during viral latency. It has been proposed that subclinical episodes of virus reactivation feed the inflation of CMV-specific memory cells by intermittently engaging T cell receptors (TCRs), but evidence of TCR engagement has remained lacking. Nuclear factor of activated T cells (NFAT) is a family of transcription factors, where NFATc1 and NFATc2 signal downstream of TCR in mature T lymphocytes. We show selective impacts of NFATc1 and/or NFATc2 genetic ablations on the long-term inflation of MCMV-specific CD8+ T cell responses despite largely maintained responses to acute infection. NFATc1 ablation elicited robust phenotypes in isolation, but the strongest effects were observed when both NFAT genes were missing. CMV control was impaired only when both NFATs were deleted in CD8+ T cells used in adoptive immunotherapy of immunodeficient mice. Transcriptome analyses revealed that T cell intrinsic NFAT is not necessary for CD8+ T cell priming, but rather for their maturation towards effector-memory and in particular the effector cells, which dominate the pool of inflationary cells.
Collapse
Affiliation(s)
- M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Borkner
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine, a joint venture of Helmholtz Centre for Infection Research and Medical School Hannover, Hannover, Germany
| |
Collapse
|
4
|
Brunel S, Picarda G, Gupta A, Ghosh R, McDonald B, El Morabiti R, Jiang W, Greenbaum JA, Adler B, Seumois G, Croft M, Vijayanand P, Benedict CA. Late-rising CD4 T cells resolve mouse cytomegalovirus persistent replication in the salivary gland. PLoS Pathog 2024; 20:e1011852. [PMID: 38236791 PMCID: PMC10796040 DOI: 10.1371/journal.ppat.1011852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Conventional antiviral memory CD4 T cells typically arise during the first two weeks of acute infection. Unlike most viruses, cytomegalovirus (CMV) exhibits an extended persistent replication phase followed by lifelong latency accompanied with some gene expression. We show that during mouse CMV (MCMV) infection, CD4 T cells recognizing an epitope derived from the viral M09 protein only develop after conventional memory T cells have already peaked and contracted. Ablating these CD4 T cells by mutating the M09 genomic epitope in the MCMV Smith strain, or inducing them by introducing the epitope into the K181 strain, resulted in delayed or enhanced control of viral persistence, respectively. These cells were shown to be unique compared to their conventional memory counterparts; producing higher IFNγ and IL-2 and lower IL-10 levels. RNAseq analyses revealed them to express distinct subsets of effector genes as compared to classical CD4 T cells. Additionally, when M09 cells were induced by epitope vaccination they significantly enhanced protection when compared to conventional CD4 T cells alone. These data show that late-rising CD4 T cells are a unique memory subset with excellent protective capacities that display a development program strongly differing from the majority of memory T cells.
Collapse
Affiliation(s)
- Simon Brunel
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Gaelle Picarda
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Ankan Gupta
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
- Division of Immune Regulation, La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Raima Ghosh
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Bryan McDonald
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Rachid El Morabiti
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Wenjin Jiang
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Jason A. Greenbaum
- LJI Bioinformatics Core, La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Barbara Adler
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig- Maximilians-University Munich, Munich, Germany
| | - Gregory Seumois
- Center for Cancer Immunotherapy, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Pandurangan Vijayanand
- Center for Cancer Immunotherapy, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Chris A. Benedict
- Center for Infectious Disease and Vaccine Research, Center for Autoimmunity and Inflammation La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| |
Collapse
|
5
|
Khorki ME, Shi T, Cianciolo EE, Burg AR, Chukwuma PC, Picarsic JL, Morrice MK, Woodle ES, Maltzman JS, Ferguson A, Katz JD, Baker BM, Hildeman DA. Prior viral infection primes cross-reactive CD8+ T cells that respond to mouse heart allografts. Front Immunol 2023; 14:1287546. [PMID: 38143762 PMCID: PMC10748599 DOI: 10.3389/fimmu.2023.1287546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Significant evidence suggests a connection between transplant rejection and the presence of high levels of pre-existing memory T cells. Viral infection can elicit viral-specific memory T cells that cross-react with allo-MHC capable of driving allograft rejection in mice. Despite these advances, and despite their critical role in transplant rejection, a systematic study of allo-reactive memory T cells, their specificities, and the role of cross-reactivity with viral antigens has not been performed. Methods Here, we established a model to identify, isolate, and characterize cross-reactive T cells using Nur77 reporter mice (C57BL/6 background), which transiently express GFP exclusively upon TCR engagement. We infected Nur77 mice with lymphocytic choriomeningitis virus (LCMV-Armstrong) to generate a robust memory compartment, where quiescent LCMV-specific memory CD8+ T cells could be readily tracked with MHC tetramer staining. Then, we transplanted LCMV immune mice with allogeneic hearts and monitored expression of GFP within MHC-tetramer defined viral-specific T cells as an indicator of their ability to cross-react with alloantigens. Results Strikingly, prior LCMV infection significantly increased the kinetics and magnitude of rejection as well as CD8+ T cell recruitment into allogeneic, but not syngeneic, transplanted hearts, relative to non-infected controls. Interestingly, as early as day 1 after allogeneic heart transplant an average of ~8% of MHC-tetramer+ CD8+ T cells expressed GFP, in contrast to syngeneic heart transplants, where the frequency of viral-specific CD8+ T cells that were GFP+ was <1%. These data show that a significant percentage of viral-specific memory CD8+ T cells expressed T cell receptors that also recognized alloantigens in vivo. Notably, the frequency of cross-reactive CD8+ T cells differed depending upon the viral epitope. Further, TCR sequences derived from cross-reactive T cells harbored distinctive motifs that may provide insight into cross-reactivity and allo-specificity. Discussion In sum, we have established a mouse model to track viral-specific, allo-specific, and cross-reactive T cells; revealing that prior infection elicits substantial numbers of viral-specific T cells that cross-react to alloantigen, respond very early after transplant, and may promote rapid rejection.
Collapse
Affiliation(s)
- M. Eyad Khorki
- Division of Nephrology & Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tiffany Shi
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Eileen E. Cianciolo
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ashley R. Burg
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - P. Chukwunalu Chukwuma
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - Jennifer L. Picarsic
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mary K. Morrice
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - E. Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jonathan S. Maltzman
- Department of Medicine, Stanford University, Palo Alto, CA, United States
- Geriatric Research and Education Clinical Center, Veterans Affairs (VA) Palo Alto Health Care System, Palo Alto, CA, United States
| | - Autumn Ferguson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brian M. Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| | - David A. Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
6
|
Clement M, Ladell K, Miners KL, Marsden M, Chapman L, Cardus Figueras A, Scott J, Andrews R, Clare S, Kriukova VV, Lupyr KR, Britanova OV, Withers DR, Jones SA, Chudakov DM, Price DA, Humphreys IR. Inhibitory IL-10-producing CD4 + T cells are T-bet-dependent and facilitate cytomegalovirus persistence via coexpression of arginase-1. eLife 2023; 12:e79165. [PMID: 37440306 PMCID: PMC10344424 DOI: 10.7554/elife.79165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/11/2023] [Indexed: 07/14/2023] Open
Abstract
Inhibitory CD4+ T cells have been linked with suboptimal immune responses against cancer and pathogen chronicity. However, the mechanisms that underpin the development of these regulatory cells, especially in the context of ongoing antigen exposure, have remained obscure. To address this knowledge gap, we undertook a comprehensive functional, phenotypic, and transcriptomic analysis of interleukin (IL)-10-producing CD4+ T cells induced by chronic infection with murine cytomegalovirus (MCMV). We identified these cells as clonally expanded and highly differentiated TH1-like cells that developed in a T-bet-dependent manner and coexpressed arginase-1 (Arg1), which promotes the catalytic breakdown of L-arginine. Mice lacking Arg1-expressing CD4+ T cells exhibited more robust antiviral immunity and were better able to control MCMV. Conditional deletion of T-bet in the CD4+ lineage suppressed the development of these inhibitory cells and also enhanced immune control of MCMV. Collectively, these data elucidated the ontogeny of IL-10-producing CD4+ T cells and revealed a previously unappreciated mechanism of immune regulation, whereby viral persistence was facilitated by the site-specific delivery of Arg1.
Collapse
Affiliation(s)
- Mathew Clement
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Kelly L Miners
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Morgan Marsden
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Lucy Chapman
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Anna Cardus Figueras
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Jake Scott
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Robert Andrews
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Valeriia V Kriukova
- Center of Life Sciences, Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of KielKielGermany
| | - Ksenia R Lupyr
- Center of Life Sciences, Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - Olga V Britanova
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of KielKielGermany
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
| | - David R Withers
- Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Dmitriy M Chudakov
- Center of Life Sciences, Skolkovo Institute of Science and TechnologyMoscowRussian Federation
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
- Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical UniversityMoscowRussian Federation
- Abu Dhabi Stem Cell CenterAl MuntazahUnited Arab Emirates
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Ian R Humphreys
- Division of Infection and Immunity, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
7
|
Abstract
Human cytomegalovirus (HCMV) is a prevalent herpesvirus, infecting the majority of the human population. Like other herpesviruses, it causes lifelong infection through the establishment of latency. Although reactivation from latency can cause significant morbidity and mortality in immunocompromised hosts, our understanding of HCMV latency and how it is maintained remains limited. Here, we discuss the characterized latency reservoir in hematopoietic cells in the bone marrow and the gaps in our knowledge of mechanisms that facilitate HCMV genome maintenance in dividing cells. We further review clinical evidence that strongly suggests the tissue origin of HCMV reactivation, and we outline similarities to murine cytomegalovirus where latency in tissue-resident cells has been demonstrated. Overall, we think these observations call for a rethinking of HCMV latency reservoirs and point to potential sources of HCMV latency that reside in tissues.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Seefried M, Hundhausen N, Kroeger I, Büttner-Herold M, Hoffmann P, Edinger M, Ullrich E, Berberich-Siebelt F, Britt WJ, Mach M, Winkler TH. Murine cytomegalovirus reactivation concomitant with acute graft-versus-host disease is controlled by antibodies. JCI Insight 2023; 8:149648. [PMID: 36719764 PMCID: PMC10077468 DOI: 10.1172/jci.insight.149648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) from latency is a frequent complication following hematopoietic stem cell transplantation (HSCT). The development of acute graft-versus-host disease (GVHD) is a significant risk factor for HCMV disease. Using a murine GVHD model in animals latently infected with murine CMV (MCMV), we studied preventive and therapeutic interventions in this high-risk scenario of HSCT. Mice latently infected with MCMV experienced reactivated MCMV and developed disseminated MCMV infection concomitant with the manifestations of GVHD. Dissemination was accompanied by accelerated mortality. We demonstrate that MCMV reactivation and dissemination was modulated by MCMV-specific antibodies, thus demonstrating in vivo protective activity of antiviral antibodies. However, the efficacy of serum therapy required repetitive doses of high-titer immune serum secondary to the shortened serum half-life of IgG in animals with GVHD. In a complementary approach, treatment of GVHD by adoptive transfer of donor-derived Tregs facilitated production of MCMV-specific antibodies from newly developing donor-derived B cells. Together, our findings strongly suggest that antibodies play a major role in controlling recurrent MCMV infection that follows GVHD, and they argue for reassessing the potential of antibody treatments as well as therapeutic strategies that enhance de novo antibody development against HCMV.
Collapse
Affiliation(s)
- Martina Seefried
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Irena Kroeger
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital, Erlangen, Germany
| | | | - Petra Hoffmann
- Department of Internal Medicine III, Hematology and Oncology, University Hospital, Regensburg, Germany and LIT - Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, Hematology and Oncology, University Hospital, Regensburg, Germany and LIT - Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| | - Evelyn Ullrich
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital, Erlangen, Germany.,Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | | | - William J Britt
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Michael Mach
- Institute for Clinical and Molecular Virology, University Hospital, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
9
|
Iravani Saadi M, Jiang M, Banakar M, Mardani Valandani F, Ahmadyan M, Rostamipour HA, Kheradmand N, Noshadi N, Karimi Z, Nabi Abdolyousefi E, Ramzi M, Haghighinejad H, Yaghobi R, Hosseini F. Are the Costimulatory Molecule Gene Polymorphisms (CTLA-4) Associated With Infection in Organ Transplantation? A Meta-Analysis. Cell Transplant 2023; 32:9636897231151576. [PMID: 36840462 PMCID: PMC9969477 DOI: 10.1177/09636897231151576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 02/26/2023] Open
Abstract
Organ transplantation has been linked to certain gene polymorphisms. The effect of gene polymorphisms-associated organ transplantation gene on infection, on the other hand, is yet unknown. The research studying the link between the CTLA-4 rs5742909, rs733618, rs4553808, rs231775, and polymorphisms of the organ transplantation gene and infection were found in PubMed, Web of Science, Scopus, and Embase, and the published articles from 2012 to 2020 were gathered. For the best estimation of the intended results, a random-effects model was used in this meta-analysis. In this study, 1,567 studies were initially included and 9 eligible studies were eligible for further analyses. A significant correlation between CTLA4+49 [A/G-231775 odds ratio (OR) = 077, 0.59-0.95] and CTLA4 [rs5742909TT OR: 0.09, 0.27-0.45] gene polymorphism with infection in organ transplantation was observed. Also, no significant association was found between other CTLA4 gene polymorphisms with infection in organ transplantation. Further studies involving gene-gene and gene-diet interactions should be conducted to investigate this association with infection.
Collapse
Affiliation(s)
| | - Mingjun Jiang
- Graduate School of Jinzhou Medical
University, Jinzhou, Liaoning, China
| | - Morteza Banakar
- Dental Research Center, Dentistry
Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Ahmadyan
- Hematology Research Center, Shiraz
University of Medical Sciences, Shiraz, Iran
| | | | - Nadiya Kheradmand
- Hematology Research Center, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Nasrin Noshadi
- Hematology Research Center, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Zahed Karimi
- Hematology Research Center, Shiraz
University of Medical Sciences, Shiraz, Iran
- Hematology, Oncology and Bone Marrow
Transplantation Department, Shiraz University of Medical Sciences, Shiraz,
Iran
| | | | - Mani Ramzi
- Hematology Research Center, Shiraz
University of Medical Sciences, Shiraz, Iran
- Hematology, Oncology and Bone Marrow
Transplantation Department, Shiraz University of Medical Sciences, Shiraz,
Iran
| | | | - Ramin Yaghobi
- Transplant Research Center, Shiraz
University of Medical Sciences, Shiraz
| | - Fakhroddin Hosseini
- Hematology Research Center, Shiraz
University of Medical Sciences, Shiraz, Iran
- Hematology, Oncology and Bone Marrow
Transplantation Department, Shiraz University of Medical Sciences, Shiraz,
Iran
| |
Collapse
|
10
|
Abstract
CD4+ T cells are key to controlling cytomegalovirus infections. Salivary gland infection by murine cytomegalovirus (MCMV) provides a way to identify mechanisms. CD11c+ dendritic cells (DC) disseminate MCMV to the salivary glands, where they transfer infection to acinar cells. Antiviral CD4+ T cells are often considered to be directly cytotoxic for cells expressing major histocompatibility complex class II (MHCII). However, persistently infected salivary gland acinar cells are MHCII- and are presumably inaccessible to direct CD4 T cell recognition. Here, we show that CD4+ T cell depletion amplified infection of MHCII- acinar cells but not MHCII+ cells. MCMV-infected mice with disrupted MHCII on CD11c+ cells showed increased MHCII- acinar infection; antiviral CD4+ T cells were still primed, but their recruitment to the salivary glands was reduced, suggesting that engagement with local MHCII+ DC is important for antiviral protection. As MCMV downregulates MHCII on infected DC, the DC participating in CD4 protection may thus be uninfected. NK cells and gamma interferon (IFN-γ) may also contribute to CD4+ T cell-dependent virus control: CD4 T cell depletion reduced NK cell recruitment to the salivary glands, and both NK cell and IFN-γ depletion equalized infection between MHCII-disrupted and control mice. Taken together, these results suggest that CD4+ T cells protect indirectly against infected acinar cells in the salivary gland via DC engagement, requiring the recruitment of NK cells and the action of IFN-γ. Congruence of these results with an established CD4+ T cell/NK cell axis of gammaherpesvirus infection control suggests a common mode of defense against evasive viruses. IMPORTANCE Cytomegalovirus infections commonly cause problems in immunocompromised patients and in pregnancy. We lack effective vaccines. CD4+ T cells play an important role in normal infection control, yet how they act has been unknown. Using murine cytomegalovirus as an accessible model, we show that CD4+ T cells are unlikely to recognize infected cells directly. We propose that CD4+ T cells interact with uninfected cells that present viral antigens and recruit other immune cells to attack infected targets. These data present a new outlook on understanding how CD4+ T cell-directed control protects against persistent cytomegalovirus infection.
Collapse
|
11
|
The mouse cytomegalovirus G protein-coupled receptor homolog, M33, coordinates key features of in vivo infection via distinct components of its signalling repertoire. J Virol 2021; 96:e0186721. [PMID: 34878888 DOI: 10.1128/jvi.01867-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Common to all cytomegalovirus (CMV) genomes analysed to date is the presence of G protein-coupled receptors (GPCR). Animal models of CMV provide insights into their role in viral fitness. The mouse cytomegalovirus (MCMV) GPCR, M33, facilitates dendritic cell (DC)-dependent viremia, the extravasation of blood-borne infected DC to the salivary gland and the frequency of reactivation events from latently-infected tissue explants. Constitutive G protein-coupled M33 signalling is required for these phenotypes, although the contribution of distinct biochemical pathways activated by M33 is unknown. M33 engages Gq/11 to constitutively activate phospholipase C β (PLCβ) and downstream cyclic AMP response-element binding protein (CREB) in vitro. Identification of a MCMV M33 mutant (M33ΔC38) for which CREB signalling was disabled, but PLCβ activation was preserved, provided the opportunity to investigate their relevance in vivo. Following intranasal infection with MCMV M33ΔC38, the absence of M33 CREB Gq/11-dependent signalling correlated with reduced mobilisation of lytically-infected DC to draining lymph node high endothelial venules (HEVs) and reduced viremia compared with wild type MCMV. In contrast, M33ΔC38-infected DC within the vascular compartment extravasated to the salivary glands via a pertussis toxin-sensitive, Gi/o-dependent and CREB-independent mechanism. In the context of MCMV latency, spleen explants from M33ΔC38-infected mice were markedly attenuated for reactivation. Taken together, these data demonstrate that key features of the MCMV lifecycle are coordinated in diverse tissues by distinct pathways of the M33 signalling repertoire. IMPORTANCE G protein-coupled receptors (GPCRs) act as cell surface molecular "switches" which regulate the cellular response to environmental stimuli. All cytomegalovirus (CMV) genomes analysed to date possess GPCR homologs with phylogenetic evidence for independent gene capture events, signifying important in vivo roles. The mouse CMV (MCMV) GPCR homolog, designated M33, is important for cell-associated virus spread and for the establishment and/or reactivation of latent MCMV infection. The signalling repertoire of M33 is distinct from cellular GPCRs and little is known of the relevance of component signalling pathways for in vivo M33 function. In this report, we show temporal and tissue-specific M33 signalling is required facilitating in vivo infection. Understanding the relevance of the viral GPCR signalling profiles for in vivo function will provide opportunities for future targeted interventions.
Collapse
|
12
|
Hancock TJ, Hetzel ML, Ramirez A, Sparer TE. MCMV Centrifugal Enhancement: A New Spin on an Old Topic. Pathogens 2021; 10:1577. [PMID: 34959531 PMCID: PMC8705575 DOI: 10.3390/pathogens10121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen infecting a majority of people worldwide, with diseases ranging from mild to life-threatening. Its clinical relevance in immunocompromised people and congenital infections have made treatment and vaccine development a top priority. Because of cytomegaloviruses' species specificity, murine cytomegalovirus (MCMV) models have historically informed and advanced translational CMV therapies. Using the phenomenon of centrifugal enhancement, we explored differences between MCMVs derived in vitro and in vivo. We found centrifugal enhancement on tissue culture-derived virus (TCV) was ~3× greater compared with salivary gland derived virus (SGV). Using novel "flow virometry", we found that TCV contained a distinct submicron particle composition compared to SGV. Using an inhibitor of exosome production, we show these submicron particles are not extracellular vesicles that contribute to centrifugal enhancement. We examined how these differences in submicron particles potentially contribute to differing centrifugal enhancement phenotypes, as well as broader in vivo vs. in vitro MCMV differences.
Collapse
Affiliation(s)
| | | | | | - Tim E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA; (T.J.H.); (M.L.H.); (A.R.)
| |
Collapse
|
13
|
CD4 T Cell-Mediated Immune Control of Cytomegalovirus Infection in Murine Salivary Glands. Pathogens 2021; 10:pathogens10121531. [PMID: 34959486 PMCID: PMC8704252 DOI: 10.3390/pathogens10121531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
CD4 T cells are well known for their supportive role in CD8 T cell and B cell responses during viral infection. However, during murine cytomegalovirus (MCMV) infection in the salivary glands (SGs), CD4 T cells exhibit direct antiviral effector functions to control the infection. In this mucosal organ, opposed to other infected tissues, MCMV establishes a sustained lytic replication that lasts for several weeks. While the protective function of CD4 T cells is exerted through the production of the pro-inflammatory cytokines interferon gamma (IFNγ) and tumor necrosis factor alpha (TNF), the reasons for their markedly delayed control of lytic MCMV infection remain elusive. Here, we review the current knowledge on the dynamics and mechanisms of the CD4 T cell-mediated control of MCMV-infected SGs, including their localization in the SG in relation to MCMV infected cells and other immune cells, their mode of action, and their regulation.
Collapse
|
14
|
A Live Olfactory Mouse Cytomegalovirus Vaccine, Attenuated for Systemic Spread, Protects against Superinfection. J Virol 2021; 95:e0126421. [PMID: 34431701 DOI: 10.1128/jvi.01264-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination against the betaherpesvirus, human cytomegalovirus (HCMV) is a public health goal. However, HCMV has proved difficult to vaccinate against. Vaccination against single HCMV determinants has not worked, suggesting that immunity to a wider antigenic profile may be required. Live attenuated vaccines provide the best prospects for protection, but the question remains as to how to balance vaccine virulence with safety. Animal models of HCMV infection provide insights into identifying targets for virus attenuation and understanding how host immunity blocks natural, mucosal infection. Here, we evaluated the vaccine potential of a mouse cytomegalovirus (MCMV) vaccine deleted of a viral G protein-coupled receptor (GPCR), designated M33, that renders it attenuated for systemic spread. A single noninvasive olfactory ΔM33 MCMV vaccine replicated locally, but as a result of the loss of the M33 GPCR, it failed to spread systemically and was attenuated for latent infection. Vaccination did not prevent host entry of a superinfecting MCMV but spread from the mucosa was blocked. This approach to vaccine design may provide a viable alternative for a safe and effective betaherpesvirus vaccine. IMPORTANCE Human cytomegalovirus (HCMV) is the most common cause of congenital infection for which a vaccine is not yet available. Subunit vaccine candidates have failed to achieve licensure. A live HCMV vaccine may prove more efficacious, but it faces safety hurdles which include its propensity to persist and to establish latency. Understanding how pathogens infect guide rational vaccine design. However, HCMV infections are asymptomatic and thus difficult to capture. Animal models of experimental infection provide insight. Here, we investigated the vaccine potential of a mouse cytomegalovirus (MCMV) attenuated for systemic spread and latency. We used olfactory vaccination and virus challenge to mimic its natural acquisition. We provide proof of concept that a single olfactory MCMV that is deficient in systemic spread can protect against wild-type MCMV superinfection and dissemination. This approach of deleting functional counterpart genes in HCMV may provide safe and effective vaccination against congenital HCMV disease.
Collapse
|
15
|
Murine Cytomegalovirus MCK-2 Facilitates In Vivo Infection Transfer from Dendritic Cells to Salivary Gland Acinar Cells. J Virol 2021; 95:e0069321. [PMID: 34132572 DOI: 10.1128/jvi.00693-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cytomegaloviruses (CMVs) spread systemically via myeloid cells and demonstrate broad tissue tropism. Human CMV (HCMV) UL128 encodes a component of the virion pentameric complex (PC) that is important for entry into epithelial cells and cell-cell spread in vitro. It possesses N-terminal amino acid sequences similar to those of CC chemokines. While the species specificity of HCMV precludes confirmation of UL128 function in vivo, UL128-like counterparts in experimental animals have demonstrated a role in salivary gland infection. How they achieve this has not been defined, although effects on monocyte tropism and immune evasion have been proposed. By tracking infected cells following lung infection, we show that although the UL128-like protein in mouse CMV (MCMV) (designated MCK-2) facilitated entry into lung macrophages, it was dispensable for subsequent viremia mediated by CD11c+ dendritic cells (DCs) and extravasation to the salivary glands. Notably, MCK-2 was important for the transfer of MCMV infection from DCs to salivary gland acinar epithelial cells. Acinar cell infection of MCMVs deleted of MCK-2 was not rescued by T-cell depletion, arguing against an immune evasion mechanism for MCK-2 in the salivary glands. In contrast to lung infection, peritoneal MCMV inoculation yields mixed monocyte/DC viremia. In this setting, MCK-2 again promoted DC-dependent infection of salivary gland acinar cells, but it was not required for monocyte-dependent spread to the lung. Thus, the action of MCK-2 in MCMV spread was specific to DC-acinar cell interactions. IMPORTANCE Cytomegaloviruses (CMVs) establish myeloid cell-associated viremias and persistent shedding from the salivary glands. In vitro studies with human CMV (HCMV) have implicated HCMV UL128 in epithelial tropism, but its role in vivo is unknown. Here, we analyzed how a murine CMV (MCMV) protein with similar physical properties, designated MCK-2, contributes to host colonization. We demonstrate that MCK-2 is dispensable for initial systemic spread from primary infection sites but within the salivary gland facilitates the transfer of infection from dendritic cells (DCs) to epithelial acinar cells. Virus transfer from extravasated monocytes to the lungs did not require MCK-2, indicating a tissue-specific effect. These results provide new information about how persistent viral tropism determinants operate in vivo.
Collapse
|
16
|
Smith CJ, Snyder CM. Inhibitory Molecules PD-1, CD73 and CD39 Are Expressed by CD8 + T Cells in a Tissue-Dependent Manner and Can Inhibit T Cell Responses to Stimulation. Front Immunol 2021; 12:704862. [PMID: 34335618 PMCID: PMC8320728 DOI: 10.3389/fimmu.2021.704862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
The salivary gland is an important tissue for persistence and transmission of multiple viruses. Previous work showed that salivary gland tissue-resident CD8+ T cells elicited by viruses were poorly functional ex vivo. Using a model of persistent murine cytomegalovirus (MCMV) infection, we now show that CD8+ T cells in the salivary gland and other non-lymphoid tissues of mice express multiple molecules associated with T cell exhaustion including PD-1, CD73 and CD39. Strikingly however, these molecules were expressed independently of virus or antigen. Rather, PD-1-expressing T cells remained PD-1+ after migration into tissues regardless of infection, while CD73 was activated on CD8+ T cells by TGF-β signaling. Blockade of PD-L1, but not CD73, improved cytokine production by salivary gland T cells ex vivo and increased the expression of granzyme B after stimulation within the salivary gland. Nevertheless, salivary-gland localized CD8+ T cells could kill PD-L1-expressing targets in vivo, albeit with modest efficiency, and this was not improved by PD-L1 blockade. Moreover, the impact of PD-L1 blockade on granzyme B expression waned with time. In contrast, the function of kidney-localized T cells was improved by CD73 blockade, but was unaffected by PD-L1 blockade. These data show that tissue localization per se is associated with expression of inhibitory molecules that can impact T cell function, but that the functional impact of this expression is context- and tissue-dependent.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Chan B, Arapović M, Masters LL, Rwandamuiye F, Jonjić S, Smith LM, Redwood AJ. The m15 Locus of Murine Cytomegalovirus Modulates Natural Killer Cell Responses to Promote Dissemination to the Salivary Glands and Viral Shedding. Pathogens 2021; 10:pathogens10070866. [PMID: 34358016 PMCID: PMC8308470 DOI: 10.3390/pathogens10070866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
As the largest herpesviruses, the 230 kb genomes of cytomegaloviruses (CMVs) have increased our understanding of host immunity and viral escape mechanisms, although many of the annotated genes remain as yet uncharacterised. Here we identify the m15 locus of murine CMV (MCMV) as a viral modulator of natural killer (NK) cell immunity. We show that, rather than discrete transcripts from the m14, m15 and m16 genes as annotated, there are five 3′-coterminal transcripts expressed over this region, all utilising a consensus polyA tail at the end of the m16 gene. Functional inactivation of any one of these genes had no measurable impact on viral replication. However, disruption of all five transcripts led to significantly attenuated dissemination to, and replication in, the salivary glands of multiple strains of mice, but normal growth during acute infection. Disruption of the m15 locus was associated with heightened NK cell responses, including enhanced proliferation and IFNγ production. Depletion of NK cells, but not T cells, rescued salivary gland replication and viral shedding. These data demonstrate the identification of multiple transcripts expressed by a single locus which modulate, perhaps in a concerted fashion, the function of anti-viral NK cells.
Collapse
Affiliation(s)
- Baca Chan
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (B.C.); (L.L.M.); (F.R.); (L.M.S.)
- Institute of Respiratory Health, University of Western Australia, Nedlands, WA 6009, Australia
| | - Maja Arapović
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.A.); (S.J.)
| | - Laura L. Masters
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (B.C.); (L.L.M.); (F.R.); (L.M.S.)
| | - Francois Rwandamuiye
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (B.C.); (L.L.M.); (F.R.); (L.M.S.)
| | - Stipan Jonjić
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (M.A.); (S.J.)
| | - Lee M. Smith
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (B.C.); (L.L.M.); (F.R.); (L.M.S.)
| | - Alec J. Redwood
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (B.C.); (L.L.M.); (F.R.); (L.M.S.)
- Institute of Respiratory Health, University of Western Australia, Nedlands, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6151-0895
| |
Collapse
|
18
|
Zhang S, Springer LE, Rao HZ, Espinosa Trethewy RG, Bishop LM, Hancock MH, Grey F, Snyder CM. Hematopoietic cell-mediated dissemination of murine cytomegalovirus is regulated by NK cells and immune evasion. PLoS Pathog 2021; 17:e1009255. [PMID: 33508041 PMCID: PMC7872266 DOI: 10.1371/journal.ppat.1009255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cytomegalovirus (CMV) causes clinically important diseases in immune compromised and immune immature individuals. Based largely on work in the mouse model of murine (M)CMV, there is a consensus that myeloid cells are important for disseminating CMV from the site of infection. In theory, such dissemination should expose CMV to cell-mediated immunity and thus necessitate evasion of T cells and NK cells. However, this hypothesis remains untested. We constructed a recombinant MCMV encoding target sites for the hematopoietic specific miRNA miR-142-3p in the essential viral gene IE3. This virus disseminated poorly to the salivary gland following intranasal or footpad infections but not following intraperitoneal infection in C57BL/6 mice, demonstrating that dissemination by hematopoietic cells is essential for specific routes of infection. Remarkably, depletion of NK cells or T cells restored dissemination of this virus in C57BL/6 mice after intranasal infection, while dissemination occurred normally in BALB/c mice, which lack strong NK cell control of MCMV. These data show that cell-mediated immunity is responsible for restricting MCMV to hematopoietic cell-mediated dissemination. Infected hematopoietic cells avoided cell-mediated immunity via three immune evasion genes that modulate class I MHC and NKG2D ligands (m04, m06 and m152). MCMV lacking these 3 genes spread poorly to the salivary gland unless NK cells were depleted, but also failed to replicate persistently in either the nasal mucosa or salivary gland unless CD8+ T cells were depleted. Surprisingly, CD8+ T cells primed after intranasal infection required CD4+ T cell help to expand and become functional. Together, our data suggest that MCMV can use both hematopoietic cell-dependent and -independent means of dissemination after intranasal infection and that cell mediated immune responses restrict dissemination to infected hematopoietic cells, which are protected from NK cells during dissemination by viral immune evasion. In contrast, viral replication within mucosal tissues depends on evasion of T cells. Cytomegalovirus (CMV) is a common cause of disease in immune compromised individuals as well as a common cause of congenital infections leading to disease in newborns. The virus is thought to enter primarily via mucosal barrier tissues, such as the oral and nasal mucosa. However, it is not clear how the virus escapes these barrier tissues to reach distant sites. In this study, we used a mouse model of CMV infection. Our data illustrate a complex balance between the immune system and viral infection of “myeloid cells”, which are most commonly thought to carry the virus around the body after infection. In particular, our data suggest that robust immune responses at the site of infection force the virus to rely on myeloid cells to escape the site of infection. Moreover, viral genes designed to evade these immune responses were needed to protect the virus during and after its spread to distant sites. Together, this work sheds light on the mechanisms of immune control and viral survival during CMV infection of mucosal tissues and spread to distant sites of the body.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Lauren E. Springer
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Han-Zhi Rao
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Renee G. Espinosa Trethewy
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Lindsey M. Bishop
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Finn Grey
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail: (FG); (CMS)
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (FG); (CMS)
| |
Collapse
|
19
|
Boppana SB, Britt WJ. Recent Approaches and Strategies in the Generation of Anti-human Cytomegalovirus Vaccines. Methods Mol Biol 2021; 2244:403-463. [PMID: 33555597 DOI: 10.1007/978-1-0716-1111-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus is the largest human herpesvirus and shares many core features of other herpesviruses such as tightly regulated gene expression during genome replication and latency as well as the establishment of lifelong persistence following infection. In contrast to stereotypic clinical syndromes associated with alpha-herpesvirus infections, almost all primary HCMV infections are asymptomatic and acquired early in life in most populations in the world. Although asymptomatic in most individuals, HCMV is a major cause of disease in hosts with deficits in adaptive and innate immunity such as infants who are infected in utero and allograft recipients following transplantation. Congenital HCMV is a commonly acquired infection in the developing fetus that can result in a number of neurodevelopmental abnormalities. Similarly, HCMV is a major cause of disease in allograft recipients in the immediate and late posttransplant period and is thought to be a major contributor to chronic allograft rejection. Even though HCMV induces robust innate and adaptive immune responses, it also encodes a vast array of immune evasion functions that are thought aid in its persistence. Immune correlates of protective immunity that prevent or modify intrauterine HCMV infection remain incompletely defined but are thought to consist primarily of adaptive responses in the pregnant mother, thus making congenital HCMV a potentially vaccine modifiable disease. Similarly, HCMV infection in allograft recipients is often more severe in recipients without preexisting adaptive immunity to HCMV. Thus, there has been a considerable effort to modify HCMV specific immunity in transplant recipient either through active immunization or passive transfer of adaptive effector functions. Although efforts to develop an efficacious vaccine and/or passive immunotherapy to limit HCMV disease have been underway for nearly six decades, most have met with limited success at best. In contrast to previous efforts, current HCMV vaccine development has relied on observations of unique properties of HCMV in hopes of reproducing immune responses that at a minimum will be similar to that following natural infection. However, more recent findings have suggested that immunity following naturally acquired HCMV infection may have limited protective activity and almost certainly, is not sterilizing. Such observations suggest that either the induction of natural immunity must be specifically tailored to generate protective activity or alternatively, that providing targeted passive immunity to susceptible populations could be prove to be more efficacious.
Collapse
Affiliation(s)
- Suresh B Boppana
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA.,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Britt
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
20
|
Fisher MA, Lloyd ML. A Review of Murine Cytomegalovirus as a Model for Human Cytomegalovirus Disease-Do Mice Lie? Int J Mol Sci 2020; 22:ijms22010214. [PMID: 33379272 PMCID: PMC7795257 DOI: 10.3390/ijms22010214] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Since murine cytomegalovirus (MCMV) was first described in 1954, it has been used to model human cytomegalovirus (HCMV) diseases. MCMV is a natural pathogen of mice that is present in wild mice populations and has been associated with diseases such as myocarditis. The species-specific nature of HCMV restricts most research to cell culture-based studies or to the investigation of non-invasive clinical samples, which may not be ideal for the study of disseminated disease. Initial MCMV research used a salivary gland-propagated virus administered via different routes of inoculation into a variety of mouse strains. This revealed that the genetic background of the laboratory mice affected the severity of disease and altered the extent of subsequent pathology. The advent of genetically modified mice and viruses has allowed new aspects of disease to be modeled and the opportunistic nature of HCMV infection to be confirmed. This review describes the different ways that MCMV has been used to model HCMV diseases and explores the continuing difficulty faced by researchers attempting to model HCMV congenital cytomegalovirus disease using the mouse model.
Collapse
Affiliation(s)
- Michelle A. Fisher
- Division of Infection and Immunity, School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Australia;
| | - Megan L. Lloyd
- Division of Infection and Immunity, School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Australia;
- Marshall Centre for Infectious Diseases Research and Training, Division of Infection and Immunity, School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
21
|
Costa ALF, Santos BA, Torregrossa VR, Miranda ECM, Vigorito AC, Palmieri M, Ricardo ALF, Sarmento DJS, Mamana AC, Tozetto-Mendoza TR, Correa MEP, Braz-Silva PH. Oral shedding of CMV and HSV-1 in hematopoietic stem cell transplantation patients. Oral Dis 2020; 27:1572-1579. [PMID: 33085827 DOI: 10.1111/odi.13690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To evaluate the oral shedding of herpesviruses in patients undergoing hematopoietic stem cell transplantation (HSCT) and correlate it with oral mucositis (OM). METHODS Saliva samples were collected before the HSCT and on day D + 8. Multiplex Polymerse Chain Reaction (PCR) was performed to detect herpes simplex virus (HSV)-1 and HSV-2, Epstein-Barr virus (EBV), Cytomegalovirus (CMV), Variella-zoster virus (VZV), and human herpesvirus (HHV)-6, HHV-7, and HHV-8. OM was assessed according to WHO criteria. RESULTS Thirty one patients were enrolled, in which 20 of 31 (64.5%) were males; median age was 50 (21-70) years; 16 of 31 (51.6%) underwent allo-HSCT; and 15 of 31 (48.4%) underwent auto-HSCT. On D + 8, OM grades III and IV were observed in 8 of 31 (25.8%) patients. In the first salivary collection, EBV was found in 24 of 31 (77.4%), followed by HHV-6 (7/31, 22.6%) and HHV-7 (8/31 25.8%). In the second collection, EBV was found in 24 of 27(89%), followed by HSV-1 (8/27, 30%) and CMV, HHV-6, and HHV-7 (5/27, 18.5%, each one). On D + 8, OM grades II and IV were associated with the presence of HSV-1. HSV-1 was also associated with worsening degrees of OM on D + 15. CONCLUSION The presence of HSV-1 and CMV in oral samples was more frequent on day D + 8 after HSCT. HSV-1 detection was associated with severity and worsening of OM. HSV-1 and CMV seem to be associated with oral dysbiosis due to HSCT.
Collapse
Affiliation(s)
- Andre L F Costa
- Postgraduate Program in Dentistry, Cruzeiro Do Sul University (UNICSUL), São Paulo, Brazil
| | - Bruna A Santos
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Eliana C M Miranda
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Afonso C Vigorito
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Michelle Palmieri
- Department of Stomatology, School of Dentistry, University of São Paulo (USP), São Paulo, Brazil
| | - Ana L F Ricardo
- Postgraduate Program in Dentistry, Cruzeiro Do Sul University (UNICSUL), São Paulo, Brazil
| | - Dmitry J S Sarmento
- Department of Stomatology, School of Dentistry, University of São Paulo (USP), São Paulo, Brazil.,Department of Stomatology, School of Dentistry, State University of Paraíba, Araruna, Brazil
| | - Ana C Mamana
- Laboratory of Virology (LIM-52), Institute of Tropical Medicine of São Paulo, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Tania R Tozetto-Mendoza
- Laboratory of Virology (LIM-52), Institute of Tropical Medicine of São Paulo, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - M Elvira P Correa
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Paulo H Braz-Silva
- Department of Stomatology, School of Dentistry, University of São Paulo (USP), São Paulo, Brazil.,Laboratory of Virology (LIM-52), Institute of Tropical Medicine of São Paulo, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
22
|
Cytomegalovirus inhibition of extrinsic apoptosis determines fitness and resistance to cytotoxic CD8 T cells. Proc Natl Acad Sci U S A 2020; 117:12961-12968. [PMID: 32444487 DOI: 10.1073/pnas.1914667117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral immune evasion is currently understood to focus on deflecting CD8 T cell recognition of infected cells by disrupting antigen presentation pathways. We evaluated viral interference with the ultimate step in cytotoxic T cell function, the death of infected cells. The viral inhibitor of caspase-8 activation (vICA) conserved in human cytomegalovirus (HCMV) and murine CMV (MCMV) prevents the activation of caspase-8 and proapoptotic signaling. We demonstrate the key role of vICA from either virus, in deflecting antigen-specific CD8 T cell-killing of infected cells. vICA-deficient mutants, lacking either UL36 or M36, exhibit greater susceptibility to CD8 T cell control than mutants lacking the set of immunoevasins known to disrupt antigen presentation via MHC class I. This difference is evident during infection in the natural mouse host infected with MCMV, in settings where virus-specific CD8 T cells are adoptively transferred. Finally, we identify the molecular mechanism through which vICA acts, demonstrating the central contribution of caspase-8 signaling at a point of convergence of death receptor-induced apoptosis and perforin/granzyme-dependent cytotoxicity.
Collapse
|
23
|
Lim EY, Jackson SE, Wills MR. The CD4+ T Cell Response to Human Cytomegalovirus in Healthy and Immunocompromised People. Front Cell Infect Microbiol 2020; 10:202. [PMID: 32509591 PMCID: PMC7248300 DOI: 10.3389/fcimb.2020.00202] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
While CD8+ T cells specific for human cytomegalovirus (HCMV) have been extensively studied in both healthy HCMV seropositive carriers and patients undergoing immunosuppression, studies on the CD4+ T cell response to HCMV had lagged behind. However, over the last few years there has been a significant advance in our understanding of the importance and contribution that CMV-specific CD4+ T cells make, not only to anti-viral immunity but also in the potential maintenance of latently infected cells. During primary infection with HCMV in adults, CD4+ T cells are important for the resolution of symptomatic disease, while persistent shedding of HCMV into urine and saliva is associated with a lack of HCMV specific CD4+ T cell response in young children. In immunosuppressed solid organ transplant recipients, a delayed appearance of HCMV-specific CD4+ T cells is associated with prolonged viremia and more severe clinical disease, while in haematopoietic stem cell transplant recipients, it has been suggested that HCMV-specific CD4+ T cells are required for HCMV-specific CD8+ T cells to exert their anti-viral effects. In addition, adoptive T-cell immunotherapy in transplant patients has shown that the presence of HCMV-specific CD4+ T cells is required for the maintenance of HCMV-specific CD8+ T cells. HCMV is a paradigm for immune evasion. The presence of viral genes that down-regulate MHC class II molecules and the expression of viral IL-10 both limit antigen presentation to CD4+ T cells, underlining the important role that this T cell subset has in antiviral immunity. This review will discuss the antigen specificity, effector function, phenotype and direct anti-viral properties of HCMV specific CD4+ T cells, as well as reviewing our understanding of the importance of this T cell subset in primary infection and long-term carriage in healthy individuals. In addition, their role and importance in congenital HCMV infection and during immunosuppression in both solid organ and haemopoietic stem cell transplantation is considered.
Collapse
Affiliation(s)
| | | | - Mark R. Wills
- Division of Infectious Diseases, Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Holtappels R, Schader SI, Oettel O, Podlech J, Seckert CK, Reddehase MJ, Lemmermann NAW. Insufficient Antigen Presentation Due to Viral Immune Evasion Explains Lethal Cytomegalovirus Organ Disease After Allogeneic Hematopoietic Cell Transplantation. Front Cell Infect Microbiol 2020; 10:157. [PMID: 32351904 PMCID: PMC7174590 DOI: 10.3389/fcimb.2020.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/24/2020] [Indexed: 01/21/2023] Open
Abstract
Reactivation of latent cytomegalovirus (CMV) poses a clinical problem in transiently immunocompromised recipients of hematopoietic cell (HC) transplantation (HCT) by viral histopathology that results in multiple organ manifestations. Compared to autologous HCT and to syngeneic HCT performed with identical twins as HC donor and recipient, lethal outcome of CMV infection is more frequent in allogeneic HCT with MHC/HLA or minor histocompatibility loci mismatch between donor and recipient. It is an open question if a graft-vs.-host (GvH) reaction exacerbates CMV disease, or if CMV exacerbates GvH disease (GvHD), or if interference is mutual. Here we have used a mouse model of experimental HCT and murine CMV (mCMV) infection with an MHC class-I mismatch by gene deletion, so that either HCT donor or recipient lack a single MHC class-I molecule, specifically H-2 Ld. This particular immunogenetic disparity has the additional advantage that it allows to experimentally separate GvH reaction of donor-derived T cells against recipient's tissues from host-vs.-graft (HvG) reaction of residual recipient-derived T cells against the transplanted HC and their progeny. While in HvG-HCT with Ld-plus donors and Ld-minus recipients almost all infected recipients were found to control the infection and survived, almost all infected recipients died of uncontrolled virus replication and consequent multiple-organ viral histopathology in case of GvH-HCT with Ld-minus donors and Ld-plus recipients. Unexpectedly, although anti-Ld-reactive CD8+ T cells were detected, mortality was not found to be associated with GvHD histopathology. By comparing HvG-HCT and GvH-HCT, investigation into the mechanism revealed an inefficient reconstitution of antiviral high-avidity CD8+ T cells, associated with lack of formation of protective nodular inflammatory foci (NIF) in host tissue, selectively in GvH-HCT. Most notably, mice infected with an immune evasion gene deletion mutant of mCMV survived under otherwise identical GvH-HCT conditions. Survival was associated with enhanced antigen presentation and formation of protective NIF by antiviral CD8+ T cells that control the infection and prevent viral histopathology. This is an impressive example of lethal viral disease in HCT recipients based on a failure of the immune control of CMV infection due to viral immune evasion in concert with an MHC class-I mismatch.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
25
|
Yunis J, Redwood AJ, Belz GT, Stevenson PG. Membrane association of a model CD4 + T-cell vaccine antigen confers enhanced yet incomplete protection against murid herpesvirus-4 infection. Immunol Cell Biol 2020; 98:332-343. [PMID: 31997396 DOI: 10.1111/imcb.12319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
Vaccination against γ-herpesviruses has proved difficult. CD4+ T cells are essential to contain infection, but how best to prime them and whether this can reduce viral loads remain unclear. To address these questions, we used ovalbumin (OVA) as a model antigen, delivering it with murine cytomegalovirus (MCMV) to protect mice against OVA-expressing murine herpesvirus-4 (MuHV-4). Membrane-associated OVA (mOVA) was more effective than soluble OVA, both to prime CD4+ T cells and as an effector target. It was also a better target than an OVA epitope limited to infected cells, suggesting that protective CD4+ T cells recognize infected cell debris rather than infected cells themselves. While MCMV-mOVA protected acutely against MuHV-4-mOVA, long-term protection was incomplete, even when OVA-specific CD8+ T cells and B cells were also primed. Thus, even optimized single-target vaccines may poorly reduce long-term γ-herpesvirus infections.
Collapse
Affiliation(s)
- Joseph Yunis
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Alec J Redwood
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Gabrielle T Belz
- Molecular Immunology, Walter and Eliza Hall Institute, Melbourne, VIC, Australia
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- Royal Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Human Cytomegalovirus Decreases Major Histocompatibility Complex Class II by Regulating Class II Transactivator Transcript Levels in a Myeloid Cell Line. J Virol 2020; 94:JVI.01901-19. [PMID: 31915281 DOI: 10.1128/jvi.01901-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that encodes many proteins to modulate the host immune response. Extensive efforts have led to the elucidation of multiple strategies employed by HCMV to effectively block NK cell targeting of virus-infected cells and the major histocompatibility complex (MHC) class I-primed CD8+ T cell response. However, viral regulation of the MHC class II-mediated CD4+ T cell response is understudied in endogenous MHC class II-expressing cells, largely because the popular cell culture systems utilized for studying HCMV do not endogenously express MHC class II. Of the many cell types infected by HCMV in the host, myeloid cells, such as monocytes, are of particular importance due to their role in latency and subsequent dissemination throughout the host. We investigated the impact of HCMV infection on MHC class II in Kasumi-3 cells, a myeloid-progenitor cell line that endogenously expresses the MHC class II gene, HLA-DR. We observed a significant reduction in the expression of surface and total HLA-DR at 72 h postinfection (hpi) and 120 hpi in infected cells. The decrease in HLA-DR expression was independent of the expression of previously described viral genes that regulate the MHC class II complex or the unique short (US) region of HCMV, a region expressing many immunomodulatory genes. The altered surface level of HLA-DR was not a result of increased endocytosis and degradation but was a result of a reduction in HLA-DR transcripts due to a decrease in the expression of the class II transactivator (CIITA).IMPORTANCE Human cytomegalovirus (HCMV) is an opportunistic herpesvirus that is asymptomatic for healthy individuals but that can lead to severe pathology in patients with congenital infections and immunosuppressed patients. Thus, it is important to understand the modulation of the immune response by HCMV, which is understudied in the context of endogenous MHC class II regulation. Using Kasumi-3 cells as a myeloid progenitor cell model endogenously expressing MHC class II (HLA-DR), this study shows that HCMV decreases the expression of HLA-DR in infected cells by reducing the transcription of HLA-DR transcripts early during infection independently of the expression of previously implicated genes. This is an important finding, as it highlights a mechanism of immune evasion utilized by HCMV to decrease the expression of MHC class II in a relevant cell system that endogenously expresses the MHC class II complex.
Collapse
|
27
|
A CD4 + T Cell-NK Cell Axis of Gammaherpesvirus Control. J Virol 2020; 94:JVI.01545-19. [PMID: 31694958 DOI: 10.1128/jvi.01545-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/31/2019] [Indexed: 01/27/2023] Open
Abstract
CD4+ T cells are essential to control herpesviruses. Murid herpesvirus 4 (MuHV-4)-driven lung disease in CD4+ T-cell-deficient mice provides a well-studied example. Protective CD4+ T cells have been hypothesized to kill infected cells directly. However, removing major histocompatibility complex class II (MHCII) from LysM+ or CD11c+ cells increased MuHV-4 replication not in those cells but in type 1 alveolar epithelial cells, which lack MHCII, LysM, or CD11c. Disruption of MHCII in infected cells had no effect. Therefore, CD4+ T cells engaged uninfected presenting cells and protected indirectly. Mice lacking MHCII in LysM+ or CD11c+ cells maintained systemic antiviral CD4+ T cell responses, but recruited fewer CD4+ T cells into infected lungs. NK cell infiltration was also reduced, and NK cell depletion normalized infection between MHCII-deficient and control mice. Therefore, NK cell recruitment seemed to be an important component of CD4+ T-cell-dependent protection. Disruption of viral CD8+ T cell evasion made this defense redundant, suggesting that it is important mainly to control CD8-evasive pathogens.IMPORTANCE Gammaherpesviruses are widespread and cause cancers. CD4+ T cells are a key defense. We found that they defend indirectly, engaging uninfected presenting cells and recruiting innate immune cells to attack infected targets. This segregation of CD4+ T cells from immediate contact with infection helps the immune system to cope with viral evasion. Priming this defense by vaccination offers a way to protect against gammaherpesvirus-induced cancers.
Collapse
|
28
|
Berry R, Watson GM, Jonjic S, Degli-Esposti MA, Rossjohn J. Modulation of innate and adaptive immunity by cytomegaloviruses. Nat Rev Immunol 2019; 20:113-127. [PMID: 31666730 DOI: 10.1038/s41577-019-0225-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
The coordinated activities of innate and adaptive immunity are critical for effective protection against viruses. To counter this, some viruses have evolved sophisticated strategies to circumvent immune cell recognition. In particular, cytomegaloviruses encode large arsenals of molecules that seek to subvert T cell and natural killer cell function via a remarkable array of mechanisms. Consequently, these 'immunoevasins' play a fundamental role in shaping the nature of the immune system by driving the evolution of new immune receptors and recognition mechanisms. Here, we review the diverse strategies adopted by cytomegaloviruses to target immune pathways and outline the host's response.
Collapse
Affiliation(s)
- Richard Berry
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.
| | - Gabrielle M Watson
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
29
|
Vaccine Vectors Harnessing the Power of Cytomegaloviruses. Vaccines (Basel) 2019; 7:vaccines7040152. [PMID: 31627457 PMCID: PMC6963789 DOI: 10.3390/vaccines7040152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Cytomegalovirus (CMV) species have been gaining attention as experimental vaccine vectors inducing cellular immune responses of unparalleled strength and protection. This review outline the strengths and the restrictions of CMV-based vectors, in light of the known aspects of CMV infection, pathogenicity and immunity. We discuss aspects to be considered when optimizing CMV based vaccines, including the innate immune response, the adaptive humoral immunity and the T-cell responses. We also discuss the antigenic epitopes presented by unconventional major histocompatibility complex (MHC) molecules in some CMV delivery systems and considerations about routes for delivery for the induction of systemic or mucosal immune responses. With the first clinical trials initiating, CMV-based vaccine vectors are entering a mature phase of development. This impetus needs to be maintained by scientific advances that feed the progress of this technological platform.
Collapse
|
30
|
Cytomegalovirus (CMV) Pneumonitis: Cell Tropism, Inflammation, and Immunity. Int J Mol Sci 2019; 20:ijms20163865. [PMID: 31398860 PMCID: PMC6719013 DOI: 10.3390/ijms20163865] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen causing disease mainly in immunocompromised patients or after congenital infection. HCMV infection of the respiratory tract leads to pneumonitis in the immunocompromised host, which is often associated with a bad clinical course. The related mouse cytomegalovirus (MCMV) likewise exhibits a distinct tropism for the lung and thus provides an elegant model to study host-pathogen interaction. Accordingly, fundamental features of cytomegalovirus (CMV) pneumonitis have been discovered in mice that correlate with clinical data obtained from humans. Recent studies have provided insight into MCMV cell tropism and localized inflammation after infection of the respiratory tract. Accordingly, the nodular inflammatory focus (NIF) has been identified as the anatomical correlate of immune control in lungs. Several hematopoietic cells involved in antiviral immunity reside in NIFs and their key effector molecules have been deciphered. Here, we review what has been learned from the mouse model with focus on the microanatomy of infection sites and antiviral immunity in MCMV pneumonitis.
Collapse
|
31
|
Krmpotić A, Podlech J, Reddehase MJ, Britt WJ, Jonjić S. Role of antibodies in confining cytomegalovirus after reactivation from latency: three decades' résumé. Med Microbiol Immunol 2019; 208:415-429. [PMID: 30923898 PMCID: PMC6705608 DOI: 10.1007/s00430-019-00600-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Cytomegaloviruses (CMVs) are highly prevalent herpesviruses, characterized by strict species specificity and the ability to establish non-productive latent infection from which reactivation can occur. Reactivation of latent human CMV (HCMV) represents one of the most important clinical challenges in transplant recipients secondary to the strong immunosuppression. In addition, HCMV is the major viral cause of congenital infection with severe sequelae including brain damage. The accumulated evidence clearly shows that cellular immunity plays a major role in the control of primary CMV infection as well as establishment and maintenance of latency. However, the efficiency of antiviral antibodies in virus control, particularly in prevention of congenital infection and virus reactivation from latency in immunosuppressed hosts, is much less understood. Because of a strict species specificity of HCMV, the role of antibodies in controlling CMV disease has been addressed using murine CMV (MCMV) as a model. Here, we review and discuss the role played by the antiviral antibody response during CMV infections with emphasis on latency and reactivation not only in the MCMV model, but also in relevant clinical settings. We provide evidence to conclude that antiviral antibodies do not prevent the initiating molecular event of virus reactivation from latency but operate by preventing intra-organ spread and inter-organ dissemination of recurrent virus.
Collapse
Affiliation(s)
- Astrid Krmpotić
- Department of Histology and Embryology and Center for Proteomics, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - William J. Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA and Department of Pediatrics Infectious Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stipan Jonjić
- Department of Histology and Embryology and Center for Proteomics, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
32
|
Cytomegalovirus Evades TRAIL-Mediated Innate Lymphoid Cell 1 Defenses. J Virol 2019; 93:JVI.00617-19. [PMID: 31142671 DOI: 10.1128/jvi.00617-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022] Open
Abstract
Cytomegalovirus (CMV) establishes a lifelong infection facilitated, in part, by circumventing immune defenses mediated by tumor necrosis factor (TNF)-family cytokines. An example of this is the mouse CMV (MCMV) m166 protein, which restricts expression of the TNF-related apoptosis-inducing ligand (TRAIL) death receptors, promoting early-phase replication. We show here that replication of an MCMV mutant lacking m166 is also severely attenuated during viral persistence in the salivary glands (SG). Depleting group I innate lymphoid cells (ILCs) or infecting Trail-/- mice completely restored persistent replication of this mutant. Group I ILCs are comprised of two subsets, conventional natural killer cells (cNK) and tissue-resident cells often referred to as innate lymphoid type I cells (ILC1). Using recently identified phenotypic markers to discriminate between these two cell types, their relative expression of TRAIL and gamma interferon (IFN-γ) was assessed during both early and persistent infection. ILC1 were found to be the major TRAIL expressers during both of these infection phases, with cNK expressing very little, indicating that it is ILC1 that curtail replication via TRAIL in the absence of m166-imposed countermeasures. Notably, despite high TRAIL expression by SG-resident ILC1, IFN-γ production by both ILC1 and cNK was minimal at this site of viral persistence. Together these results highlight TRAIL as a key ILC1-utilized effector molecule that can operate in defense against persistent infection at times when other innate control mechanisms may be muted and highlight the importance for the evolution of virus-employed countermeasures.IMPORTANCE Cytomegalovirus (a betaherpesvirus) is a master at manipulating immune responses to promote its lifelong persistence, a result of millions of years of coevolution with its host. Using a one-of-a-kind MCMV mutant unable to restrict expression of the TNF-related apoptosis-inducing ligand death receptors (TRAIL-DR), we show that TRAIL-DR signaling significantly restricts both early and persistent viral replication. Our results also reveal that these defenses are employed by TRAIL-expressing innate lymphoid type I cells (ILC1) but not conventional NK cells. Overall, our results are significant because they show the key importance of viral counterstrategies specifically neutralizing TRAIL effector functions mediated by a specific, tissue-resident subset of group I ILCs.
Collapse
|
33
|
Abstract
Vaccination against γ-herpesviruses has been hampered by our limited understanding of their normal control. Epstein–Barr virus (EBV)-transformed B cells are killed by viral latency antigen-specific CD8+ T cells in vitro, but attempts to block B cell infection with antibody or to prime anti-viral CD8+ T cells have protected poorly in vivo. The Doherty laboratory used Murid Herpesvirus-4 (MuHV-4) to analyze γ-herpesvirus control in mice and found CD4+ T cell dependence, with viral evasion limiting CD8+ T cell function. MuHV-4 colonizes germinal center (GC) B cells via lytic transfer from myeloid cells, and CD4+ T cells control myeloid infection. GC colonization and protective, lytic antigen-specific CD4+ T cells are now evident also for EBV. Subunit vaccines have protected only transiently against MuHV-4, but whole virus vaccines give long-term protection, via CD4+ T cells and antibody. They block infection transfer to B cells, and need include no known viral latency gene, nor any MuHV-4-specific gene. Thus, the Doherty approach of in vivo murine analysis has led to a plausible vaccine strategy for EBV and, perhaps, some insight into what CD8+ T cells really do.
Collapse
Affiliation(s)
- Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Brisbane, Australia.,Child Health Research Center, Brisbane, Australia
| |
Collapse
|
34
|
Abstract
The magnitude of CD8 T cell responses against viruses is checked by the balance of proliferation and death. Caspase-8 (CASP8) has the potential to influence response characteristics through initiation of apoptosis, suppression of necroptosis, and modulation of cell death-independent signal transduction. Mice deficient in CASP8 and RIPK3 (Casp8 -/- Ripk3 -/- ) mount enhanced peak CD8 T cell levels against the natural mouse pathogen murine cytomegalovirus (MCMV) or the human pathogen herpes simplex virus-1 compared with littermate control RIPK3-deficient or WT C57BL/6 mice, suggesting an impact of CASP8 on the magnitude of antiviral CD8 T cell expansion and not on contraction. The higher peak response to MCMV in Casp8 -/- Ripk3 -/- mice resulted from accumulation of greater numbers of terminally differentiated KLRG1hi effector CD8 T cell subsets. Antiviral Casp8 -/- Ripk3 -/- T cells exhibited enhanced proliferation when splenocytes were transferred into WT recipient mice. Thus, cell-autonomous CASP8 normally restricts CD8 T cell proliferation following T cell receptor activation in response to foreign antigen. Memory inflation is a hallmark quality of the T cell response to cytomegalovirus infection. Surprisingly, MCMV-specific memory inflation was not sustained long-term in Casp8 -/- Ripk3 -/- mice even though these mice retained immunity to secondary challenge. In addition, the accumulation of abnormal B220+CD3+ T cells in these viable CASP8-deficient mice was reduced by chronic MCMV infection. Combined, these data brings to light the cell death-independent role of CASP8 during CD8 T cell expansion in mice lacking the confounding impact of RIPK3-mediated necroptosis.
Collapse
|
35
|
Adams NM, Sun JC. Spatial and temporal coordination of antiviral responses by group 1 ILCs. Immunol Rev 2019; 286:23-36. [PMID: 30294970 DOI: 10.1111/imr.12710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022]
Abstract
Group 1 innate lymphocytes consist of a phenotypically, spatially, and functionally heterogeneous population of NK cells and ILC1s that are engaged during pathogen invasion. We are only beginning to understand the context-dependent roles that different subsets of group 1 innate lymphocytes play during homeostatic perturbations. With a focus on viral infection, this review highlights the organization and regulation of spatially and temporally distinct waves of NK cell and ILC1 responses that collectively serve to achieve optimal viral control.
Collapse
Affiliation(s)
- Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York.,Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York.,Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York
| |
Collapse
|
36
|
Caspase-8-dependent control of NK- and T cell responses during cytomegalovirus infection. Med Microbiol Immunol 2019; 208:555-571. [PMID: 31098689 DOI: 10.1007/s00430-019-00616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022]
Abstract
Caspase-8 (CASP8) impacts antiviral immunity in expected as well as unexpected ways. Mice with combined deficiency in CASP8 and RIPK3 cannot support extrinsic apoptosis or RIPK3-dependent programmed necrosis, enabling studies of CASP8 function without complications of unleashed necroptosis. These extrinsic cell death pathways are naturally targeted by murine cytomegalovirus (MCMV)-encoded cell death suppressors, showing they are key to cell-autonomous host defense. Remarkably, Casp8-/-Ripk3-/-, Ripk1-/-Casp8-/-Ripk3-/- and Casp8-/-Ripk3K51A/K51A mice mount robust antiviral T cell responses to control MCMV infection. Studies in Casp8-/-Ripk3-/- mice show that CASP8 restrains expansion of MCMV-specific natural killer (NK) and CD8 T cells without compromising contraction or immune memory. Infected Casp8-/-Ripk3-/- or Casp8-/-Ripk3K51A/K51A mice have higher levels of virus-specific NK cells and CD8 T cells compared to matched RIPK3-deficient littermates or WT mice. CASP8, likely acting downstream of Fas death receptor, dampens proliferation of CD8 T cells during expansion. Importantly, contraction proceeds unimpaired in the absence of extrinsic death pathways owing to intact Bim-dependent (intrinsic) apoptosis. CD8 T cell memory develops in Casp8-/-Ripk3-/- mice, but memory inflation characteristic of MCMV infection is not sustained in the absence of CASP8 function. Despite this, Casp8-/-Ripk3-/- mice are immune to secondary challenge. Interferon (IFN)γ is recognized as a key cytokine for adaptive immune control of MCMV. Ifngr-/-Casp8-/-Ripk3-/- mice exhibit increased lifelong persistence in salivary glands as well as lungs compared to Ifngr-/- and Casp8-/-Ripk3-/- mice. Thus, mice deficient in CASP8 and RIPK3 are more dependent on IFNγ mechanisms for sustained T cell immune control of MCMV. Overall, appropriate NK- and T cell immunity to MCMV is dependent on host CASP8 function independent of RIPK3-regulated pathways.
Collapse
|
37
|
Baumann NS, Welten SPM, Torti N, Pallmer K, Borsa M, Barnstorf I, Oduro JD, Cicin-Sain L, Oxenius A. Early primed KLRG1- CMV-specific T cells determine the size of the inflationary T cell pool. PLoS Pathog 2019; 15:e1007785. [PMID: 31083700 PMCID: PMC6532941 DOI: 10.1371/journal.ppat.1007785] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/23/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Memory T cell inflation is a process in which a subset of cytomegalovirus (CMV) specific CD8 T cells continuously expands mainly during latent infection and establishes a large and stable population of effector memory cells in peripheral tissues. Here we set out to identify in vivo parameters that promote and limit CD8 T cell inflation in the context of MCMV infection. We found that the inflationary T cell pool comprised mainly high avidity CD8 T cells, outcompeting lower avidity CD8 T cells. Furthermore, the size of the inflationary T cell pool was not restricted by the availability of specific tissue niches, but it was directly related to the number of virus-specific CD8 T cells that were activated during priming. In particular, the amount of early-primed KLRG1- cells and the number of inflationary cells with a central memory phenotype were a critical determinant for the overall magnitude of the inflationary T cell pool. Inflationary memory CD8 T cells provided protection from a Vaccinia virus challenge and this protection directly correlated with the size of the inflationary memory T cell pool in peripheral tissues. These results highlight the remarkable protective potential of inflationary CD8 T cells that can be harnessed for CMV-based T cell vaccine approaches. Cytomegalovirus induces a lifelong infection in the majority of the world's population, due to the ability of the virus to establish latency. Upon CMV infection, large numbers of effector memory T cells are induced in peripheral tissues, a process that is termed memory inflation. As inflationary T cells are highly functional, CMV-based vaccines have gained substantial interest for vaccination purposes. Here we examine factors that promote and limit memory T cell inflation. We found that there were no constraints on the availability of specific niches for inflationary T cells in tissues and that high avidity T cells predominately contribute to the inflationary T cell population in the beginning of infection. Moreover, the number of early primed KLRG1- CMV-specific T cells in the acute phase of infection set the limit for memory T cell inflation. Furthermore, we show that inflationary T cells provided protection from a pathogenic challenge in peripheral tissues such as the ovaries. Thus, inflationary T cells comprise a population of T cells that can protect peripheral tissues from pathogenic infections and their efficacy can be regulated by balancing the number of KLRG1- CMV-specific cells during priming.
Collapse
Affiliation(s)
- Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Nicole Torti
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Katharina Pallmer
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Mariana Borsa
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Isabel Barnstorf
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| | - Jennifer D Oduro
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich, Switzerland
| |
Collapse
|
38
|
Reddehase MJ. Adverse immunological imprinting by cytomegalovirus sensitizing for allergic airway disease. Med Microbiol Immunol 2019; 208:469-473. [PMID: 31076879 PMCID: PMC7086984 DOI: 10.1007/s00430-019-00610-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 02/07/2023]
Abstract
Cytomegalovirus (CMV) infection has a profound impact on the host’s immune system. Immunological imprinting by CMV is not restricted to immunity against CMV itself, but can affect immunity against other viral or non-viral infectious agents and also immunopathological responses. One category is heterologous immunity based on molecular mimicry, where antigen recognition receptors specific for a CMV antigen with broad avidity distribution also bind with some avidity to unrelated antigens and exert effector functions against target structures other than those linked to CMV. Another category is induction of cytokines by CMV infection that inhibit or drive immune responses to bystander antigens unrelated to CMV, and a third category is the activation of antigen-presenting cells by CMV from which unrelated antigens profit as “stowaways”. A striking example of the “stowaway” category, actually one that is of medical importance, has been published recently and will be discussed here for the more general reader. Specifically, in a murine model, CMV airway infection and inhaled environmental antigen of poor intrinsic allergenic potential were found to sensitize for allergic airway disease (AAD) only when combined. As to the mechanism, viral activation of CD11b+ conventional dendritic cells (CD11b+ cDC) that localize to airway mucosa facilitates uptake and processing of inhaled antigen. Thus, CMV serves as a “door opener” for otherwise harmless environmental antigens that have no intrinsic property to activate DC. Antigen-laden CD11b+ cDC migrate selectively to the airway draining lymph nodes, where they prime type-2 CD4+ T helper (Th-2) cells. Upon airway re-exposure to the inhaled antigen, Th-2 cells secrete interleukins (IL-4, IL-5, IL-9, and IL-25) known to induce goblet cell metaplasia, the lead histopathological manifestation of AAD that is characterized by thickening of airway epithelia and increased numbers of mucus-producing goblet cells, resulting in enhanced mucus secretion and airflow obstruction.
Collapse
Affiliation(s)
- Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany.
| |
Collapse
|
39
|
Reddehase MJ, Lemmermann NAW. Cellular reservoirs of latent cytomegaloviruses. Med Microbiol Immunol 2019; 208:391-403. [PMID: 31011793 DOI: 10.1007/s00430-019-00592-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Cytomegaloviruses (CMVs), members of the β-subfamily of the herpesvirus family, have co-speciated with their respective mammalian hosts resulting in a mutual virus-host adaptation reflected by sets of 'private' viral genes that a particular CMV species does not share with other CMVs and that define the host-species specificity of CMVs. Nonetheless, based on "biological convergence" in evolution, fundamental rules in viral pathogenesis and immune control are functionally analogous between different virus-host pairs. Therefore, the mouse model of infection with murine CMV (mCMV) has revealed generally valid principles of CMV-host interactions. Specifically, the mouse model has paved the way to cellular immunotherapy of CMV disease in immunocompromised recipients of hematopoietic cell transplantation (HCT). Precisely in the context of HCT, however, current view assumes that there exists a major difference between hCMV and mCMV regarding "latent virus reservoirs" in that only hCMV establishes latency in hematopoietic lineage cells (HLCs), whereas mCMV establishes latency in endothelial cells. This would imply that only hCMV can reactivate from transplanted HLCs of a latently infected donor. In addition, as viral transcriptional activity during latency is discussed as a driver of clonal T-cell expansion over lifetime, a phenomenon known as "memory inflation", it is important to know if hCMV and mCMV establish latency in the same cell type(s) for imprinting the immune system. Here, we review the currently available evidence to propose that the alleged difference in latent virus reservoirs between hCMV and mCMV may rather relate to a difference in the focus of research. While studies on hCMV latency in HLCs likely described a non-canonical, transient type-2 latency, studies in the mouse model focussed on canonical, lifelong type-1 latency.
Collapse
Affiliation(s)
- Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany.
| | - Niels A W Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany.
| |
Collapse
|
40
|
Wiskott-Aldrich syndrome protein may be critical for CD8 + T cell function following MCMV infection. Cell Immunol 2019; 338:43-50. [PMID: 30981413 DOI: 10.1016/j.cellimm.2019.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 11/20/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) patients are characterized by immunodeficiency and viral infections. T cells derived from WAS patients and WAS protein (WASP)-deficient mice have various defects. However, whether WASP plays a role in immune control of cytomegalovirus (CMV) infection remains unclear. We analyzed the distribution of CD8+ T subsets and the pathological damage to various organs and tissues in MCMV infected Was knockout (KO) mice. A relatively high number of MCMV-specific cytotoxic T cells (CTLs) were observed in the spleen of Was KO mice. In MCMV infected Was KO mice, the late differentiated CD8+ T subset (CD27-CD28-) decreased in lungs, compared with those in the spleen and peripheral blood. Additionally, we found that the most severe pathological lesions occurred in the lungs, the main target organ of MCMV infection. By stimulating the spleen-derived CD8+ T lymphocytes of Was KO mice, we found that IL-2 and granzyme B production declined compared with that in wild- type mice. Moreover, the number of apoptotic CD8+ T cells increased in Was KO mice compared with the number in wild-type mice. Therefore, our results demonstrate that WASP may be involved in regulating cytotoxic function and apoptosis in CD8+ T cells following MCMV infection, which is supported by the distribution and memory compartment of MCMV-specific T cells in MCMV infected WAS mice.
Collapse
|
41
|
Alston CI, Dix RD. SOCS and Herpesviruses, With Emphasis on Cytomegalovirus Retinitis. Front Immunol 2019; 10:732. [PMID: 31031749 PMCID: PMC6470272 DOI: 10.3389/fimmu.2019.00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins provide selective negative feedback to prevent pathogeneses caused by overstimulation of the immune system. Of the eight known SOCS proteins, SOCS1 and SOCS3 are the best studied, and systemic deletion of either gene causes early lethality in mice. Many viruses, including herpesviruses such as herpes simplex virus and cytomegalovirus, can manipulate expression of these host proteins, with overstimulation of SOCS1 and/or SOCS3 putatively facilitating viral evasion of immune surveillance, and SOCS suppression generally exacerbating immunopathogenesis. This is particularly poignant within the eye, which contains a diverse assortment of specialized cell types working together in a tightly controlled microenvironment of immune privilege. When the immune privilege of the ocular compartment fails, inflammation causing severe immunopathogenesis and permanent, sight-threatening damage may occur, as in the case of AIDS-related human cytomegalovirus (HCMV) retinitis. Herein we review how SOCS1 and SOCS3 impact the virologic, immunologic, and/or pathologic outcomes of herpesvirus infection with particular emphasis on retinitis caused by HCMV or its mouse model experimental counterpart, murine cytomegalovirus (MCMV). The accumulated data suggests that SOCS1 and/or SOCS3 can differentially affect the severity of viral diseases in a highly cell-type-specific manner, reflecting the diversity and complexity of herpesvirus infection and the ocular compartment.
Collapse
Affiliation(s)
- Christine I Alston
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Richard D Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
42
|
Brizić I, Hiršl L, Šustić M, Golemac M, Britt WJ, Krmpotić A, Jonjić S. CD4 T cells are required for maintenance of CD8 T RM cells and virus control in the brain of MCMV-infected newborn mice. Med Microbiol Immunol 2019; 208:487-494. [PMID: 30923899 DOI: 10.1007/s00430-019-00601-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Cytomegalovirus (CMV) infection is a significant public health problem. Congenital CMV infection is a leading infectious cause of long-term neurodevelopmental sequelae, including mental retardation and sensorineural hearing loss. Immune protection against mouse cytomegalovirus (MCMV) is primarily mediated by NK cells and CD8+ T cells, while CD4+ T cells are not needed for control of MCMV in majority of organs in immunocompetent adult mice. Here, we set out to determine the role of CD4+ T cells upon MCMV infection of newborn mice. We provide evidence that CD4+ T cells are essential for clearance of MCMV infection in brain of neonatal mice and for prevention of recurrence of latent MCMV. In addition, we provide evidence that CD4+ T cells are required for induction and maintenance of tissue-resident memory CD8+ T cells in the brain of mice perinatally infected with MCMV.
Collapse
Affiliation(s)
- Ilija Brizić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000, Rijeka, Croatia.,Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Lea Hiršl
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000, Rijeka, Croatia.,Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marko Šustić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000, Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000, Rijeka, Croatia
| | - William J Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000, Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000, Rijeka, Croatia. .,Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
43
|
Welten SPM, Baumann NS, Oxenius A. Fuel and brake of memory T cell inflation. Med Microbiol Immunol 2019; 208:329-338. [PMID: 30852648 DOI: 10.1007/s00430-019-00587-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 11/24/2022]
Abstract
Memory T cell inflation is a process in which a large number of effector memory T cells accumulates in peripheral tissues. This phenomenon is observed upon certain low level persistent virus infections, but it is most commonly described upon infection with the β-herpesvirus Cytomegalovirus. Due to the induction of this large pool of functional effector CD8 T cells in peripheral tissues, the interest in using CMV-based vaccine vectors for vaccination purposes is rising. However, the exact mechanisms of memory T cell inflation are not yet fully understood. It is clear that repetitive exposure to antigen is a key determinant for memory inflation, and therefore the viral inoculum dose and the subsequent number of viral reactivation events strongly impact on the magnitude of the inflationary T cell pool. In addition, the number of CMV-specific CD8 T cells that is able to sense these reactivation events affects the size of the inflationary T cell pool. In the following, we will discuss factors that either promote or limit T cell inflation from both the virus and host perspective. These factors mostly operate by influencing the amount of available antigen or by affecting the T cell pool that is able to respond to the antigen. Furthermore, we will discuss the recent use of CMV-based vaccines in pre-clinical experimental settings, where these vectors have shown promising results by inducing prolonged effector memory T cell responses to foreign-introduced epitopes and thereby provided protection from subsequent virus or tumour challenges.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Nicolas S Baumann
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
44
|
Development of a Primary Human Cell Model for the Study of Human Cytomegalovirus Replication and Spread within Salivary Epithelium. J Virol 2019; 93:JVI.01608-18. [PMID: 30404806 DOI: 10.1128/jvi.01608-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Various aspects of human cytomegalovirus (HCMV) pathogenesis, including its ability to replicate in specific cells and tissues and the mechanism(s) of horizontal transmission, are not well understood, predominantly because of the strict species specificity exhibited by HCMV. Murine CMV (MCMV), which contains numerous gene segments highly similar to those of HCMV, has been useful for modeling some aspects of CMV pathogenesis; however, it remains essential to build relevant human cell-based systems to investigate how the HCMV counterparts function. The salivary gland epithelium is a site of persistence for both human and murine cytomegaloviruses, and salivary secretions appear to play an important role in horizontal transmission. Therefore, it is important to understand how HCMV is replicating within the glandular epithelial cells so that it might be possible to therapeutically prevent transmission. In the present study, we describe the development of a salivary epithelial model derived from primary human "salispheres." Initial infection of these primary salivary cells with HCMV occurs in a manner similar to that reported for established epithelial lines, in that gH/gL/UL128/UL130/UL131A (pentamer)-positive strains can infect and replicate, while laboratory-adapted pentamer-null strains do not. However, while HCMV enters the lytic phase and produces virus in salivary epithelial cells, it fails to exhibit robust spread throughout the culture and persists in a low percentage of salivary cells. The present study demonstrates the utility of these primary tissue-derived cells for studying HCMV replication in salivary epithelial cells in vitro IMPORTANCE Human cytomegalovirus (HCMV) infects the majority of the world's population, and although it typically establishes a quiescent infection with little to no disease in most individuals, the virus is responsible for a variety of devastating sequelae in immunocompromised adults and in developing fetuses. Therefore, identifying the viral properties essential for replication, spread, and horizontal transmission is an important area of medical science. Our studies use novel human salivary gland-derived cellular models to investigate the molecular details by which HCMV replicates in salivary epithelial cells and provide insight into the mechanisms by which the virus persists in the salivary epithelium, where it gains access to fluids centrally important for horizontal transmission.
Collapse
|
45
|
Seelige R, Saddawi-Konefka R, Adams NM, Picarda G, Sun JC, Benedict CA, Bui JD. Interleukin-17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection. Sci Rep 2018; 8:13670. [PMID: 30209334 PMCID: PMC6135835 DOI: 10.1038/s41598-018-32011-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/31/2018] [Indexed: 12/26/2022] Open
Abstract
Innate immune cells quickly infiltrate the site of pathogen entry and not only stave off infection but also initiate antigen presentation and promote adaptive immunity. The recruitment of innate leukocytes has been well studied in the context of extracellular bacterial and fungal infection but less during viral infections. We have recently shown that the understudied cytokine Interleukin (IL)-17D can mediate neutrophil, natural killer (NK) cell and monocyte infiltration in sterile inflammation and cancer. Herein, we show that early immune cell accumulation at the peritoneal site of infection by mouse cytomegalovirus (MCMV) is mediated by IL-17D. Mice deficient in IL-17D or the transcription factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an inducer of IL-17D, featured an early decreased number of innate immune cells at the point of viral entry and were more susceptible to MCMV infection. Interestingly, we were able to artificially induce innate leukocyte infiltration by applying the Nrf2 activator tert-butylhydroquinone (tBHQ), which rendered mice less susceptible to MCMV infection. Our results implicate the Nrf2/IL-17D axis as a sensor of viral infection and suggest therapeutic benefit in boosting this pathway to promote innate antiviral responses.
Collapse
Affiliation(s)
- Ruth Seelige
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | | | - Nicholas M Adams
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Gaëlle Picarda
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
- Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, CA, 92093, USA.
| |
Collapse
|
46
|
Lueder Y, Heller K, Ritter C, Keyser KA, Wagner K, Liu X, Messerle M, Stahl FR, Halle S, Förster R. Control of primary mouse cytomegalovirus infection in lung nodular inflammatory foci by cooperation of interferon-gamma expressing CD4 and CD8 T cells. PLoS Pathog 2018; 14:e1007252. [PMID: 30153311 PMCID: PMC6112668 DOI: 10.1371/journal.ppat.1007252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/31/2018] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (CMV) and mouse cytomegalovirus (MCMV) infection share many characteristics. Therefore infection of mice with MCMV is an important tool to understand immune responses and to design vaccines and therapies for patients at the risk of severe CMV disease. In this study, we investigated the immune response in the lungs following acute infection with MCMV. We used multi-color fluorescence microscopy to visualize single infected and immune cells in nodular inflammatory foci (NIFs) that formed around infected cells in the lungs. These NIFs consisted mainly of myeloid cells, T cells, and some NK cells. We found that the formation of NIFs was essential to reduce the number of infected cells in the lung tissue, showing that NIFs were sites of infection as well as sites of immune response. Comparing mice deficient for several leukocyte subsets, we identified T cells to be of prime importance for restricting MCMV infection in the lung. Moreover, T cells had to be present in NIFs in high numbers, and CD4 as well as CD8 T cells supported each other to efficiently control virus spread. Additionally, we investigated the effects of perforin and interferon-gamma (IFNγ) on the virus infection and found important roles for both mechanisms. NK cells and T cells were the major source for IFNγ in the lung and in in vitro assays we found that IFNγ had the potential to reduce plaque growth on primary lung stromal cells. Notably, the T cell-mediated control was shown to be perforin-independent but IFNγ-dependent. In total, this study systematically identifies crucial antiviral factors present in lung NIFs for early containment of a local MCMV infection at the single cell level.
Collapse
Affiliation(s)
- Yvonne Lueder
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Katrin Heller
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Kirsten A Keyser
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Xiaokun Liu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Felix R Stahl
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
47
|
Wehrens EJ, Wong KA, Gupta A, Khan A, Benedict CA, Zuniga EI. IL-27 regulates the number, function and cytotoxic program of antiviral CD4 T cells and promotes cytomegalovirus persistence. PLoS One 2018; 13:e0201249. [PMID: 30044874 PMCID: PMC6059457 DOI: 10.1371/journal.pone.0201249] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
The role of IL-27 in antiviral immunity is still incompletely understood, especially in the context of chronic viruses that induce a unique environment in their infected host. Cytomegalovirus (CMV) establishes a persistent, tissue localized infection followed by lifelong latency. CMV infects the majority of people and although asymptomatic in healthy individuals, can cause serious disease or death in those with naïve or compromised immune systems. Therefore, there is an urgent need to develop a protective CMV vaccine for people at-risk and identifying key regulators of the protective immune response towards CMV will be crucial. Here we studied mouse CMV (MCMV) in IL-27 receptor deficient animals (Il27ra-/-) to assess the role of IL-27 in regulating CMV immunity. We found that IL-27 enhanced the number of antiviral CD4 T cells upon infection. However, in contrast to a well-established role for CD4 T cells in controlling persistent replication and a positive effect of IL-27 on their numbers, IL-27 promoted MCMV persistence in the salivary gland. This coincided with IL-27 mediated induction of IL-10 production in CD4 T cells. Moreover, IL-27 reduced expression of the transcription factor T-bet and restricted a cytotoxic phenotype in antiviral CD4 T cells. This is a highly intriguing result given the profound cytotoxic phenotype of CMV-specific CD4 T cells seen in humans and we established that dendritic cell derived IL-27 was responsible for this effect. Together, these data show that IL-27 regulates the number and effector functions of MCMV-specific CD4 T cells and could be targeted to enhance control of persistent/latent infection.
Collapse
Affiliation(s)
- Ellen J. Wehrens
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kurt A. Wong
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ankan Gupta
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Ayesha Khan
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Chris A. Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
48
|
STAT2-Dependent Immune Responses Ensure Host Survival despite the Presence of a Potent Viral Antagonist. J Virol 2018; 92:JVI.00296-18. [PMID: 29743368 PMCID: PMC6026732 DOI: 10.1128/jvi.00296-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/04/2018] [Indexed: 01/12/2023] Open
Abstract
A pathogen encounter induces interferons, which signal via Janus kinases and STAT transcription factors to establish an antiviral state. However, the host and pathogens are situated in a continuous arms race which shapes host evolution toward optimized immune responses and the pathogens toward enhanced immune-evasive properties. Mouse cytomegalovirus (MCMV) counteracts interferon responses by pM27-mediated degradation of STAT2, which directly affects the signaling of type I as well as type III interferons. Using MCMV mutants lacking M27 and mice lacking STAT2, we studied the opposing relationship between antiviral activities and viral antagonism in a natural host-pathogen pair in vitro and in vivo In contrast to wild-type (wt) MCMV, ΔM27 mutant MCMV was efficiently cleared from all organs within a few days in BALB/c, C57BL/6, and 129 mice, highlighting the general importance of STAT2 antagonism for MCMV replication. Despite this effective and relevant STAT2 antagonism, wt and STAT2-deficient mice exhibited fundamentally different susceptibilities to MCMV infections. MCMV replication was increased in all assessed organs (e.g., liver, spleen, lungs, and salivary glands) of STAT2-deficient mice, resulting in mortality during the first week after infection. Taken together, the results of our study reveal the importance of cytomegaloviral interferon antagonism for viral replication as well as a pivotal role of the remaining STAT2 activity for host survival. This mutual influence establishes a stable evolutionary standoff situation with fatal consequences when the equilibrium is disturbed.IMPORTANCE The host limits viral replication by the use of interferons (IFNs), which signal via STAT proteins. Several viruses evolved antagonists targeting STATs to antagonize IFNs (e.g., cytomegaloviruses, Zika virus, dengue virus, and several paramyxoviruses). We analyzed infections caused by MCMV expressing or lacking the STAT2 antagonist pM27 in STAT2-deficient and control mice to evaluate its importance for the host and the virus in vitro and in vivo The inability to counteract STAT2 directly translates into exaggerated IFN susceptibility in vitro and pronounced attenuation in vivo Thus, the antiviral activity mediated by IFNs via STAT2-dependent signaling drove the development of a potent MCMV-encoded STAT2 antagonist which became indispensable for efficient virus replication and spread to organs required for dissemination. Despite this clear impact of viral STAT2 antagonism, the host critically required the remaining STAT2 activity to prevent overt disease and mortality upon MCMV infection. Our findings highlight a remarkably delicate balance between host and virus.
Collapse
|
49
|
Takamura S. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells. Front Immunol 2018; 9:1214. [PMID: 29904388 PMCID: PMC5990602 DOI: 10.3389/fimmu.2018.01214] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident memory T cells (TRM cells) are a population of immune cells that reside in the lymphoid and non-lymphoid organs without recirculation through the blood. These important cells occupy and utilize unique anatomical and physiological niches that are distinct from those for other memory T cell populations, such as central memory T cells in the secondary lymphoid organs and effector memory T cells that circulate through the tissues. CD8+ TRM cells typically localize in the epithelial layers of barrier tissues where they are optimally positioned to act as sentinels to trigger antigen-specific protection against reinfection. CD4+ TRM cells typically localize below the epithelial layers, such as below the basement membrane, and cluster in lymphoid structures designed to optimize interactions with antigen-presenting cells upon reinfection. A key feature of TRM populations is their ability to be maintained in barrier tissues for prolonged periods of time. For example, skin CD8+ TRM cells displace epidermal niches originally occupied by γδ T cells, thereby enabling their stable persistence for years. It is also clear that the long-term maintenance of TRM cells in different microenvironments is dependent on multiple tissue-specific survival cues, although the specific details are poorly understood. However, not all TRM persist over the long term. Recently, we identified a new spatial niche for the maintenance of CD8+ TRM cells in the lung, which is created at the site of tissue regeneration after injury [termed repair-associated memory depots (RAMD)]. The short-lived nature of RAMD potentially explains the short lifespans of CD8+ TRM cells in this particular tissue. Clearly, a better understanding of the niche-dependent maintenance of TRM cells will be important for the development of vaccines designed to promote barrier immunity. In this review, we discuss recent advances in our understanding of the properties and nature of tissue-specific niches that maintain TRM cells in different tissues.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
50
|
Topham DJ, Reilly EC. Tissue-Resident Memory CD8 + T Cells: From Phenotype to Function. Front Immunol 2018; 9:515. [PMID: 29632527 PMCID: PMC5879098 DOI: 10.3389/fimmu.2018.00515] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/27/2018] [Indexed: 12/15/2022] Open
Abstract
Tissue-resident memory CD8+ T cells are an important first line of defense from infection in peripheral non-lymphoid tissues, such as the mucosal tissues of the respiratory, digestive, and urogenital tracts. This memory T cell subset is established late during resolution of primary infection of those tissues, has a distinct genetic signature, and is often defined by the cell surface expression of CD69, CD103, CD49a, and CD44 in both mouse and human studies. The stimuli that program or imprint the unique gene expression and cell surface phenotypes on TRM are beginning to be defined, but much work remains to be done. It is not clear, for example, when and where the TRM precursors receive these signals, and there is evidence that supports imprinting in both the lymph node and the peripheral tissue sites. In most studies, expression of CD49a, CD103, and CD69 on T cells in the tissues appears relatively late in the response, suggesting there are precise environmental cues that are not present at the height of the acute response. CD49a and CD103 are not merely biomarkers of TRM, they confer substrate specificities for cell adhesion to collagen and E-cadherin, respectively. Yet, little attention has been paid to how expression affects the positioning of TRM in the peripheral tissues. CD103 and CD49a are not mutually exclusive, and not always co-expressed, although whether they can compensate for one another is unknown. In fact, they may define different subsets of TRM in certain tissues. For instance, while CD49a+CD8+ memory T cells can be found in almost all peripheral tissues, CD103 appears to be more restricted. In this review, we discuss the evidence for how these hallmarks of TRM affect positioning of T cells in peripheral sites, how CD49a and CD103 differ in expression and function, and why they are important for immune protection conferred by TRM in mucosal tissues such as the respiratory tract.
Collapse
Affiliation(s)
- David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States.,Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Emma C Reilly
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|