1
|
Maurice D, Costello P, Diring J, Gualdrini F, Frederico B, Treisman R. IL-2 delivery to CD8 + T cells during infection requires MRTF/SRF-dependent gene expression and cytoskeletal dynamics. Nat Commun 2024; 15:7956. [PMID: 39261466 PMCID: PMC11391060 DOI: 10.1038/s41467-024-52230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Paracrine IL-2 signalling drives the CD8 + T cell expansion and differentiation that allow protection against viral infections, but the underlying molecular events are incompletely understood. Here we show that the transcription factor SRF, a master regulator of cytoskeletal gene expression, is required for effective IL-2 signalling during L. monocytogenes infection. Acting cell-autonomously with its actin-regulated cofactors MRTF-A and MRTF-B, SRF is dispensible for initial TCR-mediated CD8+ T cell proliferation, but is required for sustained IL-2 dependent CD8+ effector T cell expansion, and persistence of memory cells. Following TCR activation, Mrtfab-null CD8+ T cells produce IL-2 normally, but homotypic clustering is impaired both in vitro and in vivo. Expression of cytoskeletal structural and regulatory genes, most notably actins, is defective in Mrtfab-null CD8+ T cells. Activation-induced cell clustering in vitro requires F-actin assembly, and Mrtfab-null cell clusters are small, contain less F-actin, and defective in IL-2 retention. Clustering of Mrtfab-null cells can be partially restored by exogenous actin expression. IL-2 mediated CD8+ T cell proliferation during infection thus depends on the control of cytoskeletal dynamics and actin gene expression by MRTF-SRF signalling.
Collapse
Affiliation(s)
- Diane Maurice
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Autoimmunity Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Patrick Costello
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jessica Diring
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Francesco Gualdrini
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, 20139, Italy
| | - Bruno Frederico
- Immunobiology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Early Oncology, R&D, AstraZeneca, Cambridge, UK
| | - Richard Treisman
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
2
|
Sayitoglu EC, Luca BA, Boss AP, Thomas BC, Freeborn RA, Uyeda MJ, Chen PP, Nakauchi Y, Waichler C, Lacayo N, Bacchetta R, Majeti R, Gentles AJ, Cepika AM, Roncarolo MG. AML/T cell interactomics uncover correlates of patient outcomes and the key role of ICAM1 in T cell killing of AML. Leukemia 2024; 38:1246-1255. [PMID: 38724673 PMCID: PMC11147760 DOI: 10.1038/s41375-024-02255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024]
Abstract
T cells are important for the control of acute myeloid leukemia (AML), a common and often deadly malignancy. We observed that some AML patient samples are resistant to killing by human-engineered cytotoxic CD4+ T cells. Single-cell RNA-seq of primary AML samples and CD4+ T cells before and after their interaction uncovered transcriptional programs that correlate with AML sensitivity or resistance to CD4+ T cell killing. Resistance-associated AML programs were enriched in AML patients with poor survival, and killing-resistant AML cells did not engage T cells in vitro. Killing-sensitive AML potently activated T cells before being killed, and upregulated ICAM1, a key component of the immune synapse with T cells. Without ICAM1, killing-sensitive AML became resistant to killing by primary ex vivo-isolated CD8+ T cells in vitro, and engineered CD4+ T cells in vitro and in vivo. While AML heterogeneity implies that multiple factors may determine their sensitivity to T cell killing, these data show that ICAM1 acts as an immune trigger, allowing T cell killing, and could play a role in AML patient survival in vivo.
Collapse
Affiliation(s)
- Ece Canan Sayitoglu
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bogdan A Luca
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Allison Paige Boss
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Benjamin Craig Thomas
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Robert Arthur Freeborn
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Molly Javier Uyeda
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Pauline Ping Chen
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yusuke Nakauchi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Colin Waichler
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Norman Lacayo
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ravindra Majeti
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andrew J Gentles
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alma-Martina Cepika
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Sayitoglu EC, Luca BA, Boss AP, Thomas BC, Freeborn RA, Uyeda MJ, Chen PP, Nakauchi Y, Waichler C, Lacayo N, Bacchetta R, Majeti R, Gentles AJ, Cepika AM, Roncarolo MG. AML/T cell interactomics uncover correlates of patient outcomes and the key role of ICAM1 in T cell killing of AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558911. [PMID: 37790561 PMCID: PMC10542521 DOI: 10.1101/2023.09.21.558911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
T cells are important for the control of acute myeloid leukemia (AML), a common and often deadly malignancy. We observed that some AML patient samples are resistant to killing by human engineered cytotoxic CD4 + T cells. Single-cell RNA-seq of primary AML samples and CD4 + T cells before and after their interaction uncovered transcriptional programs that correlate with AML sensitivity or resistance to CD4 + T cell killing. Resistance-associated AML programs were enriched in AML patients with poor survival, and killing-resistant AML cells did not engage T cells in vitro . Killing-sensitive AML potently activated T cells before being killed, and upregulated ICAM1 , a key component of the immune synapse with T cells. Without ICAM1, killing-sensitive AML became resistant to killing to primary ex vivo -isolated CD8 + T cells in vitro , and engineered CD4 + T cells in vitro and in vivo . Thus, ICAM1 on AML acts as an immune trigger, allowing T cell killing, and could affect AML patient survival in vivo . SIGNIFICANCE AML is a common leukemia with sub-optimal outcomes. We show that AML transcriptional programs correlate with susceptibility to T cell killing. Killing resistance-associated AML programs are enriched in patients with poor survival. Killing-sensitive, but not resistant AML activate T cells and upregulate ICAM1 that binds to LFA-1 on T cells, allowing immune synapse formation which is critical for AML elimination. GRAPHICAL ABSTRACT
Collapse
|
4
|
Niu T, Li Z, Huang Y, Ye Y, Liu Y, Ye Z, Jiang L, He X, Wang L, Li J. LFA-1 knockout inhibited the tumor growth and is correlated with treg cells. Cell Commun Signal 2023; 21:233. [PMID: 37723552 PMCID: PMC10506322 DOI: 10.1186/s12964-023-01238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/19/2023] [Indexed: 09/20/2023] Open
Abstract
Cancer immunotherapy has been proven to be clinically effective in multiple types of cancers. Lymphocyte function-associated antigen 1 (LFA-1), a member of the integrin family of adhesion molecules, is expressed mainly on αβ T cells. LFA-1 is associated with tumor immune responses, but its exact mechanism remains unknown. Here, two kinds of mice tumor model of LFA-1 knockout (LFA-1-/-) mice bearing subcutaneous tumor and Apc Min/+;LFA-1-/- mice were used to confirm that LFA-1 knockout resulted in inhibition of tumor growth. Furthermore, it also demonstrated that the numbers of regulatory T cells (Treg cells) in the spleen, blood, mesenteric lymph nodes were decreased in LFA-1-/- mice, and the numbers of Treg cells in mesenteric lymph nodes were also decreased in Apc Min/+;LFA-1-/- mice compared with Apc Min/+ mice. LFA-1 inhibitor (BIRT377) was administered to subcutaneous tumor-bearing LFA-1+/+ mice, and the results showed that the tumor growth was inhibited and the number of Treg cells was reduced. The analysis of TIMER tumor database indicated that LFA-1 expression is positively associated with Treg cells and TNM stage. Conclusively, this suggests that LFA-1 knockout would inhibit tumor growth and is correlated with Treg cells. LFA-1 may be one potential target for cancer immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Ting Niu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Zhengyang Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Yiting Huang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Yuxiang Ye
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Yilong Liu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Zhijin Ye
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Lingbi Jiang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Xiaodong He
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China.
| | - Jiangchao Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, No. 280 Waihuan Rd. E, Higher Education Mega Center, 510006, Guangzhou, China.
| |
Collapse
|
5
|
Guo J, Xu Z, Gunderson RC, Xu B, Michie SA. LFA-1/ICAM-1 Adhesion Pathway Mediates the Homeostatic Migration of Lymphocytes from Peripheral Tissues into Lymph Nodes through Lymphatic Vessels. Biomolecules 2023; 13:1194. [PMID: 37627259 PMCID: PMC10452152 DOI: 10.3390/biom13081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Lymphocyte function-associated antigen-1 (LFA-1) and its endothelial ligand intercellular adhesion molecule-1 (ICAM-1) are important for the migration of lymphocytes from blood vessels into lymph nodes. However, it is largely unknown whether these molecules mediate the homeostatic migration of lymphocytes from peripheral tissues into lymph nodes through lymphatic vessels. In this study, we find that, in naive mice, ICAM-1 is expressed on the sinus endothelia of lymph nodes, but not on the lymphatic vessels of peripheral tissues. In in vivo lymphocyte migration assays, memory CD4+ T cells migrated to lymph nodes from peripheral tissues much more efficiently than from blood vessels, as compared to naive CD4+ T cells. Moreover, ICAM-1 deficiency in host mice significantly inhibited the migration of adoptively transferred wild-type donor lymphocytes from peripheral tissues, but not from blood vessels, into lymph nodes. The migration of LFA-1-deficient donor lymphocytes from peripheral tissues into the lymph nodes of wild-type host mice was also significantly reduced as compared to wild-type donor lymphocytes. Furthermore, the number of memory T cells in lymph nodes was significantly reduced in the absence of ICAM-1 or LFA-1. Thus, our study extends the functions of the LFA-1/ICAM-1 adhesion pathway, indicating its novel role in controlling the homeostatic migration of lymphocytes from peripheral tissues into lymph nodes and maintaining memory T cellularity in lymph nodes.
Collapse
Affiliation(s)
- Jia Guo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; (J.G.); (Z.X.); (R.C.G.)
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan 030012, China
| | - Zeyu Xu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; (J.G.); (Z.X.); (R.C.G.)
- Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Rachel C. Gunderson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; (J.G.); (Z.X.); (R.C.G.)
| | - Baohui Xu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; (J.G.); (Z.X.); (R.C.G.)
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sara A. Michie
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; (J.G.); (Z.X.); (R.C.G.)
| |
Collapse
|
6
|
Haake M, Haack B, Schäfer T, Harter PN, Mattavelli G, Eiring P, Vashist N, Wedekink F, Genssler S, Fischer B, Dahlhoff J, Mokhtari F, Kuzkina A, Welters MJP, Benz TM, Sorger L, Thiemann V, Almanzar G, Selle M, Thein K, Späth J, Gonzalez MC, Reitinger C, Ipsen-Escobedo A, Wistuba-Hamprecht K, Eichler K, Filipski K, Zeiner PS, Beschorner R, Goedemans R, Gogolla FH, Hackl H, Rooswinkel RW, Thiem A, Roche PR, Joshi H, Pühringer D, Wöckel A, Diessner JE, Rüdiger M, Leo E, Cheng PF, Levesque MP, Goebeler M, Sauer M, Nimmerjahn F, Schuberth-Wagner C, von Felten S, Mittelbronn M, Mehling M, Beilhack A, van der Burg SH, Riedel A, Weide B, Dummer R, Wischhusen J. Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment. Nat Commun 2023; 14:4253. [PMID: 37474523 PMCID: PMC10359308 DOI: 10.1038/s41467-023-39817-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.
Collapse
Affiliation(s)
- Markus Haake
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Beatrice Haack
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Tina Schäfer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- Center for Neuropathology and Prion Research, Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Neha Vashist
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Florian Wedekink
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Birgitt Fischer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Julia Dahlhoff
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Fatemeh Mokhtari
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Anastasia Kuzkina
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Marij J P Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Tamara M Benz
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Lena Sorger
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Vincent Thiemann
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Giovanni Almanzar
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Martina Selle
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Klara Thein
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Jacob Späth
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Carmen Reitinger
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Andrea Ipsen-Escobedo
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Section for Clinical Bioinformatics, Department of Internal Medicine I, University Medical Center Tübingen, Tübingen, Germany
| | - Kristin Eichler
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Katharina Filipski
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
| | - Pia S Zeiner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Rudi Beschorner
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
| | - Renske Goedemans
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Falk Hagen Gogolla
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | | | - Alexander Thiem
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Rostock, Germany
| | - Paula Romer Roche
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Hemant Joshi
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Dirk Pühringer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Joachim E Diessner
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Eugen Leo
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Phil F Cheng
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Wagistrasse 18, 8952, Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Wagistrasse 18, 8952, Zürich, Switzerland
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | | | - Stefanie von Felten
- oikostat GmbH, Statistical Analyses and Consulting, Lucerne, Switzerland
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, 8001, Zürich, Switzerland
| | - Michel Mittelbronn
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Matthias Mehling
- Department of Biomedicine and Neurology Department, University Hospital Basel, 4031, Basel, Switzerland
| | - Andreas Beilhack
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Angela Riedel
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
| | | | - Jörg Wischhusen
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Kamioka Y, Ueda Y, Kondo N, Tokuhiro K, Ikeda Y, Bergmeier W, Kinashi T. Distinct bidirectional regulation of LFA1 and α4β7 by Rap1 and integrin adaptors in T cells under shear flow. Cell Rep 2023; 42:112580. [PMID: 37267105 PMCID: PMC10592472 DOI: 10.1016/j.celrep.2023.112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Bidirectional control of integrin activation plays crucial roles in cell adhesive behaviors, but how integrins are specifically regulated by inside-out and outside-in signaling has not been fully understood. Here, we report distinct bidirectional regulation of major lymphocyte homing receptors LFA1 and α4β7 in primary T cells. A small increase of Rap1 activation in L-selectin-mediated tether/rolling was boosted by the outside-in signaling from ICAM1-interacting LFA1 through subsecond, simultaneous activation of Rap1 GTPase and talin1, but not kindlin-3, resulting in increased capture and slowing. In contrast, none of them were required for tether/rolling by α4β7 on MAdCAM1. High Rap1 activation with chemokines or the loss of Rap1-inactivating proteins Rasa3 and Sipa1 increased talin1/kindlin-3-dependent arrest with high-affinity binding of LFA1 to membrane-anchored ICAM1. However, despite increased affinity of α4β7, activated Rap1 severely suppressed adhesion on MAdCAM1 under shear flow, indicating the critical importance of a sequential outside-in/inside-out signaling for α4β7.
Collapse
Affiliation(s)
- Yuji Kamioka
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Keizo Tokuhiro
- Department of Genome Editing, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan.
| |
Collapse
|
8
|
Klaus T, Wilson A, Fichter M, Bros M, Bopp T, Grabbe S. The Role of LFA-1 for the Differentiation and Function of Regulatory T Cells-Lessons Learned from Different Transgenic Mouse Models. Int J Mol Sci 2023; 24:6331. [PMID: 37047302 PMCID: PMC10094578 DOI: 10.3390/ijms24076331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Regulatory T cells (Treg) are essential for the maintenance of peripheral tolerance. Treg dysfunction results in diverse inflammatory and autoimmune diseases with life-threatening consequences. β2-integrins (CD11a-d/CD18) play important roles in the migration of leukocytes into inflamed tissues and cell signaling. Of all β2-integrins, T cells, including Treg, only express CD11a/CD18, termed lymphocyte function-associated antigen 1 (LFA-1), on their surface. In humans, loss-of-function mutations in the common subunit CD18 result in leukocyte adhesion deficiency type-1 (LAD-1). Clinical symptoms vary depending on the extent of residual β2-integrin function, and patients may experience leukocytosis and recurrent infections. Some patients can develop autoimmune diseases, but the immune processes underlying the paradoxical situation of immune deficiency and autoimmunity have been scarcely investigated. To understand this complex phenotype, different transgenic mouse strains with a constitutive knockout of β2-integrins have been established. However, since a constitutive knockout affects all leukocytes and may limit the validity of studies focusing on their cell type-specific role, we established a Treg-specific CD18-floxed mouse strain. This mini-review aims to delineate the role of LFA-1 for the induction, maintenance, and regulatory function of Treg in vitro and in vivo as deduced from observations using the various β2-integrin-deficient mouse models.
Collapse
Affiliation(s)
- Tanja Klaus
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Alicia Wilson
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
9
|
Mancuso RV, Schneider G, Hürzeler M, Gut M, Zurflüh J, Breitenstein W, Bouitbir J, Reisen F, Atz K, Ehrhardt C, Duthaler U, Gygax D, Schmidt AG, Krähenbühl S, Weitz-Schmidt G. Allosteric targeting resolves limitations of earlier LFA-1 directed modalities. Biochem Pharmacol 2023; 211:115504. [PMID: 36921634 DOI: 10.1016/j.bcp.2023.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Integrins are a family of cell surface receptors well-recognized for their therapeutic potential in a wide range of diseases. However, the development of integrin targeting medications has been impacted by unexpected downstream effects, reflecting originally unforeseen interference with the bidirectional signalling and cross-communication of integrins. We here selected one of the most severely affected target integrins, the integrin lymphocyte function-associated antigen-1 (LFA-1, αLβ2, CD11a/CD18), as a prototypic integrin to systematically assess and overcome these known shortcomings. We employed a two-tiered ligand-based virtual screening approach to identify a novel class of allosteric small molecule inhibitors targeting this integrin's αI domain. The newly discovered chemical scaffold was derivatized, yielding potent bis-and tris-aryl-bicyclic-succinimides which inhibit LFA-1 in vitro at low nanomolar concentrations. The characterisation of these compounds in comparison to earlier LFA-1 targeting modalities established that the allosteric LFA-1 inhibitors (i) are devoid of partial agonism, (ii) selectively bind LFA-1 versus other integrins, (iii) do not trigger internalization of LFA-1 itself or other integrins and (iv) display oral availability. This profile differentiates the new generation of allosteric LFA-1 inhibitors from previous ligand mimetic-based LFA-1 inhibitors and anti-LFA-1 antibodies, and is projected to support novel immune regulatory regimens selectively targeting the integrin LFA-1. The rigorous computational and experimental assessment schedule described here is designed to be adaptable to the preclinical discovery and development of novel allosterically acting compounds targeting integrins other than LFA-1, providing an exemplary approach for the early characterisation of next generation integrin inhibitors.
Collapse
Affiliation(s)
- Riccardo V Mancuso
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Molecular Pharmacy, Department of Pharmaceutical Sciences, University of Basel
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland; ETH Singapore SEC Ltd, Singapore
| | - Marianne Hürzeler
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Martin Gut
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Jonas Zurflüh
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Werner Breitenstein
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland
| | - Felix Reisen
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland; ETH Singapore SEC Ltd, Singapore
| | - Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland; ETH Singapore SEC Ltd, Singapore
| | | | - Urs Duthaler
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland
| | - Daniel Gygax
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | | | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | | |
Collapse
|
10
|
Arnaout MA. INTEGRINS: A BEDSIDE TO BENCH TO BEDSIDE STORY. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2023; 133:34-55. [PMID: 37701613 PMCID: PMC10493766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
I provide a narrative of the path I took to discover the membrane receptors that mediate leukocyte adhesion, now known as β2 integrins or CD11/CD18. We followed this discovery with the first determination of the 3-D structures of integrins. The latter advance provided the foundation for understanding the unique features of integrins as divalent cation-dependent signaling receptors and as mechanosensitive conduits between the extracellular matrix and the intracellular cytoskeleton. Our structural studies are now opening new paths for taming overactive integrins in disease while minimizing the collateral damage associated with the faulty pharmacodynamics of current integrin inhibitory drugs.
Collapse
|
11
|
Klaus T, Wilson AS, Vicari E, Hadaschik E, Klein M, Helbich SSC, Kamenjarin N, Hodapp K, Schunke J, Haist M, Butsch F, Probst HC, Enk AH, Mahnke K, Waisman A, Bednarczyk M, Bros M, Bopp T, Grabbe S. Impaired Treg-DC interactions contribute to autoimmunity in leukocyte adhesion deficiency type 1. JCI Insight 2022; 7:162580. [PMID: 36346673 PMCID: PMC9869970 DOI: 10.1172/jci.insight.162580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Leukocyte adhesion deficiency type 1 (LAD-1) is a rare disease resulting from mutations in the gene encoding for the common β-chain of the β2-integrin family (CD18). The most prominent clinical symptoms are profound leukocytosis and high susceptibility to infections. Patients with LAD-1 are prone to develop autoimmune diseases, but the molecular and cellular mechanisms that result in coexisting immunodeficiency and autoimmunity are still unresolved. CD4+FOXP3+ Treg are known for their essential role in preventing autoimmunity. To understand the role of Treg in LAD-1 development and manifestation of autoimmunity, we generated mice specifically lacking CD18 on Treg (CD18Foxp3), resulting in defective LFA-1 expression. Here, we demonstrate a crucial role of LFA-1 on Treg to maintain immune homeostasis by modifying T cell-DC interactions and CD4+ T cell activation. Treg-specific CD18 deletion did not impair Treg migration into extralymphatic organs, but it resulted in shorter interactions of Treg with DC. In vivo, CD18Foxp3 mice developed spontaneous hyperplasia in lymphatic organs and diffuse inflammation of the skin and in multiple internal organs. Thus, LFA-1 on Treg is required for the maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Tanja Klaus
- Department of Dermatology,,Research Center for Immunotherapy, and
| | - Alicia S. Wilson
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Elisabeth Vicari
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Eva Hadaschik
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany.,Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Matthias Klein
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | | | - Nadine Kamenjarin
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Katrin Hodapp
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology,,Research Center for Immunotherapy, and
| | - Maximilian Haist
- Department of Dermatology,,Research Center for Immunotherapy, and
| | | | - Hans Christian Probst
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Alexander H. Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Ari Waisman
- Research Center for Immunotherapy, and,Institute for Molecular Medicine, University of Mainz Medical Center, Mainz, Germany
| | | | - Matthias Bros
- Department of Dermatology,,Research Center for Immunotherapy, and
| | - Tobias Bopp
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology,,Research Center for Immunotherapy, and
| |
Collapse
|
12
|
Zerdan MB, Nasr L, Kassab J, Saba L, Ghossein M, Yaghi M, Dominguez B, Chaulagain CP. Adhesion molecules in multiple myeloma oncogenesis and targeted therapy. Int J Hematol Oncol 2022; 11:IJH39. [PMID: 35663420 PMCID: PMC9136637 DOI: 10.2217/ijh-2021-0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Every day we march closer to finding the cure for multiple myeloma. The myeloma cells inflict their damage through specialized cellular meshwork and cytokines system. Implicit in these interactions are cellular adhesion molecules and their regulators which include but are not limited to integrins and syndecan-1/CD138, immunoglobulin superfamily cell adhesion molecules, such as CD44, cadherins such as N-cadherin, and selectins, such as E-selectin. Several adhesion molecules are respectively involved in myelomagenesis such as in the transition from the precursor disorder monoclonal gammopathy of undetermined significance to indolent asymptomatic multiple myeloma (smoldering myeloma) then to active multiple myeloma or primary plasma cell leukemia, and in the pathological manifestations of multiple myeloma.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Hematology-Oncology, Myeloma & Amyloidosis Program, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL 33331, USA
| | - Lewis Nasr
- Saint-Joseph University, Faculty of Medicine, Beirut, Lebanon
| | - Joseph Kassab
- Saint-Joseph University, Faculty of Medicine, Beirut, Lebanon
| | - Ludovic Saba
- Saint-Joseph University, Faculty of Medicine, Beirut, Lebanon
| | - Myriam Ghossein
- Department of Medicine & Medical Sciences, University of Balamand, Balamand, Lebanon
| | - Marita Yaghi
- Department of Hematology-Oncology, Myeloma & Amyloidosis Program, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL 33331, USA
| | - Barbara Dominguez
- Department of Hematology-Oncology, Myeloma & Amyloidosis Program, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL 33331, USA
| | - Chakra P Chaulagain
- Department of Hematology-Oncology, Myeloma & Amyloidosis Program, Maroone Cancer Center, Cleveland Clinic Florida, Weston, FL 33331, USA
| |
Collapse
|
13
|
Cuesta-Mateos C, Terrón F, Herling M. CCR7 in Blood Cancers - Review of Its Pathophysiological Roles and the Potential as a Therapeutic Target. Front Oncol 2021; 11:736758. [PMID: 34778050 PMCID: PMC8589249 DOI: 10.3389/fonc.2021.736758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
According to the classical paradigm, CCR7 is a homing chemokine receptor that grants normal lymphocytes access to secondary lymphoid tissues such as lymph nodes or spleen. As such, in most lymphoproliferative disorders, CCR7 expression correlates with nodal or spleen involvement. Nonetheless, recent evidence suggests that CCR7 is more than a facilitator of lymphatic spread of tumor cells. Here, we review published data to catalogue CCR7 expression across blood cancers and appraise which classical and novel roles are attributed to this receptor in the pathogenesis of specific hematologic neoplasms. We outline why novel therapeutic strategies targeting CCR7 might provide clinical benefits to patients with CCR7-positive hematopoietic tumors.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto la Princesa (IIS-IP), Madrid, Spain.,Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Fernando Terrón
- Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Marco Herling
- Clinic of Hematology and Cellular Therapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Sun H, Zhi K, Hu L, Fan Z. The Activation and Regulation of β2 Integrins in Phagocytes and Phagocytosis. Front Immunol 2021; 12:633639. [PMID: 33868253 PMCID: PMC8044391 DOI: 10.3389/fimmu.2021.633639] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Phagocytes, which include neutrophils, monocytes, macrophages, and dendritic cells, protect the body by removing foreign particles, bacteria, and dead or dying cells. Phagocytic integrins are greatly involved in the recognition of and adhesion to specific antigens on cells and pathogens during phagocytosis as well as the recruitment of immune cells. β2 integrins, including αLβ2, αMβ2, αXβ2, and αDβ2, are the major integrins presented on the phagocyte surface. The activation of β2 integrins is essential to the recruitment and phagocytic function of these phagocytes and is critical for the regulation of inflammation and immune defense. However, aberrant activation of β2 integrins aggravates auto-immune diseases, such as psoriasis, arthritis, and multiple sclerosis, and facilitates tumor metastasis, making them double-edged swords as candidates for therapeutic intervention. Therefore, precise regulation of phagocyte activities by targeting β2 integrins should promote their host defense functions with minimal side effects on other cells. Here, we reviewed advances in the regulatory mechanisms underlying β2 integrin inside-out signaling, as well as the roles of β2 integrin activation in phagocyte functions.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kangkang Zhi
- Department of Vascular Surgery, Changzheng Hospital, Shanghai, China
| | - Liang Hu
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States
| |
Collapse
|
15
|
Esen E, Sergin I, Jesudason R, Himmels P, Webster JD, Zhang H, Xu M, Piskol R, McNamara E, Gould S, Capietto AH, Delamarre L, Walsh K, Ye W. MAP4K4 negatively regulates CD8 T cell-mediated antitumor and antiviral immunity. Sci Immunol 2020; 5:5/45/eaay2245. [PMID: 32220977 DOI: 10.1126/sciimmunol.aay2245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/28/2022]
Abstract
During cytotoxic T cell activation, lymphocyte function-associated antigen-1 (LFA-1) engages its ligands on antigen-presenting cells (APCs) or target cells to enhance T cell priming or lytic activity. Inhibiting LFA-1 dampens T cell-dependent symptoms in inflammation, autoimmune diseases, and graft-versus-host disease. However, the therapeutic potential of augmenting LFA-1 function is less explored. Here, we show that genetic deletion or inhibition of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) enhances LFA-1 activation on CD8 T cells and improves their adherence to APCs or LFA-1 ligand. In addition, loss of Map4k4 increases CD8 T cell priming, which culminates in enhanced antigen-dependent activation, proliferation, cytokine production, and cytotoxic activity, resulting in impaired tumor growth and improved response to viral infection. LFA-1 inhibition reverses these phenotypes. The ERM (ezrin, radixin, and moesin) proteins reportedly regulate T cell-APC conjugation, but the molecular regulator and effector of ERM proteins in T cells have not been defined. In this study, we demonstrate that the ERM proteins serve as mediators between MAP4K4 and LFA-1. Last, systematic analyses of many organs revealed that inducible whole-body deletion of Map4k4 in adult animals is tolerated under homeostatic conditions. Our results uncover MAP4K4 as a potential target to augment antitumor and antiviral immunity.
Collapse
Affiliation(s)
- Emel Esen
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Ismail Sergin
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Rajiv Jesudason
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Patricia Himmels
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Joshua D Webster
- Department of Research Pathology, Genentech, South San Francisco, CA, USA
| | - Hua Zhang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Min Xu
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Erin McNamara
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Stephen Gould
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | | | - Lélia Delamarre
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Kevin Walsh
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| | - Weilan Ye
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
16
|
Cho EA, Zhang P, Kumar V, Kavalchuk M, Zhang H, Huang Q, Duncan JS, Wu J. Phosphorylation of RIAM by src promotes integrin activation by unmasking the PH domain of RIAM. Structure 2020; 29:320-329.e4. [PMID: 33275877 DOI: 10.1016/j.str.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Integrin activation controls cell adhesion, migration, invasion, and extracellular matrix remodeling. RIAM (RAP1-GTP-interacting adaptor molecule) is recruited by activated RAP1 to the plasma membrane (PM) to mediate integrin activation via an inside-out signaling pathway. This process requires the association of the pleckstrin homology (PH) domain of RIAM with the membrane PIP2. We identify a conserved intermolecular interface that masks the PIP2-binding site in the PH domains of RIAM. Our data indicate that phosphorylation of RIAM by Src family kinases disrupts this PH-mediated interface, unmasks the membrane PIP2-binding site, and promotes integrin activation. We further demonstrate that this process requires phosphorylation of Tyr267 and Tyr427 in the RIAM PH domain by Src. Our data reveal an unorthodox regulatory mechanism of small GTPase effector proteins by phosphorylation-dependent PM association of the PH domain and provide new insights into the link between Src kinases and integrin signaling.
Collapse
Affiliation(s)
- Eun-Ah Cho
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pingfeng Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Vikas Kumar
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Mikhail Kavalchuk
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Hao Zhang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - James S Duncan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jinhua Wu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
17
|
Perro M, Iannacone M, von Andrian UH, Peixoto A. Role of LFA-1 integrin in the control of a lymphocytic choriomeningitis virus (LCMV) infection. Virulence 2020; 11:1640-1655. [PMID: 33251934 PMCID: PMC7714442 DOI: 10.1080/21505594.2020.1845506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Leukocyte function-associated antigen 1 (LFA-1) is the most widely expressed member of the β2 integrin family of cell-cell adhesion molecules. Although LFA-1 is thought to regulate multiple aspects of T cell immunity, its role in the response of CD8+ T cells to viral infections remains unclear. Indeed, compelling clinical evidence shows that loss of LFA-1 function predisposes to infection in humans but animal models show limited to no susceptibility to infection. Here, we addressed this conundrum in a mouse model of infection with lymphocytic choriomeningitis virus (LCMV), where CD8+ T cells are necessary and sufficient to confer protection. To this end, we followed the fate and function of wild-type and LFA-1 deficient virus-specific CD8+ T cells and assessed the effect of blocking anti-LFA-1 monoclonal antibody in the outcome of infection. Our analysis of viral clearance and T cell responses using transcriptome profiling reveals a role for LFA-1 as a gatekeeper of effector T cell survival and dysfunction that when defective can predispose to LCMV infection.
Collapse
Affiliation(s)
- Mario Perro
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Matteo Iannacone
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Ulrich H von Andrian
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| | - Antonio Peixoto
- Harvard Medical School , Department of Microbiology and Immunobiology, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Duru G, van Egmond M, Heemskerk N. A Window of Opportunity: Targeting Cancer Endothelium to Enhance Immunotherapy. Front Immunol 2020; 11:584723. [PMID: 33262763 PMCID: PMC7686513 DOI: 10.3389/fimmu.2020.584723] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular abnormalities in tumors have a major impact on the immune microenvironment in tumors. The consequences of abnormal vasculature include increased hypoxia, acidosis, high intra-tumoral fluid pressure, and angiogenesis. This introduces an immunosuppressive microenvironment that alters immune cell maturation, activation, and trafficking, which supports tumor immune evasion and dissemination of tumor cells. Increasing data suggests that cancer endothelium is a major barrier for traveling leukocytes, ranging from a partial blockade resulting in a selective endothelial barrier, to a complete immune infiltration blockade associated with immune exclusion and immune desert cancer phenotypes. Failed immune cell trafficking as well as immunosuppression within the tumor microenvironment limits the efficacy of immunotherapeutic approaches. As such, targeting proteins with key roles in angiogenesis may potentially reduce immunosuppression and might restore infiltration of anti-tumor immune cells, creating a therapeutic window for successful immunotherapy. In this review, we provide a comprehensive overview of established as well as more controversial endothelial pathways that govern selective immune cell trafficking across cancer endothelium. Additionally, we discuss recent insights and strategies that target tumor vasculature in order to increase infiltration of cytotoxic immune cells during the therapeutic window of vascular normalization hereby improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Gizem Duru
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity, Amsterdam, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Niels Heemskerk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity, Amsterdam, Netherlands
| |
Collapse
|
19
|
Van Laethem F, Saba I, Lu J, Bhattacharya A, Tai X, Guinter TI, Engelhardt B, Alag A, Rojano M, Ashe JM, Hanada KI, Yang JC, Sun PD, Singer A. Novel MHC-Independent αβTCRs Specific for CD48, CD102, and CD155 Self-Proteins and Their Selection in the Thymus. Front Immunol 2020; 11:1216. [PMID: 32612609 PMCID: PMC7308553 DOI: 10.3389/fimmu.2020.01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
MHC-independent αβTCRs (TCRs) recognize conformational epitopes on native self-proteins and arise in mice lacking both MHC and CD4/CD8 coreceptor proteins. Although naturally generated in the thymus, these TCRs resemble re-engineered therapeutic chimeric antigen receptor (CAR) T cells in their specificity for MHC-independent ligands. Here we identify naturally arising MHC-independent TCRs reactive to three native self-proteins (CD48, CD102, and CD155) involved in cell adhesion. We report that naturally arising MHC-independent TCRs require high affinity TCR-ligand engagements in the thymus to signal positive selection and that high affinity positive selection generates a peripheral TCR repertoire with limited diversity and increased self-reactivity. We conclude that the affinity of TCR-ligand engagements required to signal positive selection in the thymus inversely determines the diversity and self-tolerance of the mature TCR repertoire that is selected.
Collapse
Affiliation(s)
- François Van Laethem
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ingrid Saba
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jinghua Lu
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Abhisek Bhattacharya
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Xuguang Tai
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Terry I Guinter
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Britta Engelhardt
- Theodor Kocher Institute, Faculty of Bern, Universität Bern, Bern, Switzerland
| | - Amala Alag
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Mirelle Rojano
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Jennifer M Ashe
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Ken-Ichi Hanada
- Surgery Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - James C Yang
- Surgery Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| | - Peter D Sun
- Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
20
|
Mancuso RV, Casper J, Schmidt AG, Krähenbühl S, Weitz‐Schmidt G. Anti-αLβ2 antibodies reveal novel endocytotic cross-modulatory functionality. Br J Pharmacol 2020; 177:2696-2711. [PMID: 31985813 PMCID: PMC7236072 DOI: 10.1111/bph.14996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/17/2019] [Accepted: 12/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Antibodies targeting cell surface receptors are considered to enable highly selective therapeutic interventions for immune disorders and cancer. Their biological profiles are found, generally, to represent the net effects of antibody-target interactions. The former therapeutic anti-integrin αLβ2 antibody efalizumab seems to defeat this paradigm by eliciting, via mechanisms currently unknown, much broader effects than would be predicted based on its target specificity. EXPERIMENTAL APPROACH To elucidate the mechanisms behind these broad effects, we investigated in primary human lymphocytes in vitro the effects of anti-αLβ2 antibodies on the expression of αLβ2 as well as unrelated α4 integrins, in comparison to Fab fragments and small-molecule inhibitors. KEY RESULTS We demonstrate that anti-αLβ2 mAbs directly induce the internalization of α4 integrins. The endocytotic phenomenon is a direct consequence of their antibody nature. It is inhibited when monovalent Fab fragments or small-molecule inhibitors are used. It is independent of crosslinking via anti-Fc mAbs and of αLβ2 activation. The cross-modulatory effect is unidirectional and not observed in a similar fashion with the α4 integrin antibody natalizumab. CONCLUSION AND IMPLICATIONS The present study identifies endocytotic cross-modulation as a hitherto unknown non-canonical functionality of anti-αLβ2 antibodies. This cross-modulation has the potential to fundamentally alter an antibody's benefit risk profile, as evident with efalizumab. The newly described phenomenon may be of relevance to other therapeutic antibodies targeting cluster-forming receptors. Thus, pharmacologists should be cognizant of this action when investigating such antibodies.
Collapse
Affiliation(s)
- Riccardo V. Mancuso
- Division of Clinical Pharmacology & ToxicologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Jens Casper
- Division of Clinical Pharmacology & ToxicologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Stephan Krähenbühl
- Division of Clinical Pharmacology & ToxicologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Swiss Centre for Applied Human Toxicology (SCAHT)BaselSwitzerland
| | - Gabriele Weitz‐Schmidt
- Division of Clinical Pharmacology & ToxicologyUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- AlloCyte Pharmaceuticals AGBaselSwitzerland
| |
Collapse
|
21
|
Lee BJ, Mace EM. From stem cell to immune effector: how adhesion, migration, and polarity shape T-cell and natural killer cell lymphocyte development in vitro and in vivo. Mol Biol Cell 2020; 31:981-991. [PMID: 32352896 PMCID: PMC7346728 DOI: 10.1091/mbc.e19-08-0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Lymphocyte development is a complex and coordinated pathway originating from pluripotent stem cells during embryogenesis and continuing even as matured lymphocytes are primed and educated in adult tissue. Hematopoietic stem cells develop in a specialized niche that includes extracellular matrix and supporting stromal and endothelial cells that both maintain stem cell pluripotency and enable the generation of differentiated cells. Cues for lymphocyte development include changes in integrin-dependent cell motility and adhesion which ultimately help to determine cell fate. The capacity of lymphocytes to adhere and migrate is important for modulating these developmental signals both by regulating the cues that the cell receives from the local microenvironment as well as facilitating the localization of precursors to tissue niches throughout the body. Here we consider how changing migratory and adhesive phenotypes contribute to human natural killer (NK)- and T-cell development as they undergo development from precursors to mature, circulating cells and how our understanding of this process is informed by in vitro models of T- and NK cell generation.
Collapse
Affiliation(s)
- Barclay J. Lee
- Department of Bioengineering, Rice University, Houston, TX 77005
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
22
|
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front Immunol 2019; 10:2037. [PMID: 31555270 PMCID: PMC6724555 DOI: 10.3389/fimmu.2019.02037] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Cysteine cathepsins are key regulators of the innate and adaptive arms of the immune system. Their expression, activity, and subcellular localization are associated with the distinct development and differentiation stages of immune cells. They promote the activation of innate myeloid immune cells since they contribute to toll-like receptor signaling and to cytokine secretion. Furthermore, they control lysosomal biogenesis and autophagic flux, thus affecting innate immune cell survival and polarization. They also regulate bidirectional communication between the cell exterior and the cytoskeleton, thus influencing cell interactions, morphology, and motility. Importantly, cysteine cathepsins contribute to the priming of adaptive immune cells by controlling antigen presentation and are involved in cytotoxic granule mediated killing in cytotoxic T lymphocytes and natural killer cells. Cathepins'aberrant activity can be prevented by their endogenous inhibitors, cystatins. However, dysregulated proteolysis contributes significantly to tumor progression also by modulation of the antitumor immune response. Especially tumor-associated myeloid cells, such as tumor-associated macrophages and myeloid-derived suppressor cells, which are known for their tumor promoting and immunosuppressive functions, constitute the major source of excessive cysteine cathepsin activity in cancer. Since they are enriched in the tumor microenvironment, cysteine cathepsins represent exciting targets for development of new diagnostic and therapeutic moieties.
Collapse
Affiliation(s)
- Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- UCLA School of Dentistry and Medicine, Los Angeles, CA, United States
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
23
|
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell Adhesion Molecules and Their Roles and Regulation in the Immune and Tumor Microenvironment. Front Immunol 2019; 10:1078. [PMID: 31231358 PMCID: PMC6558418 DOI: 10.3389/fimmu.2019.01078] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
The immune system and cancer have a complex relationship with the immune system playing a dual role in tumor development. The effector cells of the immune system can recognize and kill malignant cells while immune system-mediated inflammation can also promote tumor growth and regulatory cells suppress the anti-tumor responses. In the center of all anti-tumor responses is the ability of the immune cells to migrate to the tumor site and to interact with each other and with the malignant cells. Cell adhesion molecules including receptors of the immunoglobulin superfamily and integrins are of crucial importance in mediating these processes. Particularly integrins play a vital role in regulating all aspects of immune cell function including immune cell trafficking into tissues, effector cell activation and proliferation and the formation of the immunological synapse between immune cells or between immune cell and the target cell both during homeostasis and during inflammation and cancer. In this review we discuss the molecular mechanisms regulating integrin function and the role of integrins and other cell adhesion molecules in immune responses and in the tumor microenvironment. We also describe how malignant cells can utilize cell adhesion molecules to promote tumor growth and metastases and how these molecules could be targeted in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Susanna C Fagerholm
- Research Program of Molecular and Integrative Biosciences, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Grieshaber-Bouyer R, Nigrovic PA. Neutrophil Heterogeneity as Therapeutic Opportunity in Immune-Mediated Disease. Front Immunol 2019; 10:346. [PMID: 30886615 PMCID: PMC6409342 DOI: 10.3389/fimmu.2019.00346] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Neutrophils are versatile innate effector cells essential for immune defense but also responsible for pathologic inflammation. This dual role complicates therapeutic targeting. However, neither neutrophils themselves nor the mechanisms they employ in different forms of immune responses are homogeneous, offering possibilities for selective intervention. Here we review heterogeneity within the neutrophil population as well as in the pathways mediating neutrophil recruitment to inflamed tissues with a view to outlining opportunities for therapeutic manipulation in inflammatory disease.
Collapse
Affiliation(s)
- Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States
| | - Peter A Nigrovic
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, United States.,Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
25
|
Fagerholm SC, Guenther C, Llort Asens M, Savinko T, Uotila LM. Beta2-Integrins and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and Immunodeficiency Disease. Front Immunol 2019; 10:254. [PMID: 30837997 PMCID: PMC6389632 DOI: 10.3389/fimmu.2019.00254] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Beta2-integrins are complex leukocyte-specific adhesion molecules that are essential for leukocyte (e.g., neutrophil, lymphocyte) trafficking, as well as for other immunological processes such as neutrophil phagocytosis and ROS production, and T cell activation. Intriguingly, however, they have also been found to negatively regulate cytokine responses, maturation, and migratory responses in myeloid cells such as macrophages and dendritic cells, revealing new, and unexpected roles of these molecules in immunity. Because of their essential role in leukocyte function, a lack of expression or function of beta2-integrins causes rare immunodeficiency syndromes, Leukocyte adhesion deficiency type I, and type III (LAD-I and LAD-III). LAD-I is caused by reduced or lost expression of beta2-integrins, whilst in LAD-III, beta2-integrins are expressed but dysfunctional because a major integrin cytoplasmic regulator, kindlin-3, is mutated. Interestingly, some LAD-related phenotypes such as periodontitis have recently been shown to be due to an uncontrolled inflammatory response rather than to an uncontrolled infection, as was previously thought. This review will focus on the recent advances concerning the regulation and functions of beta2-integrins in leukocyte trafficking, immune suppression, and immune deficiency disease.
Collapse
Affiliation(s)
- Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Liisa M Uotila
- Research Services, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Molecular basis for autoinhibition of RIAM regulated by FAK in integrin activation. Proc Natl Acad Sci U S A 2019; 116:3524-3529. [PMID: 30733287 DOI: 10.1073/pnas.1818880116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RAP1-interacting adapter molecule (RIAM) mediates RAP1-induced integrin activation. The RAS-association (RA) segment of the RA-PH module of RIAM interacts with GTP-bound RAP1 and phosphoinositol 4,5 bisphosphate but this interaction is inhibited by the N-terminal segment of RIAM. Here we report the structural basis for the autoinhibition of RIAM by an intramolecular interaction between the IN region (aa 27-93) and the RA-PH module. We solved the crystal structure of IN-RA-PH to a resolution of 2.4-Å. The structure reveals that the IN segment associates with the RA segment and thereby suppresses RIAM:RAP1 association. This autoinhibitory configuration of RIAM can be released by phosphorylation at Tyr45 in the IN segment. Specific inhibitors of focal adhesion kinase (FAK) blocked phosphorylation of Tyr45, inhibited stimulated translocation of RIAM to the plasma membrane, and inhibited integrin-mediated cell adhesion in a Tyr45-dependent fashion. Our results reveal an unusual regulatory mechanism in small GTPase signaling by which the effector molecule is autoinhibited for GTPase interaction, and a modality of integrin activation at the level of RIAM through a FAK-mediated feedforward mechanism that involves reversal of autoinhibition by a tyrosine kinase associated with integrin signaling.
Collapse
|
27
|
Nicolas-Boluda A, Donnadieu E. Obstacles to T cell migration in the tumor microenvironment. Comp Immunol Microbiol Infect Dis 2018; 63:22-30. [PMID: 30961814 DOI: 10.1016/j.cimid.2018.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 11/27/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
Abstract
These last years, significant progress has been made in the design of strategies empowering T cells with efficient anti-tumor activities. Hence, adoptive T cell therapy and the use of monoclonal antibodies against the immunosuppressive surface molecules CTLA-4 and PD-1 appear as the most promising immunotherapies against cancer. One of the challenges ahead is to render these therapeutic interventions even more effective as a still elevated fraction of cancer patients is refractory to these treatments. A frequently overlooked determinant of the success of T cell-based immunotherapy relates to the ability of effector T cells to migrate into and within tumors, as well as to have access to tumor antigens. Here, we will focus on recent advances in understanding T cell trafficking into and within tumors. Both chemoattractant molecules and structural determinants are essential for regulating T cell motile behavior along with cellular interactions-mediated antigen recognition. In addition, we will review evidence that the microenvironment of advanced tumors creates multiple obstacles limiting T cells from migrating and making contact with their malignant targets. We will particularly focus on the extracellular matrix and tumor-associated macrophages that make tumors a hostile environment for T cell ability to contact and kill malignant cells. Finally, we will discuss possible strategies to restore a tumor microenvironment more favorable to T cell migration and functions with a special emphasis on approaches targeting the dysregulated extracellular matrix of growing tumors.
Collapse
Affiliation(s)
- Alba Nicolas-Boluda
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Emmanuel Donnadieu
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
28
|
Evans JD, Morris LK, Zhang H, Cao S, Liu X, Mara KC, Stish BJ, Davis BJ, Mansfield AS, Dronca RS, Iott MJ, Kwon ED, Foote RL, Olivier KR, Dong H, Park SS. Prospective Immunophenotyping of CD8 + T Cells and Associated Clinical Outcomes of Patients With Oligometastatic Prostate Cancer Treated With Metastasis-Directed SBRT. Int J Radiat Oncol Biol Phys 2018; 103:229-240. [PMID: 30205124 DOI: 10.1016/j.ijrobp.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE This study examined the effects of metastasis-directed stereotactic body radiation therapy (mdSBRT) on CD8+ T-cell subpopulations and correlated post-mdSBRT immunophenotypic responses with clinical outcomes in patients with oligometastatic prostate cancer (OPCa). METHODS AND MATERIALS Peripheral blood mononuclear cells were prospectively isolated from 37 patients with OPCa (≤3 metastases) who were treated with mdSBRT. Immunophenotyping identified circulating CD8+ T-cell subpopulations, including tumor-reactive (TTR), effector memory, central memory (TCM), effector, and naïve T cells from samples collected before and after mdSBRT. Univariate Cox proportional hazards regression was used to assess whether changes in these T-cell subpopulations were potential risk factors for death and/or progression. The Kaplan-Meier method was used for survival. Cumulative incidence for progression and new distant metastasis weas estimated, considering death as a competing risk. RESULTS Median follow-up was 39 months (interquartile range, 34-43). Overall survival at 3 years was 78.2%. Cumulative incidence for local progression and new distant metastasis at 3 years was 16.5% and 67.6%, respectively. Between baseline and day 14 after mdSBRT, an increase in the TCM cell subpopulation was associated with the risk of death (hazard ratio, 1.22 [95% confidence interval, 1.02-1.47]; P = .033), and an increase in the TTR cell subpopulation was protective against the risk of local progression (hazard ratio, 0.80 [95% confidence interval, 0.65-0.98]; P = .032). CONCLUSIONS An increase in the TTR cell subpopulation was protective against the risk of disease progression, and an increase in the TCM cell subpopulation was associated with the risk of death in patients with OPCa treated with mdSBRT. Disease control may be further improved by better understanding the CD8+ T-cell subpopulations and by enhancing their antitumor effect.
Collapse
Affiliation(s)
- Jaden D Evans
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Lindsay K Morris
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Henan Zhang
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Siyu Cao
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Xin Liu
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Kristin C Mara
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Bradley J Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Brian J Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Roxana S Dronca
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota; Division of Medical Oncology, Mayo Clinic, Jacksonville, Florida
| | - Matthew J Iott
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Eugene D Kwon
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, Minnesota; Department of Urology, Mayo Clinic, Rochester, Minnesota
| | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
29
|
Moretti FA, Klapproth S, Ruppert R, Margraf A, Weber J, Pick R, Scheiermann C, Sperandio M, Fässler R, Moser M. Differential requirement of kindlin-3 for T cell progenitor homing to the non-vascularized and vascularized thymus. eLife 2018; 7:35816. [PMID: 30187863 PMCID: PMC6126919 DOI: 10.7554/elife.35816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/23/2018] [Indexed: 01/13/2023] Open
Abstract
The role of integrin-mediated adhesion during T cell progenitor homing to and differentiation within the thymus is ill-defined, mainly due to functional overlap. To circumvent compensation, we disrupted the hematopoietic integrin regulator kindlin-3 in mice and found a progressive thymus atrophy that is primarily caused by an impaired homing capacity of T cell progenitors to the vascularized thymus. Notably, the low shear flow conditions in the vascular system at midgestation allow kindlin-3-deficient fetal liver-derived T cell progenitors to extravasate via pharyngeal vessels and colonize the avascular thymus primordium. Once in the thymus, kindlin-3 promotes intrathymic T cell proliferation by facilitating the integrin-dependent crosstalk with thymic antigen presenting cells, while intrathymic T cell migration, maturation into single positive CD4 and CD8 T cells and release into the circulation proceed without kindlin-3. Thus, kindlin-3 is dispensable for integrin-mediated T cell progenitor adhesion and signalling at low and indispensable at high shear forces.
Collapse
Affiliation(s)
| | - Sarah Klapproth
- Department Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Raphael Ruppert
- Department Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Andreas Margraf
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Jasmin Weber
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Robert Pick
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Christoph Scheiermann
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Markus Sperandio
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Reinhard Fässler
- Department Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Markus Moser
- Department Molecular Medicine, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
30
|
Walling BL, Kim M. LFA-1 in T Cell Migration and Differentiation. Front Immunol 2018; 9:952. [PMID: 29774029 PMCID: PMC5943560 DOI: 10.3389/fimmu.2018.00952] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/17/2018] [Indexed: 01/21/2023] Open
Abstract
Maintenance of homeostatic immune surveillance and development of effective adaptive immune responses require precise regulation of spatial and temporal lymphocyte trafficking throughout the body to ensure pathogen clearance and memory generation. Dysregulation of lymphocyte activation and migration can lead to impaired adaptive immunity, recurrent infections, and an array of autoimmune diseases and chronic inflammation. Central to the recruitment of T cells, integrins are cell surface receptors that regulate adhesion, signal transduction, and migration. With 24 integrin pairs having been discovered to date, integrins are defined not only by the composition of the heterodimeric pair but by cell-type specific expression and their ligands. Furthermore, integrins not only facilitate adhesion but also induce intracellular signaling and have recently been uncovered as mechanosensors providing additional complexity to the signaling pathways. Among several leukocyte-specific integrins, lymphocyte function-associated antigen-1 (LFA-1 or αLβ2; CD11a/CD18) is a key T cell integrin, which plays a major role in regulating T cell activation and migration. Adhesion to LFA-1's ligand, intracellular adhesion receptor 1 (ICAM-1) facilitates firm endothelium adhesion, prolonged contact with antigen-presenting cells, and binding to target cells for killing. While the downstream signaling pathways utilized by LFA-1 are vastly conserved they allow for highly disparate responses. Here, we summarize the roles of LFA-1 and ongoing studies to better understand its functions and regulation.
Collapse
Affiliation(s)
- Brandon L Walling
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
31
|
Mamonkin M, Mukherjee M, Srinivasan M, Sharma S, Gomes-Silva D, Mo F, Krenciute G, Orange JS, Brenner MK. Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-cell Malignancies. Cancer Immunol Res 2018; 6:47-58. [PMID: 29079655 PMCID: PMC5963729 DOI: 10.1158/2326-6066.cir-17-0126] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/07/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022]
Abstract
T cells expressing second-generation chimeric antigen receptors (CARs) specific for CD5, a T-cell surface marker present on normal and malignant T cells, can selectively kill tumor cells. We aimed to improve this killing by substituting the CD28 costimulatory endodomain (28.z) with 4-1BB (BB.z), as 28.z CD5 CAR T cells rapidly differentiated into short-lived effector cells. In contrast, 4-1BB costimulation is known to promote development of the central memory subpopulation. Here, we found BB.z CD5 CAR T cells had impaired growth compared with 28.z CD5.CAR T cells, due to increased T-cell-T-cell fratricide. We demonstrate that TRAF signaling from the 4-1BB endodomain upregulated the intercellular adhesion molecule 1, which stabilized the fratricidal immunologic synapse between CD5 CAR T cells. As the surviving BB.z CD5 CAR T cells retained the desired central memory phenotype, we aimed to circumvent the 4-1BB-mediated toxicity using a regulated expression system that reversibly inhibits CAR expression. This system minimized CAR signaling and T-cell fratricide during in vitro expansion in the presence of a small-molecule inhibitor, and restored CAR expression and antitumor function of transduced T cells in vivo These studies reveal a mechanism by which 4-1BB costimulation impairs expansion of CD5 CAR T cells and offer a solution to mitigate this toxicity. Cancer Immunol Res; 6(1); 47-58. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Apoptosis/immunology
- CD5 Antigens/metabolism
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Female
- Gene Expression
- Genetic Vectors
- Immunological Synapses/immunology
- Immunological Synapses/metabolism
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Male
- Mice
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- TNF Receptor-Associated Factor 2/metabolism
- Transgenes
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Maksim Mamonkin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Texas.
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Malini Mukherjee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Texas
| | - Madhuwanti Srinivasan
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Texas
| | - Sandhya Sharma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Texas
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Diogo Gomes-Silva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Texas
- Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Feiyan Mo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Texas
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Giedre Krenciute
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jordan S Orange
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Texas
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
32
|
Role of LFA-1 and ICAM-1 in Cancer. Cancers (Basel) 2017; 9:cancers9110153. [PMID: 29099772 PMCID: PMC5704171 DOI: 10.3390/cancers9110153] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 12/30/2022] Open
Abstract
The lymphocyte function-associated antigen-1 (LFA-1) (also known as CD11a/CD18 and αLβ2), is just one of many integrins in the human body, but its significance is derived from its exclusive presence in leukocytes. In this review, we summarize the studies relating LFA-1 and its major ligand ICAM-1 (or CD54) with cancer, through the function of lymphocytes and myeloid cells on tumor cells. We consider how LFA-1 mediates the interaction of leukocytes with tumors and the role of ICAM-1 in tumor dynamics, which can be independent of its interaction with LFA-1. We also offer a more detailed examination of the role of LFA-1 within B-cell chronic lymphocytic leukemia. Finally, we discuss the role that exosomes harboring LFA-1 play in tumor growth and metastasis.
Collapse
|
33
|
Borger JG, Morrison VL, Filby A, Garcia C, Uotila LM, Simbari F, Fagerholm SC, Zamoyska R. Caveolin-1 Influences LFA-1 Redistribution upon TCR Stimulation in CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28637901 PMCID: PMC5523581 DOI: 10.4049/jimmunol.1700431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TCR stimulation by peptide-MHC complexes on APCs requires precise reorganization of molecules into the area of cellular contact to form an immunological synapse from where T cell signaling is initiated. Caveolin (Cav)1, a widely expressed transmembrane protein, is involved in the regulation of membrane composition, cellular polarity and trafficking, and the organization of signal transduction pathways. The presence of Cav1 protein in T cells was identified only recently, and its function in this context is not well understood. We show that Cav1-knockout CD8 T cells have a reduction in membrane cholesterol and sphingomyelin, and upon TCR triggering they exhibit altered morphology and polarity, with reduced effector function compared with Cav1 wild-type CD8 T cells. In particular, redistribution of the β2 integrin LFA-1 to the immunological synapse is compromised in Cav1-knockout T cells, as is the ability of LFA-1 to form high-avidity interactions with ICAM-1. Our results identify a role for Cav1 in membrane organization and β2 integrin function in primary CD8 T cells.
Collapse
Affiliation(s)
- Jessica G Borger
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | | | - Andrew Filby
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; and
| | - Celine Garcia
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Liisa M Uotila
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Fabio Simbari
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | | | - Rose Zamoyska
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
34
|
Halle S, Halle O, Förster R. Mechanisms and Dynamics of T Cell-Mediated Cytotoxicity In Vivo. Trends Immunol 2017; 38:432-443. [PMID: 28499492 DOI: 10.1016/j.it.2017.04.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) are critical in the elimination of infected or malignant cells and are emerging as a major therapeutic target. How CTLs recognize and kill harmful cells has been characterized in vitro but little is known about these processes in the living organism. Here we review recent insights into CTL-mediated killing with an emphasis on in vivo CTL biology. Specifically, we focus on the possible rate-limiting steps determining the efficiency of CTL-mediated killing. We also highlight the need for cell-based datasets that permit the quantification of CTL dynamics, including CTL location, migration, and killing rates. A better understanding of these factors is required to predict protective CD8 T cell immunity in vivo and to design optimized vaccination protocols.
Collapse
Affiliation(s)
- Stephan Halle
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| | - Olga Halle
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
35
|
Schellhorn M, Haustein M, Frank M, Linnebacher M, Hinz B. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1. Oncotarget 2016; 6:39342-56. [PMID: 26513172 PMCID: PMC4770776 DOI: 10.18632/oncotarget.5745] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022] Open
Abstract
The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib.
Collapse
Affiliation(s)
- Melina Schellhorn
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| | - Maria Haustein
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| | - Marcus Frank
- Electron Microscopy Center, Rostock University Medical Center, Rostock, Germany
| | - Michael Linnebacher
- Section of Molecular Oncology and Immunotherapy, Department of General Surgery, Rostock University Medical Center, Rostock, Germany
| | - Burkhard Hinz
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
36
|
Abstract
Integrins comprise a large family of αβ heterodimeric cell adhesion receptors that are expressed on all cells except red blood cells and that play essential roles in the regulation of cell growth and function. The leukocyte integrins, which include members of the β
1, β
2, β
3, and β
7 integrin family, are critical for innate and adaptive immune responses but also can contribute to many inflammatory and autoimmune diseases when dysregulated. This review focuses on the β
2 integrins, the principal integrins expressed on leukocytes. We review their discovery and role in host defense, the structural basis for their ligand recognition and activation, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- M Amin Arnaout
- Leukocyte Biology & Inflammation Program, Structural Biology Program, Nephrology, Center for Regenerative Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Kidwai F, Edwards J, Zou L, Kaufman DS. Fibrinogen Induces RUNX2 Activity and Osteogenic Development from Human Pluripotent Stem Cells. Stem Cells 2016; 34:2079-89. [PMID: 27331788 PMCID: PMC5097445 DOI: 10.1002/stem.2427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells, both human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC), provide an important resource to produce specialized cells such as osteogenic cells for therapeutic applications such as repair or replacement of injured, diseased or damaged bone. hESCs and iPSCs can also be used to better define basic cellular and genetic mechanisms that regulate the earliest stages of human bone development. However, current strategies to mediate osteogenic differentiation of hESC and iPSC are typically limited by the use of xenogeneic components such as fetal bovine serum (FBS) that make defining specific agents that mediate human osteogenesis difficult. Runt-related transcription factor 2 (RUNX2) is a key regulator required for osteogenic differentiation. Here, we used a RUNX2-YFP reporter system to characterize the novel ability of fibrinogen to mediate human osteogenic development from hESC and iPSC in defined (serum-free) conditions. These studies demonstrate that fibrinogen mediates significant osteo-induction potential. Specifically, fibrinogen binds to the surface integrin (α9β1) to mediate RUNX2 gene expression through the SMAD1/5/8 signaling pathway. Additional studies characterize the fibrinogen-induced hESC/iPSC-derived osteogenic cells to demonstrate these osteogenic cells retain the capacity to express typical mature osteoblastic markers. Together, these studies define a novel fibrinogen-α9β1-SMAD1/5/8-RUNX2 signaling axis can efficiently induce osteogenic differentiation from hESCs and iPSCs. Stem Cells 2016;34:2079-2089.
Collapse
Affiliation(s)
- Fahad Kidwai
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, Minnesota 55455, USA
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Jessica Edwards
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Li Zou
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dan S. Kaufman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Medicine, University of California - San Diego, La Jolla, California 92093, USA
| |
Collapse
|
38
|
Teoh CM, Tan SSL, Tran T. Integrins as Therapeutic Targets for Respiratory Diseases. Curr Mol Med 2016; 15:714-34. [PMID: 26391549 PMCID: PMC5427774 DOI: 10.2174/1566524015666150921105339] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/09/2015] [Accepted: 09/19/2015] [Indexed: 01/14/2023]
Abstract
Integrins are a large family of transmembrane heterodimeric proteins that constitute the main receptors for extracellular matrix components. Integrins were initially thought to be primarily involved in the maintenance of cell adhesion and tissue integrity. However, it is now appreciated that integrins play important roles in many other biological processes such as cell survival, proliferation, differentiation, migration, cell shape and polarity. Lung cells express numerous combinations and permutations of integrin heterodimers. The complexity and diversity of different integrin heterodimers being implicated in different lung diseases present a major challenge for drug development. Here we provide a comprehensive overview of the current knowledge of integrins from studies in cell culture to integrin knockout mouse models and provide an update of results from clinical trials for which integrins are therapeutic targets with a focus on respiratory diseases (asthma, emphysema, pneumonia, lung cancer, pulmonary fibrosis and sarcoidosis).
Collapse
Affiliation(s)
| | | | - T Tran
- Department of Physiology, MD9, 2 Medical Drive, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
39
|
Hashimoto-Tane A, Sakuma M, Ike H, Yokosuka T, Kimura Y, Ohara O, Saito T. Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation. J Exp Med 2016; 213:1609-25. [PMID: 27354546 PMCID: PMC4986522 DOI: 10.1084/jem.20151088] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
Saito et al. describe a ring of focal adhesion molecules that surrounds T cell receptor microclusters and is essential for early T cell activation. The immunological synapse (IS) formed at the interface between T cells and antigen-presenting cells represents a hallmark of initiation of acquired immunity. T cell activation is initiated at T cell receptor (TCR) microclusters (MCs), in which TCRs and signaling molecules assemble at the interface before IS formation. We found that each TCR-MC was transiently bordered by a ring structure made of integrin and focal adhesion molecules in the early phase of activation, which is similar in structure to the IS in microscale. The micro–adhesion ring is composed of LFA-1, focal adhesion molecules paxillin and Pyk2, and myosin II (MyoII) and is supported by F-actin core and MyoII activity through LFA-1 outside-in signals. The formation of the micro–adhesion ring was transient but especially sustained upon weak TCR stimulation to recruit linker for activation of T cells (LAT) and SLP76. Perturbation of the micro–adhesion ring induced impairment of TCR-MC development and resulted in impaired cellular signaling and cell functions. Thus, the synapse-like structure composed of the core TCR-MC and surrounding micro–adhesion ring is a critical structure for initial T cell activation through integrin outside-in signals.
Collapse
Affiliation(s)
- Akiko Hashimoto-Tane
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Machie Sakuma
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Ike
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan Laboratory for Cell Signaling, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tadashi Yokosuka
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa 236-0004, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan Laboratory for Cell Signaling, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
40
|
Goval JJ, Greimers R, Boniver J, de Leval L. Germinal Center Dendritic Cells Express More ICAM-1 Than Extrafollicular Dendritic Cells and ICAM-1/LFA-1 Interactions are Involved in the Capacity of Dendritic Cells to Induce PBMCs Proliferation. J Histochem Cytochem 2016; 54:75-84. [PMID: 16116032 DOI: 10.1369/jhc.5a6740.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Germinal center dendritic cells (GCDCs) have been identified as CD11c+ CD4+ CD3− cells located in GCs with the ability of inducing marked proliferation of allogenic T cells. Using immunofluorescence techniques, we have observed that this CD11c+ CD4+ CD3− immunophenotype identified GCDCs but also a subset of extrafollicular DCs. By flow cytometry, we were able to discriminate the GCDCs (CD11chigh CD4high lin−) from the other tonsil DCs. By immunofluorescence and flow cytometry, we found that dendritic cells of germinal centers express more intracellular adhesion molecule-1 (ICAM-1) (CD54) than extrafollicular dendritic cells. Proliferation of peripheral blood mononuclear cells (PBMCs) induced by coculture with purified CD11c+ CD4+ CD3− DCs was reduced by addition of blocking anti-CD54 antibodies. In summary, distinct levels of ICAM-1 expression allow the distinction between GCDCs and extrafollicular DCs, and cellular interactions mediated by CD54 are likely to play a role in the capacity of GCDC to stimulate allogenic PBMC proliferation.
Collapse
Affiliation(s)
- Jean-Jacques Goval
- Department of Pathology, CHU Sart-Tilman, B23 Tour de Pathologie, Liège, Belgium
| | | | | | | |
Collapse
|
41
|
Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, Zhang C, Sheng C, Leng Q, Rudd CE, Wei B, Wang H. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med 2016; 7:754-69. [PMID: 25851535 PMCID: PMC4459816 DOI: 10.15252/emmm.201404578] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PD-1 negatively regulates CD8(+) cytotoxic T lymphocytes (CTL) cytotoxicity and anti-tumor immunity. However, it is not fully understood how PD-1 expression on CD8(+) CTL is regulated during anti-tumor immunotherapy. In this study, we have identified that the ADAP-SKAP55 signaling module reduced CD8(+) CTL cytotoxicity and enhanced PD-1 expression in a Fyn-, Ca(2+)-, and NFATc1-dependent manner. In DC vaccine-based tumor prevention and therapeutic models, knockout of SKAP55 or ADAP showed a heightened protection from tumor formation or metastases in mice and reduced PD-1 expression in CD8(+) effector cells. Interestingly, CTLA-4 levels and the percentages of tumor infiltrating CD4(+)Foxp3(+) Tregs remained unchanged. Furthermore, adoptive transfer of SKAP55-deficient or ADAP-deficient CD8(+) CTLs significantly blocked tumor growth and increased anti-tumor immunity. Pretreatment of wild-type CD8(+) CTLs with the NFATc1 inhibitor CsA could also downregulate PD-1 expression and enhance anti-tumor therapeutic efficacy. Together, we propose that targeting the unrecognized ADAP-SKAP55-NFATc1-PD-1 pathway might increase efficacy of anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Chunyang Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Weiyun Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Jun Xiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Normal University, Shanghai, China
| | - Shaozhuo Jiao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Fei Teng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Xue
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Chi Zhang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Chun Sheng
- Shanghai Normal University, Shanghai, China
| | - Qibin Leng
- Institute Pasteur of Shanghai Chinese Academy of Sciences, Shanghai, China
| | | | - Bin Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology Chinese Academy of Sciences, Wuhan, China
| | - Hongyan Wang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Rap1 and its effector RIAM are required for lymphocyte trafficking. Blood 2015; 126:2695-703. [PMID: 26324702 DOI: 10.1182/blood-2015-05-644104] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/24/2015] [Indexed: 12/28/2022] Open
Abstract
Regulation of integrins is critical for lymphocyte adhesion to endothelium and trafficking through secondary lymphoid organs. Inside-out signaling to integrins is mediated by the small GTPase Rap1. Two effectors of Rap1 regulate integrins, RapL and Rap1 interacting adaptor molecule (RIAM). Using mice conditionally deficient in both Rap1a and Rap1b and mice null for RIAM, we show that the Rap1/RIAM module is not required for T- or B-cell development but is essential for efficient adhesion to intercellular adhesion molecule (ICAM) 1 and vascular cell adhesion molecule (VCAM) 1 and for proper trafficking of lymphocytes to secondary lymphoid organs. Interestingly, in RIAM-deficient mice, whereas peripheral lymph nodes (pLNs) were depleted of both B and T cells and recirculating B cells were diminished in the bone barrow (BM), the spleen was hypercellular, albeit with a relative deficiency of marginal zone B cells. The abnormality in lymphocyte trafficking was accompanied by defective humoral immunity to T-cell-dependent antigens. Platelet function was intact in RIAM-deficient animals. These in vivo results confirm a role for RIAM in the regulation of some, but not all, leukocyte integrins and suggest that RIAM-regulated integrin activation is required for trafficking of lymphocytes from blood into pLNs and BM, where relatively high shear forces exist in high endothelial venules and sinusoids, respectively.
Collapse
|
43
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang M, Liu J, Piao C, Shao J, Du J. ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis. Cell Death Dis 2015; 6:e1780. [PMID: 26068788 PMCID: PMC4669827 DOI: 10.1038/cddis.2015.144] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Efficient clearance of apoptotic cells (efferocytosis) can profoundly influence tumor-specific immunity. Tumor-associated macrophages are M2-polarized macrophages that promote key processes in tumor progression. Efferocytosis stimulates M2 macrophage polarization and contributes to cancer metastasis, but the signaling mechanism underlying this process is unclear. Intercellular cell adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein member of the immunoglobulin superfamily, which has been implicated in mediating cell–cell interaction and outside-in cell signaling during the immune response. We report that ICAM-1 expression is inversely associated with macrophage infiltration and the metastasis index in human colon tumors by combining Oncomine database analysis and immunohistochemistry for ICAM-1. Using a colon cancer liver metastasis model in ICAM-1-deficient (ICAM-1−/−) mice and their wild-type littermates, we found that loss of ICAM-1 accelerated liver metastasis of colon carcinoma cells. Moreover, ICAM-1 deficiency increased M2 macrophage polarization during tumor progression. We further demonstrated that ICAM-1 deficiency in macrophages led to promotion of efferocytosis of apoptotic tumor cells through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. More importantly, coculture of ICAM-1−/− macrophages with apoptotic cancer cells resulted in an increase of M2-like macrophages, which was blocked by an efferocytosis inhibitor. Our findings demonstrate a novel role for ICAM-1 in suppressing M2 macrophage polarization via downregulation of efferocytosis in the tumor microenvironment, thereby inhibiting metastatic tumor progression.
Collapse
Affiliation(s)
- M Yang
- 1] Beijing Anzhen Hospital, Capital Medical University, Beijing, China [2] Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing, China
| | - J Liu
- 1] Beijing Anzhen Hospital, Capital Medical University, Beijing, China [2] Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing, China
| | - C Piao
- 1] Beijing Anzhen Hospital, Capital Medical University, Beijing, China [2] Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing, China
| | - J Shao
- Second Affiliated Hospital to Nanchang University, Jiangxi 330006, China
| | - J Du
- 1] Beijing Anzhen Hospital, Capital Medical University, Beijing, China [2] Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing collaborative innovative research center for cardiovascular diseases, Beijing, China
| |
Collapse
|
45
|
Morrison VL, Uotila LM, Llort Asens M, Savinko T, Fagerholm SC. Optimal T Cell Activation and B Cell Antibody Responses In Vivo Require the Interaction between Leukocyte Function-Associated Antigen-1 and Kindlin-3. THE JOURNAL OF IMMUNOLOGY 2015; 195:105-15. [PMID: 25987740 DOI: 10.4049/jimmunol.1402741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/21/2015] [Indexed: 12/29/2022]
Abstract
Kindlin-3 is an important integrin regulator that is mutated in the rare genetic disorder, leukocyte adhesion deficiency type III, a disorder characterized by defective neutrophil trafficking and platelet function, leading to recurrent bacterial infections and bleeding. Kindlin-3 is also known to regulate T cell adhesion in vitro and trafficking in vivo, but whether the integrin/kindlin interaction regulates T or B cell activation in vivo is unclear. In this study, we used TTT/AAA β2-integrin knock-in (KI) mice and TCR-transgenic (OT-II) KI mice, in which the integrin/kindlin connection is disrupted, to investigate the role of the integrin/kindlin interaction in T cell activation. We show that basal T cell activation status in these animals in vivo is normal, but they display reduced T cell activation by wild-type Ag-loaded dendritic cells in vitro. In addition, T cell activation in vivo is reduced. We also show that basal Ab levels are normal in TTT/AAA β2-integrin KI mice, but B cell numbers in lymph nodes and IgG and IgM production after immunization are reduced. In conclusion, we show that the integrin/kindlin interaction is required for trafficking of immune cells, as well as for T cell activation and B cell Ab responses in vivo. These results imply that the immunodeficiency found in leukocyte adhesion deficiency type III patients, in addition to being caused by defects in neutrophil function, may be due, in part, to defects in lymphocyte trafficking and activation.
Collapse
Affiliation(s)
| | - Liisa M Uotila
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Marc Llort Asens
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Terhi Savinko
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Susanna Carola Fagerholm
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; Medical Research Institute, University of Dundee, Dundee DD1 9SY, United Kingdom; and Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
46
|
Yamashita-Kanemaru Y, Takahashi Y, Wang Y, Tahara-Hanaoka S, Honda SI, Bernhardt G, Shibuya A, Shibuya K. CD155 (PVR/Necl5) Mediates a Costimulatory Signal in CD4+ T Cells and Regulates Allergic Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:5644-53. [DOI: 10.4049/jimmunol.1401942] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 04/20/2015] [Indexed: 12/21/2022]
|
47
|
Wu X, Lahiri A, Sarin R, Abraham C. T cell-extrinsic CD18 attenuates antigen-dependent CD4+ T cell activation in vivo. THE JOURNAL OF IMMUNOLOGY 2015; 194:4122-9. [PMID: 25801431 DOI: 10.4049/jimmunol.1401328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
Abstract
The β2 integrins (CD11/CD18) are heterodimeric leukocyte adhesion molecules expressed on hematopoietic cells. The role of T cell-intrinsic CD18 in trafficking of naive T cells to secondary lymphoid organs and in Ag-dependent T cell activation in vitro and in vivo has been well defined. However, the T cell-extrinsic role for CD18, including on APC, in contributing to T cell activation in vivo is less well understood. We examined the role for T cell-extrinsic CD18 in the activation of wild-type CD4(+) T cells in vivo through the adoptive transfer of DO11.10 Ag-specific CD4(+) T cells into CD18(-/-) mice. We found that T cell-extrinsic CD18 was required for attenuating OVA-induced T cell proliferation in peripheral lymph nodes (PLN). The increased proliferation of wild-type DO11.10 CD4(+) T cells in CD18(-/-) PLN was associated with a higher percentage of APC, and these APC demonstrated an increased activation profile and increased Ag uptake, in particular in F4/80(+) APC. Depletion of F4/80(+) cells both reduced and equalized Ag-dependent T cell proliferation in CD18(-/-) relative to littermate control PLN, demonstrating that these cells play a critical role in the enhanced T cell proliferation in CD18(-/-) mice. Consistently, CD11b blockade, which is expressed on F4/80(+) macrophages, enhanced the proliferation of DO11.10 CD4(+) T cells in CD18(+/-) PLN. Thus, in contrast to the T cell-intrinsic essential role for CD18 in T cell activation, T cell-extrinsic expression of CD18 attenuates Ag-dependent CD4(+) T cell activation in PLN in vivo.
Collapse
Affiliation(s)
- Xingxin Wu
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| | - Amit Lahiri
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| | - Ritu Sarin
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT 06510
| |
Collapse
|
48
|
Park SS, Dong H, Liu X, Harrington SM, Krco CJ, Grams MP, Mansfield AS, Furutani KM, Olivier KR, Kwon ED. PD-1 Restrains Radiotherapy-Induced Abscopal Effect. Cancer Immunol Res 2015; 3:610-9. [PMID: 25701325 DOI: 10.1158/2326-6066.cir-14-0138] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/10/2015] [Indexed: 12/28/2022]
Abstract
We investigated the influence of PD-1 expression on the systemic antitumor response (abscopal effect) induced by stereotactic ablative radiotherapy (SABR) in preclinical melanoma and renal cell carcinoma models. We compared the SABR-induced antitumor response in PD-1-expressing wild-type (WT) and PD-1-deficient knockout (KO) mice and found that PD-1 expression compromises the survival of tumor-bearing mice treated with SABR. None of the PD-1 WT mice survived beyond 25 days, whereas 20% of the PD-1 KO mice survived beyond 40 days. Similarly, PD-1-blocking antibody in WT mice was able to recapitulate SABR-induced antitumor responses observed in PD-1 KO mice and led to increased survival. The combination of SABR plus PD-1 blockade induced near complete regression of the irradiated primary tumor (synergistic effect), as opposed to SABR alone or SABR plus control antibody. The combination of SABR plus PD-1 blockade therapy elicited a 66% reduction in size of nonirradiated, secondary tumors outside the SABR radiation field (abscopal effect). The observed abscopal effect was tumor specific and was not dependent on tumor histology or host genetic background. The CD11a(high) CD8(+) T-cell phenotype identifies a tumor-reactive population, which was associated in frequency and function with a SABR-induced antitumor immune response in PD-1 KO mice. We conclude that SABR induces an abscopal tumor-specific immune response in both the irradiated and nonirradiated tumors, which is potentiated by PD-1 blockade. The combination of SABR and PD-1 blockade has the potential to translate into a potent immunotherapy strategy in the management of patients with metastatic cancer.
Collapse
Affiliation(s)
- Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, Minnesota. Department of Urology, Mayo Clinic, Rochester, Minnesota
| | - Xin Liu
- Department of Urology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Michael P Grams
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Keith M Furutani
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Eugene D Kwon
- Department of Immunology, Mayo Clinic, Rochester, Minnesota. Department of Urology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
49
|
Abstract
The molecular interactions underlying regulation of the immune response take place in a nanoscale gap between T cells and antigen-presenting cells, termed the immunological synapse. If these interactions are regulated appropriately, the host is defended against a wide range of pathogens and deranged host cells. If these interactions are disregulated, the host is susceptible to pathogens or tumor escape at one extreme and autoimmunity at the other. Strategies targeting the synapse have helped to establish immunotherapy as a mainstream element in cancer treatment. This Masters' primer will cover the basics of the immunological synapse and some of the applications to tumor immunology.
Collapse
Affiliation(s)
- Michael L Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Headington, United Kingdom.
| |
Collapse
|
50
|
Bose TO, Colpitts SL, Pham QM, Puddington L, Lefrançois L. CD11a is essential for normal development of hematopoietic intermediates. THE JOURNAL OF IMMUNOLOGY 2014; 193:2863-72. [PMID: 25108025 DOI: 10.4049/jimmunol.1301820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The process of lymphopoiesis begins in the bone marrow (BM) and requires multiple cellular intermediates. For T cell production, lymphoid progenitors exit the BM and home to the thymus where maturation and selection ensue. These processes are dependent on a number of factors, including chemokines and adhesion molecules. Although the β2 integrin CD11a plays an important role in the migration of lymphocytes to lymph nodes, the role of CD11a in T cell development is largely undefined. Our studies now show that, in CD11a(-/-) mice, thymic cellularity was decreased and early T cell development was partially impaired. Remarkably, CD11a was critical for generation of common lymphoid progenitors (CLPs) and lymphoid-primed multipotent progenitors. However, in intact CD11a(-/-) mice, peripheral B and T cell subsets were only modestly altered, suggesting that compensatory mechanisms were operating. In contrast, competitive BM-reconstitution assays revealed an essential role for CD11a in the generation of thymocytes and mature T and B cells. This defect was linked to the requirement for CD11a in the development of CLPs. Furthermore, our results identified CLPs, and not lymphoid-primed multipotent progenitors, as the requisite CD11a-dependent precursor for lymphocyte development. Thus, these findings established a key role for CD11a in lymphopoiesis.
Collapse
Affiliation(s)
- Tina O Bose
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Sara L Colpitts
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Quynh-Mai Pham
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Lynn Puddington
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| | - Leo Lefrançois
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|