1
|
Mariz HA, Sato EI, Cardoso PRG, Gonçalves R, Duarte ALBP, de Melo Rego MJB, da Rocha Pitta I, da Rocha Pitta MG. Vitamin D Presented In Vitro Immunomodulatory Property on T Lymphocyte-Related Cytokines in Systemic Lupus Erythematosus. Inflammation 2023; 46:730-738. [PMID: 36459355 DOI: 10.1007/s10753-022-01768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022]
Abstract
Inflammatory T lymphocyte cytokines contribute to tissue damage in SLE patients. Vitamin D (Vit D) has a well-established immunomodulatory action, but few studies have addressed the effect of 1,25 dihydroxyvitamin D3 (1,25 (OH)2D3) on peripheral blood mononuclear cells (PBMCs) in SLE patients. The aim of this study was to evaluate the immnunomodulatory effect of 1,25 (OH)2D3 on T lymphocyte-related cytokines. Blood from 27 female SLE patients was collected for PBMC isolation and anti-DNA, complement, and serum 25 (OH)D3 level measurements. PBMCs were stimulated with anti-CD3/anti-CD28 in the presence or absence of dexamethasone or various concentrations of 1,25 (OH)2D3 for 48 h. We assessed IL-17A, IL-22, IL-21, IL-9, IFN-γ, IL-4, IL-10, IL-2, IL-6, and TNF by cytometric bead assay (CBA) and enzyme immune assay (ELISA) on culture supernatant. The mean age of patients was 36.2 (± 10.5 years) and the median Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) was 4 (0-6). The addition of 1,25 (OH)2D3 in PBMC culture reduced IL-17 A, IL-22, IL-9, and IFN-γ levels at 100 nM (p ≤ 0.0001). Furthermore, the addition of 1,25 (OH)2D3 at all concentrations increased IL-4 (p ≤ 0.0006), and 0.1 and 1 nM increased IL-10 (p ≤ 0.0004) and 0.1 nM increased IL-2 levels (p ≤ 0.0001). There was no difference regarding IL-21 and TNF levels. The addition of 1,25 (OH)2D3 in PBMC culture presented an inhibitory effect on proinflammatory cytokines and increased immunoregulatory cytokines in SLE patients, suggesting the beneficial effect of this vitamin.
Collapse
Affiliation(s)
- Henrique Ataíde Mariz
- Rheumatology Division, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil
- Rheumatology Division, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Emília Inoue Sato
- Rheumatology Division, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Pablo Ramon Gualberto Cardoso
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Research Center On Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Rafaela Gonçalves
- Rheumatology Division, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil.
- Cidade Universitária, CEP 50670-420, Recife, PE, Brazil.
| | | | - Moacyr Jesus Barreto de Melo Rego
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Research Center On Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Ivan da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Research Center On Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Maíra Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Research Center On Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
2
|
Rampoldi F, Donato E, Ullrich L, Deseke M, Janssen A, Demera A, Sandrock I, Bubke A, Juergens AL, Swallow M, Sparwasser T, Falk C, Tan L, Trumpp A, Prinz I. γδ T cells license immature B cells to produce a broad range of polyreactive antibodies. Cell Rep 2022; 39:110854. [PMID: 35613579 DOI: 10.1016/j.celrep.2022.110854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022] Open
Abstract
Immature autoreactive B cells are present in all healthy individuals, but it is unclear which signals are required for their maturation into antibody-producing cells. Inducible depletion of γδ T cells show that direct interaction between γδ T cells and immature B cells in the spleen support an "innate" transition to mature B cells with a broad range of antigen specificities. IL-4 production of γδ T cells and cell-to-cell contact via CD30L support B cell maturation and induce genes of the unfolded protein response and mTORC1 signaling. Eight days after in vivo depletion of γδ T cells, increased numbers of B cells are already stuck in the transitional phase and express increased levels of IgD and CD21. Absence of γδ T cells leads also to reduced levels of serum anti-nuclear autoantibodies, making γδ T cells an attractive target to treat autoimmunity.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg 69120, Germany
| | - Leon Ullrich
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Malte Deseke
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Anna-Lena Juergens
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover 30625, Germany
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GmbH), Heidelberg 69120, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover 30625, Germany; Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
| |
Collapse
|
3
|
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. FRONTIERS IN ALLERGY 2022; 3:859922. [PMID: 35769558 PMCID: PMC9234869 DOI: 10.3389/falgy.2022.859922] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Although iron is one of the most abundant elements on earth, about a third of the world's population are affected by iron deficiency. Main drivers of iron deficiency are beside the chronic lack of dietary iron, a hampered uptake machinery as a result of immune activation. Macrophages are the principal cells distributing iron in the human body with their iron restriction skewing these cells to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival, immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency during pregnancy increases the risk of atopic diseases in children, while both children and adults with allergy are more likely to have anemia. In contrast, an improved iron status seems to protect against allergy development. Here, the most important interconnections between iron metabolism and allergies, the effect of iron deprivation on distinct immune cell types, as well as the pathophysiology in atopic diseases are summarized. Although the main focus will be humans, we also compare them with innate defense and iron sequestration strategies of microbes, given, particularly, attention to catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their inducible systemic acquired resistance by salicylic acid, which further leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are very important for understanding the etiology of allergic diseases. Many allergens, such as lipocalins and the pathogenesis-related proteins, are able to bind iron and either deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result in immune activation and allergic sensitization. However, the same proteins such as the whey protein beta-lactoglobulin can also transport this precious micronutrient to the host immune cells (holoBLG) and hinder their activation, promoting tolerance and protecting against allergy. Since 2019, several clinical trials have also been conducted in allergic subjects using holoBLG as a food for special medical purposes, leading to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying lipocalin proteins can circumvent the mucosal block and nourish selectively immune cells, therefore representing a new dietary and causative approach to compensate for functional iron deficiency in allergy sufferers.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Franziska Roth-Walter ;
| |
Collapse
|
4
|
Khan N, Hu Y, Lowell CA, Rothstein TL. Signal Integration by Translocation and Phosphorylation of PKCδ in the B Cell Alternate Pathway. THE JOURNAL OF IMMUNOLOGY 2021; 207:2288-2296. [PMID: 34588218 DOI: 10.4049/jimmunol.2100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022]
Abstract
B cell signaling for activation via the BCR occurs as an isolated event only in vitro; in real life, BCR signaling takes place within a complex milieu that involves interactions with agents that trigger additional receptors. Chief among these is IL-4. We have shown that BCR signaling is reprogrammed by IL-4 receptor engagement and that this reprogramming involves creation of a new, signalosome-independent, Lyn-dependent alternate signaling pathway in B cells isolated from BALB/cByJ mice. A unique aspect of the alternate pathway is protein kinase Cδ (PKCδ) phosphorylation. In dissecting this pathway, we unexpectedly found that Lyn is associated with IL-4Rα, that IL-4 induces Lyn activation, and that Lyn immunoprecipitated from IL-4-treated B cells capably phosphorylates PKCδ in a cell-free system. However, PKCδ phosphorylation does not occur in the absence of BCR triggering in vivo. This raised the question of why IL-4 alone failed to produce PKCδ phosphorylation. We considered the possibility that Lyn and PKCδ may be spatially separated. As expected, before any treatment, Lyn is located primarily in the membrane fraction, whereas PKCδ is located mainly in the cytosol fraction. However, when anti-Ig follows IL-4 treatment, PKCδ is found in the membrane fraction and phosphorylated. This translocation of PKCδ to the membrane fraction is not affected by loss of Lyn, although PKCδ phosphorylation requires Lyn. Thus, PKCδ phosphorylation through the alternate pathway represents the result of signal integration, whereby neither IL-4 nor anti-Ig working alone produces this outcome, but together they achieve this result by Lyn activation (IL-4) and PKCδ translocation (IL-4 followed by anti-Ig).
Collapse
Affiliation(s)
- Naeem Khan
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| | - Yongmei Hu
- Department of Laboratory Medicine, University of California at San Francisco School of Medicine, San Francisco, CA; and
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California at San Francisco School of Medicine, San Francisco, CA; and
| | - Thomas L Rothstein
- Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI; .,Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI
| |
Collapse
|
5
|
The Alternate Pathway for BCR Signaling Induced by IL-4 Requires Lyn Tyrosine Kinase. J Mol Biol 2020; 433:166667. [PMID: 33058880 DOI: 10.1016/j.jmb.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
BCR signaling triggers a cascade of intracellular mediators that eventuates in transcription factor activation. Signaling is proximally mediated by Src family tyrosine kinases, the most abundant being Lyn. Key mediators are grouped together as the signalosome, and failure of any single member of this group leads to failure of signaling via this classical pathway. Recent work has revealed an alternate pathway for BCR signaling, in which signalosome elements are bypassed for downstream events such as ERK and PKCδ phosphorylation. This pathway is created by B cell treatment with IL-4 prior to BCR triggering. After IL-4 treatment, the alternate pathway for pERK operates in parallel with the classical pathway for pERK, whereas PKCδ phosphorylation is specific to the alternate pathway. Remarkably, Lyn is not required for B cell activation via the classical pathway; however, Lyn is indispensable and irreplaceable for B cell activation via the alternate pathway. Thus, Lyn operates at a branch point that determines the nature of the B cell response to BCR activation. The mechanism underlying the absolute dependence of alternate pathway signaling on Lyn is unknown. Here, our current understanding of receptor crosstalk between IL-4R and BCR is summarized along with several possible mechanisms for the role of Lyn in alternate pathway signaling. Further dissection of alternate pathway signaling and the role of Lyn is likely to provide important information relating to normal B cell responses, malignant B cell expansion, and generic principles relating to receptor interactions and crosstalk.
Collapse
|
6
|
Modulation of Macrophage Polarization by Phospholipids on the Surface of Titanium. Molecules 2020; 25:molecules25112700. [PMID: 32532146 PMCID: PMC7321141 DOI: 10.3390/molecules25112700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophage polarization has become increasingly important for the improvement of the biocompatibility of biomaterials. In this study, we coated Ti discs with phospholipids (phosphatidylserine/phosphatidylcholine [4:1 mole/mole]) by evaporating the solvent under vacuum, and observed the polarization of RAW 264.7 cells cultured on the discs. The coated discs were hydrated before cell culture was added. The shape of the hydrated phospholipids varied with the concentration of loaded phospholipids: a perforated layer (0.1 mM), tubules and spheres (1 mM), and spheres (10 mM). RAW 264.7 cells exhibited different morphologies, depending on the concentration of phospholipids. On the coated discs, the gene expression and protein release of TGF-β1, VEGF, Arg-1, and TNF-α were downregulated, especially with 10 mM phospholipids. The stimulation of mRNA expression and the protein release of those genes by IL-4 and LPS were also disturbed on the phospholipid-coated discs. In conclusion, the polarization of RAW 264.7 cells was prevented by hydrated phospholipids on Ti discs.
Collapse
|
7
|
Phalke SP, Huang Y, Rubtsova K, Getahun A, Sun D, Reinhardt RL, O’Brien RL, Born WK. γδ T cells shape memory-phenotype αβ T cell populations in non-immunized mice. PLoS One 2019; 14:e0218827. [PMID: 31237933 PMCID: PMC6592556 DOI: 10.1371/journal.pone.0218827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
Size and composition of γδ T cell populations change dramatically with tissue location, during development, and in disease. Given the functional differentiation of γδ T cell subsets, such shifts might alter the impact of γδ T cells on the immune system. To test this concept, and to determine if γδ T cells can affect other immune cells prior to an immune response, we examined non-immunized mice derived from strains with different genetically induced deficiencies in γδ T cells, for secondary changes in their immune system. We previously saw extensive changes in pre-immune antibodies and B cell populations. Here, we report effects on αβ T cells. Similarly to the B cells, αβ T cells evidently experience the influence of γδ T cells at late stages of their pre-immune differentiation, as single-positive heat stable antigen-low thymocytes. Changes in these and in mature αβ T cells were most prominent with memory-phenotype cells, including both CD8+ and CD4+ populations. As previously observed with B cells, most of the effects on αβ T cells were dependent on IL-4. Unexpectedly, IL-4 seemed to be produced mainly by αβ T cells in the non-immunized mice, albeit strongly regulated by γδ T cells. Similarly to our findings with B cells, changes of αβ T cells were less pronounced in mice lacking all γδ T cells than in mice lacking only some, suggesting that the composition of the γδ T cell population determines the nature of the γδ-influence on the other pre-immune lymphocytes.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation/immunology
- Female
- Immunologic Memory
- Interleukin-4/biosynthesis
- Lymphopenia/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Swati Popat Phalke
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
| | - Yafei Huang
- Joint Laboratory for Stem Cell Engineering and Technology Transfer, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Kira Rubtsova
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States of America
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Richard L. Reinhardt
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States of America
| | - Rebecca L. O’Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States of America
| | - Willi K. Born
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States of America
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
8
|
Enhancement of immune response of piglets to PCV-2 vaccine by porcine IL-2 and fusion IL-4/6 gene entrapped in chitosan nanoparticles. Res Vet Sci 2018; 117:224-232. [DOI: 10.1016/j.rvsc.2017.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 11/17/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022]
|
9
|
Yang WC, Hwang YS, Chen YY, Liu CL, Shen CN, Hong WH, Lo SM, Shen CR. Interleukin-4 Supports the Suppressive Immune Responses Elicited by Regulatory T Cells. Front Immunol 2017; 8:1508. [PMID: 29184551 PMCID: PMC5694475 DOI: 10.3389/fimmu.2017.01508] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/25/2017] [Indexed: 11/13/2022] Open
Abstract
Interleukin-4 (IL-4) has been considered as one of the tolerogenic cytokines in many autoimmune animal models and clinical settings. Despite its role in antagonizing pathogenic Th1 responses, little is known about whether IL-4 possesses functions that affect regulatory T cells (Tregs). Tregs are specialized cells responsible for the maintenance of peripheral tolerance through their immune modulatory capabilities. Interestingly, it has been suggested that IL-4 supplement at a high concentration protects responder T cells (Tresps) from Treg-mediated immune suppression. In addition, such supplement also impedes TGF-β-induced Treg differentiation in vitro. However, these phenomena may contradict the tolerogenic role of IL-4, and the effects of IL-4 on Tregs are therefore needed to be further elucidated. In this study, we utilized IL-4 knockout (KO) mice to validate the role of IL-4 on Treg-mediated immune suppression. Although IL-4 KO and control animals harbor similar frequencies of Tregs, Tregs from IL-4 KO mice weakly suppressed autologous Tresp activation. In addition, IL-4 deprivation impaired the ability of Tregs to modulate immune response, whereas IL-4 supplementation reinforced IL-4 KO Tregs in their function in suppressing Tresps. Finally, the presence of IL-4 was associated with increased cell survival and granzyme expression of Tregs. These results suggest the essential role of IL-4 in supporting Treg-mediated immune suppression, which may benefit the development of therapeutic strategies for autoimmune diseases.
Collapse
Affiliation(s)
- Wei-Cheng Yang
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yih-Shiou Hwang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Ying-Yu Chen
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chao-Lin Liu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.,College of Engineering, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Hsin Hong
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Sheng-Min Lo
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Rui Shen
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
10
|
Kim AH, Chung JJ, Akilesh S, Koziell A, Jain S, Hodgin JB, Miller MJ, Stappenbeck TS, Miner JH, Shaw AS. B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2017; 2:81836. [PMID: 29093269 DOI: 10.1172/jci.insight.81836] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
The efficacy of B cell depletion therapies in diseases such as nephrotic syndrome and rheumatoid arthritis suggests a broader role in B cells in human disease than previously recognized. In some of these diseases, such as the minimal change disease subtype of nephrotic syndrome, pathogenic antibodies and immune complexes are not involved. We hypothesized that B cells, activated in the kidney, might produce cytokines capable of directly inducing cell injury and proteinuria. To directly test our hypothesis, we targeted a model antigen to the kidney glomerulus and showed that transfer of antigen-specific B cells could induce glomerular injury and proteinuria. This effect was mediated by IL-4, as transfer of IL-4-deficient B cells did not induce proteinuria. Overexpression of IL-4 in mice was sufficient to induce kidney injury and proteinuria and could be attenuated by JAK kinase inhibitors. Since IL-4 is a specific activator of STAT6, we analyzed kidney biopsies and demonstrated STAT6 activation in up to 1 of 3 of minimal change disease patients, suggesting IL-4 or IL-13 exposure in these patients. These data suggest that the role of B cells in nephrotic syndrome could be mediated by cytokines.
Collapse
Affiliation(s)
- Alfred Hj Kim
- Division of Rheumatology, Department of Internal Medicine, and
| | - Jun-Jae Chung
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shreeram Akilesh
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ania Koziell
- Department of Experimental Immunobiology, Division of Transplantation Immunology and Mucosal Biology, King's College London and Department of Paediatric Nephrology, Evelina Children's Hospital, London, United Kingdom
| | - Sanjay Jain
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark J Miller
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thaddeus S Stappenbeck
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey H Miner
- Renal Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrey S Shaw
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.,Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Petersen F, Yue X, Riemekasten G, Yu X. Dysregulated homeostasis of target tissues or autoantigens - A novel principle in autoimmunity. Autoimmun Rev 2017; 16:602-611. [PMID: 28411168 DOI: 10.1016/j.autrev.2017.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/11/2017] [Indexed: 01/22/2023]
Abstract
Monogenic autoimmune disorders provide a powerful tool for our understanding of the principles of autoimmunity due to the obvious impact of a single gene on the disease. So far, approximately 100 single gene defects causing murine monogenic autoimmune disorders have been reported and the functional characterization of these genes will provide significant progress in understanding the nature of autoimmunity. According to their function, genes leading to monogenic autoimmune disorders can be categorized into two groups. An expectable first group contains genes involved in the homeostasis of the immune system, including homeostasis of immune organs and immune cells. Intriguingly, the second group consists of genes functionally involved in the homeostasis of target tissues or autoantigens. According to our novel hypothesis, we propose that autoimmunity represents a consequence of a dysregulated homeostasis of the immune system and/or its targets including autoantigens and target tissues. In this review we refer to both aspects of homeostasis in autoimmunity with a highlight on the role of the homeostasis of target tissues and autoantigens.
Collapse
Affiliation(s)
- Frank Petersen
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Xiaoyang Yue
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Gabriela Riemekasten
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany; Department of Rheumatology, University of Lübeck, 23538 Lübeck, Germany
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany; Xiamen-Borstel Joint Laboratory of Autoimmunity, Medical College of Xiamen University, Xiamen 361102, China.
| |
Collapse
|
12
|
Song EJ, Jeon SG, Kim KA, Kim JI, Moon M. Restricted CD4+ T cell receptor repertoire impairs cognitive function via alteration of Th2 cytokine levels. NEUROGENESIS 2017; 4:e1256856. [PMID: 28229084 PMCID: PMC5268764 DOI: 10.1080/23262133.2016.1256856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 01/29/2023]
Abstract
Despite the effects of CD4+ T cell dysfunction on cognitive and behavioral impairment are well established, the effects of Th2 cytokines on the adult hippocampal neurogenesis and cognitive function in restricted CD4+ T cell receptor (TCR) repertoire model have not been fully elucidate. We found that mice with restricted CD4+ repertoire TCR showed decreased adult hippocampal neurogenesis using OT-II mice. Moreover, we demonstrated that OT-II mice showed increased Th2 cytokine levels in peripheral organs and IL-4 levels in brain. Taken together, altered Th2 cytokine levels may impact learning and memory via impaired adult neurogenesis in restricted CD4+ repertoire TCR mice.
Collapse
Affiliation(s)
- Eun Ji Song
- Department of Biochemistry, College of Medicine, Konyang University , Daejeon, Republic of Korea
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University , Daejeon, Republic of Korea
| | - Kyoung Ah Kim
- Department of Biochemistry, College of Medicine, Konyang University , Daejeon, Republic of Korea
| | - Jin-Il Kim
- Department of Nursing, College of Nursing, Jeju National University , Jeju-si, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University , Daejeon, Republic of Korea
| |
Collapse
|
13
|
Pradel LP, Ooi CH, Romagnoli S, Cannarile MA, Sade H, Rüttinger D, Ries CH. Macrophage Susceptibility to Emactuzumab (RG7155) Treatment. Mol Cancer Ther 2016; 15:3077-3086. [DOI: 10.1158/1535-7163.mct-16-0157] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 11/16/2022]
|
14
|
Jeon SG, Kim KA, Chung H, Choi J, Song EJ, Han SY, Oh MS, Park JH, Kim JI, Moon M. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels. Mol Cells 2016; 39:603-10. [PMID: 27432189 PMCID: PMC4990752 DOI: 10.14348/molcells.2016.0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022] Open
Abstract
Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic.
Collapse
Affiliation(s)
- Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Kyoung Ah Kim
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 0527,
Korea
| | - Junghyun Choi
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 0527,
Korea
| | - Eun Ji Song
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Seung-Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447,
Korea
| | - Jong Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186,
Korea
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju 63243,
Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
- Konyang University Myunggok Medical Research Institute, Dajeon 35365,
Korea
| |
Collapse
|
15
|
Jandl C, King C. Cytokines in the Germinal Center Niche. Antibodies (Basel) 2016; 5:antib5010005. [PMID: 31557986 PMCID: PMC6698856 DOI: 10.3390/antib5010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
Cytokines are small, secreted, glycoproteins that specifically affect the interactions and communications between cells. Cytokines are produced transiently and locally, acting in a paracrine or autocrine manner, and they are extremely potent, ligating high affinity cell surface receptors to elicit changes in gene expression and protein synthesis in the responding cell. Cytokines produced during the differentiation of T follicular helper (Tfh) cells and B cells within the germinal center (GC) niche play an important role in ensuring that the humoral immune response is robust, whilst retaining flexibility, during the generation of affinity matured antibodies. Cytokines produced by B cells, antigen presenting cells and stromal cells are important for the differentiation of Tfh cells and Tfh cell produced cytokines act both in an autocrine fashion to firm Tfh cell differentiation and in a paracrine fashion to support the differentiation of memory B cells and plasma cells. In this review, we discuss the role of cytokines during the GC reaction with a particular focus on the influence of cytokines on Tfh cells.
Collapse
Affiliation(s)
- Christoph Jandl
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| | - Cecile King
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
16
|
Crampton SP, Morawski PA, Bolland S. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus. Dis Model Mech 2015; 7:1033-46. [PMID: 25147296 PMCID: PMC4142724 DOI: 10.1242/dmm.016451] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.
Collapse
Affiliation(s)
- Steve P Crampton
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Peter A Morawski
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergic and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
17
|
Abstract
γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4-producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4-regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4-inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance.
Collapse
|
18
|
Granato A, Hayashi EA, Baptista BJA, Bellio M, Nobrega A. IL-4 Regulates Bim Expression and Promotes B Cell Maturation in Synergy with BAFF Conferring Resistance to Cell Death at Negative Selection Checkpoints. THE JOURNAL OF IMMUNOLOGY 2014; 192:5761-75. [DOI: 10.4049/jimmunol.1300749] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
High risk association of IL-4 VNTR polymorphism with asthma in a North Indian population. Cytokine 2014; 66:87-94. [PMID: 24491812 DOI: 10.1016/j.cyto.2014.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 12/19/2013] [Accepted: 01/07/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND A case-control study was conducted to evaluate the role of IL-4 VNTR polymorphism in asthma that has been associated with various inflammatory diseases worldwide. This is the first case-control study conducted in India, investigating the role of IL-4 VNTR polymorphism in asthma pathogenesis. METHODS A case-control study was performed with a total of 824 adult subjects, inducting 410 asthma patients and 414 healthy controls from North India. The genotypes were identified by polymerase chain reaction. RESULTS Statistical analysis for the IL-4 VNTR polymorphism revealed that the Rp1 allele was significantly associated with asthma with OR=1.47, 95% CI (1.11-1.94) and p=0.005. The Rp1/Rp1 homozygous mutant genotype posed a high risk towards asthma with OR=2.39, 95% CI (0.96-6.14) and p=0.040. The Rp2/Rp1 heterozygous genotype also posed a risk towards asthma with OR=1.39, 95% CI (1.00-1.94) and p=0.040. Most of the phenotypic traits were significantly associated with the disease. CONCLUSIONS IL-4 VNTR polymorphism is a high risk factor for asthma in the studied North Indian population.
Collapse
|
20
|
Deletion of IL-4 receptor alpha on dendritic cells renders BALB/c mice hypersusceptible to Leishmania major infection. PLoS Pathog 2013; 9:e1003699. [PMID: 24204259 PMCID: PMC3812013 DOI: 10.1371/journal.ppat.1003699] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 08/28/2013] [Indexed: 02/05/2023] Open
Abstract
In BALB/c mice, susceptibility to infection with the intracellular parasite Leishmania major is driven largely by the development of T helper 2 (Th2) responses and the production of interleukin (IL)-4 and IL-13, which share a common receptor subunit, the IL-4 receptor alpha chain (IL-4Rα). While IL-4 is the main inducer of Th2 responses, paradoxically, it has been shown that exogenously administered IL-4 can promote dendritic cell (DC) IL-12 production and enhance Th1 development if given early during infection. To further investigate the relevance of biological quantities of IL-4 acting on DCs during in vivo infection, DC specific IL-4Rα deficient (CD11c(cre)IL-4Rα(-/lox)) BALB/c mice were generated by gene targeting and site-specific recombination using the cre/loxP system under control of the cd11c locus. DNA, protein, and functional characterization showed abrogated IL-4Rα expression on dendritic cells and alveolar macrophages in CD11c(cre)IL-4Rα(-/lox) mice. Following infection with L. major, CD11c(cre)IL-4Rα(-/lox) mice became hypersusceptible to disease, presenting earlier and increased footpad swelling, necrosis and parasite burdens, upregulated Th2 cytokine responses and increased type 2 antibody production as well as impaired classical activation of macrophages. Hypersusceptibility in CD11c(cre)IL-4Rα(-/lox) mice was accompanied by a striking increase in parasite burdens in peripheral organs such as the spleen, liver, and even the brain. DCs showed increased parasite loads in CD11c(cre)IL-4Rα(-/lox) mice and reduced iNOS production. IL-4Rα-deficient DCs produced reduced IL-12 but increased IL-10 due to impaired DC instruction, with increased mRNA expression of IL-23p19 and activin A, cytokines previously implicated in promoting Th2 responses. Together, these data demonstrate that abrogation of IL-4Rα signaling on DCs is severely detrimental to the host, leading to rapid disease progression, and increased survival of parasites in infected DCs due to reduced killing effector functions.
Collapse
|
21
|
Richard EM, Thiyagarajan T, Bunni MA, Basher F, Roddy PO, Siskind LJ, Nietert PJ, Nowling TK. Reducing FLI1 levels in the MRL/lpr lupus mouse model impacts T cell function by modulating glycosphingolipid metabolism. PLoS One 2013; 8:e75175. [PMID: 24040398 PMCID: PMC3769295 DOI: 10.1371/journal.pone.0075175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/13/2013] [Indexed: 01/01/2023] Open
Abstract
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1+/+ or Fli1+/- T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1+/- lupus T cells compared to animals receiving Fli1+/+ lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1+/- T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1+/+ T cells. Moreover, the Fli1+/- T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1+/+ T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus.
Collapse
Affiliation(s)
- Erin Morris Richard
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Thirumagal Thiyagarajan
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Marlene A. Bunni
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Fahmin Basher
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Patrick O. Roddy
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Leah J. Siskind
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Paul J. Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tamara K. Nowling
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
22
|
Lau M, Tsantikos E, Maxwell MJ, Tarlinton DM, Anderson GP, Hibbs ML. Loss of STAT6 promotes autoimmune disease and atopy on a susceptible genetic background. J Autoimmun 2012; 39:388-97. [PMID: 22867713 DOI: 10.1016/j.jaut.2012.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 01/22/2023]
Abstract
Atopy and autoimmunity are usually considered opposed immunological manifestations. Lyn(-/-) mice develop lupus-like autoimmune disease yet have coexistent intrinsic allergic traits and are prone to severe, persistent asthma induced exogenously. Recently it has been proposed that the Th2 environment and IgE auto-Abs promotes autoimmune disease in Lyn(-/-) mice. To examine this apparent contradiction, we derived Lyn(-/-) mice with a null mutation in STAT6, a regulator of Th2 immunity that integrates signaling from the IL-4/IL-13 receptor complex. Atopy and spontaneous peritoneal eosinophilia, characteristic of Lyn(-/-) mice, were lost in young Lyn(-/-)STAT6(-/-) mice; however, autoimmune disease was markedly exacerbated. At a time-point where Lyn(-/-) mice showed only mild autoimmune disease, Lyn(-/-)STAT6(-/-) mice had maximal titres of IgG and IgA auto-Abs, impaired renal function, myeloid expansion and a highly activated T cell compartment. Remarkably, low level IgE auto-Abs but not IgG1 auto-Abs were a feature of some aged Lyn(-/-)STAT6(-/-) mice. Furthermore, aged Lyn(-/-)STAT6(-/-) mice showed dramatically increased levels of serum IgE but minimal IgG1, suggesting that class-switching to IgE can occur in the absence of an IgG1 intermediate. The results show that Lyn-deficient mice can overcome the effects of disabling Th2 immunity, highlighting the importance of Lyn in controlling Th2 responses. Our data also indicates that, under certain conditions, STAT6-independent factors can promote IgE class-switching. This work has important clinical implications as many experimental therapies designed for the treatment of asthma or atopy are based on targeting the STAT6 axis, which could potentially reveal life endangering autoimmunity or promote atopy in susceptible individuals.
Collapse
Affiliation(s)
- Maverick Lau
- Leukocyte Signaling Laboratory, Department of Immunology, Monash University, Central Clinical School, Alfred Medical Research and Education Precinct, Commercial Road, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Iseki M, Omori-Miyake M, Xu W, Sun X, Takaki S, Rawlings DJ, Ziegler SF. Thymic stromal lymphopoietin (TSLP)-induced polyclonal B-cell activation and autoimmunity are mediated by CD4+ T cells and IL-4. Int Immunol 2012; 24:183-95. [PMID: 22281511 DOI: 10.1093/intimm/dxr113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cytokine thymic stromal lymphopoietin (TSLP) functions as a regulator of bone marrow B-cell development and a key initiator of allergic inflammation. In the current study, we show that mature B cells, derived from transgenic mice with systemically elevated levels of TSLP (K5-TSLP mice), exhibit markedly enhanced mitogenic responses in vitro and that this enhanced responsiveness leads to polyclonal B-cell activation and development of autoimmune hemolytic anemia in vivo. In contrast, B cells derived from K5-TSLP mice lacking CD4(+) T cells failed to show polyclonal activation. Furthermore, neither mature B-cell activation nor hemolytic anemia occurred in IL-4-deficient K5-TSLP mice. Consistent with these findings, activation of mature B cells occurred independently of B-cell intrinsic TSLP signals. Taken together, our results demonstrate that systemic alterations in TSLP, through induction of IL-4 from CD4(+) T cells and other cell types, functions as an important factor in peripheral B-cell homeostasis and promotion of humoral autoimmunity.
Collapse
|
24
|
Dar SA, Das S, Ramachandran VG, Bhattacharya SN, Mustafa MD, Banerjee BD, Verma P. Alterations in T-lymphocyte sub-set profiles and cytokine secretion by PBMC of systemic lupus erythematosus patients upon in vitro exposure to organochlorine pesticides. J Immunotoxicol 2012; 9:85-95. [PMID: 22214240 DOI: 10.3109/1547691x.2011.642103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic exposure to organochlorine pesticides (OCP) has been suspected of causing immunoregulatory abnormalities that eventually lead to development and progression of systemic lupus erythematosus (SLE), but the role of these non-genetic stimuli has remained poorly understood. The objectives of the study were to quantify the levels of different OCP residues in the blood of SLE patients and to study the effects of in vitro treatment of peripheral blood mononuclear cells (PBMC) from these patients and healthy controls with OCP. Levels of different OCP residues in the blood were measured by gas-liquid chromatography. Isolated PBMC were treated in vitro with hexachlorocyclohexane (HCH), o,p'-dichlorodiphenyltrichloroethane (DDT), or phytohemagglutinin-M (PHA-M) for 72 h, then stained with different dye-labeled monoclonal antibodies to analyze alterations in T-lymphocytes using flow cytometry. Levels of different T(H)1 and T(H)2 cytokines were also estimated by ELISA. Significantly higher levels of p,p'-DDE and β-HCH were detected in the blood of SLE patients than in healthy controls. HCH exposure markedly increased the percentages of CD3(+)CD4(+) T-lymphocytes and expression of CD45RO(+) on CD4(+) and CD8(+) T-lymphocytes, but decreased CD4(+)CD25(+) T-lymphocytes in SLE patients. DDT exposure increased the percentages of CD3(+)CD4(+) T-lymphocytes and decreased those of CD4(+)CD25(+) T-lymphocytes in SLE patients as compared to healthy controls. No significant responsiveness of patient PBMC to PHA-M stimulation was observed indicating suppression of T-lymphocytes by these OCP. Further, both HCH and DDT decreased the levels of IL-2 and IFNγ but had no effect on IL-4 levels in SLE patients. DDT also increased significantly the levels of IL-10 in patients. It is likely that higher levels and prolonged durations of exposure to HCH and DDT may significantly influence T-lymphocyte sub-sets and cytokine expression in vivo that could lead to the development or exacerbation of SLE.
Collapse
|
25
|
Abstract
Mouse models of lupus have for many years provided accessible and reliable research systems for the pathogenesis and therapy of systemic autoimmune disease, spanning a spectrum of inbred strains that develop spontaneous disease to experimentally induced, sometimes genetically manipulated animals. Nearly all the models share in common the development of glomerulonephritis and autoantibodies, including antinuclear and DNA specificities, the most common endpoints examined in experimental studies, but exhibit specific differences in the incidence of other end-organ manifestations such as hemolytic anemia, arthritis, dermatitis, and vasculitis. This chapter contrasts the clinical characteristics of these various models, providing an outline for their use and analysis.
Collapse
Affiliation(s)
- Stanford L Peng
- Rheumatology Clinical Research Unit, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| |
Collapse
|
26
|
Serum Proteomic Analysis from Bacteremic and Leucopenic Rabbits. J Surg Res 2011; 171:749-54. [DOI: 10.1016/j.jss.2010.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/02/2010] [Accepted: 04/27/2010] [Indexed: 11/17/2022]
|
27
|
Summers SA, Hoi A, Steinmetz OM, O'Sullivan KM, Ooi JD, Odobasic D, Akira S, Kitching AR, Holdsworth SR. TLR9 and TLR4 are required for the development of autoimmunity and lupus nephritis in pristane nephropathy. J Autoimmun 2011; 35:291-8. [PMID: 20810248 DOI: 10.1016/j.jaut.2010.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/24/2010] [Accepted: 05/28/2010] [Indexed: 10/19/2022]
Abstract
Systemic lupus erythematosus is a common autoimmune disease, with kidney involvement a serious complication associated with poor prognosis. Humoral immune responses constitute the hallmark of disease, however T helper cells are required for the generation of autoantibodies, as well as the induction and progression of renal injury. Administration of pristane to genetically intact mice results in the development of hypergammaglobulinaemia with the production of lupus like autoantibodies and proliferative glomerulonephritis, with similarities to human lupus nephritis. TLRs are intricately linked to the development of autoimmunity and are involved in the development of lupus nephritis. We injected wild type, TLR9-/- and TLR4-/- mice with pristane and assessed cellular and humoral autoimmunity and renal injury, 8 months later. TLR9-/- mice demonstrated a predominant decrease in Th1 cytokine production which resulted in decreased anti-RNP antibody levels, while anti-dsDNA levels remained intact. Compared to wild type mice treated with pristane, functional and histological renal injury and glomerular immunoglobulin and complement deposition was decreased in TLR9-/- mice. TLR4-/- mice demonstrated a global decrease in both Th1, IFNγ, and Th17 associated IL-17A and IL-6 cytokine production. Autoantibody levels of anti-dsDNA and anti-RNP were both decreased. Renal injury was attenuated in TLR4-/- mice which demonstrated less glomerular immunoglobulin and complement deposition. These results demonstrate that both TLR9 and TLR4 are required for 'full-blown' autoimmunity and organ injury in experimental lupus induced by pristane.
Collapse
Affiliation(s)
- S A Summers
- Centre for Inflammatory Diseases, Monash University Department of Medicine, 246 Clayton Rd, Clayton, VIC 3168, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yu HH, Liu PH, Lin YC, Chen WJ, Lee JH, Wang LC, Yang YH, Chiang BL. Interleukin 4 and STAT6 gene polymorphisms are associated with systemic lupus erythematosus in Chinese patients. Lupus 2010; 19:1219-1228. [DOI: 10.1177/0961203310371152] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
An imbalance between T Helper 1 (TH1) and T Helper 2 (TH2) cytokine production is important for the pathogenesis of systemic lupus erythematosus (SLE). We aimed to investigate gene—gene associations of TH1 and TH2 cytokines genes in Chinese patients with SLE. Twenty single nucleotide polymorphisms (SNPs) in eight cytokines genes were genotyped in 110 SLE patients and 138 healthy controls in a case—control association study. The minor allelic frequencies of interleukin4(IL4) -590 T/C, -33 T/C, 9241C/G, and IL10 -592 A/C were significantly increased in SLE patients compared with those in controls (p < 0.05). None of the separate 20 SNPs showed significant association with SLE after Bonferroni correction. An IL4 haplotype -590C/-33C/9241G/14965C was significantly associated with SLE (odds ratio 3.7, 95% confidence interval [CI] 1.5—8.9, p = 0.004, Bonferroni-corrected p = 0.024). A borderline significant three-locus gene—gene interaction among IL4 9241 C/G, IL4 -33 T/C, signal transducer and activator of transcription 6, IL4-induced (STAT6) 2892 C/T was detected by a multifactor dimensionality reduction test (p = 0.051). However, the presence of two at-risk genotypes lead to increased risk of SLE for two-locus interaction using logistic regression method. The risk of SLE increased significantly when a subject has two at-risk genotypes for IL4 -590C and STAT6 2892C (odds ratio, 3.24, 95% CI 1.5—7.0, p = 0.003, Bonferroni-corrected p = 0.009), IL4 -33C and STAT6 2892C (odds ratio 3.06, 95% CI 1.4— 6.7, p = 0.005, Bonferroni-corrected p = 0.015), as well as IL4 9241G and STAT6 2892C (odds ratio 3.34, 95% CI 1.6—7.1, p = 0.002, Bonferroni-corrected p = 0.006). Further, plasma IL-4 concentrations were significantly lower in SLE patients than in healthy controls (1.59 + 3.53 versus 5.67 + 11.28 pg/ml, p = 0.042). These results indicated that IL4 and STAT6 genes might be involved in the etiology of SLE and potentially increased SLE risk through their interaction effect in Chinese patients.
Collapse
Affiliation(s)
- H-H. Yu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - P-H. Liu
- Research Center for Gene, Environment and Human Health, College of Public Health, National Taiwan University, Taipei, Taiwan, Institute of Epidemiology, College of Public Health, Taipei, Taiwan
| | - Y-C. Lin
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - WJ Chen
- Institute of Epidemiology, College of Public Health, Taipei, Taiwan, Genetic Epidemiology Core Laboratory, Research Center for Medical Excellence, National Taiwan University, Taipei, Taiwan
| | - J-H. Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - L-C. Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Y-H. Yang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - B-L. Chiang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan,
| |
Collapse
|
29
|
Merson TD, Binder MD, Kilpatrick TJ. Role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination of the CNS. Neuromolecular Med 2010; 12:99-132. [PMID: 20411441 DOI: 10.1007/s12017-010-8112-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 02/26/2010] [Indexed: 12/11/2022]
Abstract
As the resident innate immune cells of the central nervous system (CNS), microglia fulfil a critical role in maintaining tissue homeostasis and in directing and eliciting molecular responses to CNS damage. The human disease Multiple Sclerosis and animal models of inflammatory demyelination are characterized by a complex interplay between degenerative and regenerative processes, many of which are regulated and mediated by microglia. Cellular communication between microglia and other neural and immune cells is controlled to a large extent by the activity of cytokines. Here we review the role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination, highlighting their importance in potentiating cell damage, promoting neuroprotection and enhancing cellular repair in a context-dependent manner.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Neuroscience Institutes, Centre for Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| | | | | |
Collapse
|
30
|
Rothstein TL, Guo B. Receptor crosstalk: reprogramming B cell receptor signalling to an alternate pathway results in expression and secretion of the autoimmunity-associated cytokine, osteopontin. J Intern Med 2009; 265:632-43. [PMID: 19493057 PMCID: PMC2774770 DOI: 10.1111/j.1365-2796.2009.02103.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Receptor crosstalk: reprogramming B cell receptor signalling to an alternate pathway results in expression and secretion of the autoimmunity-associated cytokine, osteopontin (Review). J Intern Med 2009; 265: 632-643.Intracellular signalling emanating from the B-cell antigen receptor is considered to follow a discrete course that requires participation by a set of mediators, grouped together as the signalosome, in order for downstream events to occur. Recent work indicates that this paradigm is true only for naïve B cells. Following engagement of the IL-4 receptor, a new, alternate pathway for B-cell receptor (BCR)-triggered intracellular signalling is established that bypasses the need for signalosome elements and operates in parallel with the classical, signalosome-dependent pathway. Reliance on Lyn and sensitivity to rottlerin by the former, but not the latter, distinguishes these two pathways. The advent of alternate pathway signalling leads to production and secretion by B cells of osteopontin (Opn). As Opn is a polyclonal B-cell activator that is strongly associated with a number of autoimmune diseases including lupus and rheumatoid arthritis, this novel finding is likely to be clinically relevant. Our results highlight the potential role of B-cell-derived Opn in immunity and autoimmunity and suggest that stress-related IL-4 expression might act to strengthen immunoglobulin secretion at the risk of autoantibody formation. Further, these results illustrate receptor crosstalk in the form of reprogramming, whereby engagement of one receptor (IL-4R) produces an effect that persists after the original ligand (IL-4) is removed and results in alteration of the pathway, and outcome, of signalling via a second receptor (BCR) following its activation.
Collapse
Affiliation(s)
- T L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | | |
Collapse
|
31
|
Jacob N, Yang H, Pricop L, Liu Y, Gao X, Zheng SG, Wang J, Gao HX, Putterman C, Koss MN, Stohl W, Jacob CO. Accelerated pathological and clinical nephritis in systemic lupus erythematosus-prone New Zealand Mixed 2328 mice doubly deficient in TNF receptor 1 and TNF receptor 2 via a Th17-associated pathway. THE JOURNAL OF IMMUNOLOGY 2009; 182:2532-41. [PMID: 19201910 DOI: 10.4049/jimmunol.0802948] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TNF-alpha has both proinflammatory and immunoregulatory functions. Whereas a protective role for TNF administration in systemic lupus erythematosus (SLE)-prone (New Zealand Black x New Zealand White)F(1) mice has been established, it remains uncertain whether this effect segregates at the individual TNFR. We generated SLE-prone New Zealand Mixed 2328 mice genetically deficient in TNFR1, in TNFR2, or in both receptors. Doubly-deficient mice developed accelerated pathological and clinical nephritis with elevated levels of circulating IgG anti-dsDNA autoantibodies and increased numbers of CD4(+) T lymphocytes, especially activated memory (CD44(high)CD62L(low)) CD4(+) T cells. We show that these cells expressed a Th17 gene profile, were positive for IL-17 intracellular staining by FACS, and produced exogenous IL-17 in culture. In contrast, immunological, pathological, and clinical profiles of mice deficient in either TNFR alone did not differ from those in each other or from those in wild-type controls. Thus, total ablation of TNF-alpha-mediated signaling was highly deleterious to the host in the New Zealand Mixed 2328 SLE model. These observations may have profound ramifications for the use of TNF and TNFR antagonists in human SLE and related autoimmune disorders, as well as demonstrate, for the first time, the association of the Th17 pathway with an animal model of SLE.
Collapse
Affiliation(s)
- Noam Jacob
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Taraseviciene-Stewart L, Nicolls MR, Kraskauskas D, Scerbavicius R, Burns N, Cool C, Wood K, Parr JE, Boackle SA, Voelkel NF. Absence of T cells confers increased pulmonary arterial hypertension and vascular remodeling. Am J Respir Crit Care Med 2007; 175:1280-9. [PMID: 17413127 PMCID: PMC2176089 DOI: 10.1164/rccm.200608-1189oc] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Severe pulmonary arterial hypertension (SPH) is a frequently lethal condition characterized by pulmonary vascular remodeling and right heart strain or failure. SPH is also often associated with autoimmune and collagen vascular disorders. OBJECTIVES To study the effects of T cells on the development of experimental SPH. METHODS Athymic nude rats lacking T cells were treated with a single subcutaneous injection of vascular endothelial growth factor (VEGF) receptor blocker SU5416 (20 mg/kg) to induce pulmonary vascular endothelial cell apoptosis. Immunohistochemical analysis and IL-4 levels of the lung tissue were performed. Cell death and proliferation were assessed by Western blot and immunohistochemistry. MEASUREMENTS AND MAIN RESULTS In contrast to SU5416-treated euthymic rats that develop SPH only in combination with chronic hypoxia, athymic nude rats developed SPH and vascular remodeling (similar to clinical SPH) at normoxic conditions as demonstrated by measurements of pulmonary artery pressure and right ventricle hypertrophy. Pulmonary arterioles became occluded with proliferating endothelial cells and were surrounded by mast cells, B cells, and macrophages. IL-4, proliferating cell nuclear antigen, and collagen type I levels were markedly increased in SU5416-treated athymic rat lungs. Antibody deposition was noted along the vascular endothelium in rats with SPH. Finally, protection from SPH was conferred by immune challenge with spleen cells from euthymic nude rats. CONCLUSIONS These studies demonstrate the importance of a complete, intact immune system in protecting against pulmonary angioproliferation in this new model of SPH as well as the importance of intact VEGF receptor signaling for lung endothelial cell homeostasis.
Collapse
Affiliation(s)
- Laimute Taraseviciene-Stewart
- Division of Pulmonary Sciences, Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Guo B, Blair D, Chiles TC, Lowell CA, Rothstein TL. Cutting Edge: B Cell Receptor (BCR) Cross-Talk: The IL-4-Induced Alternate Pathway for BCR Signaling Operates in Parallel with the Classical Pathway, Is Sensitive to Rottlerin, and Depends on Lyn. THE JOURNAL OF IMMUNOLOGY 2007; 178:4726-30. [PMID: 17404251 DOI: 10.4049/jimmunol.178.8.4726] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell exposure to IL-4 alters subsequent BCR signaling such that ERK phosphorylation becomes signalosome-independent; however, the nature of this new, alternate signaling pathway and its relationship to the classical, signalosome-dependent signaling pathway are not known. In this study, we report that the alternate and classical pathways for BCR signaling are differentially affected by rottlerin, and by Go6976 or LY294002, respectively. Furthermore, in B cells lacking protein kinase C (PKC)beta, the classical pathway for BCR signaling is blocked, whereas the alternate pathway is little affected. Conversely, in B cells lacking Lyn, the alternate pathway for BCR signaling is blocked, whereas the classical pathway is little affected. The rottlerin-sensitive element is not PKCdelta, inasmuch as the alternate pathway is not blocked in PKCdelta-deficient B cells. These results indicate that the rottlerin-sensitive, Lyn-dependent alternate pathway, and the classical pathway, for BCR signaling operate in parallel when BCR engagement follows IL-4 exposure.
Collapse
Affiliation(s)
- Benchang Guo
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|
34
|
Camici M. The Nephrotic Syndrome is an immunoinflammatory disorder. Med Hypotheses 2007; 68:900-5. [DOI: 10.1016/j.mehy.2006.04.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/05/2006] [Accepted: 04/10/2006] [Indexed: 11/15/2022]
|
35
|
Kono DH, Theofilopoulos AN. Genetics of SLE in mice. ACTA ACUST UNITED AC 2006; 28:83-96. [PMID: 16972052 DOI: 10.1007/s00281-006-0030-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 07/04/2006] [Indexed: 01/12/2023]
Abstract
Genetic studies in spontaneous, induced, and gene-manipulated mouse models of SLE have provided significant insights into the potential number and diversity of genes that can promote, resist, and modify lupus susceptibility. Novel genes and mechanisms of disease pathogenesis have also been identified. Importantly, mouse models have provided an initial view of the genomic landscape of lupus-affecting genes, and have documented the complexities of verifying and determining the role of specific candidate loci and genes. Mouse models of lupus should continue to serve as a vital approach to defining the genetics of SLE.
Collapse
Affiliation(s)
- Dwight H Kono
- Department of Immunology/IMM3, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | | |
Collapse
|
36
|
Yao G, Chen W, Luo H, Jiang Q, Xia Z, Zang L, Zuo J, Wei X, Chen Z, Shen X, Dong C, Sun B. Identification of core functional region of murine IL-4 using peptide phage display and molecular modeling. Int Immunol 2005; 18:19-29. [PMID: 16361318 DOI: 10.1093/intimm/dxh338] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Murine IL-4 is a pleiotropic cytokine with undefined core functional region for eliciting downstream signaling. We used molecular modeling to predict the binding sites recognized by an anti-IL-4-neutralizing mAb (11B.11) and peptide phage display to delineate their makeup. The results of these approaches were confirmed by site-directed mutagenesis analysis. The results suggest that the amino acid residues spanning from 79 to 86 (QRLFRAFR) on IL-4 are of the major binding site for 11B.11. Furthermore, the functional experiments demonstrate that the residues R80, R83 and R86, which are located in the helix C of murine IL-4, play a crucial role in binding to the IL-4R alpha-chain. Taken together, a new core functional region of murine IL-4 is identified, which provides new insight into the interaction between IL-4 and IL-4Ralpha. In addition, the results demonstrate that 11B.11 binds to a core functional region of murine IL-4, which prevents this cytokine from interacting with its cognate receptor.
Collapse
Affiliation(s)
- Gang Yao
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Biedermann T, Röcken M. Pro- and anti-inflammatory effects of IL-4: from studies in mice to therapy of autoimmune diseases in humans. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:235-42. [PMID: 15526946 DOI: 10.1007/3-540-26811-1_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- T Biedermann
- Department of Dermatology, Eberhard-Karls-Universität Tübingen, Germany
| | | |
Collapse
|
38
|
Mongini PKA, Inman JK, Han H, Kalled SL, Fattah RJ, McCormick S. Innate immunity and human B cell clonal expansion: effects on the recirculating B2 subpopulation. THE JOURNAL OF IMMUNOLOGY 2005; 175:6143-54. [PMID: 16237111 DOI: 10.4049/jimmunol.175.9.6143] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Foci of autoantigen-specific B lymphocytes in nonlymphoid tissues have been associated with development of autoimmune disease. To better understand the genesis of such ectopic lymphoid tissue, this study investigated whether several B cell-tropic innate immune system molecules, known to be elevated in response to inflammatory stimuli, can cooperate in fostering the T cell-independent clonal expansion of mature human B2 cells under conditions of limiting BCR engagement. Notable synergy was observed between BCR coligation with the C3dg-binding CD21/CD19 costimulatory complex, B cell-activating factor belonging to the TNF family (BAFF), and IL-4 in generating B cell progeny with sustained CD86 and DR expression. The synergy was observed over a wide range of BCR:ligand affinities and involved: 1) cooperative effects at promoting early cell cycle progression and viability; 2) BCR:CD21 coligation-promoted increases in BAFF receptors that were highly regulated by IL-4; 3) reciprocal effects of IL-4 and BAFF at dampening daughter cell apoptosis typical of stimulation by BCR:CD21 and either cytokine alone; and 4) BAFF-sustained expression of antiapoptotic Mcl-1 within replicating lymphoblasts. The results suggest that significant clonal proliferation of recirculating B2 cells occurs upon limited binding to C3dg-coated Ag in an inflammatory in vivo milieu containing both BAFF and IL-4. When rare autoantigen-presenting B cells undergo such expansions, both B cell and T cell autoimmunity may be promoted.
Collapse
Affiliation(s)
- Patricia K A Mongini
- Department of Rheumatology, Hospital for Joint Diseases, New York University Medical Center, NY 10003, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Mattsson N, Duzevik EG, Pelsue SC. Expansion of CD22lo B cells in the spleen of autoimmune-prone flaky skin mice. Cell Immunol 2005; 234:124-32. [PMID: 16054613 DOI: 10.1016/j.cellimm.2005.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 06/02/2005] [Accepted: 06/11/2005] [Indexed: 11/18/2022]
Abstract
Similar to murine models with compromised CD22/SHP-1 function, flaky skin (fsn) mutant mice exhibit lymphocyte hyperactivation and an autoimmune phenotype characterized by circulating autoantibodies to dsDNA and glomerulonephritis. Immunophenotyping of fsn/fsn splenic B cells was performed to determine if abnormalities in CD22 expression contributed to the phenotype. We identified an expansion of an IgM(bright) CD22lo population consistent with immature B-lymphocytes. While normal B-lymphocytes require IL-4 to achieve down-modulation of CD22 expression in response to BCR cross-linking, culture with anti-IgM alone led to reduced CD22 expression in fsn/fsn mice. Furthermore, when IL-4 was added to fsn/fsn cultures, no further reduction in CD22 expression was observed. This suggested that fsn/fsn B cells were pre-activated in vivo by chronic IL-4 exposure. A portion of these CD22lo cells expressed the B-1 surface marker CD11b. We contend that decreased activation thresholds among CD22lo B-lymphocytes contributes to the expansion of immature and B-1 B cell populations and to the development of autoimmune pathology in fsn/fsn mice.
Collapse
Affiliation(s)
- Nancy Mattsson
- Department of Applied Medical Sciences and Bioscience Research Institute of Southern Maine, University of Southern Maine, Portland, ME 04103, USA
| | | | | |
Collapse
|
40
|
Pace L, Pioli C, Doria G. IL-4 Modulation of CD4+CD25+ T Regulatory Cell-Mediated Suppression. THE JOURNAL OF IMMUNOLOGY 2005; 174:7645-53. [PMID: 15944265 DOI: 10.4049/jimmunol.174.12.7645] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Murine CD4(+)CD25(+) T regulatory (Treg) cells were cocultured with CD4(+)CD25(-) Th cells and APCs or purified B cells and stimulated by anti-CD3 mAb. Replacement of APCs by B cells did not significantly affect the suppression of CD4(+)CD25(-) Th cells. When IL-4 was added to separate cell populations, this cytokine promoted CD4(+)CD25(-) Th and CD4(+)CD25(+) Treg cell proliferation, whereas the suppressive competence of CD4(+)CD25(+) Treg cells was preserved. Conversely, IL-4 added to coculture of APCs, CD4(+)CD25(-) Th cells, and CD4(+)CD25(+) Treg cells inhibited the suppression of CD4(+)CD25(-) Th cells by favoring their survival through the induction of Bcl-2 expression. At variance, suppression was not affected by addition of IL-13, although this cytokine shares with IL-4 a receptor chain. When naive CD4(+)CD25(-) Th cells were replaced by Th1 and Th2 cells, cell proliferation of both subsets was equally suppressed, but suppression was less pronounced compared with that of CD4(+)CD25(-) Th cells. IL-4 production by Th2 cells was also inhibited. These results indicate that although CD4(+)CD25(+) Treg cells inhibit IL-4 production, the addition of IL-4 counteracts CD4(+)CD25(+) Treg cell-mediated suppression by promoting CD4(+)CD25(-) Th cell survival and proliferation.
Collapse
Affiliation(s)
- Luigia Pace
- Laboratory of Immunology, Department of Biology, University of Rome Tor Vergata, Italy
| | | | | |
Collapse
|
41
|
Choudhury A, Maldonado MA, Cohen PL, Eisenberg RA. The Role of Host CD4 T Cells in the Pathogenesis of the Chronic Graft-versus-Host Model of Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2005; 174:7600-9. [PMID: 15944260 DOI: 10.4049/jimmunol.174.12.7600] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus is characterized by production of autoantibodies and glomerulonephritis. The murine chronic graft-vs-host (cGVH) model of systemic lupus erythematosus is induced by allorecognition of foreign MHC class II determinants. Previous studies have shown that cGVH could not be induced in CD4 knockout (CD4KO) mice. We have further explored the role of host CD4 T cells in this model. Our studies now show that B cells in CD4KO mice have intrinsic defects that prevent them from responding to allohelp. In addition, B cells in CD4KO mice showed phenotypic differences compared with congeneic C57BL/6 B cells, indicating some degree of in vivo activation and increased numbers of cells bearing a marginal zone B cell phenotype. The transfer of syngeneic CD4 T cells at the time of initiation of cGVH did not correct these B cell abnormalities; however, if CD4 T cells were transferred during the development and maturation of B cells, then the B cells from CD4KO mice acquire the ability to respond in cGVH. These studies clearly indicate that B cells need to coexist with CD4 T cells early in their development to develop full susceptibility to alloactivation signals.
Collapse
Affiliation(s)
- Arpita Choudhury
- Department of Medicine, Division of Rheumatology, University of Pennsylvania, and Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
42
|
Welner R, Hastings W, Hill BL, Pelsue SC. Hyperactivation and proliferation of lymphocytes from the spleens of flaky skin (fsn) mutant mice. Autoimmunity 2005; 37:227-35. [PMID: 15497457 DOI: 10.1080/08916930410001666659] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mice homozygous for the flaky skin (fsn) single gene mutation have a severe hyperproliferative disease resulting in a complex phenotype, which includes widespread inflammation and autoimmunity. This study sought to characterize lymphocyte function of flaky skin mutant mice. Flaky skin lymphocytes show enhanced proliferation with in vitro mitogen stimulated spleen cells, as well as enriched splenic B- and T-cells. The production of IL-4 by fsn/fsn T-lymphocytes is increased dramatically compared with normal controls. Flaky skin lymphocytes exhibited increased responsiveness to IL-2, IL-4 and IL-7 in the absence of pre-activation, enhanced IgE production in response to ovalbumin immunization, and constitutive STAT6 activation. These data indicate that the cytokines IL-2, IL-4 and IL-7 likely contribute to the lymphocyte activation in fsn/fsn mutant mice. This lymphocyte hyperactivation may result in the development of systemic autoimmunity in fsn/fsn mutant mice.
Collapse
Affiliation(s)
- Robert Welner
- Department of Applied Medical Sciences, University of Southern Maine, Portland, ME 04104-9300, USA
| | | | | | | |
Collapse
|
43
|
Bocek P, Foucras G, Paul WE. Interferon gamma enhances both in vitro and in vivo priming of CD4+ T cells for IL-4 production. ACTA ACUST UNITED AC 2004; 199:1619-30. [PMID: 15210741 PMCID: PMC2212811 DOI: 10.1084/jem.20032014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Classical studies have demonstrated that in vitro priming of naive CD4 T cells to become T helper (Th)2 cells is strikingly dependent on interleukin (IL)-4, whereas priming for interferon (IFN)γ production is IL-12/IFNγ-dependent. Therefore, it was quite surprising when we noted that priming of naive C57BL/6 CD4+ cells to become IL-4 producers was substantially inhibited by the addition of anti-IFNγ antibodies. This was true using immobilized anti-CD3 and anti-CD28 antibodies or soluble anti-CD3/anti-CD28 and antigen-presenting cells in the presence or absence of added IL-4. Priming of CD4 T cells from IFNγ−/− C57BL/6 mice with immobilized anti-CD3 and anti-CD28 resulted in limited production of IL-4, even with the addition of 1,000 U/ml of IL-4. Titrating IFNγ into such cultures showed a striking increase in the proportion of T cells that secreted IL-4 upon challenge; this effect was completely IL-4–dependent in that it was blocked with anti–IL-4 antibody. Thus, IFNγ plays an unanticipated but substantial role in Th2 priming, although it is an important Th1 cytokine, and under certain circumstances a Th1 inducer.
Collapse
Affiliation(s)
- Petr Bocek
- Division of Allergy, LAboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 6610 Rockledge Dr., Rm. 3060, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
44
|
Biedermann T, Röcken M, Carballido JM. TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin. J Investig Dermatol Symp Proc 2004; 9:5-14. [PMID: 14870978 DOI: 10.1111/j.1087-0024.2004.00829.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Since the first description of the subpopulations of TH1 and TH2 cells, insights into the development and control of these cells as two polarized and physiologically balanced subsets have been generated. In particular, implications of the TH1-TH2 concept for TH cell-mediated skin disorders have been discovered. This article will review the basic factors that control the development of TH1 and TH2 cells, such as the cytokines IL-12 and IL-4 and transcription factors, the possible role of costimulatory molecules, and specialized dendritic cell populations. These regulatory mechanisms will be discussed in the context of polarized TH1 or TH2 skin disorders such as psoriasis and atopic dermatitis. Also presented are the principles that govern how chemokines and chemokine receptors recruit TH1 and TH2 cells to inflammatory sites and how they amplify these polarized TH cell responses. All of these concepts, including a novel role for IL-4-inducing TH1 responses, can contribute to the design of better therapeutic strategies to modulate TH cell-mediated immune responses.
Collapse
|
45
|
Lauder AJ, Jolin HE, Smith P, van den Berg JG, Jones A, Wisden W, Smith KGC, Dasvarma A, Fallon PG, McKenzie ANJ. Lymphomagenesis, hydronephrosis, and autoantibodies result from dysregulation of IL-9 and are differentially dependent on Th2 cytokines. THE JOURNAL OF IMMUNOLOGY 2004; 173:113-22. [PMID: 15210765 DOI: 10.4049/jimmunol.173.1.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interleukin-9 is an immunoregulatory cytokine implicated in the development of asthma and allergy. To investigate the role of IL-9 in vivo, we have generated transgenic mice in which IL-9 is expressed from its own promoter. Strikingly, overexpression of IL-9 resulted in premature mortality associated with a complex phenotype characterized by the development of autoantibodies, hydronephrosis, and T cell lymphoma. By intercrossing IL-9 transgenic mice with a panel of Th2 cytokine-deficient mice, we demonstrate that these disorders represent distinct phenotypes that can be dissociated by their differential dependence on Th2 cytokines. Autoantibody production was ablated in IL-9 transgenic animals with a combined absence of IL-4, IL-5, and IL-13, coincident with a reduction in peritoneal B-1 cells. Hydronephrosis arose in 75% of IL-9 transgenic animals and was dependent on the presence of IL-4 and IL-13. In contrast, T cell lymphomas developed independently of the other Th2 cytokines, with the generation of rapidly proliferating CD8(+) or CD4(+)CD8(+) T cell clones that arose in the thymus before infiltrating both lymphoid and nonlymphoid tissues. Our data highlight potentially important new roles for IL-9, through its regulation of downstream Th2 effector cytokines, in autoantibody production and in hydronephrosis.
Collapse
Affiliation(s)
- Angus J Lauder
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
van den Berg JG, Weening JJ. Role of the immune system in the pathogenesis of idiopathic nephrotic syndrome. Clin Sci (Lond) 2004; 107:125-36. [PMID: 15157184 DOI: 10.1042/cs20040095] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 05/11/2004] [Accepted: 05/25/2004] [Indexed: 12/19/2022]
Abstract
Idiopathic NS (nephrotic syndrome) is characterized by massive proteinuria, due to a leak in the glomerular barrier to proteins. Genetic defects that affect the function and the composition of the glomerular capillary wall, in particular of the visceral epithelial cells, have recently been recognized as the cause of familial forms of NS. MCNS (minimal change NS) and FSGS (focal and segmental glomerulosclerosis) are common non-familial forms of NS in which the causative defect has not yet been identified. Several studies have shown that non-familial NS is associated with the presence of circulating permeability factors and with complex disturbances in the immune system. Thus far, there is no direct evidence that these factors directly alter glomerular permeability to proteins, and some of these factors may be a consequence, rather than a cause, of NS. In this review, we will briefly highlight the mechanisms that underlie proteinuria in general and focus on the immunological disturbances associated with idiopathic NS, with attention to potential mechanisms whereby the immune system may directly act on the glomerular capillary filter.
Collapse
Affiliation(s)
- José G van den Berg
- Department of Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
47
|
Kametani Y, Katano I, Hirano Y, Mochida N, Takei E, Habu S. Transient suppression of IgG1 with IL-6 over-expression in immunized TCR-transgenic mice. Immunol Lett 2004; 93:27-32. [PMID: 15134895 DOI: 10.1016/j.imlet.2004.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 01/19/2004] [Accepted: 01/21/2004] [Indexed: 10/26/2022]
Abstract
Helper T cell-derived cytokines play a pivotal role in the production of antigen-specific IgG antibody by B cells. In order to examine the in vivo effect of massive activation of helper T cells on the production of specific antibodies, ovalbumin (OVA)-specific TCR transgenic mice (OVA23-3) were immunized with OVA and serum levels of antigen-specific antibodies were measured. As a result, a great enhancement of antigen-specific IgM secretion and delay of IgG secretion were observed while the T cells produced sufficient Th2 cytokines. Immediately after OVA-immunization, marked increase of serum IL-6 was noted, which was followed by a transient increase of antibody forming cells. Both in vivo and in vitro experiments demonstrated that excess amount of IL-6 enhanced IgM production by activated B cells while suppressing IgG production. These results suggest that overproduction of IL-6 in the early stages of the primary immunization promotes development of IgM producing cells and causes the delay of IgG1 secretion.
Collapse
Affiliation(s)
- Yoshie Kametani
- Division of Immunology, Department of Immunology, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Extensive data has accumulated over the last 10 to 15 years to implicate various cytokines in pathways of pathophysiology in rheumatic diseases. Abnormalities in cytokine production are not the cause of these diseases, but reflect continual production by immune and inflammatory cells. Cytokines are heterogeneous and function in an overlapping and redundant network. An important principle to emerge is that the net biologic response in a diseased organ or tissue reflects a balance between the local levels of proinflammatory and anti-inflammatory cytokines and factors. Thus, a chronic disease may result from the excess production of proinflammatory cytokines or the inadequate production of anti-inflammatory cytokines. This article summarizes the role of cytokines in rheumatic diseases by focusing on each disease and the involved pathways of pathophysiology.
Collapse
Affiliation(s)
- William P Arend
- Division of Rheumatology, University of Colorado Health Sciences Center B1115, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|
49
|
Mehling A, Beissert S. Dendritic cells under investigation in autoimmune disease. Crit Rev Biochem Mol Biol 2003; 38:1-21. [PMID: 12641341 DOI: 10.1080/713609208] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autoimmune disorders play an increasing role in public health, especially in light of the fact of the growing aged population, which primarily develop such diseases. A clear understanding of the mechanisms leading to the development of autoimmune responses and finally to autoimmune disease does not exist. Autoimmunity is characterized by the presence of autoantibodies and/or autoreactive T cells and the corresponding organ manifestation. Following the discovery of autoreactive T cells found in the periphery of mice and humans, the old immunological concept that autoreactive T cells are completely deleted in the thymus during evolution has been revised in recent years. Although antigen-presenting cells and particularly dendritic cells are known to play an important role in the regulation of immune responses and the activation of T cells, recent evidence suggests that the role of dendritic cells in the development of autoimmunity has been underestimated previously. This article aims to give a general overview on the basic immunological principles involved and gives a short review of the current literature on the functional relevance of dendritic cells in various human and murine autoimmune disorders.
Collapse
Affiliation(s)
- Annette Mehling
- Ludwig Boltzmann Institute for Cell Biology and Immunobiology of the Skin, Department of Dermatology, University of Münster, D-48149 Münster, Germany
| | | |
Collapse
|
50
|
Calvani N, Satoh M, Croker BP, Reeves WH, Richards HB. Nephritogenic autoantibodies but absence of nephritis in Il-12p35-deficient mice with pristane-induced lupus. Kidney Int 2003; 64:897-905. [PMID: 12911539 DOI: 10.1046/j.1523-1755.2003.00178.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND There is strong evidence that Th1 cytokines are essential for disease in murine models of lupus. Interleukin-12 (IL-12) is essential for Th1 cell differentiation and induces interferon-gamma (IFN-gamma) production. Paradoxically, it has been suggested that an IL-12 defect drives the pathogenesis of lupus, although its precise role remains unclear. We investigated the role of IL-12 for lupus-like disease induced by pristane. IL-12p35-deficient (-/-) and control (+/+) BALB/c mice were treated with pristane or phosphate-buffered saline (PBS). METHODS Proteinuria was measured and renal pathology evaluated 10 months after treatment. Sera were analyzed for autoantibodies and total immunoglobulin levels. Cytokine expression and production was analyzed. RESULTS Pristane induced nephritogenic autoantibodies and renal immunoglobulin and complement deposition in both IL-12 -/- and +/+ mice. However, proliferative pathology and proteinuria were absent in IL-12-/- mice, whereas pristane induced severe nephritis in one third of the +/+ mice. As expected, cytokine balance was skewed toward a Th2 response in pristane-treated IL-12 -/- mice. CONCLUSION These data indicate that renal immune complex deposition can occur in the absence of IL-12p35, but that structural renal damage requires the presence of IL-12p35 or mediators induced by this molecule, such as IFN-gamma. In contrast to the abrogation of nephritogenic autoantibodies by the lack of IFN-gamma, such antibodies are induced by pristane in IL-12p35-deficient mice. Absence of structural renal disease, despite the presence of nephritogenic autoantibodies in pristane-treated IL-12-/- mice, indicates that antibody deposition alone is not sufficient for the development of lupus nephritis in this model.
Collapse
Affiliation(s)
- Nicola Calvani
- Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|