1
|
Wlosik J, Orlanducci F, Richaud M, Demerle C, Amara AB, Rouviere MS, Livrati P, Gorvel L, Hospital MA, Dulphy N, Devillier R, Vey N, Olive D, Chretien AS. CD56 neg CD16 + cells represent a distinct mature NK cell subset with altered phenotype and are associated with adverse clinical outcome upon expansion in AML. Front Immunol 2025; 15:1487792. [PMID: 39867888 PMCID: PMC11760599 DOI: 10.3389/fimmu.2024.1487792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Acute myeloid leukemia (AML) is a rare haematological cancer with poor 5-years overall survival (OS) and high relapse rate. Leukemic cells are sensitive to Natural Killer (NK) cell mediated killing. However, NK cells are highly impaired in AML, which promote AML immune escape from NK cell immune surveillance. We made the first report of CD56neg CD16+ NK cells expansion in AML. This unconventional subset has been reported to expand in some chronic viral infections. Although it is unclear whether CD56neg NK cells expansion mechanism is common across diseases, it seems more relevant than ever to further investigate this subset, representing a potential therapeutic target. Methods We used PBMCs from AML patients and HV to perform mass cytometry, spectral flow cytometry, bulk RNA-seq and in vitro assays in order to better characterize CD56neg CD16+ NK cells that expand in AML. Results We confirmed that CD56neg CD16+ NK cells represent a unique NK cell subset coexpressing Eomes and T-bet. CD56neg CD16+ NK cells could recover CD56 expression in vitro where they displayed unaltered NK cell functions. We previously demonstrated that CD56neg CD16+ NK cells expansion at diagnosis was associated with adverse clinical outcome in AML. Here, we validated our findings in a validation cohort of N=38 AML patients. AML patients with CD56neg CD16+ NK cells expansion at diagnosis had decreased overall survival (HR[CI95]=5.5[1.2-24.5], p=0.0251) and relapse-free survival (HR[CI95]=13.1[1.9-87.5], p=0.0079) compared to AML patients without expansion after 36 months follow-up. RNA-seq unveiled that CD56neg CD16+ NK cells were mature circulating NK cells with functional capacities. Upon expansion, CD56neg CD16+ NK cells from AML patients showed altered proteomic phenotype, with increased frequency of terminally mature CD56neg CD16+ NK cells expressing TIGIT along with decreased frequency of Siglec-7+ CD56neg CD16+ NK cells. Discussion Taken together, our results suggest that we could harness CD56neg CD16+ NK cells cytotoxic potential in vitro to restore NK cell anti-tumor response in AML patients with CD56neg CD16+ NK cells expansion and improve patients' prognosis. To conclude, CD56neg CD16+ NK cells represent a relevant target for future NK-cell-based immunotherapies in AML.
Collapse
Affiliation(s)
- Julia Wlosik
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Florence Orlanducci
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Manon Richaud
- Cytometry Platform, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
| | - Clemence Demerle
- Centre for Clinical Investigation in Biotherapy, Paoli-Calmettes Institute, University of Aix-Marseille, Inserm CBT 1409, Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Marie-Sarah Rouviere
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Philippe Livrati
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Laurent Gorvel
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Marie-Anne Hospital
- Hematology Department, CRCM, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Marseille, France
| | - Nicolas Dulphy
- Paris Cité University, Saint-Louis Research Institute, Inserm UMRS1160, Paris, France
- Immunology and Histocompatibility Laboratory, Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Paris, France
| | - Raynier Devillier
- Hematology Department, CRCM, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Marseille, France
| | - Norbert Vey
- Hematology Department, CRCM, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Anne-Sophie Chretien
- Team Immunity and Cancer, Cancer Research Center of Marseille (CRCM), Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, University of Aix-Marseille UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| |
Collapse
|
2
|
Murillo-Alvarez RM, Zhang M, Yang Y. Unusual Expression of KIT (CD117) and Synaptophysin in a B-Cell Lymphoma. Int J Surg Pathol 2024; 32:362-364. [PMID: 37248559 DOI: 10.1177/10668969231173373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Rodrigo M Murillo-Alvarez
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Man Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Yu Yang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
3
|
Karaselek MA, Kurar E, Keleş S, Güner ŞN, Reisli İ. Association of NK cell subsets and cytotoxicity with FCGR3A gene polymorphism in functional NK cell deficiency. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20230872. [PMID: 38422319 PMCID: PMC10903273 DOI: 10.1590/1806-9282.20230872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 03/02/2024]
Abstract
OBJECTIVE The purpose of this study was to assess the association between clinical, laboratory, and functional analyses and polymorphism in the FCGR3A gene in individuals with functional NK cell deficiency. METHODS A total of 15 functional NK cell deficiency patients and 10 age-matched healthy controls underwent NK cell subgroup, cytotoxicity, and FCGR3A whole-exome analysis with next-generation sequencing. RESULTS Three different NK cell subsets (CD56brightCD16neg, CD56brightCD16int, and CD56dimCD16hi) were identified. No statistically significant difference was found in the ratio of CD56brightCD16neg cells between patients and controls. CD56brightCD16int and CD56dimCD16hi ratios were found to be significantly lower in patients. As a result of NK cell cytotoxicity analysis, a proportional decrease of K562 amount between patients and controls was found to be statistically significant (p<0.001). In the FCGR3A whole-exome analysis, all patients were found to be homozygous mutant for the c.526G > T (p.V176F) in exon 4, while three patients were homozygous wild type and 12 patients were heterozygous for the c.197T>A (p.L66H) in exon 3. CONCLUSION In this study, a group of pediatric patients with suspected functional NK cell deficiency were evaluated and the findings indicated that NK subsets, cytotoxicity results, and FCGR3A gene polymorphism were found to be correlated with the clinical features. We conclude that this kind of study might contribute to follow-up the patients in time.
Collapse
Affiliation(s)
- Mehmet Ali Karaselek
- Necmettin Erbakan University, Faculty of Medicine, Department of Medical Biology - Konya, Turkey
| | - Ercan Kurar
- Necmettin Erbakan University, Faculty of Medicine, Department of Medical Biology - Konya, Turkey
| | - Sevgi Keleş
- Necmettin Erbakan University, Faculty of Medicine, Department of Pediatric Immunology and Allergy - Konya, Turkey
| | - Şükrü Nail Güner
- Necmettin Erbakan University, Faculty of Medicine, Department of Pediatric Immunology and Allergy - Konya, Turkey
| | - İsmail Reisli
- Necmettin Erbakan University, Faculty of Medicine, Department of Pediatric Immunology and Allergy - Konya, Turkey
| |
Collapse
|
4
|
Xiong Y, Taleb M, Misawa K, Hou Z, Banerjee S, Amador-Molina A, Jones DR, Chintala NK, Adusumilli PS. c-Kit signaling potentiates CAR T cell efficacy in solid tumors by CD28- and IL-2-independent co-stimulation. NATURE CANCER 2023; 4:1001-1015. [PMID: 37336986 PMCID: PMC10765546 DOI: 10.1038/s43018-023-00573-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/08/2023] [Indexed: 06/21/2023]
Abstract
The limited efficacy of chimeric antigen receptor (CAR) T cell therapy for solid tumors necessitates engineering strategies that promote functional persistence in an immunosuppressive environment. Herein, we use c-Kit signaling, a physiological pathway associated with stemness in hematopoietic progenitor cells (T cells lose expression of c-Kit during differentiation). CAR T cells with intracellular expression, but no cell-surface receptor expression, of the c-Kit D816V mutation (KITv) have upregulated STAT phosphorylation, antigen activation-dependent proliferation and CD28- and interleukin-2-independent and interferon-γ-mediated co-stimulation, augmenting the cytotoxicity of first-generation CAR T cells. This translates to enhanced survival, including in transforming growth factor-β-rich and low-antigen-expressing solid tumor models. KITv CAR T cells have equivalent or better in vivo efficacy than second-generation CAR T cells and are susceptible to tyrosine kinase inhibitors (safety switch). When combined with CD28 co-stimulation, KITv co-stimulation functions as a third signal, enhancing efficacy and providing a potent approach to treat solid tumors.
Collapse
Affiliation(s)
- Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meriem Taleb
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyohei Misawa
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Srijita Banerjee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Navin K Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Li S, Bern MD, Miao B, Fan C, Xing X, Inoue T, Piersma SJ, Wang T, Colonna M, Kurosaki T, Yokoyama WM. The transcription factor Bach2 negatively regulates murine natural killer cell maturation and function. eLife 2022; 11:e77294. [PMID: 36190189 PMCID: PMC9560152 DOI: 10.7554/elife.77294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
BTB domain And CNC Homolog 2 (Bach2) is a transcription repressor that actively participates in T and B lymphocyte development, but it is unknown if Bach2 is also involved in the development of innate immune cells, such as natural killer (NK) cells. Here, we followed the expression of Bach2 during murine NK cell development, finding that it peaked in immature CD27+CD11b+ cells and decreased upon further maturation. Bach2 showed an organ and tissue-specific expression pattern in NK cells. Bach2 expression positively correlated with the expression of transcription factor TCF1 and negatively correlated with genes encoding NK effector molecules and those involved in the cell cycle. Lack of Bach2 expression caused changes in chromatin accessibility of corresponding genes. In the end, Bach2 deficiency resulted in increased proportions of terminally differentiated NK cells with increased production of granzymes and cytokines. NK cell-mediated control of tumor metastasis was also augmented in the absence of Bach2. Therefore, Bach2 is a key checkpoint protein regulating NK terminal maturation.
Collapse
Affiliation(s)
- Shasha Li
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Michael D Bern
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Benpeng Miao
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Changxu Fan
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Xiaoyun Xing
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of MedicineSt LouisUnited States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka UniversityOsakaJapan
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
6
|
Bösken B, Hepner-Schefczyk M, Vonderhagen S, Dudda M, Flohé SB. An Inverse Relationship Between c-Kit/CD117 and mTOR Confers NK Cell Dysregulation Late After Severe Injury. Front Immunol 2020; 11:1200. [PMID: 32670280 PMCID: PMC7330140 DOI: 10.3389/fimmu.2020.01200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Major trauma-induced tissue injury causes a dysregulation of the immune system. Severe systemic inflammation occurs early after the insult. Later on, an enhanced risk for life-threatening opportunistic infections develops that culminates at the end of the first week after trauma. CD56bright Natural killer (NK) cells play a key role in the defense against infection due to their rapid release of Interferon (IFN) γ in response to Interleukin (IL) 12. NK cells are impaired in IFN-γ synthesis after severe injury due to a disturbed IL-12/IFN-γ axis. Thereby, a circulating factor mediates extrinsic suppression of NK cells. Yet unknown cell-intrinsic mechanisms manifest by day 8 after trauma and render NK cells unresponsive to stimulatory cytokines. In the present study, we investigated the origin of such late NK cell-intrinsic suppression after major trauma. Peripheral blood mononuclear cells (PBMC) were isolated from patients 8 day after severe injury and from healthy control subjects and were stimulated with inactivated Staphylococcus aureus. The expression of diverse cytokine receptors, intracellular signaling molecules, and the secretion of IFN-γ by CD56bright NK cells were examined. After stimulation with S. aureus, NK cells from patients expressed enhanced levels of c-kit/CD117 that inversely correlated with IFN-γ synthesis and IL-12 receptor (IL-12R) β2 expression. Supplementation with IL-15 and inhibition of the transforming growth factor receptor (TGF-βR) I reduced CD117 expression and increased the level of IL-12Rβ2 and IFN-γ. NK cells from patients showed reduced phosphorylation of mammalian target of rapamycin (mTOR). Addition of IL-15 at least partly restored mTOR phosphorylation and increased IL-12Rβ2 expression. The reduced mTOR phosphorylation after severe injury was cell-intrinsic as it was not induced by serum factors. Inhibition of mTOR in purified NK cells from healthy donors by rapamycin decreased the synthesis of IFN-γ. Thus, impaired mTOR phosphorylation in response to a microbial challenge contributes to the cell-intrinsic mechanisms that underlie NK cell dysregulation after trauma. Restoration of the mTOR phosphorylation capacity along with inhibition of the TGF-βRI signaling in NK cells after severe injury might improve the immune defense against opportunistic infections.
Collapse
Affiliation(s)
- Björn Bösken
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Monika Hepner-Schefczyk
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sonja Vonderhagen
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Zamai L, Del Zotto G, Buccella F, Gabrielli S, Canonico B, Artico M, Ortolani C, Papa S. Understanding the Synergy of NKp46 and Co-Activating Signals in Various NK Cell Subpopulations: Paving the Way for More Successful NK-Cell-Based Immunotherapy. Cells 2020; 9:cells9030753. [PMID: 32204481 PMCID: PMC7140651 DOI: 10.3390/cells9030753] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
The NK cell population is characterized by distinct NK cell subsets that respond differently to the various activating stimuli. For this reason, the determination of the optimal cytotoxic activation of the different NK cell subsets can be a crucial aspect to be exploited to counter cancer cells in oncologic patients. To evaluate how the triggering of different combination of activating receptors can affect the cytotoxic responses of different NK cell subsets, we developed a microbead-based degranulation assay. By using this new assay, we were able to detect CD107a+ degranulating NK cells even within the less cytotoxic subsets (i.e., resting CD56bright and unlicensed CD56dim NK cells), thus demonstrating its high sensitivity. Interestingly, signals delivered by the co-engagement of NKp46 with 2B4, but not with CD2 or DNAM-1, strongly cooperate to enhance degranulation on both licensed and unlicensed CD56dim NK cells. Of note, 2B4 is known to bind CD48 hematopoietic antigen, therefore this observation may provide the rationale why CD56dim subset expansion correlates with successful hematopoietic stem cell transplantation mediated by alloreactive NK cells against host T, DC and leukemic cells, while sparing host non-hematopoietic tissues and graft versus host disease. The assay further confirms that activation of LFA-1 on NK cells leads to their granule polarization, even if, in some cases, this also takes to an inhibition of NK cell degranulation, suggesting that LFA-1 engagement by ICAMs on target cells may differently affect NK cell response. Finally, we observed that NK cells undergo a time-dependent spontaneous (cytokine-independent) activation after blood withdrawal, an aspect that may strongly bias the evaluation of the resting NK cell response. Altogether our data may pave the way to develop new NK cell activation and expansion strategies that target the highly cytotoxic CD56dim NK cells and can be feasible and useful for cancer and viral infection treatment.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-0722-304319; Fax: +39-0722-304319
| | - Genny Del Zotto
- Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Flavia Buccella
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Sara Gabrielli
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| |
Collapse
|
8
|
Zamai L, Del Zotto G, Buccella F, Gabrielli S, Canonico B, Artico M, Ortolani C, Papa S. Understanding the Synergy of NKp46 and Co-Activating Signals in Various NK Cell Subpopulations: Paving the Way for More Successful NK-Cell-Based Immunotherapy. Cells 2020. [PMID: 32204481 DOI: 10.3390/cells9030753.pmid:32204481;pmcid:pmc7140651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The NK cell population is characterized by distinct NK cell subsets that respond differently to the various activating stimuli. For this reason, the determination of the optimal cytotoxic activation of the different NK cell subsets can be a crucial aspect to be exploited to counter cancer cells in oncologic patients. To evaluate how the triggering of different combination of activating receptors can affect the cytotoxic responses of different NK cell subsets, we developed a microbead-based degranulation assay. By using this new assay, we were able to detect CD107a+ degranulating NK cells even within the less cytotoxic subsets (i.e., resting CD56bright and unlicensed CD56dim NK cells), thus demonstrating its high sensitivity. Interestingly, signals delivered by the co-engagement of NKp46 with 2B4, but not with CD2 or DNAM-1, strongly cooperate to enhance degranulation on both licensed and unlicensed CD56dim NK cells. Of note, 2B4 is known to bind CD48 hematopoietic antigen, therefore this observation may provide the rationale why CD56dim subset expansion correlates with successful hematopoietic stem cell transplantation mediated by alloreactive NK cells against host T, DC and leukemic cells, while sparing host non-hematopoietic tissues and graft versus host disease. The assay further confirms that activation of LFA-1 on NK cells leads to their granule polarization, even if, in some cases, this also takes to an inhibition of NK cell degranulation, suggesting that LFA-1 engagement by ICAMs on target cells may differently affect NK cell response. Finally, we observed that NK cells undergo a time-dependent spontaneous (cytokine-independent) activation after blood withdrawal, an aspect that may strongly bias the evaluation of the resting NK cell response. Altogether our data may pave the way to develop new NK cell activation and expansion strategies that target the highly cytotoxic CD56dim NK cells and can be feasible and useful for cancer and viral infection treatment.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L'Aquila, Italy
| | - Genny Del Zotto
- Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Flavia Buccella
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Sara Gabrielli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| |
Collapse
|
9
|
Gilreath JA, Tchertanov L, Deininger MW. Novel approaches to treating advanced systemic mastocytosis. Clin Pharmacol 2019; 11:77-92. [PMID: 31372066 PMCID: PMC6630092 DOI: 10.2147/cpaa.s206615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022] Open
Abstract
Mastocytosis is a myeloproliferative neoplasm characterized by expansion of abnormal mast cells (MCs) in various tissues, including skin, bone marrow, gastrointestinal tract, liver, spleen, or lymph nodes. Subtypes include indolent systemic mastocytosis, smoldering systemic mastocytosis and advanced systemic mastocytosis (AdvSM), a term collectively used for the three most aggressive forms of the disease: aggressive systemic mastocytosis, mast cell leukemia, and systemic mastocytosis with an associated clonal hematological non-mast cell disease (SM-AHNMD). MC activation and proliferation is physiologically controlled in part through stem cell factor (SCF) binding to its cognate receptor, KIT. Gain-of-function KIT mutations that lead to ligand-independent kinase activation are found in most SM subtypes, and the overwhelming majority of AdvSM patients harbor the KITD816V mutation. Several approved tyrosine kinase inhibitors (TKIs), such as imatinib and nilotinib, have activity against wild-type KIT but lack activity against KITD816V. Midostaurin, a broad spectrum TKI with activity against KITD816V, has a 60% clinical response rate, and is currently the only drug specifically approved for AdvSM. While this agent improves the prognosis of AdvSM patients and provides proof of principle for targeting KITD816V as a driver mutation, most responses are partial and/or not sustained, indicating that more potent and/or specific inhibitors are required. Avapritinib, a KIT and PDGFRα inhibitor, was specifically designed to inhibit KITD816V. Early results from a Phase 1 trial suggest that avapritinib has potent antineoplastic activity in AdvSM, extending to patients who failed midostaurin. Patients exhibited a rapid reduction in both symptoms as well as reductions of bone marrow MCs, serum tryptase, and KITD816V mutant allele burden. Adverse effects include expected toxicities such as myelosuppression and periorbital edema, but also cognitive impairment in some patients. Although considerable excitement about avapritinib exists, more data are needed to assess long-term responses and adverse effects of this novel TKI.
Collapse
Affiliation(s)
- J A Gilreath
- Department of Pharmacotherapy, College of Pharmacy and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - L Tchertanov
- Centre de Mathématiques et de Leurs Applications (CMLA-CNRS), ENS Paris-Saclay, Cachan 94235, France
| | - M W Deininger
- Division of Hematology and Hematologic Malignancies and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
11
|
Raghav PK, Singh AK, Gangenahalli G. Stem cell factor and NSC87877 synergism enhances c-Kit mediated proliferation of human erythroid cells. Life Sci 2018; 214:84-97. [PMID: 30308182 DOI: 10.1016/j.lfs.2018.09.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 11/27/2022]
Abstract
The biological mechanisms underlying the effects of stem cell factor (SCF) and an inhibitor, NSC87877 (N) of the c-Kit negative regulator (SHP-1 and SHP-2) on cell proliferation are different. Therefore, we compared the cell's response to these two either alone or in combination in K562 cells. Binding of SCF (S) to c-Kit induces dimerization that activates its kinase activity. The activated c-Kit undergoes autophosphorylation at tyrosine residues that serve as a docking site for signal transduction molecules containing SH2 domains. Predominantly, the phosphotyrosine 568 (pY568) in Juxtamembrane (JM) region of c-Kit interacts with adaptor protein APS, Src family kinase, and SHP-2, while phosphotyrosine 570 (pY570) interacts with the SHP-1 and the adaptor protein Shc. The dephosphorylation of phosphotyrosine residues by SHP-1/SHP-2 leads to inhibition of c-Kit proliferative signaling. A chemical molecule, N is reported to inhibit the enzymatic activity of SHP-1/SHP-2, but its effect on c-Kit-mediated proliferation has not been studied yet. Thus, this work aims at examining the effect of the combination of S and N on cells growth as compared to individual treatment. The present study is performed with erythroleukemic K562 cells, chosen for its mRNA expression concerning the c-Kit, and SHP-1/SHP-2. Interestingly, proliferation assay showed that combination significantly increased proliferation when G1 sorted K562 cells were used. These changes were significantly higher when K562 cells were initially treated with N followed by S treatment. Collectively, these results give mechanistic insight into the proliferation enhancement of bone marrow transplantation through the synergistic effect of S and N by inhibiting SHP-1/SHP-2. The study gives solid evidence that S and N combination can be used to enhance cell proliferation/growth.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Ajay Kumar Singh
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier. S. K. Mazumdar Marg, Timarpur, Delhi 110054, India.
| |
Collapse
|
12
|
CD56 Expression Marks Human Group 2 Innate Lymphoid Cell Divergence from a Shared NK Cell and Group 3 Innate Lymphoid Cell Developmental Pathway. Immunity 2018; 49:464-476.e4. [PMID: 30193847 DOI: 10.1016/j.immuni.2018.08.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/22/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
According to the established model of murine innate lymphoid cell (ILC) development, helper ILCs develop separately from natural killer (NK) cells. However, it is unclear how helper ILCs and NK cells develop in humans. Here we elucidated key steps of NK cell, ILC2, and ILC3 development within human tonsils using ex vivo molecular and functional profiling and lineage differentiation assays. We demonstrated that while tonsillar NK cells, ILC2s, and ILC3s originated from a common CD34-CD117+ ILC precursor pool, final steps of ILC2 development deviated independently and became mutually exclusive from those of NK cells and ILC3s, whose developmental pathways overlapped. Moreover, we identified a CD34-CD117+ ILC precursor population that expressed CD56 and gave rise to NK cells and ILC3s but not to ILC2s. These data support a model of human ILC development distinct from the mouse, whereby human NK cells and ILC3s share a common developmental pathway separate from ILC2s.
Collapse
|
13
|
Zakiryanova GK, Kustova E, Urazalieva NT, Amirbekov A, Baimuchametov ET, Nakisbekov NN, Shurin MR. Alterations of oncogenes expression in NK cells in patients with cancer. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:493-502. [PMID: 28695716 PMCID: PMC5691306 DOI: 10.1002/iid3.179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/08/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022]
Abstract
INTRODUCTION C-kit/SCF signaling plays a key role in regulating NK cell homeostasis, maturation, proliferation, and cytotoxicity. C-kit-deficiency in NK cells results in significant reduction of their number, suggesting an imperative role for c-kit signaling in NK cell biology. We have recently showed that human NK cells express not only c-kit-receptor, but also both membrane-bound and soluble forms of c-kit ligand-Stem cell factor. The goal of this study was to characterize the c-kit/SCF autocrine loop in peripheral blood NK cells obtained from patients with cancer. METHODS Using Smart Flare and qRT-PCR, we have characterized expression of c-kit and two forms of SCF in patients' NK cells and correlated these results with the expression of c-myc and STAT3. RESULTS Our results demonstrated that the expression of proto-oncogenes c-myc and c-kit was significantly decreased in NK cells from all cancer patients. Expression of membrane-bound SCF in NK cells correlated with the presence of remote metastases. CONCLUSIONS We suggest that the abnormal signaling and expression of c-kit/SCF, c-myc, and STAT3 in NK cells is responsible for the defect in their cytolytic activity in cancer and these defects at the gene expression level may be the cause rather than the result of tumor progression.
Collapse
Affiliation(s)
- Gulnur K Zakiryanova
- Scientific and Technological Park Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Elena Kustova
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Nataliya T Urazalieva
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Aday Amirbekov
- Joint Use Center, Atchabarov Scientific-research institute of fundamental and applied medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | - Narymzhan N Nakisbekov
- Joint Use Center, Atchabarov Scientific-research institute of fundamental and applied medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Michael R Shurin
- Clinical Immunopathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Allan DSJ, Cerdeira AS, Ranjan A, Kirkham CL, Aguilar OA, Tanaka M, Childs RW, Dunbar CE, Strominger JL, Kopcow HD, Carlyle JR. Transcriptome analysis reveals similarities between human blood CD3 - CD56 bright cells and mouse CD127 + innate lymphoid cells. Sci Rep 2017; 7:3501. [PMID: 28615725 PMCID: PMC5471261 DOI: 10.1038/s41598-017-03256-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
For many years, human peripheral blood natural killer (NK) cells have been divided into functionally distinct CD3− CD56bright CD16− and CD3− CD56dim CD16+ subsets. Recently, several groups of innate lymphoid cells (ILC), distinct from NK cells in development and function, have been defined in mouse. A signature of genes present in mouse ILC except NK cells, defined by Immunological Genome Project studies, is significantly over-represented in human CD56bright cells, by gene set enrichment analysis. Conversely, the signature genes of mouse NK cells are enriched in human CD56dim cells. Correlations are based upon large differences in expression of a few key genes. CD56bright cells show preferential expression of ILC-associated IL7R (CD127), TNFSF10 (TRAIL), KIT (CD117), IL2RA (CD25), CD27, CXCR3, DPP4 (CD26), GPR183, and MHC class II transcripts and proteins. This could indicate an ontological relationship between human CD56bright cells and mouse CD127+ ILC, or conserved networks of transcriptional regulation. In line with the latter hypothesis, among transcription factors known to impact ILC or NK cell development, GATA3, TCF7 (TCF-1), AHR, SOX4, RUNX2, and ZEB1 transcript levels are higher in CD56bright cells, while IKZF3 (AIOLOS), TBX21 (T-bet), NFIL3 (E4BP4), ZEB2, PRDM1 (BLIMP1), and RORA mRNA levels are higher in CD56dim cells.
Collapse
Affiliation(s)
- David S J Allan
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada. .,Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Ana Sofia Cerdeira
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, UK
| | - Anuisa Ranjan
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Christina L Kirkham
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Oscar A Aguilar
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Miho Tanaka
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Richard W Childs
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Hernan D Kopcow
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - James R Carlyle
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Law BMP, Wilkinson R, Wang X, Kildey K, Lindner M, Rist MJ, Beagley K, Healy H, Kassianos AJ. Interferon-γ production by tubulointerstitial human CD56 bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression. Kidney Int 2017; 92:79-88. [PMID: 28396119 DOI: 10.1016/j.kint.2017.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 01/04/2023]
Abstract
Natural killer (NK) cells are a population of lymphoid cells that play a significant role in mediating innate immune responses. Studies in mice suggest a pathological role for NK cells in models of kidney disease. In this study, we characterized the NK cell subsets present in native kidneys of patients with tubulointerstitial fibrosis, the pathological hallmark of chronic kidney disease. Significantly higher numbers of total NK cells (CD3-CD56+) were detected in renal biopsies with tubulointerstitial fibrosis compared with diseased biopsies without fibrosis and healthy kidney tissue using multi-color flow cytometry. At a subset level, both the CD56dim NK cell subset and particularly the CD56bright NK cell subset were elevated in fibrotic kidney tissue. However, only CD56bright NK cells significantly correlated with the loss of kidney function. Expression of the tissue-retention and -activation molecule CD69 on CD56bright NK cells was significantly increased in fibrotic biopsy specimens compared with non-fibrotic kidney tissue, indicative of a pathogenic phenotype. Further flow cytometric phenotyping revealed selective co-expression of activating receptor CD335 (NKp46) and differentiation marker CD117 (c-kit) on CD56bright NK cells. Multi-color immunofluorescent staining of fibrotic kidney tissue localized the accumulation of NK cells within the tubulointerstitium, with CD56bright NK cells (NKp46+ CD117+) identified as the source of pro-inflammatory cytokine interferon-γ within the NK cell compartment. Thus, activated interferon-γ-producing CD56bright NK cells are positioned to play a key role in the fibrotic process and progression to chronic kidney disease.
Collapse
Affiliation(s)
- Becker M P Law
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ray Wilkinson
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; University of Queensland Medical School, University of Queensland, Brisbane, Queensland, Australia
| | - Xiangju Wang
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Katrina Kildey
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Mae Lindner
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Melissa J Rist
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Helen Healy
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Andrew J Kassianos
- Conjoint Kidney Research Laboratory, Pathology Queensland, Brisbane, Queensland, Australia; Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia; University of Queensland Medical School, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
16
|
Scoville SD, Freud AG, Caligiuri MA. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells. Front Immunol 2017; 8:360. [PMID: 28396671 PMCID: PMC5366880 DOI: 10.3389/fimmu.2017.00360] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/14/2017] [Indexed: 12/20/2022] Open
Abstract
Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.
Collapse
Affiliation(s)
- Steven D Scoville
- Biomedical Sciences Graduate Program, Medical Scientist Training Program, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA; Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Aharon G Freud
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA; Department of Pathology, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Michael A Caligiuri
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA; Division of Hematology and Oncology, Department of Internal Medicine, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Melsen JE, Lugthart G, Lankester AC, Schilham MW. Human Circulating and Tissue-Resident CD56(bright) Natural Killer Cell Populations. Front Immunol 2016; 7:262. [PMID: 27446091 PMCID: PMC4927633 DOI: 10.3389/fimmu.2016.00262] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/21/2016] [Indexed: 11/18/2022] Open
Abstract
Two human natural killer (NK) cell subsets are usually distinguished, displaying the CD56dimCD16+ and the CD56brightCD16−/+ phenotype. This distinction is based on NK cells present in blood, where the CD56dim NK cells predominate. However, CD56bright NK cells outnumber CD56dim NK cells in the human body due to the fact that they are predominant in peripheral and lymphoid tissues. Interestingly, within the total CD56bright NK cell compartment, a major phenotypical and functional diversity is observed, as demonstrated by the discovery of tissue-resident CD56bright NK cells in the uterus, liver, and lymphoid tissues. Uterus-resident CD56bright NK cells express CD49a while the liver- and lymphoid tissue-resident CD56bright NK cells are characterized by co-expression of CD69 and CXCR6. Tissue-resident CD56bright NK cells have a low natural cytotoxicity and produce little interferon-γ upon monokine stimulation. Their distribution and specific phenotype suggest that the tissue-resident CD56bright NK cells exert tissue-specific functions. In this review, we examine the CD56bright NK cell diversity by discussing the distribution, phenotype, and function of circulating and tissue-resident CD56bright NK cells. In addition, we address the ongoing debate concerning the developmental relationship between circulating CD56bright and CD56dim NK cells and speculate on the position of tissue-resident CD56bright NK cells. We conclude that distinguishing tissue-resident CD56bright NK cells from circulating CD56bright NK cells is a prerequisite for the better understanding of the specific role of CD56bright NK cells in the complex process of human immune regulation.
Collapse
Affiliation(s)
- Janine E Melsen
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Gertjan Lugthart
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| | - Marco W Schilham
- Department of Pediatrics, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
18
|
Freud AG, Keller KA, Scoville SD, Mundy-Bosse BL, Cheng S, Youssef Y, Hughes T, Zhang X, Mo X, Porcu P, Baiocchi RA, Yu J, Carson WE, Caligiuri MA. NKp80 Defines a Critical Step during Human Natural Killer Cell Development. Cell Rep 2016; 16:379-391. [PMID: 27373165 DOI: 10.1016/j.celrep.2016.05.095] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 04/22/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022] Open
Abstract
Human natural killer (NK) cells develop in secondary lymphoid tissues (SLTs) through distinct stages. We identified two SLT lineage (Lin)(-)CD34(-)CD117(+/-)CD94(+)CD16(-) "stage 4" subsets according to expression of the C-type lectin-like surface-activating receptor, NKp80: NKp80(-) (stage "4a") and NKp80(+) (stage "4b"). Whereas stage 4b cells expressed more of the transcription factors T-BET and EOMES, produced interferon-gamma, and were cytotoxic, stage 4a cells expressed more of the transcription factors RORγt and AHR and produced interleukin-22, similar to SLT Lin(-)CD34(-)CD117(+)CD94(-)CD16(-) "stage 3" cells, whose phenotype overlaps with that of group 3 innate lymphoid cells (ILC3s). Co-culture with dendritic cells or transplantation into immunodeficient mice produced mature NK cells from stage 3 and stage 4a populations. These data identify NKp80 as a marker of NK cell maturity in SLTs and support a model of human NK cell development through a stage 4a intermediate with ILC3-associated features.
Collapse
Affiliation(s)
- Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Karen A Keller
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Steven D Scoville
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Bethany L Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Stephanie Cheng
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Youssef Youssef
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tiffany Hughes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Pierluigi Porcu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - William E Carson
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Lugthart G, Melsen JE, Vervat C, van Ostaijen-Ten Dam MM, Corver WE, Roelen DL, van Bergen J, van Tol MJD, Lankester AC, Schilham MW. Human Lymphoid Tissues Harbor a Distinct CD69+CXCR6+ NK Cell Population. THE JOURNAL OF IMMUNOLOGY 2016; 197:78-84. [PMID: 27226093 DOI: 10.4049/jimmunol.1502603] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/30/2016] [Indexed: 11/19/2022]
Abstract
Knowledge of human NK cells is based primarily on conventional CD56(bright) and CD56(dim) NK cells from blood. However, most cellular immune interactions occur in lymphoid organs. Based on the coexpression of CD69 and CXCR6, we identified a third major NK cell subset in lymphoid tissues. This population represents 30-60% of NK cells in marrow, spleen, and lymph node but is absent from blood. CD69(+)CXCR6(+) lymphoid tissue NK cells have an intermediate expression of CD56 and high expression of NKp46 and ICAM-1. In contrast to circulating NK cells, they have a bimodal expression of the activating receptor DNAX accessory molecule 1. CD69(+)CXCR6(+) NK cells do not express the early markers c-kit and IL-7Rα, nor killer cell Ig-like receptors or other late-differentiation markers. After cytokine stimulation, CD69(+)CXCR6(+) NK cells produce IFN-γ at levels comparable to CD56(dim) NK cells. They constitutively express perforin but require preactivation to express granzyme B and exert cytotoxicity. After hematopoietic stem cell transplantation, CD69(+)CXCR6(+) lymphoid tissue NK cells do not exhibit the hyperexpansion observed for both conventional NK cell populations. CD69(+)CXCR6(+) NK cells constitute a separate NK cell population with a distinct phenotype and function. The identification of this NK cell population in lymphoid tissues provides tools to further evaluate the cellular interactions and role of NK cells in human immunity.
Collapse
Affiliation(s)
- Gertjan Lugthart
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands;
| | - Janine E Melsen
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Carly Vervat
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | | | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, Leiden 2300 RC, the Netherlands; and
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Jeroen van Bergen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Maarten J D van Tol
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| | - Marco W Schilham
- Department of Pediatrics, Leiden University Medical Center, Leiden 2300 RC, the Netherlands
| |
Collapse
|
20
|
Mehta RS, Shpall EJ, Rezvani K. Cord Blood as a Source of Natural Killer Cells. Front Med (Lausanne) 2016; 2:93. [PMID: 26779484 PMCID: PMC4700256 DOI: 10.3389/fmed.2015.00093] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022] Open
Abstract
Cord blood (CB) offers several unique advantages as a graft source for hematopoietic stem cell transplantation (HSCT). The risk of relapse and graft vs. host disease after cord blood transplantation (CBT) is lower than what is typically observed after other graft sources with a similar degree of human leukocyte antigen mismatch. Natural killer (NK) cells have a well-defined role in both innate and adaptive immunity and as the first lymphocytes to reconstitute after HSCT and CBT, and they play a significant role in protection against early relapse. In this article, we highlight the uses of CB NK cells in transplantation and adoptive immunotherapy. First, we will describe differences in the phenotype and functional characteristics of NK cells in CB as compared with peripheral blood. Then, we will review some of the obstacles we face in using resting CB NK cells for adoptive immunotherapy, and discuss methods to overcome them. We will review the current literature on killer-cell immunoglobulin-like receptors ligand mismatch and outcomes after CBT. Finally, we will touch on current strategies for the use of CB NK cells in cellular immunotherapy.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Division of Hematology, Oncology and Transplantation, University of Minnesota Medical Center , Minneapolis, MN , USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
21
|
Angelo LS, Banerjee PP, Monaco-Shawver L, Rosen JB, Makedonas G, Forbes LR, Mace EM, Orange JS. Practical NK cell phenotyping and variability in healthy adults. Immunol Res 2015; 62:341-56. [PMID: 26013798 PMCID: PMC4470870 DOI: 10.1007/s12026-015-8664-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human natural killer (NK) cells display a wide array of surface and intracellular markers that indicate various states of differentiation and/or levels of effector function. These NK cell subsets exist simultaneously in peripheral blood and may vary among individuals. We examined variety among selected NK cell receptors expressed by NK cells from normal donors, as well as the distribution of select NK cell subsets and NK cell receptor expression over time in several individual donors. Peripheral blood mononuclear cells were evaluated using flow cytometry via fluorochrome-conjugated antibodies against a number of NK cell receptors. Results were analyzed for both mean fluorescence intensity (MFI) and the percent positive cells for each receptor. CD56(bright) and CD56(dim) NK cell subsets were also considered separately, as was variation in receptor expression in NK cell subsets over time in selected individuals. Through this effort, we provide ranges of NK cell surface receptor expression for a local adult population as well as provide insight into intra-individual variation.
Collapse
Affiliation(s)
- Laura S. Angelo
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| | - Pinaki P. Banerjee
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| | - Linda Monaco-Shawver
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Philadelphia, PA USA 19104
| | - Joshua B. Rosen
- Drexel University College of Medicine, 245 N. 15 Street, Philadelphia, PA USA 19102
| | - George Makedonas
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| | - Lisa R. Forbes
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| | - Emily M. Mace
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| | - Jordan S. Orange
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| |
Collapse
|
22
|
Morandi F, Horenstein AL, Chillemi A, Quarona V, Chiesa S, Imperatori A, Zanellato S, Mortara L, Gattorno M, Pistoia V, Malavasi F. CD56brightCD16- NK Cells Produce Adenosine through a CD38-Mediated Pathway and Act as Regulatory Cells Inhibiting Autologous CD4+ T Cell Proliferation. THE JOURNAL OF IMMUNOLOGY 2015; 195:965-72. [PMID: 26091716 DOI: 10.4049/jimmunol.1500591] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/19/2015] [Indexed: 11/19/2022]
Abstract
Recent studies suggested that human CD56(bright)CD16(-) NK cells may play a role in the regulation of the immune response. Since the mechanism(s) involved have not yet been elucidated, in the present study we have investigated the role of nucleotide-metabolizing enzymes that regulate the extracellular balance of nucleotides/nucleosides and produce the immunosuppressive molecule adenosine (ADO). Peripheral blood CD56(dim)CD16(+) and CD56(bright)CD16(-) NK cells expressed similar levels of CD38. CD39, CD73, and CD157 expression was higher in CD56(bright)CD16(-) than in CD56(dim)CD16(+) NK cells. CD57 was mostly expressed by CD56(dim)CD16(+) NK cells. CD203a/PC-1 expression was restricted to CD56(bright)CD16(-) NK cells. CD56(bright)CD16(-) NK cells produce ADO and inhibit autologous CD4(+) T cell proliferation. Such inhibition was 1) reverted pretreating CD56(bright)CD16(-) NK cells with a CD38 inhibitor and 2) increased pretreating CD56(bright)CD16(-) NK cells with a nucleoside transporter inhibitor, which increase extracellular ADO concentration. CD56(bright)CD16(-) NK cells isolated from the synovial fluid of juvenile idiopathic arthritis patients failed to inhibit autologous CD4(+) T cell proliferation. Such functional impairment could be related to 1) the observed reduced CD38/CD73 expression, 2) a peculiar ADO production kinetics, and 3) a different expression of ADO receptors. In contrast, CD56(bright)CD16(-) NK cells isolated from inflammatory pleural effusions display a potent regulatory activity. In conclusion, CD56(bright)CD16(-) NK cells act as "regulatory cells" through ADO produced by an ectoenzymes network, with a pivotal role of CD38. This function may be relevant for the modulation of the immune response in physiological and pathological conditions, and it could be impaired during autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratorio di Oncologia, Istituto Giannina Gaslini, 16148 Genoa, Italy;
| | - Alberto L Horenstein
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Turin, Turin 10126, Italy; Immunologia dei Trapianti, Città della Salute e della Scienza, Turin 10126, Italy
| | - Antonella Chillemi
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Valeria Quarona
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Turin, Turin 10126, Italy
| | - Sabrina Chiesa
- Unità Operativa Pediatria II - Reumatologia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Andrea Imperatori
- Department of Surgical and Morphological Sciences, University of Insubria, 21100 Varese, Italy; and
| | - Silvia Zanellato
- Department of Surgical and Morphological Sciences, University of Insubria, 21100 Varese, Italy; and Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Marco Gattorno
- Unità Operativa Pediatria II - Reumatologia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Vito Pistoia
- Laboratorio di Oncologia, Istituto Giannina Gaslini, 16148 Genoa, Italy
| | - Fabio Malavasi
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Turin, Turin 10126, Italy; Immunologia dei Trapianti, Città della Salute e della Scienza, Turin 10126, Italy
| |
Collapse
|
23
|
Chaput N, Flament C, Locher C, Desbois M, Rey A, Rusakiewicz S, Poirier-Colame V, Pautier P, Le Cesne A, Soria JC, Paci A, Rosenzwajg M, Klatzmann D, Eggermont A, Robert C, Zitvogel L. Phase I clinical trial combining imatinib mesylate and IL-2: HLA-DR + NK cell levels correlate with disease outcome. Oncoimmunology 2014; 2:e23080. [PMID: 23525357 PMCID: PMC3601178 DOI: 10.4161/onci.23080] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We performed a Phase I clinical trial from October 2007 to October 2009, enrolling patients affected by refractory solid tumors, to determine the maximum tolerated dose (MTD) of interleukin (IL)-2 combined with low dose cyclophosphamide (CTX) and imatinib mesylate (IM). In a companion paper published in this issue of OncoImmunology, we show that the MTD of IL-2 is 6 MIU/day for 5 consecutive days, and that IL-2 increases the impregnation of both IM and of its main metabolite, CGP74588. Among the secondary objectives, we wanted to determine immunological markers that might be associated with progression-free survival (PFS) and/or overall survival (OS). The combination therapy markedly reduced the absolute counts of B, CD4+ T and CD8+ T cells in a manner that was proportional to IL-2 dose. There was a slight (less than 2-fold) increase in the proportion of regulatory T cells (Tregs) among CD4+ T cells in response to IM plus IL-2. The natural killer (NK)-cell compartment was activated, exhibiting a significant upregulation of HLA-DR, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and CD56. The abundance of HLA-DR+ NK cells after one course of combination therapy positively correlated with both PFS and OS. The IL-2-induced rise of the CD4+:CD8+ T-cell ratio calculated after the first cycle of treatment was also positively associated with OS. Overall, the combination of IM and IL-2 promoted the rapid expansion of HLA-DR+ NK cells and increased the CD4+:CD8+ T-cell ratio, both being associated with clinical benefits. This combinatorial regimen warrants further investigation in Phase II clinical trials, possibly in patients affected by gastrointestinal stromal tumors, a setting in which T and NK cells may play an important therapeutic role.
Collapse
Affiliation(s)
- Nathalie Chaput
- Institut de Cancérologie Gustave Roussy; Villejuif, France ; Centre d'Investigation Clinique Biothérapie CICBT 507; Institut de Cancérologie Gustave Roussy; Villejuif, France ; Unité de Thérapie Cellulaire; Institut de Cancérologie Gustave Roussy; Villejuif, France ; Institut National de la Santé et de la Recherche Médicale; U1015; Institut de Cancérologie Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Inborn errors of the development of human natural killer cells. Curr Opin Allergy Clin Immunol 2014; 13:589-95. [PMID: 24135998 DOI: 10.1097/aci.0000000000000011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Inborn errors of human natural killer (NK) cells may affect the development of these cells, their function, or both. There are two broad categories of genetic defects of NK cell development, depending on whether the deficiency is apparently specific to NK cells or clearly affects multiple hematopoietic lineages. We review here recent progress in the genetic dissection of these NK deficiencies (NKDs). RECENT FINDINGS Patients with severe combined immunodeficiencies bearing mutations of adenosine deaminase, adenylate kinase 2, interleukin-2 receptor gamma chain, and Janus kinase 3 genes present NKDs and are prone to a broad range of infections. Patients with GATA binding protein 2 deficiency are susceptible to both mycobacterial and viral infections, and display NKDs and a lack of monocytes. Rare patients with mini chromosomal maintenance 4 deficiency display an apparently selective NKD associated with viral infections, but they also display various nonhematopoietic phenotypes, including adrenal insufficiency and growth retardation. SUMMARY These studies have initiated a genetic dissection of the development of human NK cells. Further studies are warranted, including the search for genetic causes of NKD in particular. This research may lead to the discovery of molecules specifically controlling the development of NK cells and to improvements in our understanding of the hitherto elusive function of these cells in humans.
Collapse
|
25
|
Pradier A, Tabone‐Eglinger S, Huber V, Bosshard C, Rigal E, Wehrle‐Haller B, Roosnek E. Peripheral bloodCD56brightNKcells respond to stem cell factor and adhere to its membrane‐bound form after upregulation of c‐kit. Eur J Immunol 2013; 44:511-20. [DOI: 10.1002/eji.201343868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/02/2013] [Accepted: 10/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Amandine Pradier
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Severine Tabone‐Eglinger
- Department of Cell Physiology and MetabolismGeneva Medical SchoolUniversity of Geneva Geneva Switzerland
| | - Vincent Huber
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Carine Bosshard
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Emmanuel Rigal
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Bernhard Wehrle‐Haller
- Department of Cell Physiology and MetabolismGeneva Medical SchoolUniversity of Geneva Geneva Switzerland
| | - Eddy Roosnek
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| |
Collapse
|
26
|
Cichocki F, Miller JS, Anderson SK, Bryceson YT. Epigenetic regulation of NK cell differentiation and effector functions. Front Immunol 2013; 4:55. [PMID: 23450696 PMCID: PMC3584244 DOI: 10.3389/fimmu.2013.00055] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/11/2013] [Indexed: 12/24/2022] Open
Abstract
Upon maturation, natural killer (NK) cells acquire effector functions and regulatory receptors. New insights suggest a considerable functional heterogeneity and dynamic regulation of receptor expression in mature human NK cell subsets based on different developmental axes. Such processes include acquisition of lytic granules as well as regulation of cytokine production in response to exogenous cytokine stimulation or target cell interactions. One axis is regulated by expression of inhibitory receptors for self-MHC class I molecules, whereas other axes are less well defined but likely are driven by different activating receptor engagements or cytokines. Moreover, the recent identification of long-lived NK cell subsets in mice that are able to expand and respond rapidly following a secondary viral challenge suggest previously unappreciated plasticity in the programming of NK cell differentiation. Here, we review advances in our understanding of mature NK cell development and plasticity with regards to regulation of cellular function. Furthermore, we highlight some of the major questions that remain pertaining to the epigenetic changes that underlie the differentiation and functional specialization of NK cells and the regulation of their responses.
Collapse
Affiliation(s)
- Frank Cichocki
- Department of Medicine, Center for Infectious Medicine, Karolinska Institute, Karolinska University Hospital Huddinge Stockholm, Sweden ; Adult Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center Minneapolis, MN, USA
| | | | | | | |
Collapse
|
27
|
Dhiman R, Periasamy S, Barnes PF, Jaiswal AG, Paidipally P, Barnes AB, Tvinnereim A, Vankayalapati R. NK1.1+ cells and IL-22 regulate vaccine-induced protective immunity against challenge with Mycobacterium tuberculosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:897-905. [PMID: 22711885 PMCID: PMC3392427 DOI: 10.4049/jimmunol.1102833] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We previously found that human NK cells lyse Mycobacterium tuberculosis-infected monocytes and alveolar macrophages and upregulate CD8(+) T cell responses. We also found that human NK cells produce IL-22, which inhibits intracellular growth of M. tuberculosis, and that NK cells lyse M. tuberculosis-expanded CD4(+)CD25(+)FOXP3(+) T regulatory cells (Tregs). To determine the role of NK cells during the protective immune response to vaccination in vivo, we studied the NK cell and T cell responses in a mouse model of vaccination with bacillus Calmette-Guérin (BCG), followed by challenge with virulent M. tuberculosis H37Rv. BCG vaccination enhanced the number of IFN-γ-producing and IL-22-producing NK cells. Depletion of NK1.1(+) cells at the time of BCG vaccination increased the number of immunosuppressive Tregs (CD4(+)CD25(hi), 95% Foxp3(+)) after challenge with M. tuberculosis H37Rv, and NK1.1(+) cells lysed expanded but not natural Tregs in BCG-vaccinated mice. Depletion of NK1.1(+) cells at the time of BCG vaccination also increased the bacillary burden and reduced T cell responses after challenge with M. tuberculosis H37Rv. IL-22 at the time of vaccination reversed these effects and enhanced Ag-specific CD4(+) cell responses in BCG-vaccinated mice after challenge with M. tuberculosis H37Rv. Our study provides evidence that NK1.1(+) cells and IL-22 contribute to the efficacy of vaccination against microbial challenge.
Collapse
Affiliation(s)
- Rohan Dhiman
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center, Tyler, Texas, TX 75708
| | - Sivakumar Periasamy
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center, Tyler, Texas, TX 75708
| | - Peter F. Barnes
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center, Tyler, Texas, TX 75708
- Department of Medicine, Center for Biomedical Research, University of Texas Health Science Center, Tyler, Texas, TX 75708
| | - Ankita Garg Jaiswal
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center, Tyler, Texas, TX 75708
| | - Padmaja Paidipally
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center, Tyler, Texas, TX 75708
| | - Amanda B. Barnes
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center, Tyler, Texas, TX 75708
| | - Amy Tvinnereim
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center, Tyler, Texas, TX 75708
| | - Ramakrishna Vankayalapati
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center, Tyler, Texas, TX 75708
- Department of Microbiology and Immunology, University of Texas Health Science Center, Tyler, Texas, TX 75708
| |
Collapse
|
28
|
Luevano M, Madrigal A, Saudemont A. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy. Cell Mol Immunol 2012; 9:310-20. [PMID: 22705914 DOI: 10.1038/cmi.2012.17] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Natural killer (NK) cells are part of the innate immune system and are an alluring option for immunotherapy due to their ability to kill infected cells or cancer cells without prior sensitization. Throughout the past 20 years, different groups have been able to reproduce NK cell development in vitro, and NK cell ontogeny studies have provided the basis for the establishment of protocols to produce NK cells in vitro for immunotherapy. Here, we briefly discuss NK cell development and NK cell immunotherapy approaches. We review the factors needed for NK cell differentiation in vitro, which stem cell sources have been used, published protocols, challenges and future directions for Good Manufacturing Practice protocols.
Collapse
Affiliation(s)
- Martha Luevano
- Anthony Nolan Research Institute, and University College London, Royal Free Campus, London, UK
| | | | | |
Collapse
|
29
|
Béziat V, Duffy D, Quoc SN, Le Garff-Tavernier M, Decocq J, Combadière B, Debré P, Vieillard V. CD56brightCD16+ NK cells: a functional intermediate stage of NK cell differentiation. THE JOURNAL OF IMMUNOLOGY 2011; 186:6753-61. [PMID: 21555534 DOI: 10.4049/jimmunol.1100330] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human NK cells comprise two main subsets, CD56(bright) and CD56(dim) cells, which differ in function, phenotype, and tissue localization. To further dissect the differentiation from CD56(bright) to CD56(dim) cells, we performed ex vivo and in vitro experiments demonstrating that the CD56(bright)CD16(+) cells are an intermediate stage of NK cell maturation. We observed that the maximal frequency of the CD56(bright)CD16(+) subset among NK cells, following unrelated cord blood transplantation, occurs later than this of the CD56(bright)CD16(-) subset. We next performed an extensive phenotypic and functional analysis of CD56(bright)CD16(+) cells in healthy donors, which displayed a phenotypic intermediary profile between CD56(bright)CD16(-) and CD56(dim)CD16(+) NK cells. We also demonstrated that CD56(bright)CD16(+) NK cells were fully able to kill target cells, both by Ab-dependent cell cytotoxicity (ADCC) and direct lysis, as compared with CD56(bright)CD16(-) cells. Importantly, in vitro differentiation experiments revealed that autologous T cells specifically encourage the differentiation from CD56(bright)CD16(-) to CD56(bright)CD16(+) cells. Finally, further investigations performed in elderly patients clearly showed that both CD56(bright)CD16(+) and CD56(dim)CD16(+) mature subsets were substantially increased in older individuals, whereas the CD56(bright)CD16(-) precursor subset was decreased. Altogether, these data provide evidence that the CD56(bright)CD16(+) NK cell subset is a functional intermediate between the CD56(bright) and CD56(dim) cells and is generated in the presence of autologous T CD3(+) cells.
Collapse
Affiliation(s)
- Vivien Béziat
- INSERM Unité Mixte de Recherche-S 945, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
The role of Natural Killer cells in the pathogenesis of rheumatoid arthritis: Major contributors or essential homeostatic modulators? Immunol Lett 2011; 136:115-21. [DOI: 10.1016/j.imlet.2010.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 10/28/2010] [Accepted: 11/03/2010] [Indexed: 11/18/2022]
|
31
|
Ham MF, Ko YH. Natural killer cell neoplasm: biology and pathology. Int J Hematol 2010; 92:681-9. [PMID: 21132576 DOI: 10.1007/s12185-010-0738-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/13/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cell neoplasm is a heterogeneous disease group. In the latest World Health Organization (WHO) classification of tumours of hematopoietic and lymphoid tissues (2008), disease entities considered as NK-cell derivation include NK-lymphoblastic leukemia/lymphoma, chronic lymphoproliferative disorders of NK cells, aggressive NK-cell leukemia, and extranodal NK-cell lymphoma, nasal-type. Despite recent advances in NK-cell research, which have expanded our understanding of the biology of NK-cell neoplasm, it cannot yet be sharply delineated from myeloid neoplasms and T-cell neoplasms even in some "well-known" entity, such as extranodal NK/T-cell lymphoma. This review describes current knowledge of the biology of NK cells and pathology of NK neoplasms as classified in the 2008 WHO classification of tumours of hematopoietic and lymphoid tissues.
Collapse
Affiliation(s)
- Maria Francisca Ham
- Department of Anatomic Pathology, University of Indonesia/Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia.
| | | |
Collapse
|
32
|
Vukicevic M, Chalandon Y, Helg C, Matthes T, Dantin C, Huard B, Chizzolini C, Passweg J, Roosnek E. CD56bright NK cells after hematopoietic stem cell transplantation are activated mature NK cells that expand in patients with low numbers of T cells. Eur J Immunol 2010; 40:3246-54. [PMID: 20957748 DOI: 10.1002/eji.200940016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 06/22/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022]
Abstract
We studied early NK-cell recovery in 29 allografted patients undergoing different lymphoreductive regimens. Already at 2 wk after graft take, the number of NK cells had reached (supra)normal levels but NK-cell subsets were skewed. The number of CD56(dim) CD16(bright) NK cells was low and correlated strongly with the level of hematopoiesis, whereas the number of the more abundant NK cells expressing high levels of CD56 did not. Post-transplant CD56(bright) NK cells (ptCD56(bright)) differed from CD56(bright) NK cells in normal controls (CD56(bright)) in being HLA-DR- and perforin-positive, CCR7(-), CD27(-), CD127(-) and mostly c-kit(-). CD56(bright) from normal controls stimulated by IL-15 in vitro (NK(IL-15)) acquired all the characteristics distinguishing CD56(bright) from ptCD56(bright). IL-2 exerted similar effects. Moreover, when cultured without cytokines, ptCD56(bright), CD56(bright) and NK(IL-15) responded similarly by upregulating CD127 and c-kit but not CCR7. IL-12 stimulated IFN-γ production in ptCD56(bright), whereas CD56(bright) responded only to IL-12 plus IL-15. Hence, ptCD56(bright) have all the features of cytokine-stimulated CD56(bright). Because only patients with low numbers of T cells had high numbers of ptCD56(bright), we conclude that ptCD56(bright) are activated CD56(bright) that expand while competing with T cells for the elevated post-transplant level of IL-15.
Collapse
Affiliation(s)
- Marija Vukicevic
- Division of Hematology, Department of Internal Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The binding of the receptor tyrosine kinase, c-kit, to its ligand, stem cell factor (SCF), mediates numerous biological functions. Important roles for c-kit in hematopoiesis, melanogenesis, erythropoiesis, spermatogenesis, and carcinogenesis are well documented. Similarly, activation of granulocytes, mast cells, and of eosinophils in particular, by c-kit ligation has long been known to result in degranulation with concomitant release of pro-inflammatory mediators, including cytokines. However, recent work from a number of laboratories, including our own, highlights previously unappreciated functions for c-kit in immunologic processes. These novel findings strongly suggest that signaling through the c-kit-SCF axis could have a significant impact on the pathogenesis of diseases associated with an immunologic component. In our own studies, c-kit upregulation on dendritic cells via T helper (Th)2- and Th17-inducing stimuli led to c-kit activation and immune skewing toward these T helper subsets and away from Th1 responses. Others have shown that dendritic cell treatment with inhibitors of c-kit activation, such as imatinib mesylate (Gleevec), favored breaking of T-cell tolerance, skewing of responses toward production of Th1 cytokines, and activation of natural killer cells. These data all indicate that deeper understanding of, and ability to control, the c-kit-SCF axis could lead to improved treatment modalities aimed at redirecting unwanted and/or deleterious immune responses in a wide variety of conditions.
Collapse
Affiliation(s)
- Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
34
|
The natural killer cell: a further innate mediator of gouty inflammation? Immunol Cell Biol 2009; 88:24-31. [DOI: 10.1038/icb.2009.91] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Dhiman R, Indramohan M, Barnes PF, Nayak RC, Paidipally P, Rao LVM, Vankayalapati R. IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:6639-45. [PMID: 19864591 DOI: 10.4049/jimmunol.0902587] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We determined whether human NK cells could contribute to immune defenses against Mycobacterium tuberculosis through production of IL-22. CD3(-)CD56(+) NK cells produced IL-22 when exposed to autologous monocytes and gamma-irradiated M. tuberculosis, and this depended on the presence of IL-15 and IL-23, but not IL-12 or IL-18. IL-15-stimulated NK cells expressed 10.6 times more DAP10 mRNA compared with control NK cells, and DAP10 siRNA inhibited IL-15-mediated IL-22 production by NK cells. Soluble factors produced by IL-15-activated NK cells inhibited growth of M. tuberculosis in macrophages, and this effect was reversed by anti-IL-22. Addition of rIL-22 to infected macrophages enhanced phagolysosomal fusion and reduced growth of M. tuberculosis. We conclude that NK cells can contribute to immune defenses against M. tuberculosis through production of IL-22, which inhibits intracellular mycobacterial growth by enhancing phagolysosomal fusion. IL-15 and DAP-10 elicit IL-22 production by NK cells in response to M. tuberculosis.
Collapse
MESH Headings
- Humans
- Interleukin-12/pharmacology
- Interleukin-15/pharmacology
- Interleukin-18/pharmacology
- Interleukin-23/pharmacology
- Interleukins/immunology
- Interleukins/metabolism
- Interleukins/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/microbiology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/microbiology
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Phagosomes/drug effects
- Phagosomes/immunology
- Phagosomes/metabolism
- Phagosomes/microbiology
- RNA, Messenger/agonists
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- RNA, Small Interfering/immunology
- RNA, Small Interfering/metabolism
- Receptors, Immunologic/agonists
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Recombinant Proteins/pharmacology
- Tuberculosis/immunology
- Tuberculosis/microbiology
- Interleukin-22
Collapse
Affiliation(s)
- Rohan Dhiman
- Center for Pulmonary and Infectious Disease Control, Department of Microbiology and Immunology, University of Texas Health Center, Tyler, TX 75708-3154, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Yagel S. The developmental role of natural killer cells at the fetal-maternal interface. Am J Obstet Gynecol 2009; 201:344-50. [PMID: 19788966 DOI: 10.1016/j.ajog.2009.02.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/16/2009] [Accepted: 02/26/2009] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells have been extensively studied in their traditional roles in host defense against tumor or virally infected cells. Uterine NK cells are of 2 distinct subsets: endometrial NK (eNK) cells, found in the uterus during the menstrual cycle, and decidual NK (dNK) cells, found in the decidua during pregnancy. This review will explore the immunosurveillance and cytotoxicity profiles of NK cells, the inert nature of eNK cells, and the role of dNK cells as builders at the maternal-fetal interface that create a pregnancy-favorable environment by inducing angiogenesis, trophoblast invasion, and vascular remodeling.
Collapse
|
37
|
Stem cell factor and interleukin-2/15 combine to enhance MAPK-mediated proliferation of human natural killer cells. Blood 2008; 113:2706-14. [PMID: 19060242 DOI: 10.1182/blood-2008-05-159285] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stem cell factor (SCF) promotes synergistic cellular proliferation in combination with several growth factors, and appears important for normal natural killer (NK)-cell development. CD34(+) hematopoietic precursor cells (HPCs) require interleukin-15 (IL-15) for differentiation into human NK cells, and this effect can be mimicked by IL-2. Culture of CD34(+) HPCs or some primary human NK cells in IL-2/15 and SCF results in enhanced growth compared with either cytokine alone. The molecular mechanisms responsible for this are unknown and were investigated in the present work. Activation of NK cells by IL-2/15 increases expression of c-kit whose kinase activity is required for synergy with IL-2/15 signaling. Mitogen-activated protein kinase (MAPK) signaling intermediaries that are activated both by SCF and IL-2/15 are enhanced in combination to facilitate earlier cell-cycle entry. The effect results at least in part via enhanced MAPK-mediated modulation of p27 and CDK4. Collectively the data reveal a novel mechanism by which SCF enhances cellular proliferation in combination with IL-2/15 in primary human NK cells.
Collapse
|
38
|
McCullar V, Oostendorp R, Panoskaltsis-Mortari A, Yun G, Lutz CT, Wagner JE, Miller JS. Mouse fetal and embryonic liver cells differentiate human umbilical cord blood progenitors into CD56-negative natural killer cell precursors in the absence of interleukin-15. Exp Hematol 2008; 36:598-608. [PMID: 18295962 DOI: 10.1016/j.exphem.2008.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 12/31/2007] [Accepted: 01/04/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Human natural killer (NK) cell maturation involves the orderly acquisition of NK cell receptors. Our aim was to understand how stromal interactions and cytokines are important in this developmental process. MATERIALS AND METHODS Human umbilical cord blood (UCB) CD34(+)/Lin(-)/CD38(-) cells were cultured on two murine stromal cell lines (AFT024 and EL08-1D2) in a switch culture to study NK cell development. RESULTS When human progenitors were cultured on AFT024 with interleukin (IL)-3 and Flt3 ligand (Flt3L) in the absence of interleukin (IL)-15, NK cell differentiation occurred, albeit at low frequency. These conditions favored the accumulation of CD56(-) NK cell precursors (CD34(+)CD7(-), CD34(+)CD7(+), and CD34(-)CD7(+) cells), which are populations rare in adult blood but abundant in fresh UCB. In secondary culture, addition of IL-3 or IL-3 + Flt3L to IL-15 increased the absolute number of CD56(+) NK cells from precursors and the acquisition of CD94 and killer immunoglobulin-like receptors (KIR). To further explore the microenvironment in early NK cell maturation, a cell line derived from murine embryonic liver (EL08-1D2) was studied. NK cell development and KIR acquisition was superior with EL08-1D2, which supported the differentiation of NK cell precursors, NK cell commitment, and proliferation. CONCLUSION Although the earliest events in NK cell maturation do not require exogenous human IL-15, it is required at a later stage of NK cell commitment. At a minimum, murine stroma, IL-3, and Flt3L are required to recapitulate early NK cell development and differentiation into distinct NK cell precursors. EL08-1D2 induces KIR acquisition suggesting that extrinsic signals in NK cell development are conserved between mouse and man.
Collapse
Affiliation(s)
- Valarie McCullar
- Division of Medical, University of Minnesota Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
The Unique Properties of Human NK Cells in the Uterine Mucosa. Placenta 2008; 29 Suppl A:S60-6. [DOI: 10.1016/j.placenta.2007.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 02/01/2023]
|
40
|
Shah MH, Freud AG, Benson DM, Ferkitich AK, Dezube BJ, Bernstein ZP, Caligiuri MA. A phase I study of ultra low dose interleukin-2 and stem cell factor in patients with HIV infection or HIV and cancer. Clin Cancer Res 2007; 12:3993-6. [PMID: 16818697 DOI: 10.1158/1078-0432.ccr-06-0268] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ultra low doses of interleukin-2 (IL-2) can activate the high-affinity IL-2 receptor constitutively expressed on CD56(bright) natural killer (NK) cells, the CD34+ NK cell precursor, and CD4+ CD25+ regulatory T cells (Tregs) in vivo. We have previously shown synergy between IL-2 and stem cell factor (SCF) in the generation of CD56(bright) NK cells from CD34+ hemopoietic progenitor cells in vitro and showed synergistic NK cell expansion in an in vivo preclinical model. To determine the safety, toxicity, and immune modulation of this combination of cytokines in vivo, we conducted a first-in-man phase I study. EXPERIMENTAL DESIGN A phase I dose escalation study was conducted using IL-2 at 900,000 or 650,000 IU/m2/d for 8 weeks with 5 or 10 microg/kg/d of SCF given thrice a week for 8 weeks in patients with HIV infection and/or cancer. RESULTS Ten of 13 patients completed therapy; four experienced the dose-limiting toxicities of grade 3 fatigue or urticaria. The maximum tolerated doses of IL-2 and SCF in combination is 650,000 IU/m2/d of IL-2 and 5 microg/kg/d thrice a week of SCF. NK cells were expanded over 2-fold on therapy; Tregs were expanded nearly 6-fold from baseline. CONCLUSIONS Administration of IL-2 with SCF is safe and well tolerated and leads to expansion of lymphocyte subsets in patients with HIV or HIV and cancer; however, the changes in NK cell and Treg expansion seen with this cytokine combination were no different than those seen with a similar dose of IL-2 alone.
Collapse
Affiliation(s)
- Manisha H Shah
- Division of Hematology/Oncology, Department of Internal Medicine, Ohio State University, Columbus, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Huntington ND, Vosshenrich CAJ, Di Santo JP. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 2007; 7:703-14. [PMID: 17717540 DOI: 10.1038/nri2154] [Citation(s) in RCA: 324] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells are large granular lymphocytes capable of producing inflammatory cytokines and spontaneously killing malignant, infected or 'stressed' cells. These NK-cell functions are controlled by cell-surface receptors that titrate stimulatory and inhibitory signals. However, we remain puzzled about where and when NK cells develop and differentiate, and this has fuelled the debate over the diversification of the peripheral NK-cell pool: are NK cells functionally homogeneous or are there subsets with specialized effector functions? In this Review, we consider the developmental relationships and biological significance of the diverse NK-cell subsets in mice and humans, and discuss how new humanized mouse models may help to characterize them further.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Cytokines and Lymphoid Development Unit and Inserm Unit 668, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris, Cedex 15, France
| | | | | |
Collapse
|
42
|
Takahashi E, Kuranaga N, Satoh K, Habu Y, Shinomiya N, Asano T, Seki S, Hayakawa M. Induction of CD16+ CD56bright NK cells with antitumour cytotoxicity not only from CD16- CD56bright NK Cells but also from CD16- CD56dim NK cells. Scand J Immunol 2007; 65:126-38. [PMID: 17257217 DOI: 10.1111/j.1365-3083.2006.01883.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to examine the effect of cytokines on different subsets of NK cells, while especially focusing on CD16(-) CD56(dim) cells and CD16(-) CD56(bright) cells. When human peripheral blood mononuclear cells (PBMC) were cultured with a combination of IL-2, IL-12 and IL-15 for several days, a minor population of CD56(bright) NK cells expanded up to 15%, and also showed potent cytotoxicities against various cancer cells. Sorting experiments revealed that unconventional CD16(-) CD56(+) NK cells (CD16(-) CD56(dim) NK cells and CD16(-) CD56(bright) NK cells, both of which are less than 1% in PBMC) much more vigorously proliferated after cytokine stimulation, whereas predominant CD16(+) CD56(dim) NK cells proliferated poorly. In addition, many of the resting CD16(-) CD56(bright) NK cells developed into CD16(+) CD56(bright) NK cells, and CD16(-) CD56(dim) NK cells developed into CD16(-) CD56(bright) NK cells and also further into CD16(+) CD56(bright) NK cells by the cytokines. CSFE label experiments further substantiated the proliferation capacity of each subset and the developmental process of CD16(+) CD56(bright) NK cells. Both CD16(-) CD56(dim) NK cells and CD16(-) CD56(bright) NK cells produced large amounts of IFN-gamma and Fas-ligands. The CD16(+) CD56(bright) NK cells showed strong cytotoxicities against not only MHC class I (-) but also MHC class I (+) tumours regardless of their expression of CD94/NKG2A presumably because they expressed NKG2D as well as natural cytotoxicity receptors. The proliferation of CD16(+) CD56(bright) NK cells was also induced when PBMC were stimulated with penicillin-treated Streptococcus pyogenes, thus suggesting their role in tumour immunity and bacterial infections.
Collapse
Affiliation(s)
- E Takahashi
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Boerma M, Fiser WP, Hoyt G, Berry GJ, Joseph L, Joseph J, Wang J, Crew MD, Robbins RC, Hauer-Jensen M. Influence of mast cells on outcome after heterotopic cardiac transplantation in rats. Transpl Int 2007; 20:256-65. [PMID: 17291219 DOI: 10.1111/j.1432-2277.2006.00420.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Correlative data suggest that mast cells adversely affect cardiac transplantation. This study uses a mast cell-deficient rat model to directly address the role of mast cells in cardiac allotransplantation. Standardized cardiac heterotopic transplantation with cyclosporine immunosuppression was performed in mast cell-deficient and mast cell-competent rats. Rejection, ischemia, fibrosis, fibrin deposition, numbers of T-cell receptor alpha/beta positive cells, expression of transforming growth factor-beta (TGF-beta), and of endothelin-1 (ET-1) and its receptors ETA and ETB were assessed. Differences in baseline cardiac gene expression were quantified by real-time PCR in a separate group of untransplanted animals. Baseline cardiac gene expression levels of all investigated growth factors, cytokines, ET-1, ETA, and ETB were similar in mast cell-deficient and mast cell-competent rats. Surprisingly, upon heterotopic transplantation, donor heart survival was significantly reduced in mast cell-deficient rats. Moreover, in mast cell-deficient donor hearts rejection was more severe, although nonsignificant, and extracellular matrix associated TGF-beta immunoreactivity was significantly lower than in mast cell-competent donor hearts. Fibrin immunoreactive area, on the other hand, was only increased in mast cell-deficient donor hearts, but not in mast cell-competent donor hearts. Histopathological changes in all donor hearts were accompanied by increased immunoreactivity for ET-1. In conclusion, this study shows that mast cells play a protective role after cardiac transplantation.
Collapse
Affiliation(s)
- Marjan Boerma
- Department of Surgery, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Keskin DB, Allan DSJ, Rybalov B, Andzelm MM, Stern JNH, Kopcow HD, Koopman LA, Strominger JL. TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci U S A 2007; 104:3378-83. [PMID: 17360654 PMCID: PMC1805591 DOI: 10.1073/pnas.0611098104] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During pregnancy the uterine decidua is populated by large numbers of natural killer (NK) cells with a phenotype CD56(superbright)CD16(-)CD9(+)KIR(+) distinct from both subsets of peripheral blood NK cells. Culture of highly purified CD16(+)CD9(-) peripheral blood NK cells in medium containing TGFbeta1 resulted in a transition to CD16(-)CD9(+) NK cells resembling decidual NK cells. Decidual stromal cells, when isolated and cultured in vitro, were found to produce TGFbeta1. Incubation of peripheral blood NK cells with conditioned medium from decidual stromal cells mirrored the effects of TGFbeta1. Similar changes may occur upon NK cell entry into the decidua or other tissues expressing substantial TGFbeta. In addition, Lin(-)CD34(+)CD45(+) hematopoietic stem/progenitor cells could be isolated from decidual tissue. These progenitors also produced NK cells when cultured in conditioned medium from decidual stromal cells supplemented with IL-15 and stem cell factor.
Collapse
Affiliation(s)
- Derin B. Keskin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - David S. J. Allan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Basya Rybalov
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Milena M. Andzelm
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Joel N. H. Stern
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Hernan D. Kopcow
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Louise A. Koopman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Jack L. Strominger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- *To whom correspondence should be addressed at:
Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138. E-mail:
| |
Collapse
|
45
|
Abstract
Our understanding of human natural killer (NK) cell development lags far behind that of human B- or T-cell development. Much of our recent knowledge of this incomplete picture comes from experimental animal models that have aided in identifying fundamental in vivo processes, including those controlling NK cell homeostasis, self-tolerance, and the generation of a diverse NK cell repertoire. However, it has been difficult to fully understand the mechanistic details of NK cell development in humans, primarily because the in vivo cellular intermediates and microenvironments of this developmental pathway have remained elusive. Although there is general consensus that NK cell development occurs primarily within the bone marrow (BM), recent data implicate secondary lymphoid tissues as principal sites of NK cell development in humans. The strongest evidence stems from the observation that the newly described stages of human NK cell development are naturally and selectively enriched within lymph nodes and tonsils compared with blood and BM. In the current review, we provide an overview of these recent findings and discuss these in the context of existing tenets in the field of lymphocyte development.
Collapse
Affiliation(s)
- Aharon G Freud
- Medical Scientist Program, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
46
|
Grzywacz B, Kataria N, Sikora M, Oostendorp RA, Dzierzak EA, Blazar BR, Miller JS, Verneris MR. Coordinated acquisition of inhibitory and activating receptors and functional properties by developing human natural killer cells. Blood 2006; 108:3824-33. [PMID: 16902150 PMCID: PMC1895469 DOI: 10.1182/blood-2006-04-020198] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stages of human natural killer (NK) cell differentiation are not well established. Culturing CD34(+) progenitors with interleukin 7 (IL-7), IL-15, stem cell factor (SCF), FLT-3L, and murine fetal liver cell line (EL08.1D2), we identified 2 nonoverlapping subsets of differentiating CD56(+) cells based on CD117 and CD94 (CD117(high)CD94(-) and CD117(low/-)CD94(+) cells). Both populations expressed CD161 and NKp44, but differed with respect to NKp30, NKp46, NKG2A, NKG2C, NKG2D, CD8, CD16, and KIR. Only the CD117(low/-) CD94(+) population displayed cytotoxicity and interferon-gamma production. Both populations arose from a single CD34(+)CD38(-) Lin(-) cell and their percentages changed over time in a reciprocal fashion, with CD117(high)CD94(-) cells predominating early and decreasing due to an increase of the CD117(low/-)CD94(+) population. These 2 subsets represent distinct stages of NKcell differentiation, since purified CD117(high) CD94(-) cells give rise to CD117(low/-)CD94(+) cells. The stromal cell line (EL08.1D2) facilitated the transition from CD117(high)CD94(-) to CD117(low/-)CD94(+) via an intermediate phenotype (CD117(low)CD94(low/-)). EL08.1D2 also maintained the mature phenotype, preventing the reversion of CD117(low/-)CD94(+) cells to the intermediate (CD117(low)CD94(low/-)) phenotype. An analogous population of CD56(+)CD117(high)CD94(-) cells was found in cord blood. The identified stages of NK-cell differentiation provide evidence for coordinated acquisition of HLA-specific inhibitory receptors (ie, CD94/NKG2A) and function in developing human NK cells.
Collapse
Affiliation(s)
- Bartosz Grzywacz
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, 425 E. River Rd, Suite 660, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Escribano L, Garcia Montero AC, Núñez R, Orfao A. Flow Cytometric Analysis of Normal and Neoplastic Mast Cells: Role in Diagnosis and Follow-Up of Mast Cell Disease. Immunol Allergy Clin North Am 2006; 26:535-47. [PMID: 16931292 DOI: 10.1016/j.iac.2006.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human mast cells (MCs) are directly derived from human pluripotent CD34+ stem and progenitor hematopoietic cells with stem cell factor being a critical growth factor supporting human MC proliferation, differentiation, and survival. Because of the advantages that flow cytometry offers (it allows rapid, objective, and sensitive multiparameter analysis of high numbers of cells from a sample, with information being provided on the basis of a single cell), it has become the method of choice in the past decade for immunophenotypic identification, enumeration, and characterization of human MCs in bone marrow and other tissue specimens.
Collapse
Affiliation(s)
- Luis Escribano
- Mast Cell Unit, Department of Hematology, Hospital Ramón y Cajal, Servicio de Hematología, Carretera de Colmenar Km. 9.1, Madrid E-28034, Spain.
| | | | | | | |
Collapse
|
48
|
Boerma M, Wang J, Wondergem J, Joseph J, Qiu X, Kennedy RH, Hauer-Jensen M. Influence of Mast Cells on Structural and Functional Manifestations of Radiation-Induced Heart Disease. Cancer Res 2005; 65:3100-7. [PMID: 15833839 DOI: 10.1158/0008-5472.can-04-4333] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiation-induced heart disease (RIHD), characterized by accelerated atherosclerosis and adverse tissue remodeling, is a serious sequelae after radiotherapy of thoracic and chest wall tumors. Adverse cardiac remodeling in RIHD and other cardiac disorders is frequently accompanied by mast cell hyperplasia, suggesting that mast cells may affect the development of cardiac fibrosis. This study used a mast cell-deficient rat model to define the role of mast cells in RIHD. Mast cell-deficient rats (Ws/Ws) and mast cell-competent littermate controls (+/+) were exposed to 18 Gy localized single-dose irradiation of the heart. Six months after irradiation, cardiac function was examined by echocardiography and Langendorff-perfused isolated heart preparation, whereas structural changes were assessed using quantitative histology and immunohistochemical analysis. Mast cell-deficient rats exhibited more severe postradiation changes than mast cell-competent littermates. Hence, mast cell-deficient rats exhibited a greater upward/leftward shift in the left ventricular (LV) diastolic pressure-volume relationship (P = 0.001), a greater reduction in in vivo LV diastolic area (from 0.50 +/- 0.024 cm in age-matched controls to 0.24 +/- 0.032 cm after irradiation; P = 0.006), and a greater increase in LV posterior wall thickness (from 0.13 +/- 0.003 cm in age-matched controls to 0.15 +/- 0.003 cm after irradiation; P = 0.04). Structural analysis revealed more pronounced postradiation accumulation of interstitial collagen III but less myocardial degeneration in hearts from mast cell-deficient rats. These data show that the absence of mast cells accelerates the development of functional changes in the irradiated heart, particularly diastolic dysfunction, and suggest that, in contrast to what has been the prevailing assumption, the role of mast cells in RIHD is predominantly protective.
Collapse
Affiliation(s)
- Marjan Boerma
- Department of Surgery and Pathology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, 4301 West Markham, Slot 725, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Perussia B, Chen Y, Loza MJ. Peripheral NK cell phenotypes: multiple changing of faces of an adapting, developing cell. Mol Immunol 2005; 42:385-95. [PMID: 15607789 DOI: 10.1016/j.molimm.2004.07.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have defined the existence of developmental relationships among human peripheral NK cells with distinct phenotypic and functional characteristics. These findings closely parallel the changes that occur in vivo during NK cell development, and in vitro in experimental culture systems supporting NK cell generation from hematopoietic progenitors. These new insights provide a simplified framework to understand NK cell immunobiology and the cellular bases for their roles in innate immunity, initiation and maintenance of immune responses via regulation of adaptive and accessory cell functions, and immune pathologies.
Collapse
Affiliation(s)
- Bice Perussia
- Department of Microbiology and Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
50
|
Abstract
Natural killer (NK) cells are CD56+CD3- large granular lymphocytes that constitute a key component of the human innate immune response. In addition to their potent cytolytic activity, NK cells elaborate a host of immunoregulatory cytokines and chemokines that play a crucial role in pathogen clearance. Furthermore, interactions between NK and other immune cells are implicated in triggering the adaptive, or antigen-specific, immune response. Interleukin-2 (IL-2) and IL-15 are two distinct cytokines with partially overlapping properties that are implicated in the development, homeostasis, and function of NK cells. This review examines the pervasive effects of IL-2 and IL-15 on NK cell biology, with an emphasis on recent discoveries and lingering challenges in the field.
Collapse
Affiliation(s)
- Brian Becknell
- Medical Scientist Program, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|