1
|
Finnegan D, Connolly C, Mechoud MA, FitzGerald JA, Beresford T, Mathur H, Brennan L, Cotter PD, Loscher CE. Novel Dairy Fermentates Have Differential Effects on Key Immune Responses Associated with Viral Immunity and Inflammation in Dendritic Cells. Foods 2024; 13:2392. [PMID: 39123583 PMCID: PMC11311654 DOI: 10.3390/foods13152392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Fermented foods and ingredients, including furmenties derived from lactic acid bacteria (LAB) in dairy products, can modulate the immune system. Here, we describe the use of reconstituted skimmed milk powder to generate novel fermentates from Lactobacillus helveticus strains SC232, SC234, SC212, and SC210, and from Lacticaseibacillus casei strains SC209 and SC229, and demonstrate, using in vitro assays, that these fermentates can differentially modulate cytokine secretion via bone-marrow-derived dendritic cells (BMDCs) when activated with either the viral ligand loxoribine or an inflammatory stimulus, lipopolysaccharide. Specifically, we demonstrate that SC232 and SC234 increase cytokines IL-6, TNF-α, IL-12p40, IL-23, IL-27, and IL-10 and decrease IL-1β in primary bone-marrow-derived dendritic cells (BMDCs) stimulated with a viral ligand. In contrast, exposure of these cells to SC212 and SC210 resulted in increased IL-10, IL-1β, IL-23, and decreased IL-12p40 following activation of the cells with the inflammatory stimulus LPS. Interestingly, SC209 and SC229 had little or no effect on cytokine secretion by BMDCs. Overall, our data demonstrate that these novel fermentates have specific effects and can differentially enhance key immune mechanisms that are critical to viral immune responses, or can suppress responses involved in chronic inflammatory conditions, such as ulcerative colitis (UC), and Crohn's disease (CD).
Collapse
Affiliation(s)
- Dearbhla Finnegan
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland;
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
| | - Claire Connolly
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- UCD School of Agriculture and Food Science, University College Dublin, D04V1W8 Dublin, Ireland
| | - Monica A. Mechoud
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Jamie A. FitzGerald
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- UCD School of Agriculture and Food Science, University College Dublin, D04V1W8 Dublin, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Tom Beresford
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Harsh Mathur
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Lorraine Brennan
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- UCD School of Agriculture and Food Science, University College Dublin, D04V1W8 Dublin, Ireland
| | - Paul D. Cotter
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, University College Cork, T12 R229 Cork, Ireland
- VistaMilk, P61 C996 Co. Cork, Ireland
| | - Christine E. Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland;
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (C.C.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (L.B.); (P.D.C.)
| |
Collapse
|
2
|
Baker PJ, Bohrer AC, Castro E, Amaral EP, Snow-Smith M, Torres-Juárez F, Gould ST, Queiroz ATL, Fukutani ER, Jordan CM, Khillan JS, Cho K, Barber DL, Andrade BB, Johnson RF, Hilligan KL, Mayer-Barber KD. The inflammatory microenvironment of the lung at the time of infection governs innate control of SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586885. [PMID: 38585846 PMCID: PMC10996686 DOI: 10.1101/2024.03.27.586885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
SARS-CoV-2 infection leads to vastly divergent clinical outcomes ranging from asymptomatic infection to fatal disease. Co-morbidities, sex, age, host genetics and vaccine status are known to affect disease severity. Yet, how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure impacts the control of viral replication remains poorly understood. We demonstrate here that immune events in the mouse lung closely preceding SARS-CoV-2 infection significantly impact viral control and we identify key innate immune pathways required to limit viral replication. A diverse set of pulmonary inflammatory stimuli, including resolved antecedent respiratory infections with S. aureus or influenza, ongoing pulmonary M. tuberculosis infection, ovalbumin/alum-induced asthma or airway administration of defined TLR ligands and recombinant cytokines, all establish an antiviral state in the lung that restricts SARS-CoV-2 replication upon infection. In addition to antiviral type I interferons, the broadly inducible inflammatory cytokines TNFα and IL-1 precondition the lung for enhanced viral control. Collectively, our work shows that SARS-CoV-2 may benefit from an immunologically quiescent lung microenvironment and suggests that heterogeneity in pulmonary inflammation that precedes or accompanies SARS-CoV-2 exposure may be a significant factor contributing to the population-wide variability in COVID-19 disease outcomes.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Current Address: Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Ehydel Castro
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Eduardo P. Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Maryonne Snow-Smith
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
- Human Eosinophil Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Flor Torres-Juárez
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Sydnee T. Gould
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
- Current Address: Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Artur T. L. Queiroz
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Eduardo R. Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Cassandra M. Jordan
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Jaspal S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland 20852, USA
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Bruno B. Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Salvador, Bahia 41810-710, Brazil
- Laboratory of Clinical and Translational Research, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Bahia 40296-710, Brazil
| | - Reed F. Johnson
- SCV2 Virology Core, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Kerry L. Hilligan
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Prakash S, Dhanushkodi NR, Singer M, Quadiri A, Zayou L, Vahed H, Coulon PG, Ibraim IC, Tafoya C, Hitchcock L, Landucci G, Forthal DN, El Babsiri A, Tifrea DF, Figueroa CJ, Nesburn AB, Kuppermann BD, Gil D, Jones TM, Ulmer JB, BenMohamed L. A Broad-Spectrum Multi-Antigen mRNA/LNP-Based Pan-Coronavirus Vaccine Induced Potent Cross-Protective Immunity Against Infection and Disease Caused by Highly Pathogenic and Heavily Spike-Mutated SARS-CoV-2 Variants of Concern in the Syrian Hamster Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580225. [PMID: 38405942 PMCID: PMC10888826 DOI: 10.1101/2024.02.14.580225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-γ+TNFα+CD4+ and CD69+IFN-γ+TNFα+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Izabela Coimbra Ibraim
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Christine Tafoya
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Lauren Hitchcock
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Gary Landucci
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Donald N. Forthal
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Assia El Babsiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, Irvine, CA 92697
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns & Critical Care, School of Medicine, Irvine, CA 92697
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| |
Collapse
|
4
|
de Castro MV, Silva MVR, Oliveira LDM, Gozzi-Silva SC, Naslavsky MS, Scliar MO, Magalhães ML, da Rocha KM, Nunes K, Castelli EC, Magawa JY, Santos KS, Cunha-Neto E, Sato MN, Zatz M. Immunological evaluation of young unvaccinated patients with Turner syndrome after COVID-19. Int J Infect Dis 2023; 129:207-215. [PMID: 36758851 PMCID: PMC9905041 DOI: 10.1016/j.ijid.2023.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/27/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVES The X-chromosome contains the largest number of immune-related genes, which play a major role in COVID-19 symptomatology and susceptibility. Here, we had a unique opportunity to investigate, for the first time, COVID-19 outcomes in six unvaccinated young Brazilian patients with Turner syndrome (TS; 45, X0), including one case of critical illness in a child aged 10 years, to evaluate their immune response according to their genetic profile. METHODS A serological analysis of humoral immune response against SARS-CoV-2, phenotypic characterization of antiviral responses in peripheral blood mononuclear cells after stimuli, and the production of cytotoxic cytokines of T lymphocytes and natural killer cells were performed in blood samples collected from the patients with TS during the convalescence period. Whole exome sequencing was also performed. RESULTS Our volunteers with TS showed a delayed or insufficient humoral immune response to SARS-CoV-2 (particularly immunoglobulin G) and a decrease in interferon-γ production by cluster of differentiation (CD)4+ and CD8+ T lymphocytes after stimulation with toll-like receptors 7/8 agonists. In contrast, we observed a higher cytotoxic activity in the volunteers with TS than the volunteers without TS after phorbol myristate acetate/ionomycin stimulation, particularly granzyme B and perforin by CD8+ and natural killer cells. Interestingly, two volunteers with TS carry rare genetic variants in genes that regulate type I and III interferon immunity. CONCLUSION Following previous reports in the literature for other conditions, our data showed that patients with TS may have an impaired immune response against SARS-CoV-2. Furthermore, other medical conditions associated with TS could make them more vulnerable to COVID-19.
Collapse
Affiliation(s)
- Mateus V de Castro
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil.
| | - Monize V R Silva
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil
| | - Luana de M Oliveira
- Laboratório de Investigação em Dermatologia e Imunodeficiências, LIM 56, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil; Departamento de Dermatologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah C Gozzi-Silva
- Laboratório de Investigação em Dermatologia e Imunodeficiências, LIM 56, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil; Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Michel S Naslavsky
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Marilia O Scliar
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Monize L Magalhães
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Katia M da Rocha
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Kelly Nunes
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Erick C Castelli
- School of Medicine, Universidade Estadual Paulista, Botucatu, Brasil
| | - Jhosiene Y Magawa
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil; Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil; Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Keity S Santos
- Laboratório de Imunologia, Instituto do Coração (InCor), LIM19, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil; Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil; Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Instituto de Investigação em Imunologia - Instituto Nacional de Ciências e Tecnologia-iii-INCT, São Paulo, Brazil; Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria N Sato
- Laboratório de Investigação em Dermatologia e Imunodeficiências, LIM 56, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP), São Paulo, Brazil; Departamento de Dermatologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Rahman MM, McFadden G. Role of cytokines in poxvirus host tropism and adaptation. Curr Opin Virol 2022; 57:101286. [PMID: 36427482 PMCID: PMC9704024 DOI: 10.1016/j.coviro.2022.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022]
Abstract
Poxviruses are a diverse family of double-stranded DNA viruses that cause mild-to-severe disease in selective hosts, including humans. Although most poxviruses are restricted to their hosts, some members can leap host species and cause zoonotic diseases and, therefore, are genuine threats to human and animal health. The recent global spread of monkeypox in humans suggests that zoonotic poxviruses can adapt to a new host, spread rapidly in the new host, and evolve to better evade host innate barriers. Unlike many other viruses, poxviruses express an extensive repertoire of self-defense proteins that play a vital role in the evasion of host innate and adaptive immune responses in their newest host species. The function of these viral immune modulators and host-specific cytokine responses can result in different host tropism and poxvirus disease progression. Here, we review the role of different cytokines that control poxvirus host tropism and adaptation.
Collapse
|
6
|
Comparison of Transcriptomic Signatures between Monkeypox-Infected Monkey and Human Cell Lines. J Immunol Res 2022; 2022:3883822. [PMID: 36093436 PMCID: PMC9458371 DOI: 10.1155/2022/3883822] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022] Open
Abstract
Monkeypox virus (MPV) is a smallpox-like virus belonging to the genus Orthopoxvirus of the family Poxviridae. Unlike smallpox with no animal reservoir identified and patients suffering from milder symptoms with less mortality, several animals were confirmed to serve as natural hosts of MPV. The reemergence of a recently reported monkeypox epidemic outbreak in nonendemic countries has raised concerns about a global outburst. Since the underlying mechanism of animal-to-human transmission remains largely unknown, comprehensive analyses to discover principal differences in gene signatures during disease progression have become ever more critical. In this study, two MPV-infected in vitro models, including human immortal epithelial cancer (HeLa) cells and rhesus monkey (Macaca mulatta) kidney epithelial (MK2) cells, were chosen as the two subjects to identify alterations in gene expression profiles, together with co-regulated genes and pathways that are affected during monkeypox disease progression. Using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and MetaCore analyses, we discovered that elevated expression of genes associated with interleukins (ILs), G protein-coupled receptors (GPCRs), heat shock proteins (HSPs), Toll-like receptors (TLRs), and metabolic-related pathways play major roles in disease progression of both monkeypox-infected monkey MK2 and human HeLa cell lines. Interestingly, our analytical results also revealed that a cluster of differentiation 40 (CD40), plasmin, and histamine served as major regulators in the monkeypox-infected monkey MK2 cell line model, while interferons (IFNs), macrophages, and neutrophil-related signaling pathways dominated the monkeypox-infected human HeLa cell line model. Among immune pathways of interest, apart from traditional monkeypox-regulated signaling pathways such as nuclear factor- (NF-κB), mitogen-activated protein kinases (MAPKs), and tumor necrosis factors (TNFs), we also identified highly significantly expressed genes in both monkey and human models that played pivotal roles during the progression of monkeypox infection, including CXCL1, TNFAIP3, BIRC3, IL6, CCL2, ZC3H12A, IL11, CSF2, LIF, PTX3, IER3, EGR1, ADORA2A, and DUOX1, together with several epigenetic regulators, such as histone cluster family gene members, HIST1H3D, HIST1H2BJ, etc. These findings might contribute to specific underlying mechanisms related to the pathophysiology and provide suggestions regarding modes of transmission, post-infectious sequelae, and vaccine development for monkeypox in the future.
Collapse
|
7
|
Zhu X, Hu Z, Yu T, Hu H, Zhao Y, Li C, Zhu Q, Wang M, Zhai P, He L, Riaz Rajoka MS, Song X, He Z. The Antiviral Effects of Jasminin via Endogenous TNF-α and the Underlying TNF-α-Inducing Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051598. [PMID: 35268699 PMCID: PMC8911969 DOI: 10.3390/molecules27051598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/03/2022]
Abstract
Previous studies have reported that recombinant tumor necrosis factor (TNF)-α has powerful antiviral activity but severe systematic side effects. Jasminin is a common bioactive component found in Chinese herbal medicine beverage “Jasmine Tea”. Here, we report that jasminin-induced endogenous TNF-α showed antiviral activity in vitro. The underlying TNF-α-inducing action of jasminin was also investigated in RAW264.7 cells. The level of endogenous TNF-α stimulated by jasminin was first analyzed by an enzyme-linked immunosorbent assay (ELISA) from the cell culture supernatant of RAW264.7 cells. The supernatants were then collected to investigate the potential antiviral effect against herpes simplex virus 1 (HSV-1). The antiviral effects of jasminin alone or its supernatants were evaluated by a plaque reduction assay. The potential activation of the PI3K–Akt pathway, three main mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)–κB signaling pathways that induce TNF-α production were also investigated. Jasminin induces TNF-α protein expression in RAW264.7 cells without additional stimuli 10-fold more than the control. No significant up-expression of type I, II, and III interferons; interleukins 2 and 10; nor TNF-β were observed by the jasminin stimuli. The supernatants, containing jasminin-induced-TNF-α, showed antiviral activity against HSV-1. The jasminin-stimulated cells caused the simultaneous activation of the Akt, MAPKs, and NF–κB signal pathways. Furthermore, the pretreatment of the cells with the Akt, MAPKs, and NF–κB inhibitors effectively suppressed jasminin-induced TNF-α production. Our research provides evidence that endogenous TNF-α can be used as a strategy to encounter viral infections. Additionally, the Akt, MAPKs, and NF–κB signaling pathways are involved in the TNF-α synthesis that induced by jasminin.
Collapse
Affiliation(s)
- Xiaohong Zhu
- Affiliated Longhua People’s Hospital, Southern Medical University, Shenzhen 518172, China;
- School of Pharmaceutical Sciences, School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen 518000, China; (Z.H.); (T.Y.); (H.H.); (Y.Z.); (C.L.)
| | - Ziwei Hu
- School of Pharmaceutical Sciences, School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen 518000, China; (Z.H.); (T.Y.); (H.H.); (Y.Z.); (C.L.)
| | - Tian Yu
- School of Pharmaceutical Sciences, School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen 518000, China; (Z.H.); (T.Y.); (H.H.); (Y.Z.); (C.L.)
| | - Hao Hu
- School of Pharmaceutical Sciences, School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen 518000, China; (Z.H.); (T.Y.); (H.H.); (Y.Z.); (C.L.)
| | - Yunshi Zhao
- School of Pharmaceutical Sciences, School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen 518000, China; (Z.H.); (T.Y.); (H.H.); (Y.Z.); (C.L.)
| | - Chenyang Li
- School of Pharmaceutical Sciences, School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen 518000, China; (Z.H.); (T.Y.); (H.H.); (Y.Z.); (C.L.)
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Q.Z.); (M.W.)
| | - Mingzhong Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Q.Z.); (M.W.)
| | - Peng Zhai
- Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China;
| | - Longxia He
- Department of Otorhinolaryngology-Head and Neck Surgery, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu 610017, China;
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Xun Song
- School of Pharmaceutical Sciences, School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen 518000, China; (Z.H.); (T.Y.); (H.H.); (Y.Z.); (C.L.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Q.Z.); (M.W.)
- Correspondence: (X.S.); (Z.H.)
| | - Zhendan He
- School of Pharmaceutical Sciences, School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen 518000, China; (Z.H.); (T.Y.); (H.H.); (Y.Z.); (C.L.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Q.Z.); (M.W.)
- Correspondence: (X.S.); (Z.H.)
| |
Collapse
|
8
|
Kitaura H, Marahleh A, Ohori F, Noguchi T, Nara Y, Pramusita A, Kinjo R, Ma J, Kanou K, Mizoguchi I. Role of the Interaction of Tumor Necrosis Factor-α and Tumor Necrosis Factor Receptors 1 and 2 in Bone-Related Cells. Int J Mol Sci 2022; 23:ijms23031481. [PMID: 35163403 PMCID: PMC8835906 DOI: 10.3390/ijms23031481] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine expressed by macrophages, monocytes, and T cells, and its expression is triggered by the immune system in response to pathogens and their products, such as endotoxins. TNF-α plays an important role in host defense by inducing inflammatory reactions such as phagocytes and cytocidal systems activation. TNF-α also plays an important role in bone metabolism and is associated with inflammatory bone diseases. TNF-α binds to two cell surface receptors, the 55kDa TNF receptor-1 (TNFR1) and the 75kDa TNF receptor-2 (TNFR2). Bone is in a constant state of turnover; it is continuously degraded and built via the process of bone remodeling, which results from the regulated balance between bone-resorbing osteoclasts, bone-forming osteoblasts, and the mechanosensory cell type osteocytes. Precise interactions between these cells maintain skeletal homeostasis. Studies have shown that TNF-α affects bone-related cells via TNFRs. Signaling through either receptor results in different outcomes in different cell types as well as in the same cell type. This review summarizes and discusses current research on the TNF-α and TNFR interaction and its role in bone-related cells.
Collapse
|
9
|
Alvarez-de Miranda FJ, Alonso-Sánchez I, Alcamí A, Hernaez B. TNF Decoy Receptors Encoded by Poxviruses. Pathogens 2021; 10:pathogens10081065. [PMID: 34451529 PMCID: PMC8401223 DOI: 10.3390/pathogens10081065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Tumour necrosis factor (TNF) is an inflammatory cytokine produced in response to viral infections that promotes the recruitment and activation of leukocytes to sites of infection. This TNF-based host response is essential to limit virus spreading, thus poxviruses have evolutionarily adopted diverse molecular mechanisms to counteract TNF antiviral action. These include the expression of poxvirus-encoded soluble receptors or proteins able to bind and neutralize TNF and other members of the TNF ligand superfamily, acting as decoy receptors. This article reviews in detail the various TNF decoy receptors identified to date in the genomes from different poxvirus species, with a special focus on their impact on poxvirus pathogenesis and their potential use as therapeutic molecules.
Collapse
|
10
|
Azhar A, Hassan N, Singh M, Al-Hosaini K, Kamal MA. Synopsis on Pharmotechnological Approaches in Diagnostic to Management Strategies in Fighting Against COVID-19. Curr Pharm Des 2021; 27:4086-4099. [PMID: 34269664 DOI: 10.2174/1381612827666210715154004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
Nanoparticles (NPs) are projected to play a significant role in fighting against coronavirus disease (COVID-19). The various properties of NPs like magnetic and optical can be exploited to build diagnostic test kits. The unembellished morphological and physiochemical resemblances of SARS-CoV-2 with synthetic NPs make them a potent tool for mediation. Nanoparticles can be analytically functionalized with different proteins, polymers, and functional groups to perform specific inhibitory functions while also serving as delivery vehicles . Moreover, NPs can also be employed to prepare broad-spectrum respiratory drugs and vaccines that can guard seasonal flu and prepare the human race for the pandemic in the future. The present review outlines the role of NPs in detection, diagnostic and therapeutic against members of the coronavirus family. We emphasize nanomaterial-based approaches to address coronaviruses in general and SARS-CoV-2 in particular. We discuss NPs based detection systems like graphene (G-FET), biosensors, and plasmonic photothermal associated sensors. Inorganic, organic virus-like & self-assembly protein (VLP), and photodynamic inactivation of SARS-CoV-2 are also presented as therapeutic approaches exploiting NPs.
Collapse
Affiliation(s)
- Asim Azhar
- Aligarh College of Education, Aligarh Uttar Pradesh, India
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Manvi Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Khaled Al-Hosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451. Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
11
|
Oyler-Yaniv J, Oyler-Yaniv A, Maltz E, Wollman R. TNF controls a speed-accuracy tradeoff in the cell death decision to restrict viral spread. Nat Commun 2021; 12:2992. [PMID: 34016976 PMCID: PMC8137918 DOI: 10.1038/s41467-021-23195-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rapid death of infected cells is an important antiviral strategy. However, fast decisions that are based on limited evidence can be erroneous and cause unnecessary cell death and subsequent tissue damage. How cells optimize their death decision making strategy to maximize both speed and accuracy is unclear. Here, we show that exposure to TNF, which is secreted by macrophages during viral infection, causes cells to change their decision strategy from "slow and accurate" to "fast and error-prone". Mathematical modeling combined with experiments in cell culture and whole organ culture show that the regulation of the cell death decision strategy is critical to prevent HSV-1 spread. These findings demonstrate that immune regulation of cellular cognitive processes dynamically changes a tissues' tolerance for self-damage, which is required to protect against viral spread.
Collapse
Affiliation(s)
- Jennifer Oyler-Yaniv
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Alon Oyler-Yaniv
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Evan Maltz
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Roy Wollman
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA.
- Department of Integrative Biology and Physiology, University of California UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California UCLA, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Zhou X, Ge X, Zhang Y, Han J, Guo X, Chen Y, Zhou L, Yang H. Attenuation of porcine deltacoronavirus disease severity by porcine reproductive and respiratory syndrome virus coinfection in a weaning pig model. Virulence 2021; 12:1011-1021. [PMID: 33797313 PMCID: PMC8023240 DOI: 10.1080/21505594.2021.1908742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a potentially emerging zoonotic pathogen that causes severe diarrhea in young pigs, with a risk of fatal dehydration. Its pathogenicity on neonatal piglet has been previously reported, however, it is less known if the coinfection with immunosuppressive pathogens can influence PDCoV disease manifestation. Here, a coinfection model of PDCoV and porcine reproductive and respiratory syndrome virus (PRRSV), a global-spread immunosuppressive virus, was set to study their interaction. Weaning pigs in the coinfection group were intranasally inoculated with PRRSV NADC30-like virus and latterly orally inoculated with PDCoV at three day-post-inoculation (DPI). Unexpectedly, compared with pigs in the PDCoV single-infected group, the coinfected pigs did not show any obvious diarrhea, as PDCoV fecal shedding, average daily weight gain (ADWG), gross and microscopic lesions and PDCoV IHC scores consistently indicated that PRRSV coinfection lessened PDCoV caused diarrhea. Additionally, three proinflammatory cytokines TNF-α, IL-1 and IL-6, which can be secreted by PRRSV infected macrophages, were detected to be highly expressed at the intestine from both PRRSV infected groups. By adding to PDCoV-infected cells, these three cytokines were further confirmed to be able to inhibit the PDCoV replication post its cellular entry. Meanwhile, the inhibition effect of the supernatant from PRRSV-infected PAMs could be obviously blocked by the antagonist of these three cytokines. In conclusion, PRRSV coinfection increased TNF-α, IL-1, and IL-6 in the microenvironment of intestines, which inhibits the PDCoV proliferation, leading to lessened severity of diarrhea. The findings provide some new insight into the pathogenesis and replication regulation of PDCoV.
Collapse
Affiliation(s)
- Xinrong Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Yanhong Chen
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
13
|
Pandey P, Karupiah G. Targeting tumour necrosis factor to ameliorate viral pneumonia. FEBS J 2021; 289:883-900. [PMID: 33624419 DOI: 10.1111/febs.15782] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 02/04/2023]
Abstract
Pneumonia is a serious complication associated with inflammation of the lungs due to infection with viral pathogens. Seasonal and pandemic influenza viruses, variola virus (agent of smallpox) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; agent of COVID-19) are some leading examples. Viral pneumonia is triggered by excessive inflammation associated with dysregulated cytokine production, termed 'cytokine storm'. Several cytokines have been implicated but tumour necrosis factor (TNF) plays a critical role in driving lung inflammation, severe lung pathology and death. Despite this, the exact role TNF plays in the aetiology and pathogenesis of virus infection-induced respiratory complications is not well understood. In this review, we discuss the pathological and immunomodulatory roles of TNF in contributing to immunopathology and resolution of lung inflammation, respectively, in mouse models of influenza- and smallpox (mousepox)-induced pneumonia. We review studies that have investigated dampening of inflammation on the outcome of severe influenza and orthopoxvirus infections. Most studies on the influenza model have evaluated the efficacy of treatment with anti-inflammatory drugs, including anti-TNF agents, in animal models on the day of viral infection. We question the merits of those studies as they are not transferable to the clinic given that individuals generally present at a hospital only after the onset of disease symptoms and not on the day of infection. We propose that research should be directed at determining whether dampening lung inflammation after the onset of disease symptoms will reduce morbidity and mortality. Such a treatment strategy will be more relevant clinically.
Collapse
Affiliation(s)
- Pratikshya Pandey
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Gunasegaran Karupiah
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
14
|
Petrina M, Martin J, Basta S. Granulocyte macrophage colony-stimulating factor has come of age: From a vaccine adjuvant to antiviral immunotherapy. Cytokine Growth Factor Rev 2021; 59:101-110. [PMID: 33593661 PMCID: PMC8064670 DOI: 10.1016/j.cytogfr.2021.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
GM-CSF acts as a pro-inflammatory cytokine and a key growth factor produced by several immune cells such as macrophages and activated T cells. In this review, we discuss recent studies that point to the crucial role of GM-CSF in the immune response against infections. Upon induction, GM-CSF activates four main signalling networks including the JAK/STAT, PI3K, MAPK, and NFκB pathways. Many of these transduction pathways such as JAK/STAT signal via proteins commonly activated with other antiviral signalling cascades, such as those induced by IFNs. GM-CSF also helps defend against respiratory infections by regulating alveolar macrophage differentiation and enhancing innate immunity in the lungs. Here, we also summarize the numerous clinical trials that have taken advantage of GM-CSF's mechanistic attributes in immunotherapy. Moreover, we discuss how GM-CSF is used as an adjuvant in vaccines and how its activity is interfered with to reduce inflammation such as in the case of COVID-19. This review brings forth the current knowledge on the antiviral actions of GM-CSF, the associated signalling cascades, and its application in immunotherapy.
Collapse
Affiliation(s)
- Maria Petrina
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Jacqueline Martin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
| |
Collapse
|
15
|
Medhi R, Srinoi P, Ngo N, Tran HV, Lee TR. Nanoparticle-Based Strategies to Combat COVID-19. ACS APPLIED NANO MATERIALS 2020; 3:8557-8580. [PMID: 37556239 PMCID: PMC7482545 DOI: 10.1021/acsanm.0c01978] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is the worst pandemic disease of the current millennium. This disease is caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first exhibited human-to-human transmission in December 2019 and has infected millions of people within months across 213 different countries. Its ability to be transmitted by asymptomatic carriers has put a massive strain on the currently available testing resources. Currently, there are no clinically proven therapeutic methods that clearly inhibit the effects of this virus, and COVID-19 vaccines are still in the development phase. Strategies need to be explored to expand testing capacities, to develop effective therapeutics, and to develop safe vaccines that provide lasting immunity. Nanoparticles (NPs) have been widely used in many medical applications, such as biosensing, drug delivery, imaging, and antimicrobial treatment. SARS-CoV-2 is an enveloped virus with particle-like characteristics and a diameter of 60-140 nm. Synthetic NPs can closely mimic the virus and interact strongly with its proteins due to their morphological similarities. Hence, NP-based strategies for tackling this virus have immense potential. NPs have been previously found to be effective tools against many viruses, especially against those from the Coronaviridae family. This Review outlines the role of NPs in diagnostics, therapeutics, and vaccination for the other two epidemic coronaviruses, the 2003 severe acute respiratory syndrome (SARS) virus and the 2012 Middle East respiratory syndrome (MERS) virus. We also highlight nanomaterial-based approaches to address other coronaviruses, such as human coronaviruses (HCoVs); feline coronavirus (FCoV); avian coronavirus infectious bronchitis virus (IBV); coronavirus models, such as porcine epidemic diarrhea virus (PEDV), porcine reproductive and respiratory syndrome virus (PRRSV), and transmissible gastroenteritis virus (TGEV); and other viruses that share similarities with SARS-CoV-2. This Review combines the salient principles from previous antiviral studies with recent research conducted on SARS-CoV-2 to outline NP-based strategies that can be used to combat COVID-19 and similar pandemics in the future.
Collapse
Affiliation(s)
- Riddhiman Medhi
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - Pannaree Srinoi
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - Nhat Ngo
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - Hung-Vu Tran
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for
Superconductivity, University of Houston, 4800 Calhoun Road,
Houston, Texas 77204-5003, United States
| |
Collapse
|
16
|
Honarmand Ebrahimi K, Vowles J, Browne C, McCullagh J, James WS. ddhCTP produced by the radical-SAM activity of RSAD2 (viperin) inhibits the NAD + -dependent activity of enzymes to modulate metabolism. FEBS Lett 2020; 594:1631-1644. [PMID: 32232843 DOI: 10.1002/1873-3468.13778] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023]
Abstract
Radical S-adenosylmethionine (SAM) domain-containing protein 2 (RSAD2; viperin) is a key enzyme in innate immune responses that is highly expressed in response to viral infection and inflammatory stimuli in many cell types. Recently, it was found that RSAD2 catalyses transformation of cytidine triphosphate (CTP) to its analogue 3'-deoxy-3',4'-didehydro-CTP (ddhCTP). The cellular function of this metabolite is unknown. Here, we analysed the extra- and intracellular metabolite levels in human induced pluripotent stem cell (hiPSC)-derived macrophages using high-resolution LC-MS/MS. The results together with biochemical assays and molecular docking simulations revealed that ddhCTP inhibits the NAD+ -dependent activity of enzymes including that of the housekeeping enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). We propose that ddhCTP regulates cellular metabolism in response to inflammatory stimuli such as viral infection, pointing to a broader function of RSAD2 than previously thought.
Collapse
Affiliation(s)
| | - Jane Vowles
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Cathy Browne
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | - William S James
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
17
|
Becker J, Kinast V, Döring M, Lipps C, Duran V, Spanier J, Tegtmeyer PK, Wirth D, Cicin-Sain L, Alcamí A, Kalinke U. Human monocyte-derived macrophages inhibit HCMV spread independent of classical antiviral cytokines. Virulence 2019; 9:1669-1684. [PMID: 30403913 PMCID: PMC7000197 DOI: 10.1080/21505594.2018.1535785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection of healthy individuals with human cytomegalovirus (HCMV) is usually unnoticed and results in life-long latency, whereas HCMV reactivation as well as infection of newborns or immunocompromised patients can cause life-threatening disease. To better understand HCMV pathogenesis we studied mechanisms that restrict HCMV spread. We discovered that HCMV-infected cells can directly trigger plasmacytoid dendritic cells (pDC) to mount antiviral type I interferon (IFN-I) responses, even in the absence of cell-free virus. In contrast, monocyte-derived cells only expressed IFN-I when stimulated by cell-free HCMV, or upon encounter of HCMV-infected cells that already produced cell-free virus. Nevertheless, also in the absence of cell-free virus, i.e., upon co-culture of infected epithelial/endothelial cells and monocyte-derived macrophages (moMΦ) or dendritic cells (moDC), antiviral responses were induced that limited HCMV spread. The induction of this antiviral effect was dependent on cell-cell contact, whereas cell-free supernatants from co-culture experiments also inhibited virus spread, implying that soluble factors were critically needed. Interestingly, the antiviral effect was independent of IFN-γ, TNF-α, and IFN-I as indicated by cytokine inhibition experiments using neutralizing antibodies or the vaccinia virus-derived soluble IFN-I binding protein B18R, which traps human IFN-α and IFN-β. In conclusion, our results indicate that human macrophages and dendritic cells can limit HCMV spread by IFN-I dependent as well as independent mechanisms, whereas the latter ones might be particularly relevant for the restriction of HCMV transmission via cell-to-cell spread.
Collapse
Affiliation(s)
- Jennifer Becker
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Volker Kinast
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Marius Döring
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Christoph Lipps
- b Model Systems for Infection and Immunity , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Veronica Duran
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Julia Spanier
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Pia-Katharina Tegtmeyer
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| | - Dagmar Wirth
- b Model Systems for Infection and Immunity , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Luka Cicin-Sain
- c Department of Vaccinology , Helmholtz Centre for Infection Research , Braunschweig , Germany.,d German Center for Infection Research (DZIF) , Hannover-Braunschweig site , Germany.,e Institute for Virology , Hannover Medical School , Hannover , Germany
| | - Antonio Alcamí
- f Centro de Biología Molecular Severo Ochoa , Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid , Madrid , Spain
| | - Ulrich Kalinke
- a Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School , Hannover , Germany
| |
Collapse
|
18
|
Brassard J, Maheux C, Langlois A, Bernatchez E, Marsolais D, Flamand N, Blanchet MR. Lipopolysaccharide impacts murine CD103 + DC differentiation, altering the lung DC population balance. Eur J Immunol 2019; 49:638-652. [PMID: 30707446 DOI: 10.1002/eji.201847910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Conventional DCs are a heterogeneous population that bridge the innate and adaptive immune systems. The lung DC population comprises CD103+ XCR1+ DC1s and CD11b+ DC2s; their various combined functions cover the whole spectrum of immune responses needed to maintain homeostasis. Here, we report that in vivo exposure to LPS leads to profound alterations in the proportions of CD103+ XCR1+ DCs in the lung. Using ex vivo LPS and TNF stimulations of murine lung and spleen-isolated DCs, we show that this is partly due to a direct downregulation of the GM-CSF-induced DC CD103 expression. Furthermore, we demonstrate that LPS-induced systemic inflammation alters the transcriptional signature of DC precursors toward a lower capacity to differentiate into XCR1+ DCs. Also, we report that TNF prevents the capacity of pre-DCs to express CD103 upon maturation. Overall, our results indicate that exposure to LPS directly impacts the capacity of pre-DCs to differentiate into XCR1+ DCs, in addition to lowering their capacity to express CD103. This leads to decreased proportions of CD103+ XCR1+ DCs in the lung, favoring CD11b+ DCs, which likely plays a role in the break in homeostasis following LPS exposure, and in determining the nature of the immune response to LPS.
Collapse
Affiliation(s)
- Julyanne Brassard
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Catherine Maheux
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Anick Langlois
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Emilie Bernatchez
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - David Marsolais
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marie-Renee Blanchet
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
19
|
Alejo A, Ruiz-Argüello MB, Pontejo SM, Fernández de Marco MDM, Saraiva M, Hernáez B, Alcamí A. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation. Nat Commun 2018; 9:1790. [PMID: 29724993 PMCID: PMC5934441 DOI: 10.1038/s41467-018-04098-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.
Collapse
Affiliation(s)
- Alí Alejo
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, 28130, Spain
| | - M Begoña Ruiz-Argüello
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, 28130, Spain.,Progenika Biopharma, 48160, Derio, Spain
| | - Sergio M Pontejo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain.,National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - María Del Mar Fernández de Marco
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain.,Animal & Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK
| | - Margarida Saraiva
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom.,Institute for Molecular and Cell Biology, 4200-135, Porto, Portugal
| | - Bruno Hernáez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid, 28049, Spain. .,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, United Kingdom.
| |
Collapse
|
20
|
Panagioti E, Klenerman P, Lee LN, van der Burg SH, Arens R. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections. Front Immunol 2018; 9:276. [PMID: 29503649 PMCID: PMC5820320 DOI: 10.3389/fimmu.2018.00276] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
For many years, the focus of prophylactic vaccines was to elicit neutralizing antibodies, but it has become increasingly evident that T cell-mediated immunity plays a central role in controlling persistent viral infections such as with human immunodeficiency virus, cytomegalovirus, and hepatitis C virus. Currently, various promising prophylactic vaccines, capable of inducing substantial vaccine-specific T cell responses, are investigated in preclinical and clinical studies. There is compelling evidence that protection by T cells is related to the magnitude and breadth of the T cell response, the type and homing properties of the memory T cell subsets, and their cytokine polyfunctionality and metabolic fitness. In this review, we evaluated these key factors that determine the qualitative and quantitative properties of CD4+ and CD8+ T cell responses in the context of chronic viral disease and prophylactic vaccine development. Elucidation of the mechanisms underlying T cell-mediated protection against chronic viral pathogens will facilitate the development of more potent, durable and safe prophylactic T cell-based vaccines.
Collapse
Affiliation(s)
- Eleni Panagioti
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lian N. Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
21
|
Mohankrishnan A, Parmar R, Bhurani V, Dalai SK. Lack of TNF-α signaling through p55 makes the mice more susceptible to acute infection but does not alter state of latency and reactivation of HSV-1. Virus Res 2018; 244:1-5. [DOI: 10.1016/j.virusres.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/28/2017] [Accepted: 11/02/2017] [Indexed: 11/26/2022]
|
22
|
Wang W, Xu L, Su J, Peppelenbosch MP, Pan Q. Transcriptional Regulation of Antiviral Interferon-Stimulated Genes. Trends Microbiol 2017; 25:573-584. [PMID: 28139375 PMCID: PMC7127685 DOI: 10.1016/j.tim.2017.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 12/16/2022]
Abstract
Interferon-stimulated genes (ISGs) are a group of gene products that coordinately combat pathogen invasions, in particular viral infections. Transcription of ISGs occurs rapidly upon pathogen invasion, and this is classically provoked via activation of the Janus kinase/signal transducer and activator of transcription (JAK–STAT) pathway, mainly by interferons (IFNs). However, a plethora of recent studies have reported a variety of non-canonical mechanisms regulating ISG transcription. These new studies are extremely important for understanding the quantitative and temporal differences in ISG transcription under specific circumstances. Because these canonical and non-canonical regulatory mechanisms are essential for defining the nature of host defense and associated detrimental proinflammatory effects, we comprehensively review the state of this rapidly evolving field and the clinical implications of recently acquired knowledge in this respect. Transcriptional regulation of ISGs defines the state of host anti-pathogen defense. In light of the recently identified regulatory elements and mechanisms of the IFN–JAK–STAT pathway, new insights have been gained into this classical cascade in regulating ISG transcription. A variety of non-canonical mechanisms have been recently revealed that coordinately regulate ISG transcription. With regards to the adverse effects of IFNs in clinic, ISG-based antiviral strategy could be the next promising frontier in drug discovery.
Collapse
Affiliation(s)
- Wenshi Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Lei Xu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Junhong Su
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center and Postgraduate School Molecular Medicine, Rotterdam, The Netherlands.
| |
Collapse
|
23
|
TNFα Impairs Rhabdoviral Clearance by Inhibiting the Host Autophagic Antiviral Response. PLoS Pathog 2016; 12:e1005699. [PMID: 27351838 PMCID: PMC4924823 DOI: 10.1371/journal.ppat.1005699] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/20/2016] [Indexed: 11/19/2022] Open
Abstract
TNFα is a pleiotropic pro-inflammatory cytokine with a key role in the activation of the immune system to fight viral infections. Despite its antiviral role, a few viruses might utilize the host produced TNFα to their benefit. Some recent reports have shown that anti-TNFα therapies could be utilized to treat certain viral infections. However, the underlying mechanisms by which TNFα can favor virus replication have not been identified. Here, a rhabdoviral infection model in zebrafish allowed us to identify the mechanism of action by which Tnfa has a deleterious role for the host to combat certain viral infections. Our results demonstrate that Tnfa signals through its receptor Tnfr2 to enhance viral replication. Mechanistically, Tnfa does not affect viral adhesion and delivery from endosomes to the cytosol. In addition, the host interferon response was also unaffected by Tnfa levels. However, Tnfa blocks the host autophagic response, which is required for viral clearance. This mechanism of action provides new therapeutic targets for the treatment of SVCV-infected fish, and advances our understanding of the previously enigmatic deleterious role of TNFα in certain viral infections. Tumor necrosis factor alpha (TNFα) is one of the main pro-inflammatory cytokines produced in response to a broad type of infections [1]. Although TNFα has a crucial role in protecting the host organism from pathogens, its deregulation can promote susceptibility to pathogens by impairing pathogen clearance and, ultimately, promoting maintenance of infection and death. In addition, some viruses might utilize the host produced TNFα to their benefit. Thus, anti-TNFα therapies could be utilized to treat certain viral infections. However, the underlying mechanisms by which TNFα can favor certain virus replication have not been identified. Here, we have used a viral infection model in zebrafish to identify the mechanism of action by which TNFα has a deleterious role for the host to combat certain viral infections. Our results demonstrate that Tnfa does not affect viral ability to infect host cells or to antagonize the main host antiviral pathway, namely the interferon pathway. However, Tnfa impairs viral clearance by blocking the host autophagy response, which is usually used by host cells to degrade unnecessary or dysfunctional cellular components, and that we found to be critical to eliminate intracellular viral particles. This mechanism of action provides new therapeutic targets for the treatment of SVCV-infected fish in aquaculture and probably to other viral infection affecting cattle industry and human.
Collapse
|
24
|
Wang C, Armstrong SM, Sugiyama MG, Tabuchi A, Krauszman A, Kuebler WM, Mullen B, Advani S, Advani A, Lee WL. Influenza-Induced Priming and Leak of Human Lung Microvascular Endothelium upon Exposure to Staphylococcus aureus. Am J Respir Cell Mol Biol 2015; 53:459-70. [PMID: 25693001 DOI: 10.1165/rcmb.2014-0373oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A major cause of death after influenza virus infection is lung injury due to a bacterial superinfection, yet the mechanism is unknown. Death has been attributed to virus-induced immunosuppression and bacterial overgrowth, but this hypothesis is based on data from the preantibiotic era and animal models that omit antimicrobial therapy. Because of diagnostic uncertainty, most patients with influenza receive antibiotics, making bacterial overgrowth unlikely. Respiratory failure after superinfection presents as acute respiratory distress syndrome, a disorder characterized by lung microvascular leak and edema. The objective of this study was to determine whether the influenza virus sensitizes the lung endothelium to leak upon exposure to circulating bacterial-derived molecular patterns from Staphylococcus aureus. In vitro as well as in vivo models of influenza followed by S. aureus superinfection were used. Molecular mechanisms were explored using molecular biology, knockout mice, and human autopsy specimens. Influenza virus infection sensitized human lung endothelium to leak when challenged with S. aureus, even at low doses of influenza and even when the pathogens were given days apart. Influenza virus increased endothelial expression of TNFR1 both in vitro and in intact lungs, a finding corroborated by human autopsy specimens of patients with influenza. Leak was recapitulated with protein A, a TNFR1 ligand, and sequential infection caused protein A-dependent loss of IκB, cleavage of caspases 8 and 3, and lung endothelial apoptosis. Mice infected sequentially with influenza virus and S. aureus developed significantly increased lung edema that was protein A and TNFR1 dependent. Influenza virus primes the lung endothelium to leak, predisposing patients to acute respiratory distress syndrome upon exposure to S. aureus.
Collapse
Affiliation(s)
- Changsen Wang
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Susan M Armstrong
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada.,2 Institute of Medical Science
| | - Michael G Sugiyama
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada.,3 Department of Laboratory Medicine and Pathobiology
| | - Arata Tabuchi
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Adrienn Krauszman
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Wolfgang M Kuebler
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Brendan Mullen
- 4 Department of Pathology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Suzanne Advani
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Advani
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada.,5 Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Warren L Lee
- 1 Keenan Research Centre for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada.,2 Institute of Medical Science.,3 Department of Laboratory Medicine and Pathobiology.,6 Interdepartmental Division of Critical Care and.,5 Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
25
|
Hafidh RR, Abdulamir AS, Abu Bakar F, Sekawi Z, Jahansheri F, Jalilian FA. Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus -1: an in vitro study on virally infected Vero and MRC-5 cell lines. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:179. [PMID: 26062546 PMCID: PMC4461985 DOI: 10.1186/s12906-015-0688-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/21/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND New sources for discovering novel antiviral agents are desperately needed. The current antiviral products are both expensive and not very effective. METHODS The antiviral activity of methanol extract of mung bean sprouts (MBS), compared to Ribavarin and Acyclovir, on respiratory syncytial virus (RSV) and Herpes Simplex virus -1 (HSV-1) was investigated using cytotoxicity, virus yield reduction, virucidal activity, and prophylactic activity assays on Vero and MRC-5 cell lines. Moreover, the level of antiviral cytokines, IFNβ, TNFα, IL-1, and IL-6 was assessed in MBS-treated, virally infected, virally infected MBS-treated, and control groups of MRC-5 cells using ELISA. RESULTS MBS extract showed reduction factors (RF) 2.2 × 10 and 0.5 × 10(2) for RSV and HSV-1, respectively. The 2 h incubation virucidal and prophylactic selectivity indices (SI) of MBS on RSV were 14.18 and 12.82 versus Ribavarin SI of 23.39 and 21.95, respectively, and on HSV-1, SI were 18.23 and 10.9 versus Acyclovir, 22.56 and 15.04, respectively. All SI values were >10 indicating that MBS has a good direct antiviral and prophylactic activities on both RSV and HSV-1. Moreover, interestingly, MBS extract induced vigorously IFNβ, TNFα, IL-1, and IL-6 cytokines in MRC-5 infected-treated group far more than other groups (P < 0.05) and induced TNFα and IL-6 in treated group more than infected group (P < 0.05). CONCLUSIONS MBS extract has potent antiviral and to a lesser extent, prophylactic activities against both RSV and HSV-1, and in case of HSV-1, these activities were comparable to Acyclovir. Part of the underlying mechanism(s) of these activities is attributed to MBS potential to remarkably induce antiviral cytokines in human cells. Hence, we infer that MBS methanol extract could be used as such or as purified active component in protecting and treating RSV and HSV-1 infections. More studies are needed to pinpoint the exact active components responsible for the MBS antiviral activities.
Collapse
|
26
|
Siciliano NA, Hersperger AR, Lacuanan AM, Xu RH, Sidney J, Sette A, Sigal LJ, Eisenlohr LC. Impact of distinct poxvirus infections on the specificities and functionalities of CD4+ T cell responses. J Virol 2014; 88:10078-91. [PMID: 24965457 PMCID: PMC4136331 DOI: 10.1128/jvi.01150-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/13/2014] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The factors that determine CD4+ T cell (TCD4+) specificities, functional capacity, and memory persistence in response to complex pathogens remain unclear. We explored these parameters in the C57BL/6 mouse through comparison of two highly related (>92% homology) poxviruses: ectromelia virus (ECTV), a natural mouse pathogen, and vaccinia virus (VACV), a heterologous virus that nevertheless elicits potent immune responses. In addition to elucidating several previously unidentified major histocompatibility complex class II (MHC-II)-restricted epitopes, we observed many qualitative and quantitative differences between the TCD4+ repertoires, including responses not elicited by VACV despite complete sequence conservation. In addition, we observed functional heterogeneity between ECTV- and VACV-specific TCD4+ at both a global and individual epitope level, particularly greater expression of the cytolytic marker CD107a from TCD4+ following ECTV infection. Most striking were differences during the late memory phase where, in contrast to ECTV, VACV infection failed to elicit measurable epitope-specific TCD4+ as determined by intracellular cytokine staining. These findings illustrate the strong influence of epitope-extrinsic factors on TCD4+ responses and memory. IMPORTANCE Much of our understanding concerning host-pathogen relationships in the context of poxvirus infections stems from studies of VACV in mice. However, VACV is not a natural mouse pathogen, and therefore, the relevance of results obtained using this model may be limited. Here, we explored the MHC class II-restricted TCD4+ repertoire induced by mousepox (ECTV) infection and the functional profile of the responding epitope-specific TCD4+, comparing these results to those induced by VACV infection under matched conditions. Despite a high degree of homology between the two viruses, we observed distinct specificity and functional profiles of TCD4+ responses at both acute and memory time points, with VACV-specific TCD4+ memory being notably compromised. These data offer insight into the impact of epitope-extrinsic factors on the resulting TCD4+ responses.
Collapse
Affiliation(s)
- Nicholas A Siciliano
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam R Hersperger
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Department of Biology, Albright College, Reading, Pennsylvania, USA
| | - Aimee M Lacuanan
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ren-Huan Xu
- Fox Chase Cancer Center, Immune Cell Development and Host Defense Program, Philadelphia, Pennsylvania, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Luis J Sigal
- Fox Chase Cancer Center, Immune Cell Development and Host Defense Program, Philadelphia, Pennsylvania, USA
| | - Laurence C Eisenlohr
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol 2014; 35:2-13. [PMID: 25160988 DOI: 10.1016/j.semcdb.2014.08.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Over the last decade, our picture of cell death signals involved in experimental disease models totally shifted. Indeed, in addition to apoptosis, multiple forms of regulated necrosis have been associated with an increasing number of pathologies such as ischemia-reperfusion injury in brain, heart and kidney, inflammatory diseases, sepsis, retinal disorders, neurodegenerative diseases and infectious disorders. Especially necroptosis is currently attracting the attention of the scientific community. However, the in vivo identification of ongoing necroptosis in experimental disease conditions remains troublesome, mainly due to the lack of specific biomarkers. Initially, Receptor-Interacting Protein Kinase 1 (RIPK1) and RIPK3 kinase activity were uniquely associated with induction of necroptosis, however recent evidence suggests pleiotropic functions in cell death, inflammation and survival, obscuring a clear picture. In this review, we will present the last methodological advances for in vivo necroptosis identification and discuss past and recent data to provide an update of the so-called "necroptosis-associated pathologies".
Collapse
|
28
|
Sedger LM, McDermott MF. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev 2014; 25:453-72. [PMID: 25169849 DOI: 10.1016/j.cytogfr.2014.07.016] [Citation(s) in RCA: 541] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor Necrosis Factor (TNF), initially known for its tumor cytotoxicity, is a potent mediator of inflammation, as well as many normal physiological functions in homeostasis and health, and anti-microbial immunity. It also appears to have a central role in neurobiology, although this area of TNF biology is only recently emerging. Here, we review the basic biology of TNF and its normal effector functions, and discuss the advantages and disadvantages of therapeutic neutralization of TNF - now a commonplace practice in the treatment of a wide range of human inflammatory diseases. With over ten years of experience, and an emerging range of anti-TNF biologics now available, we also review their modes of action, which appear to be far more complex than had originally been anticipated. Finally, we highlight the current challenges for therapeutic intervention of TNF: (i) to discover and produce orally delivered small molecule TNF-inhibitors, (ii) to specifically target selected TNF producing cells or individual (diseased) tissue targets, and (iii) to pre-identify anti-TNF treatment responders. Although the future looks bright, the therapeutic modulation of TNF now moves into the era of personalized medicine with society's challenging expectations of durable treatment success and of achieving long-term disease remission.
Collapse
Affiliation(s)
- Lisa M Sedger
- Australian School of Advanced Medicine, Macquarie University, North Ryde, NSW 2109, Australia; The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia.
| | - Michael F McDermott
- Experimental Rheumatology, National Institute for Health Research - Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James University, Beckett Street, West Yorkshire, Leeds LS9 7TF, UK.
| |
Collapse
|
29
|
Schmidt EM, Davies M, Mistry P, Green P, Giddins G, Feldmann M, Stoop AA, Brennan FM. Selective blockade of tumor necrosis factor receptor I inhibits proinflammatory cytokine and chemokine production in human rheumatoid arthritis synovial membrane cell cultures. ACTA ACUST UNITED AC 2013; 65:2262-73. [PMID: 23784528 DOI: 10.1002/art.38055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 06/06/2013] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine whether selective blockade of tumor necrosis factor receptor I (TNFRI) affects spontaneous proinflammatory cytokine and chemokine production in ex vivo-cultured human rheumatoid arthritis synovial membrane mononuclear cells (MNCs) and to compare this response to that of TNF ligand blockade using etanercept. METHODS A bispecific, single variable-domain antibody (anti-TNFRI moiety plus an albumin binding moiety [TNFRI-AlbudAb]) was used to selectively block TNFRI. Inhibition of TNFα-mediated responses in cell lines expressing TNFRI/II confirmed TNFRI-AlbudAb potency, human rhabdomyosarcoma cell line KYM-1D4 cytotoxicity, and human umbilical vein endothelial cell (HUVEC) vascular cell adhesion molecule 1 (VCAM-1) upregulation. Eighteen RA synovial membrane MNC suspensions were cultured for 2 days or 5 days, either alone or in the presence of TNFRI-AlbudAb, control-AlbudAb, or etanercept. Proinflammatory cytokines and chemokines in culture supernatants were measured by enzyme-linked immunosorbent assays. A mixed-effects statistical analysis model was used to assess the extent of TNFRI selective blockade, where the results were expressed as the percentage change with 95% confidence intervals (95% CIs). RESULTS TNFRI-AlbudAb inhibited TNFα-induced KYM-1D4 cell cytotoxicity (50% inhibition concentration [IC50 ] 4 nM) and HUVEC VCAM-1 up-regulation (IC50 12 nM) in a dose-dependent manner. In ex vivo-cultured RA synovial membrane MNCs, selective blockade of TNFRI inhibited the production of proinflammatory cytokines and chemokines to levels similar to those obtained with TNF ligand blockade, without inducing cellular toxicity. Changes in cytokine levels were as follows: -23.5% (95% CI -12.4, -33.2 [P = 0.004]) for granulocyte-macrophage colony-stimulating factor, -33.4% (95% CI -20.6, -44.2 [P ≤ 0.0001]) for interleukin-10 (IL-10), -17.6% (95% CI 3.2, -34.2 [P = 0.0880]) for IL-1β, and -19.0% (95% CI -3.4, -32.1 [P = 0.0207]) for IL-6. Changes in chemokine levels were as follows: -34.2% (-14.4, -49.4 [P = 0.0030]) for IL-8, -56.6% (-30.7, -72.9 [P = 0.0011]) for RANTES, and -24.9% (2, -44.8 [P = 0.0656]) for monocyte chemotactic protein 1. CONCLUSION In ex vivo-cultured RA synovial membrane MNCs, although a limited role of TNFRII cannot be ruled out, TNFRI signaling was found to be the dominant pathway leading to proinflammatory cytokine and chemokine production. Thus, selective blockade of TNFRI could potentially be therapeutically beneficial over TNF ligand blockade by retaining the beneficial TNFRII signaling.
Collapse
Affiliation(s)
- Emily M Schmidt
- Kennedy Institute of Rheumatology, University of Oxford, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wortzman ME, Clouthier DL, McPherson AJ, Lin GHY, Watts TH. The contextual role of TNFR family members in CD8+T-cell control of viral infections. Immunol Rev 2013; 255:125-48. [DOI: 10.1111/imr.12086] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Derek L. Clouthier
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Ann J. McPherson
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Gloria H. Y. Lin
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Tania H. Watts
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| |
Collapse
|
31
|
Pharmaceutical perspectives for the delivery of TNF-α in cancer therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2012. [DOI: 10.1007/s40005-012-0044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Bessa TF, Cordeiro CA, Gonçalves RM, Young LH, Campos WR, Oréfice F, Teixeira AL. Increased serum levels of soluble tumor necrosis factor receptor-2 (sTNFR2) in patients with active toxoplasmic retinochoroiditis. Braz J Infect Dis 2012; 16:540-4. [PMID: 23141990 DOI: 10.1016/j.bjid.2012.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/19/2012] [Indexed: 10/27/2022] Open
Abstract
This study aimed to investigate the serum levels of the cytokine TNF-α and its soluble receptors (sTNFR1 and sTNFR2) in patients with toxoplasmosis retinochoroiditis (TR) and controls. 37 patients with TR and 30 subjects with positive serology for toxoplasmosis but without history and signs of uveitis were included in this study. Serum concentrations of TNF-α, sTNFR1, and sTNFR2 were determined by ELISA. Serum concentrations of TNF-α and sTNFR1 were similar in controls (mean ± SD median values; 56.57±141.96 and 504.37±163.87, respectively) and TR patients (mean ± SD values, 121.62±217.56 and 511.15±189.30, respectively). Serum concentrations of sTNFR2 were higher in the uveitis group when compared to the control group (respectively, mean ± SD values, 1734.84±379.32 and 1442.75±309.47; p=0.002). There was no association between the serum levels of the molecules and the time of first symptoms, severity of vitreous haze, size or localization of active lesions, levels of visual acuity, and presence of vasculitis. These results suggest that TR is associated with changes in the circulating levels of inflammatory biomarkers, but they are not correlated with local/ocular signs.
Collapse
Affiliation(s)
- Thais Fontes Bessa
- Uveitis Section, Department of Ophthalmology, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Comparable polyfunctionality of ectromelia virus- and vaccinia virus-specific murine T cells despite markedly different in vivo replication and pathogenicity. J Virol 2012; 86:7298-309. [PMID: 22532670 DOI: 10.1128/jvi.00038-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Vaccinia virus (VACV) stimulates long-term immunity against highly pathogenic orthopoxvirus infection of humans (smallpox) and mice (mousepox [ectromelia virus {ECTV}]) despite the lack of a natural host-pathogen relationship with either of these species. Previous research revealed that VACV is able to induce polyfunctional CD8(+) T-cell responses after immunization of humans. However, the degree to which the functional profile of T cells induced by VACV is similar to that generated during natural poxvirus infection remains unknown. In this study, we monitored virus-specific T-cell responses following the dermal infection of C57BL/6 mice with ECTV or VACV. Using polychromatic flow cytometry, we measured levels of degranulation, cytokine expression (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]), and the cytolytic mediator granzyme B. We observed that the functional capacities of T cells induced by VACV and ECTV were of a similar quality in spite of the markedly different replication abilities and pathogenic outcomes of these viruses. In general, a significant fraction (≥50%) of all T-cell responses were positive for at least three functions both during acute infection and into the memory phase. In vivo killing assays revealed that CD8(+) T cells specific for both viruses were equally cytolytic (∼80% target cell lysis after 4 h), consistent with the similar levels of granzyme B and degranulation detected among these cells. Collectively, these data provide a mechanism to explain the ability of VACV to induce protective T-cell responses against pathogenic poxviruses in their natural hosts and provide further support for the use of VACV as a vaccine platform able to induce polyfunctional T cells.
Collapse
|
34
|
Bluml S, Scheinecker C, Smolen JS, Redlich K. Targeting TNF receptors in rheumatoid arthritis. Int Immunol 2012; 24:275-81. [DOI: 10.1093/intimm/dxs047] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
35
|
Tian T, Dubin K, Jin Q, Qureshi A, King SL, Liu L, Jiang X, Murphy GF, Kupper TS, Fuhlbrigge RC. Disruption of TNF-α/TNFR1 function in resident skin cells impairs host immune response against cutaneous vaccinia virus infection. J Invest Dermatol 2012; 132:1425-34. [PMID: 22318381 PMCID: PMC3326195 DOI: 10.1038/jid.2011.489] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One strategy adopted by vaccinia virus (VV) to evade the host immune system is to encode homologs of TNF receptors (TNFRs) that block TNF-α function. The response to VV skin infection under conditions of TNF-α deficiency, however, has not been reported. We found that TNFR1-/- mice developed larger primary lesions, numerous satellite lesions, and higher skin virus levels after VV scarification. Following their recovery, VV-scarified TNFR1-/- mice were fully protected against challenge with a lethal intranasal dose of VV, suggesting these mice had developed an effective memory immune response. A functional systemic immune response was further demonstrated by enhanced production of VV-specific IFN-γ and VV-specific CD8(+) T cells in spleens and draining lymph nodes. Interestingly, bone marrow (BM)-reconstitution studies using wild-type (WT) BM in TNFR1-/- host mice, but not TNFR1-/- BM in WT host mice, reproduced the original results seen in TNFR1-/- mice, indicating that TNFR1 deficiency in resident skin cells, rather than hematopoietic cells, accounts for the impaired cutaneous immune response. Our data suggest that lack of TNFR1 leads to a skin-specific immune deficiency, and that resident skin cells have a crucial role in mediating an optimal immune defense to VV cutaneous infection via TNF-α/TNFR1 signaling.
Collapse
Affiliation(s)
- Tian Tian
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fischer MA, Davies ML, Reider IE, Heipertz EL, Epler MR, Sei JJ, Ingersoll MA, Van Rooijen N, Randolph GJ, Norbury CC. CD11b⁺, Ly6G⁺ cells produce type I interferon and exhibit tissue protective properties following peripheral virus infection. PLoS Pathog 2011; 7:e1002374. [PMID: 22102816 PMCID: PMC3213107 DOI: 10.1371/journal.ppat.1002374] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 09/28/2011] [Indexed: 12/22/2022] Open
Abstract
The goal of the innate immune system is containment of a pathogen at the site of infection prior to the initiation of an effective adaptive immune response. However, effector mechanisms must be kept in check to combat the pathogen while simultaneously limiting undesirable destruction of tissue resulting from these actions. Here we demonstrate that innate immune effector cells contain a peripheral poxvirus infection, preventing systemic spread of the virus. These innate immune effector cells are comprised primarily of CD11b+Ly6C+Ly6G- monocytes that accumulate initially at the site of infection, and are then supplemented and eventually replaced by CD11b+Ly6C+Ly6G+ cells. The phenotype of the CD11b+Ly6C+Ly6G+ cells resembles neutrophils, but the infiltration of neutrophils typically occurs prior to, rather than following, accumulation of monocytes. Indeed, it appears that the CD11b+Ly6C+Ly6G+ cells that infiltrated the site of VACV infection in the ear are phenotypically distinct from the classical description of both neutrophils and monocyte/macrophages. We found that CD11b+Ly6C+Ly6G+ cells produce Type I interferons and large quantities of reactive oxygen species. We also observed that depletion of Ly6G+ cells results in a dramatic increase in tissue damage at the site of infection. Tissue damage is also increased in the absence of reactive oxygen species, although reactive oxygen species are typically thought to be damaging to tissue rather than protective. These data indicate the existence of a specialized population of CD11b+Ly6C+Ly6G+ cells that infiltrates a site of virus infection late and protects the infected tissue from immune-mediated damage via production of reactive oxygen species. Regulation of the action of this population of cells may provide an intervention to prevent innate immune-mediated tissue destruction. During a natural virus infection, small doses of infectious virus are deposited at a peripheral infection site, and then a “race” ensues, in which the replicating virus attempts to “outpace” the responding immune system of the host. In the early phases of infection, the innate immune system must contain the infection prior to the development of an effective adaptive response. Here we have characterized the cells of the innate immune system that move to a site of peripheral virus infection, and we find that a subset of these cells display atypical expression of cell surface molecules, timing of infiltration, and function. These cells protect the infected tissue from damage by producing reactive oxygen molecules, which are widely accepted to increase tissue damage. Therefore our findings indicate that during a peripheral virus infection, the typical rules governing the function of the innate immune system are altered to prevent tissue damage.
Collapse
Affiliation(s)
- Matthew A. Fischer
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Michael L. Davies
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Irene E. Reider
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Erica L. Heipertz
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Melanie R. Epler
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Janet J. Sei
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Molly A. Ingersoll
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gwendalyn J. Randolph
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
37
|
Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 2011; 82:249-58. [PMID: 21962882 DOI: 10.1016/j.critrevonc.2011.08.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/17/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023] Open
Abstract
Necrosis plays an important role in multiple physiological and pathological processes. Recently, a relatively new form of necrosis has been characterized as "necroptosis". Morphologically, necroptosis exhibits the features of necrosis; however, necroptosis exhibits a unique signaling pathway that requires the involvement of receptor interaction protein kinase 1 and 3 (RIP1 and RIP3) and can be specifically inhibited by necrostatins. Necroptosis has been found to contribute to the regulation of immune system, cancer development as well as cellular responses to multiple stresses. In this review, we will summarize the signaling pathway, biological effects and pathological significance of this specific form of programmed cell death.
Collapse
|
38
|
The ectromelia virus SPI-2 protein causes lethal mousepox by preventing NK cell responses. J Virol 2011; 85:11170-82. [PMID: 21849445 DOI: 10.1128/jvi.00256-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ectromelia virus (ECTV) is a natural pathogen of mice that causes mousepox, and many of its genes have been implicated in the modulation of host immune responses. Serine protease inhibitor 2 (SPI-2) is one of these putative ECTV host response modifier proteins. SPI-2 is conserved across orthopoxviruses, but results defining its mechanism of action and in vivo function are lacking or contradictory. We studied the role of SPI-2 in mousepox by deleting the SPI-2 gene or its serine protease inhibitor reactive site. We found that SPI-2 does not affect viral replication or cell-intrinsic apoptosis pathways, since mutant viruses replicate in vitro as efficiently as wild-type virus. However, in the absence of SPI-2 protein, ECTV is attenuated in mousepox-susceptible mice, resulting in lower viral loads in the liver, decreased spleen pathology, and substantially improved host survival. This attenuation correlates with more effective immune responses in the absence of SPI-2, including an earlier serum gamma interferon (IFN-γ) response, raised serum interleukin 18 (IL-18), increased numbers of granzyme B(+) CD8(+) T cells, and, most notably, increased numbers and activation of NK cells. Both virus attenuation and the improved immune responses associated with SPI-2 deletion from ECTV are lost when mice are depleted of NK cells. Consequently, SPI-2 renders mousepox lethal in susceptible strains by preventing protective NK cell defenses.
Collapse
|
39
|
Poxviral TNFRs: properties and role in viral pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:203-10. [PMID: 21153324 DOI: 10.1007/978-1-4419-6612-4_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Challa S, Chan FKM. Going up in flames: necrotic cell injury and inflammatory diseases. Cell Mol Life Sci 2010; 67:3241-53. [PMID: 20532807 PMCID: PMC3051829 DOI: 10.1007/s00018-010-0413-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/09/2010] [Accepted: 05/17/2010] [Indexed: 12/31/2022]
Abstract
Recent evidence indicates that cell death can be induced through multiple mechanisms. Strikingly, the same death signal can often induce apoptotic as well as non-apoptotic cell death. For instance, inhibition of caspases often converts an apoptotic stimulus to one that causes necrosis. Because a dedicated molecular circuitry distinct from that controlling apoptosis is required for necrotic cell injury, terms such as "programmed necrosis" or "necroptosis" have been used to distinguish stimulus-dependent necrosis from those induced by non-specific traumas (e.g., heat shock) or secondary necrosis induced as a consequence of apoptosis. In several experimental models, programmed necrosis/necroptosis has been shown to be a crucial control point for pathogen- or injury-induced inflammation. In this review, we will discuss the molecular mechanisms that regulate programmed necrosis/necroptosis and its biological significance in pathogen infections, drug-induced cell injury, and trauma-induced tissue damage.
Collapse
Affiliation(s)
- Sreerupa Challa
- Department of Pathology, Immunology and Virology Program Diabetes and Endocrinology Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
| | - Francis Ka-Ming Chan
- Department of Pathology, Immunology and Virology Program Diabetes and Endocrinology Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655 USA
- Department of Pathology, University of Massachusetts Medical School, Room S2-125, Worcester, MA 01655 USA
| |
Collapse
|
41
|
Viral cell death inhibitor MC159 enhances innate immunity against vaccinia virus infection. J Virol 2010; 84:10467-76. [PMID: 20702623 DOI: 10.1128/jvi.00983-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Viral inhibitors of host programmed cell death (PCD) are widely believed to promote viral replication by preventing or delaying host cell death. Viral FLIPs (Fas-linked ICE-like protease [FLICE; caspase-8]-like inhibitor proteins) are potent inhibitors of death receptor-induced apoptosis and programmed necrosis. Surprisingly, transgenic expression of the viral FLIP MC159 from molluscum contagiosum virus (MCV) in mice enhanced rather than inhibited the innate immune control of vaccinia virus (VV) replication. This effect of MC159 was specifically manifested in peripheral tissues such as the visceral fat pad, but not in the spleen. VV-infected MC159 transgenic mice mounted an enhanced innate inflammatory reaction characterized by increased expression of the chemokine CCL-2/MCP-1 and infiltration of γδ T cells into peripheral tissues. Radiation chimeras revealed that MC159 expression in the parenchyma, but not in the hematopoietic compartment, is responsible for the enhanced innate inflammatory responses. The increased inflammation in peripheral tissues was not due to resistance of lymphocytes to cell death. Rather, we found that MC159 facilitated Toll-like receptor 4 (TLR4)- and tumor necrosis factor (TNF)-induced NF-κB activation. The increased NF-κB responses were mediated in part through increased binding of RIP1 to TNFRSF1A-associated via death domain (TRADD), two crucial signal adaptors for NF-κB activation. These results show that MC159 is a dual-function immune modulator that regulates host cell death as well as NF-κB responses by innate immune signaling receptors.
Collapse
|
42
|
Freudenreich O, Brockman MA, Henderson DC, Evins AE, Fan X, Walsh JP, Goff DC. Analysis of peripheral immune activation in schizophrenia using quantitative reverse-transcription polymerase chain reaction (RT-PCR). Psychiatry Res 2010; 176:99-102. [PMID: 20132993 PMCID: PMC2844464 DOI: 10.1016/j.psychres.2008.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 09/17/2008] [Accepted: 11/11/2008] [Indexed: 01/13/2023]
Abstract
Immune system abnormalities in schizophrenia include a shift from a Type 1 (cellular) to a Type 2 (humoral) immune response. To characterize the activation status of the immune system in schizophrenia, we examined the pattern of gene expression in peripheral blood cells for three Th1 cytokines (interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), interleukin-2 (IL-2)), and one Th2 cytokine (interleukin-10 (IL-10)). In a cross-sectional study, we used quantitative reverse-transcription polymerase chain reaction (RT-PCR) to compare the mRNA levels of IFN-gamma, TNF-alpha, IL-2, and IL-10 in peripheral blood mononuclear cells (PBMCs) between 15 schizophrenia patients and 15 matched healthy controls. Expression of IFN-gamma and TNF-alpha was significantly reduced in patients with schizophrenia compared with normal controls. No differences in IL-2 and IL-10 gene expression were observed. These results are consistent with impaired Type 1 cellular immunity in schizophrenia. While the data illustrate the potential utility of mRNA-based approaches for the identification and analysis of immune biomarkers for neuropsychiatric disorders, correlation of gene expression with direct measures of cytokine concentrations is required.
Collapse
Affiliation(s)
- Oliver Freudenreich
- Schizophrenia Program, Massachusetts General Hospital, Boston, MA, United States.
| | | | | | | | | | | | | |
Collapse
|
43
|
Cohen JI, Hohman P, Fulton R, Turk SP, Qin J, Thatcher K, Hornung RL. Kinetics of serum cytokines after primary or repeat vaccination with the smallpox vaccine. J Infect Dis 2010; 201:1183-91. [PMID: 20214479 DOI: 10.1086/651453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The smallpox vaccine is associated with more serious adverse events than any other live attenuated vaccine in use today. Although studies have examined serum cytokine levels in primary vaccine recipients at 1 and 3-5 weeks after vaccination with the smallpox vaccine, serial measurements have not been performed, and studies in revaccinated subjects have not been conducted. METHODS We analyzed cytokine responses in both primary vaccine recipients and revaccinated subjects every other day for 2 weeks after vaccination. RESULTS Primary vaccine recipients had maximal levels of granulocyte-colony-stimulating factor on days 6-7 after vaccination; peak levels of tumor necrosis factor (TNF)-alpha, soluble TNF receptor 1, interferon (IFN)-gamma, IFN-inducible protein-10 (IP-10), interleukin (IL)-6, and tissue inhibitor of metalloproteinases-1 on days 8-9 after vaccination; peak levels of soluble TNF receptor 2 and monokine induced by IFN-gamma (MIG) on days 10-11 after vaccination; and peak levels of granulocyte-macrophage-colony-stimulating factor on days 12-13 after vaccination. Primary vaccine recipients were significantly more likely to have higher peak levels of IFN-gamma, IP-10, and MIG after vaccination than were revaccinated subjects. Primary vaccine recipients were significantly more likely to have fatigue, lymphadenopathy, and headache, as well as a longer duration of these symptoms and more hours missed from work, compared with revaccinated subjects. CONCLUSIONS The increased frequency and duration of symptoms observed in primary vaccine recipients, compared with revaccinated subjects, paralleled the increases in serum cytokine levels in these individuals. TRIAL REGISTRATION Clinicaltrials.gov identifier NCT00325975.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 2010; 3:re4. [PMID: 20354226 DOI: 10.1126/scisignal.3115re4] [Citation(s) in RCA: 442] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tumor necrosis factor (TNF) is a pleiotropic molecule with a crucial role in cellular stress and inflammation during infection, tissue damage, and cancer. TNF signaling can lead to three distinct outcomes, each of which is initiated by different signaling complexes: the gene induction or survival mode, the apoptosis mode, and the necrosis mode. The kinases receptor-interacting protein 1 (RIP1) and RIP3 are key signaling molecules in necrosis and are regulated by caspases and ubiquitination. Moreover, TNF stimulation induces the formation of a necrosome in which RIP3 is activated and interacts with enzymes that control glycolytic flux and glutaminolysis. The necrosome induces mitochondrial complex I-mediated production of reactive oxygen species (ROS) and cytotoxicity, which suggest a functional link between increased bioenergetics and necrosis. In addition, other effector mechanisms also contribute to TNF-induced necrosis, such as recruitment of NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate) oxidases and subsequent ROS production at the membrane-associated TNF receptor complex I; calcium mobilization; activation of phospholipase A(2), lipoxygenases, and acid sphingomyelinases; and lysosomal destabilization. However, the link between RIP1 and RIP3 and these subcellular events remains to be established. The regulation of RIP1 and RIP3 and their downstream signaling cascades opens new therapeutic avenues for treatment of pathologies associated with cell loss, such as ischemia-reperfusion damage and neurodegeneration, and ways to stimulate alternative immunogenic cell death pathways in cancer.
Collapse
Affiliation(s)
- Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, 9052 Zwijnaarde, Belgium.
| | | | | | | |
Collapse
|
45
|
O'Donnell MA, Ting AT. Chronicles of a death foretold: dual sequential cell death checkpoints in TNF signaling. Cell Cycle 2010; 9:1065-71. [PMID: 20237426 DOI: 10.4161/cc.9.6.10982] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The kinase RIP1 wears a coat of many colors during TNF receptor signaling and can regulate both activation of pro-survival NFkB and programmed cell death pathways. In this review, we outline how coating RIP1 with K63-linked ubiquitin chains forms a protective layer that prevents RIP1 from binding apoptotic regulators and serves as an early guard against cell death. Further on, binding of NFkB signaling components to the ubiquitin coat of RIP1 activates long-term pro-survival signaling and forms a more impenetrable suit of armor against cell death. If RIP1 is not decorated with ubiquitin chains it becomes an unstoppable harbinger of bad news: programmed cell death.
Collapse
|
46
|
Extreme lymphoproliferative disease and fatal autoimmune thrombocytopenia in FasL and TRAIL double-deficient mice. Blood 2010; 115:3258-68. [PMID: 20185587 DOI: 10.1182/blood-2009-11-255497] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To delineate the relative roles of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand in lymphocyte biology and lymphoproliferative disease, we generated mice defective in both molecules. B6.GT mice develop severe polyclonal lymphoproliferative disease because of accumulating CD3(+)CD4(-)CD8(-)B220(+) T cells, CD4(+) and CD8(+) T cells, and follicular B cells, and mice die prematurely from extreme lymphocytosis, thrombocytopenia, and hemorrhage. Accumulating lymphocytes resembled antigen-experienced lymphocytes, consistent with the maximal resistance of B6.GT CD4(+) and CD8(+) T cell to activation-induced cell death. More specifically, we show that TRAIL contributes to Fas ligand-mediated activation-induced cell death and controls lymphocyte apoptosis in the presence of interferon-gamma once antigen stimulation is removed. Furthermore, dysregulated lymphocyte homeostasis results in the production of anti-DNA and rheumatoid factor autoantibodies, as well as antiplatelet IgM and IgG causing thrombocytopenia. Thus, B6.GT mice reveal new roles for TRAIL in lymphocyte homeostasis and autoimmune lymphoproliferative syndromes and are a model of spontaneous idiopathic thrombocytopenia purpura secondary to lymphoproliferative disease.
Collapse
|
47
|
Cultivation and serological characterization of a human Theiler's-like cardiovirus associated with diarrheal disease. J Virol 2010; 84:4407-14. [PMID: 20164225 DOI: 10.1128/jvi.02536-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardioviruses (e.g., Theiler's murine encephalomyelitis virus [TMEV]) are members of the Picornaviridae family that cause myocarditis and encephalitis in rodents. Recently, several studies have identified human cardioviruses, including Saffold virus (SAFV) and a related virus named human TMEV-like cardiovirus (HTCV). At least eight cardiovirus genotypes are now recognized, with SAFV and most strains of HTCV belonging to genotypes 1 and 2, respectively; genotype 2 strains are the most common in the population. Although a genotype 3 cardiovirus has recently been cultured (SAFV-3), the genotype 1 and 2 cardioviruses have been difficult to propagate in vitro, hindering efforts to understand their seroprevalence and pathogenicity. Here we present the isolation and characterization of a genotype 2 human cardiovirus (HTCV-UC6). Notably, successful cultivation of HTCV-UC6 from stool required the addition of cytokine-blocking antibodies to interrupt downstream antiviral pathways. Unlike SAFV-3, HTCV-UC6 exhibited slow replication kinetics and demonstrated only a moderate cytopathic effect. Serologic assays revealed that 91% of U.S. adults carry antibodies to the genotype 2 cardioviruses, of which 80% generate neutralizing antibodies, in agreement with previous data showing that cardiovirus infection is widespread in humans. We also demonstrate an acute cardiovirus seroconversion event in a child with diarrhea and vomiting, thus reporting for the first time evidence linking cardiovirus infection to diarrheal disease in humans.
Collapse
|
48
|
Nie S, Cornberg M, Selin LK. Resistance to vaccinia virus is less dependent on TNF under conditions of heterologous immunity. THE JOURNAL OF IMMUNOLOGY 2009; 183:6554-60. [PMID: 19846867 DOI: 10.4049/jimmunol.0902156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
TNF has been shown to be important for controlling many pathogens. Here, we directly demonstrate using wild-type TNF(-/-) and TNFR1(-/-) mice that TNF does play a role in protection against vaccinia virus (VV) infection in naive mice. Since VV replication is also partially controlled in lymphocytic choriomeningitis virus (LCMV)-immune C57BL/6J mice through the process of heterologous immunity, we questioned whether TNF was required in mediating this protection. VV-infected LCMV-immune mice that were TNF-deficient as a consequence of genetic deletion or receptor blockade demonstrated normal recruitment and selective expansion of cross-reactive LCMV-specific memory CD8 T cells and controlled VV infection similar to LCMV-immune mice having TNF function. This indicates that neither TNF nor lymphotoxin, which uses the same receptor, was required in mediating protective heterologous immunity against VV. Indeed, prior immunity to LCMV made the role of TNF in protection against VV infection much less important, even under conditions of lethal dose inoculum. Thus, heterologous immunity may help explain why treatment of patients with anti-TNF compounds is reasonably well tolerated with relatively few infectious complications.
Collapse
Affiliation(s)
- Siwei Nie
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
49
|
Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FKM. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009; 137:1112-23. [PMID: 19524513 DOI: 10.1016/j.cell.2009.05.037] [Citation(s) in RCA: 1912] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/05/2009] [Accepted: 05/26/2009] [Indexed: 11/18/2022]
Abstract
Programmed necrosis is a form of caspase-independent cell death whose molecular regulation is poorly understood. The kinase RIP1 is crucial for programmed necrosis, but also mediates activation of the prosurvival transcription factor NF-kappaB. We postulated that additional molecules are required to specifically activate programmed necrosis. Using a RNA interference screen, we identified the kinase RIP3 as a crucial activator for programmed necrosis induced by TNF and during virus infection. RIP3 regulates necrosis-specific RIP1 phosphorylation. The phosphorylation of RIP1 and RIP3 stabilizes their association within the pronecrotic complex, activates the pronecrotic kinase activity, and triggers downstream reactive oxygen species production. The pronecrotic RIP1-RIP3 complex is induced during vaccinia virus infection. Consequently, RIP3(-/-) mice exhibited severely impaired virus-induced tissue necrosis, inflammation, and control of viral replication. Our findings suggest that RIP3 controls programmed necrosis by initiating the pronecrotic kinase cascade, and that this is necessary for the inflammatory response against virus infections.
Collapse
Affiliation(s)
- Young Sik Cho
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Tumor necrosis factor alpha protects against lethal West Nile virus infection by promoting trafficking of mononuclear leukocytes into the central nervous system. J Virol 2008; 82:8956-64. [PMID: 18632856 DOI: 10.1128/jvi.01118-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans, especially in immunocompromised individuals. Previous studies have shown essential protective roles for antiviral cytokines (e.g., alpha interferon [IFN-alpha] and IFN-gamma) against WNV in mice. However, studies using cell culture offer conflicting answers regarding whether tumor necrosis factor alpha (TNF-alpha) has an anti-WNV function. To test the biological significance of TNF-alpha against WNV in vivo, experiments were performed with TNF receptor-1 (TNF-R1)-deficient and TNF-alpha-depleted C57BL/6 mice. TNF-R1(-/-) mice had enhanced mortality and decreased survival time after WNV infection compared to congenic wild-type mice. Consistent with this, administration of a neutralizing anti-TNF-alpha monoclonal antibody also decreased survival after WNV infection. Relatively small differences in viral burdens in peripheral tissues of TNF-R1(-/-) mice were observed, and this occurrence correlated with a modest antiviral effect of TNF-alpha on primary macrophages but not dendritic cells. In contrast, the viral titers detected in the central nervous systems of TNF-R1(-/-) mice were significantly increased compared to those of wild-type mice, although TNF-alpha did not have a direct antiviral effect in primary neuron cultures. Whereas no defect in priming of adaptive B- and T-cell responses in TNF-R1(-/-) mice was observed, there were significant reductions in accumulations of CD8+ T cells and macrophages in the brain. Our data are most consistent with a model in which interaction of TNF-alpha with TNF-R1 protects against WNV infection by regulating migration of protective inflammatory cells into the brain during acute infection.
Collapse
|