1
|
Bakambamba K, Di Modugno F, Guilbard M, Le Goupil S, Lhomond S, Pelizzari‐Raymundo D, Avril T, Chevet E, Delom F, Lafont E. Endoplasmic reticulum homeostasis-From molecules to organisms: Report on the 14th International Calreticulin Workshop, Saint Malo, France. J Cell Mol Med 2024; 28:e17840. [PMID: 37409695 PMCID: PMC10902559 DOI: 10.1111/jcmm.17840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
The Calreticulin Workshop, initiated in 1994 by Marek Michalak in Banff (Alberta, Canada), was first organized to be an informal scientific meeting attended by researchers working on diverse biological questions related to functions associated with the endoplasmic reticulum (ER)-resident lectin-like chaperone and applied to a wide range of biological systems and models. Since then, this workshop has broadened the range of topics to cover all ER-related functions, has become international and has been held in Canada, Chile, Denmark, Italy, Switzerland, UK, USA, Greece and this year in France. Each conference, which is organized every other year (pending world-wide pandemic), generally attracts between 50 and 100 participants, including both early career researchers and international scientific leaders to favour discussions and exchanges. Over the years, the International Calreticulin Workshop has become an important gathering of the calreticulin and ER communities as a whole. The 14th International Calreticulin Workshop occurred from May 9-12 in St-Malo, Brittany, France, and has been highlighted by its rich scientific content and open-minded discussions held in a benevolent atmosphere. The 15th International Calreticulin Workshop will be organized in 2025 in Brussels, Belgium.
Collapse
Affiliation(s)
- Ketsia Bakambamba
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Federico Di Modugno
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Marianne Guilbard
- Inserm U1312, ARTiSt LabUniversity of BordeauxBordeauxFrance
- Thabor TherapeuticsParisFrance
| | - Simon Le Goupil
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Stephanie Lhomond
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Diana Pelizzari‐Raymundo
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Tony Avril
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Eric Chevet
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Frédéric Delom
- Inserm U1312, ARTiSt LabUniversity of BordeauxBordeauxFrance
| | - Elodie Lafont
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| |
Collapse
|
2
|
Liu M, Li S, Yin M, Li Y, Chen J, Chen Y, Zhou Y, Li Q, Xu F, Dai C, Xia Y, Chen A, Lu D, Chen Z, Qian J, Ge J. Pinacidil ameliorates cardiac microvascular ischemia-reperfusion injury by inhibiting chaperone-mediated autophagy of calreticulin. Basic Res Cardiol 2024; 119:113-131. [PMID: 38168863 PMCID: PMC10837255 DOI: 10.1007/s00395-023-01028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining. Endothelial calcium homeostasis, CRT-IP3Rs-MCU signaling expression, and apoptosis were assessed by real-time calcium signal reporter GCaMP8, western blotting, and fluorescence staining. Drug affinity-responsive target stability (DARTS) assay was adopted to detect proteins that directly bind to pinacidil. The present study found pinacidil treatment improved capillary density and perfusion, reduced no-reflow and infraction areas, and improved cardiac function and hemodynamics after I/R injury. These benefits were attributed to the ability of pinacidil to alleviate calcium overload and mitochondria-dependent apoptosis in cardiac microvascular endothelial cells (CMECs). Moreover, the DARTS assay showed that pinacidil directly binds to HSP90, through which it inhibits chaperone-mediated autophagy (CMA) degradation of CRT. CRT overexpression inhibited IP3Rs and MCU expression, reduced mitochondrial calcium inflow and mitochondrial injury, and suppressed endothelial apoptosis. Importantly, endothelial-specific overexpression of CRT shared similar benefits with pinacidil on cardiovascular protection against I/R injury. In conclusion, our data indicate that pinacidil attenuated microvascular I/R injury potentially through improving CRT degradation and endothelial calcium overload.
Collapse
Affiliation(s)
- Muyin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Ming Yin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Youran Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Jinxiang Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yuqiong Chen
- Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Qiyu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Fei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chunfeng Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Xia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Ao Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Danbo Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
3
|
Teplova AD, Pigidanov AA, Serebryakova MV, Golyshev SA, Galiullina RA, Chichkova NV, Vartapetian AB. Phytaspase Is Capable of Detaching the Endoplasmic Reticulum Retrieval Signal from Tobacco Calreticulin-3. Int J Mol Sci 2023; 24:16527. [PMID: 38003717 PMCID: PMC10671509 DOI: 10.3390/ijms242216527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Soluble chaperones residing in the endoplasmic reticulum (ER) play vitally important roles in folding and quality control of newly synthesized proteins that transiently pass through the ER en route to their final destinations. These soluble residents of the ER are themselves endowed with an ER retrieval signal that enables the cell to bring the escaped residents back from the Golgi. Here, by using purified proteins, we showed that Nicotiana tabacum phytaspase, a plant aspartate-specific protease, introduces two breaks at the C-terminus of the N. tabacum ER resident calreticulin-3. These cleavages resulted in removal of either a dipeptide or a hexapeptide from the C-terminus of calreticulin-3 encompassing part or all of the ER retrieval signal. Consistently, expression of the calreticulin-3 derivative mimicking the phytaspase cleavage product in Nicotiana benthamiana cells demonstrated loss of the ER accumulation of the protein. Notably, upon its escape from the ER, calreticulin-3 was further processed by an unknown protease(s) to generate the free N-terminal (N) domain of calreticulin-3, which was ultimately secreted into the apoplast. Our study thus identified a specific proteolytic enzyme capable of precise detachment of the ER retrieval signal from a plant ER resident protein, with implications for the further fate of the escaped resident.
Collapse
Affiliation(s)
- Anastasia D. Teplova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia; (A.D.T.); (A.A.P.)
| | - Artemii A. Pigidanov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia; (A.D.T.); (A.A.P.)
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (S.A.G.); (R.A.G.); (N.V.C.)
| | - Sergei A. Golyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (S.A.G.); (R.A.G.); (N.V.C.)
| | - Raisa A. Galiullina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (S.A.G.); (R.A.G.); (N.V.C.)
| | - Nina V. Chichkova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (S.A.G.); (R.A.G.); (N.V.C.)
| | - Andrey B. Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (S.A.G.); (R.A.G.); (N.V.C.)
| |
Collapse
|
4
|
Sawaya AP, Vecin NM, Burgess JL, Ojeh N, DiBartolomeo G, Stone RC, Pastar I, Tomic-Canic M. Calreticulin: a multifunctional protein with potential therapeutic applications for chronic wounds. Front Med (Lausanne) 2023; 10:1207538. [PMID: 37692787 PMCID: PMC10484228 DOI: 10.3389/fmed.2023.1207538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Calreticulin is recognized as a multifunctional protein that serves an essential role in diverse biological processes that include wound healing, modification and folding of proteins, regulation of the secretory pathway, cell motility, cellular metabolism, protein synthesis, regulation of gene expression, cell cycle regulation and apoptosis. Although the role of calreticulin as an endoplasmic reticulum-chaperone protein has been well described, several studies have demonstrated calreticulin to be a highly versatile protein with an essential role during wound healing. These features make it an ideal molecule for treating a complex, multifactorial diseases that require fine tuning, such as chronic wounds. Indeed, topical application of recombinant calreticulin to wounds in multiple models of wound healing has demonstrated remarkable pro-healing effects. Among them include enhanced keratinocyte and fibroblast migration and proliferation, induction of extracellular matrix proteins, recruitment of macrophages along with increased granulation tissue formation, all of which are important functions in promoting wound healing that are deregulated in chronic wounds. Given the high degree of diverse functions and pro-healing effects, application of exogenous calreticulin warrants further investigation as a potential novel therapeutic option for chronic wound patients. Here, we review and highlight the significant effects of topical application of calreticulin on enhancing wound healing and its potential as a novel therapeutic option to shift chronic wounds into healing, acute-like wounds.
Collapse
Affiliation(s)
- Andrew P. Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Faculty of Medical Sciences, The University of the West Indies, Bridgetown, Barbados
| | - Gabrielle DiBartolomeo
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
5
|
Maasch JRMA, Torres MDT, Melo MCR, de la Fuente-Nunez C. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Cell Host Microbe 2023; 31:1260-1274.e6. [PMID: 37516110 PMCID: PMC11625410 DOI: 10.1016/j.chom.2023.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
Molecular de-extinction could offer avenues for drug discovery by reintroducing bioactive molecules that are no longer encoded by extant organisms. To prospect for antimicrobial peptides encrypted within extinct and extant human proteins, we introduce the panCleave random forest model for proteome-wide cleavage site prediction. Our model outperformed multiple protease-specific cleavage site classifiers for three modern human caspases, despite its pan-protease design. Antimicrobial activity was observed in vitro for modern and archaic protein fragments identified with panCleave. Lead peptides showed resistance to proteolysis and exhibited variable membrane permeabilization. Additionally, representative modern and archaic protein fragments showed anti-infective efficacy against A. baumannii in both a skin abscess infection model and a preclinical murine thigh infection model. These results suggest that machine-learning-based encrypted peptide prospection can identify stable, nontoxic peptide antibiotics. Moreover, we establish molecular de-extinction through paleoproteome mining as a framework for antibacterial drug discovery.
Collapse
Affiliation(s)
- Jacqueline R M A Maasch
- Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo C R Melo
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Esperante D, Flisser A, Mendlovic F. The many faces of parasite calreticulin. Front Immunol 2023; 14:1101390. [PMID: 36993959 PMCID: PMC10040973 DOI: 10.3389/fimmu.2023.1101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/23/2023] [Indexed: 03/16/2023] Open
Abstract
Calreticulin from parasites and its vertebrate hosts share ~50% identity and many of its functions are equally conserved. However, the existing amino acid differences can affect its biological performance. Calreticulin plays an important role in Ca2+ homeostasis and as a chaperone involved in the correct folding of proteins within the endoplasmic reticulum. Outside the endoplasmic reticulum, calreticulin is involved in several immunological functions such as complement inhibition, enhancement of efferocytosis, and immune upregulation or inhibition. Several parasite calreticulins have been shown to limit immune responses and promote infectivity, while others are strong immunogens and have been used for the development of potential vaccines that limit parasite growth. Furthermore, calreticulin is essential in the dialogue between parasites and hosts, inducing Th1, Th2 or regulatory responses in a species-specific manner. In addition, calreticulin participates as initiator of endoplasmic reticulum stress in tumor cells and promotion of immunogenic cell death and removal by macrophages. Direct anti-tumoral activity has also been reported. The highly immunogenic and pleiotropic nature of parasite calreticulins, either as positive or negative regulators of the immune response, render these proteins as valuable tools to modulate immunopathologies and autoimmune disorders, as well as a potential treatment of neoplasms. Moreover, the disparities in the amino acid composition of parasite calreticulins might provide subtle variations in the mechanisms of action that could provide advantages as therapeutic tools. Here, we review the immunological roles of parasite calreticulins and discuss possible beneficial applications.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicine, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Ana Flisser
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicine, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, Mexico
- *Correspondence: Fela Mendlovic,
| |
Collapse
|
7
|
Marynowska M, Herosimczyk A, Lepczyński A, Barszcz M, Konopka A, Dunisławska A, Ożgo M. Gene and Protein Accumulation Changes Evoked in Porcine Aorta in Response to Feeding with Two Various Fructan Sources. Animals (Basel) 2022; 12:3147. [PMID: 36428375 PMCID: PMC9687048 DOI: 10.3390/ani12223147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, two different ITFs sources were incorporated into a cereal-based diet to evaluate possible aortic protein and gene changes in nursery pigs. The animals were fed two different experimental diets from the 10th day of life, supplemented with either 4% of dried chicory root (CR) or with 2% of native inulin (IN). After a 40-day dietary intervention trial, pigs were sacrificed at day 50 and the aortas were harvested. Our data indicate that dietary ITFs have the potential to influence several structural and physiological changes that are reflected both in the mRNA and protein levels in porcine aorta. In contrast to our hypothesis, we could not show any beneficial effects of a CR diet on vascular functions. The direction of changes of several proteins and genes may indicate disrupted ECM turnover (COL6A1 and COL6A2, MMP2, TIMP3, EFEMP1), increased inflammation and lipid accumulation (FFAR2), as well as decreased activity of endothelial nitric oxide synthase (TXNDC5, ORM1). On the other hand, the IN diet may counteract a highly pro-oxidant environment through the endothelin-NO axis (CALR, TCP1, HSP8, PDIA3, RCN2), fibrinolytic activity (ANXA2), anti-atherogenic (CAVIN-1) and anti-calcification (LMNA) properties, thus contributing to the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- Marta Marynowska
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Adrianna Konopka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Aleksandra Dunisławska
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Małgorzata Ożgo
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| |
Collapse
|
8
|
Membrane Bound CRT Fragment Accelerates Tumor Growth of Melanoma B16 Cell In Vivo through Promoting M2 Polarization via TLR4. J Immunol Res 2022; 2022:4626813. [PMID: 36249426 PMCID: PMC9560857 DOI: 10.1155/2022/4626813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Calreticulin (CRT) is a major calcium-binding luminal resident protein on the endoplasmic reticulum that can also be released extracellular as well as anchored on surface of cells. Previously, we demonstrated that soluble recombinant CRT fragment 39-272 (CRT/39-272) exhibited potent immunostimulatory effects as well as immunoregulation effects on immune cells. Here, we constructed stable B16 melanoma cell lines expressing recombinant CRT/39-272 on the membrane (B16-tmCRT/39-272) to investigate the roles of cell surface CRT on tumor progression. We found that B16-tmCRT/39-272 cells subcutaneously inoculated into C57BL/6 mice exhibited stronger tumorigenicity than the B16-EGFP control cells. The tumor associated macrophages infiltrated in tumors were mainly M2 phenotype. Regulatory T cells (Tregs) were also expanded more in bearing mice. Consistent with the in vivo results, B16-tmCRT/39-272 promoted macrophage polarization toward F4/80+CD206+ M2 macrophages and promoted transforming growth factor beta (TGF-β) secretion in vitro, which could promote naïve CD4+T cell differentiation into Tregs. These results imply that the tmCRT/39-272 could accelerate tumor development by enhancing M2 macrophage polarization to induce TGF-β secretion, and then promoted Treg differentiation in the tumor microenvironment. Our data may provide useful clues for better understanding of the potentiating roles of CRT in tumorigenesis.
Collapse
|
9
|
Marek K, Armando F, Nippold VM, Rohn K, Plattet P, Brogden G, Gerold G, Baumgärtner W, Puff C. Persistent Infection of a Canine Histiocytic Sarcoma Cell Line with Attenuated Canine Distemper Virus Expressing Vasostatin or Granulocyte-Macrophage Colony-Stimulating Factor. Int J Mol Sci 2022; 23:ijms23116156. [PMID: 35682834 PMCID: PMC9181094 DOI: 10.3390/ijms23116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Canine histiocytic sarcoma (HS) represents a neoplasia with poor prognosis. Due to the high metastatic rate of HS, there is urgency to improve treatment options and to prevent tumor metastases. Canine distemper virus (CDV) is a single-stranded negative-sense RNA (ssRNA (-)) virus with potentially oncolytic properties. Moreover, vasostatin and granulocyte-macrophage colony-stimulating factor (GM-CSF) are attractive molecules in cancer therapy research because of their anti-angiogenetic properties and potential modulation of the tumor microenvironment. In the present study, an in vitro characterization of two genetically engineered viruses based on the CDV strain Onderstepoort (CDV-Ond), CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF was performed. Canine histiocytic sarcoma cells (DH82 cells) were persistently infected with CDV-Ond, CDV-Ondneon, CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF and characterized on a molecular and protein level regarding their vasostatin and GM-CSF production. Interestingly, DH82 cells persistently infected with CDV-Ondneon-vasostatin showed a significantly increased number of vasostatin mRNA transcripts. Similarly, DH82 cells persistently infected with CDV-Ondneon-GM-CSF displayed an increased number of GM-CSF mRNA transcripts mirrored on the protein level as confirmed by immunofluorescence and Western blot. In summary, modified CDV-Ond strains expressed GM-CSF and vasostatin, rendering them promising candidates for the improvement of oncolytic virotherapies, which should be further detailed in future in vivo studies.
Collapse
Affiliation(s)
- Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
| | - Vanessa Maria Nippold
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
| | - Karl Rohn
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Philippe Plattet
- Division of Experimental Clinical Research, Vetsuisse University Bern, 3012 Bern, Switzerland;
| | - Graham Brogden
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.B.); (G.G.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (G.B.); (G.G.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, 901 87 Umeå, Sweden
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Correspondence:
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (K.M.); (F.A.); (V.M.N.); (C.P.)
| |
Collapse
|
10
|
Production and optimization of a vasostatin-30 and vasoinhibin fusion protein that inhibits tumor angiogenesis and dissemination of breast cancer cells in a zebrafish model. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Reid KM, Kitchener EJA, Butler CA, Cockram TOJ, Brown GC. Brain Cells Release Calreticulin That Attracts and Activates Microglia, and Inhibits Amyloid Beta Aggregation and Neurotoxicity. Front Immunol 2022; 13:859686. [PMID: 35514983 PMCID: PMC9065406 DOI: 10.3389/fimmu.2022.859686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Calreticulin is a chaperone, normally found in the endoplasmic reticulum, but can be released by macrophages into the extracellular medium. It is also found in cerebrospinal fluid bound to amyloid beta (Aβ). We investigated whether brain cells release calreticulin, and whether extracellular calreticulin had any effects on microglia and neurons relevant to neuroinflammation and neurodegeneration. We found that microglia release nanomolar levels of calreticulin when inflammatory-activated with lipopolysaccharide, when endoplasmic reticulum stress was induced by tunicamycin, or when cell death was induced by staurosporine, and that neurons release calreticulin when crushed. Addition of nanomolar levels of extracellular calreticulin was found to chemoattract microglia, and activate microglia to release cytokines TNF-α, IL-6 and IL-1β, as well as chemokine (C-C motif) ligand 2. Calreticulin blocked Aβ fibrillization and modified Aβ oligomerization, as measured by thioflavin T fluorescence and transmission electron microscopy. Extracellular calreticulin also altered microglial morphology and proliferation, and prevented Aβ-induced neuronal loss in primary neuron-glial cultures. Thus, calreticulin is released by microglia and neurons, and acts: as an alarmin to recruit and activate microglia, as an extracellular chaperone to prevent Aβ aggregation, and as a neuroprotectant against Aβ neurotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Li Y, Liu X, Chen H, Xie P, Ma R, He J, Zhang H. Bioinformatics analysis for the role of CALR in human cancers. PLoS One 2021; 16:e0261254. [PMID: 34910788 PMCID: PMC8673678 DOI: 10.1371/journal.pone.0261254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/27/2021] [Indexed: 01/06/2023] Open
Abstract
Cancer is one of the most important public health problems in the world. The curative effect of traditional surgery, radiotherapy and chemotherapy is limited and has inevitable side effects. As a potential target for tumor therapy, few studies have comprehensively analyzed the role of CALR in cancers. Therefore, by using GeneCards, UALCAN, GEPIA, Kaplan-Meier Plotter, COSMIC, Regulome Explorer, String, GeneMANIA and TIMER databases, we collected and analyzed relevant data to conduct in-depth bioinformatics research on the CALR expression in Pan-cancer to assess the possibility of CALR as a potential therapeutic target and survival biomarker. We studied the CALR expression in normal human tissues and various tumors of different stages, and found that CALR expression was associated with relapse free survival (RFS). We verified the expression of CALR in breast cancer cell lines by vitro experiments. Mutations of CALR were widely present in tumors. CALR interacted with different genes and various proteins. In tumors, a variety of immune cells are closely related to CALR. In conclusion, CALR can be used as a biomarker for predicting prognosis and a potential target for tumor molecular and immunotherapy.
Collapse
Affiliation(s)
- Yijun Li
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xiaoxu Liu
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Heyan Chen
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Peiling Xie
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Rulan Ma
- Departments of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jianjun He
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- * E-mail: (JH); (HZ)
| | - Huimin Zhang
- Departments of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- * E-mail: (JH); (HZ)
| |
Collapse
|
13
|
Aspriţoiu VM, Stoica I, Bleotu C, Diaconu CC. Epigenetic Regulation of Angiogenesis in Development and Tumors Progression: Potential Implications for Cancer Treatment. Front Cell Dev Biol 2021; 9:689962. [PMID: 34552922 PMCID: PMC8451900 DOI: 10.3389/fcell.2021.689962] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a multi-stage process of new blood vessel development from pre-existing vessels toward an angiogenic stimulus. The process is essential for tissue maintenance and homeostasis during embryonic development and adult life as well as tumor growth. Under normal conditions, angiogenesis is involved in physiological processes, such as wound healing, cyclic regeneration of the endometrium, placental development and repairing certain cardiac damage, in pathological conditions, it is frequently associated with cancer development and metastasis. The control mechanisms of angiogenesis in carcinogenesis are tightly regulated at the genetic and epigenetic level. While genetic alterations are the critical part of gene silencing in cancer cells, epigenetic dysregulation can lead to repression of tumor suppressor genes or oncogene activation, becoming an important event in early development and the late stages of tumor development, as well. The global alteration of the epigenetic spectrum, which includes DNA methylation, histone modification, chromatin remodeling, microRNAs, and other chromatin components, is considered one of the hallmarks of cancer, and the efforts are concentrated on the discovery of molecular epigenetic markers that identify cancerous precursor lesions or early stage cancer. This review aims to highlight recent findings on the genetic and epigenetic changes that can occur in physiological and pathological angiogenesis and analyze current knowledge on how deregulation of epigenetic modifiers contributes to tumorigenesis and tumor maintenance. Also, we will evaluate the clinical relevance of epigenetic markers of angiogenesis and the potential use of "epi-drugs" in modulating the responsiveness of cancer cells to anticancer therapy through chemotherapy, radiotherapy, immunotherapy and hormone therapy as anti-angiogenic strategies in cancer.
Collapse
Affiliation(s)
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Faculty of Biology, University of Bucharest, Bucharest, Romania.,Romanian Academy, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | |
Collapse
|
14
|
Impact of Calreticulin and Its Mutants on Endoplasmic Reticulum Function in Health and Disease. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021. [PMID: 34050866 DOI: 10.1007/978-3-030-67696-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
The endoplasmic reticulum (ER) performs key cellular functions including protein synthesis, lipid metabolism and signaling. While these functions are spatially isolated in structurally distinct regions of the ER, there is cross-talk between the pathways. One vital player that is involved in ER function is the ER-resident protein calreticulin (CALR). It is a calcium ion-dependent lectin chaperone that primarily assists in glycoprotein synthesis in the ER as part of the protein quality control machinery. CALR also buffers calcium ion release and mediates other glycan-independent protein interactions. Mutations in CALR have been reported in a subset of chronic blood tumors called myeloproliferative neoplasms. The mutations consist of insertions or deletions in the CALR gene that all cause a + 1 bp shift in the reading frame and lead to a dramatic alteration of the amino acid sequence of the C-terminal domain of CALR. This alters CALR function and affects cell homeostasis. This chapter will discuss how CALR and mutant CALR affect ER health and disease.
Collapse
|
15
|
Agellon LB, Michalak M. A View of the Endoplasmic Reticulum Through the Calreticulin Lens. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:1-11. [PMID: 34050859 DOI: 10.1007/978-3-030-67696-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Calreticulin is well known as an ER-resident protein that serves as the major endoplasmic reticulum (ER) Ca2+ binding protein. This protein has been the major topic of discussion in an international workshop that has been meeting for a quarter of a century. In sharing information about this protein, the field also witnessed remarkable insights into the importance of the ER as an organelle and the role of ER Ca2+ in coordinating ER and cellular functions. Recent technological advances have helped to uncover the contributions of calreticulin in maintaining Ca2+ homeostasis in the ER and to unravel its involvement in a multitude of cellular processes as highlighted in this collection of articles. The continuing revelations of unexpected involvement of calreticulin and Ca2+ in many critical aspects of cellular function promises to further improve insights into the significance of this protein in the promotion of physiology as well as prevention of pathology.
Collapse
Affiliation(s)
- Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Mapping human calreticulin regions important for structural stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140710. [PMID: 34358706 DOI: 10.1016/j.bbapap.2021.140710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 12/28/2022]
Abstract
Calreticulin (CALR) is a highly conserved multifunctional chaperone protein primarily present in the endoplasmic reticulum, where it regulates Ca2+ homeostasis. Recently, CALR has gained special interest for its diverse functions outside the endoplasmic reticulum, including the cell surface and extracellular space. Although high-resolution structures of CALR exist, it has not yet been established how different regions and individual amino acid residues contribute to structural stability of the protein. In the present study, we have identified key residues determining the structural stability of CALR. We used a Saccharomyces cerevisiae expression system to express and purify 50 human CALR mutants, which were analysed for several parameters including secretion titer, melting temperature (Tm), stability and oligomeric state. Our results revealed the importance of a previously identified small patch of conserved surface residues, amino acids 166-187 ("cluster 2") for structural stability of the human CALR protein. Two residues, Tyr172 and Asp187, were critical for maintaining the native structure of the protein. Mutant D187A revealed a severe drop in secretion titer, it was thermally unstable, prone to degradation, and oligomer formation. Tyr172 was critical for thermal stability of CALR and interacted with the third free Cys163 residue. This illustrates an unusual thermal stability of CALR dominated by Asp187, Tyr172 and Cys163, which may interact as part of a conserved structural unit. Besides structural clusters, we found a correlation of some measured parameter values in groups of CALR mutants that cause myeloproliferative neoplasms (MPN) and in mutants that may be associated with sudden unexpected death (SUD).
Collapse
|
17
|
Zhang Y, Cheung YK, Ng DKP, Fong WP. Enhancement of innate and adaptive anti-tumor immunity by serum obtained from vascular photodynamic therapy-cured BALB/c mouse. Cancer Immunol Immunother 2021; 70:3217-3233. [PMID: 33821298 DOI: 10.1007/s00262-021-02917-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/14/2021] [Indexed: 02/03/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved treatment for various types of cancer. Besides killing the tumor cells directly, PDT has also been reported to trigger anti-tumor immunity. In our previous study, BAM-SiPc-based PDT was shown to induce immunogenic cell death on CT26 murine colon tumor cells in vitro. Using the BALB/c mouse animal model and a vascular-PDT (VPDT) approach, it could also eradicate tumor in ∼ 70% of tumor-bearing mice and elicit an anti-tumor immune response. In the present study, the serum obtained from the VPDT-cured mice was studied and found to possess various immunomodulatory properties. In in vitro studies, it stimulated cytokine secretions of IL-6 and C-X-C motif chemokine ligands 1-3 in CT26 cells through the NF-κB and MAPK pathways. The complement protein C5a boosted in the serum was shown to be involved in the process. The serum also induced calreticulin exposure on CT26 cells and activated dendritic cells. It contained CT26-targeting antibodies which, through the Fc region, induced macrophage engulfment of the tumor cells. In in vivo studies, inoculation of the serum-treated CT26 cells to mice demonstrated a retarded tumor growth with leukocytes, particularly T cells, attracted to the tumor site. In addition, the VPDT-cured mice showed different degrees of resistance against challenge of other types of murine tumor cells, for example, the breast tumor 4T1 and EMT6 cells.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ying-Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
18
|
Zhang Y, Cheung YK, Ng DKP, Fong WP. Immunogenic necroptosis in the anti-tumor photodynamic action of BAM-SiPc, a silicon(IV) phthalocyanine-based photosensitizer. Cancer Immunol Immunother 2021; 70:485-495. [PMID: 32839829 PMCID: PMC10992937 DOI: 10.1007/s00262-020-02700-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) is an anti-tumor modality which employs three individually non-toxic substances, including photosensitizer, light and oxygen, to produce a toxic effect. Besides causing damage to blood vessels that supply oxygen and nutrients to the tumor and killing the tumor by a direct cytotoxic effect, PDT has also been known to trigger an anti-tumor immune response. For instance, our previous study showed that PDT with BAM-SiPc, a silicon(IV) phthalocyanine based-photosensitizer, can not only eradicate the mouse CT26 tumor cells in a Balb/c mouse model, but also protect the mice against further re-challenge of the tumor cells through an immunomodulatory mechanism. To understand more about the immune effect, the biochemical actions of BAM-SiPc-PDT on CT26 cells were studied in the in vitro system. It was confirmed that the PDT treatment could induce immunogenic necroptosis in the tumor cells. Upon treatment, different damage-associated molecular patterns were exposed onto the cell surface or released from the cells. Among them, calreticulin was found to translocate to the cell membrane through a pathway similar to that in chemotherapy. The activation of immune response was also demonstrated by an increase in the expression of different chemokines.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ying-Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
19
|
Kepp O, Liu P, Zhao L, Plo I, Kroemer G. Surface-exposed and soluble calreticulin: conflicting biomarkers for cancer prognosis. Oncoimmunology 2020; 9:1792037. [PMID: 32923154 PMCID: PMC7458660 DOI: 10.1080/2162402x.2020.1792037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Increased exposure of calreticulin (CALR) on malignant cells is associated with therapy-relevant adaptive immune responses and superior therapeutic outcome in solid tumors and haemato-oncological diseases, because surface-exposed CALR acts as an ‘eat-me’ signal facilitating the phagocytosis of stressed and dying cancer cells by immature dendritic cells, thus favoring antitumor immune responses. On the contrary, mutations of the CALR gene that cause the omission of the C-terminal KDEL endoplasmic reticulum retention motif from CALR protein, resulting in its secretion from cells, act as oncogenic drivers in myeloproliferative neoplasms via the autocrine activation of the thrombopoietin receptor. We recently showed that soluble CALR inhibited the phagocytosis of cancer cells by dendritic cells, thus dampening anticancer immune responses. Furthermore, systemic elevations of soluble CALR that is secreted from tumors or that is artificially supplied by injection of the recombinant protein decreased the efficacy of immunotherapy. Thus, depending on its location, CALR can have immunostimulatory or immunosuppressive functions.
Collapse
Affiliation(s)
- Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Peng Liu
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Liwei Zhao
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - Isabelle Plo
- INSERM UMR1287, Gustave Roussy Cancer Center, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Schcolnik-Cabrera A, Juárez M, Oldak B, Cruz-Rivera M, Flisser A, Dueñas-González A, Buzoianu-Anguiano V, Orozco-Suarez S, Mendlovic F. In Vitro Employment of Recombinant Taenia solium Calreticulin as a Novel Strategy Against Breast and Ovarian Cancer Stem-like Cells. Arch Med Res 2020; 51:65-75. [PMID: 32097797 DOI: 10.1016/j.arcmed.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Calreticulin is a chaperone and master regulator of intracellular calcium homeostasis. Several additional functions have been discovered. Human and parasite calreticulin have been shown to suppress mammary tumor growth in vivo. Here, we explored the capacity of recombinant Taenia solium calreticulin (rTsCRT) to modulate cancer cell growth in vitro. METHODS We used different concentrations of rTsCRT to treat cancer cell lines and analyzed viability and colony formation capacity. We also tested the combination of the IC20 or IC50 doses of rTsCRT and of the chemotherapeutic drug 5-fluorouracil on MCF7 and SKOV3 cell lines. As a control, the non-tumorigenic cell line MCF10-A was employed. The effect of the drug combinations was also assessed in cancer stem-like cells. Additionally, scavenger receptor ligands were employed to identify the role of this receptor in the rTsCRT anti-tumoral effect. RESULTS rTsCRT has a dose-dependent in vitro anti-tumoral effect, being SKOV3 the most sensitive cell line followed by MCF7. When rTsCRT/5-fluorouracil were used, MCF7 and SKOV3 showed a 60% reduction in cell viability; colony formation capacity was also diminished. Treatment of cancer stem-like cells from MCF7 showed a higher reduction in cell viability, while those from SKOV3 were more sensitive to colony disaggregation. Finally, pharmacological inhibition of the scavenger receptor, abrogated the reduction in viability induced by rTsCRT in both the parental and stem-like cells. CONCLUSION Our data suggest that rTsCRT alone or in combination with 5-fluorouracil inhibits the growth of breast and ovarian cancer cell lines through its interaction with scavenger receptors.
Collapse
Affiliation(s)
| | - Mandy Juárez
- División de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Bernardo Oldak
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico
| | - Mayra Cruz-Rivera
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alfonso Dueñas-González
- División de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico; Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas de la Universidad Nacional Autónoma de México/Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Vinnitsa Buzoianu-Anguiano
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades CMN Siglo XXI, Ciudad de México, Mexico
| | - Sandra Orozco-Suarez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades CMN Siglo XXI, Ciudad de México, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Estado de México, Mexico.
| |
Collapse
|
21
|
Structural bases that underline Trypanosoma cruzi calreticulin proinfective, antiangiogenic and antitumor properties. Immunobiology 2019; 225:151863. [PMID: 31732192 DOI: 10.1016/j.imbio.2019.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Abstract
Microbes have developed mechanisms to resist the host immune defenses and some elicit antitumor immune responses. About 6 million people are infected with Trypanosoma cruzi, the protozoan agent of Chagas' disease, the sixth neglected tropical disease worldwide. Eighty years ago, G. Roskin and N. Klyuyeva proposed that T. cruzi infection mediates an anti-cancer activity. This observation has been reproduced by several other laboratories, but no molecular basis has been proposed. We have shown that the highly pleiotropic chaperone calreticulin (TcCalr, formerly known as TcCRT), translocates from the parasite ER to the exterior, where it mediates infection. Similar to its human counterpart HuCALR (formerly known as HuCRT), TcCalr inhibits C1 in its capacity to initiate the classical pathway of complement activation. We have also proposed that TcCalr inhibits angiogenesis and it is a likely mediator of antitumor effects. We have generated several in silico structural TcCalr models to delimit a peptide (VC-TcCalr) at the TcCalr N-domain. Chemically synthesized VC-TcCalr did bind to C1q and was anti-angiogenic in Gallus gallus chorioallantoic membrane assays. These properties were associated with structural features, as determined in silico. VC-TcCalr, a strong dipole, interacts with charged proteins such as collagen-like tails and scavenger receptors. Comparatively, HuCALR has less polarity and spatial stability, probably due to at least substitutions of Gln for Gly, Arg for Lys, Arg for Asp and Ser for Arg that hinder protein-protein interactions. These differences can explain, at least in part, how TcCalr inhibits the complement activation pathway and has higher efficiency as an antiangiogenic and antitumor agent than HuCALR.
Collapse
|
22
|
Mahata SK, Corti A. Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann N Y Acad Sci 2019; 1455:34-58. [PMID: 31588572 PMCID: PMC6899468 DOI: 10.1111/nyas.14249] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
Chromogranin A (CgA)-the index member of the chromogranin/secretogranin secretory protein family-is ubiquitously distributed in endocrine, neuroendocrine, and immune cells. Elevated levels of CgA-related polypeptides, consisting of full-length molecules and fragments, are detected in the blood of patients suffering from neuroendocrine tumors, heart failure, renal failure, hypertension, rheumatoid arthritis, and inflammatory bowel disease. Full-length CgA and various CgA-derived peptides, including vasostatin-1, pancreastatin, catestatin, and serpinin, are expressed at different relative levels in normal and pathological conditions and exert diverse, and sometime opposite, biological functions. For example, CgA is overexpressed in genetic hypertension, whereas catestatin is diminished. In rodents, the administration of catestatin decreases hypertension, cardiac contractility, obesity, atherosclerosis, and inflammation, and it improves insulin sensitivity. By contrast, pancreastatin is elevated in diabetic patients, and the administration of this peptide to obese mice decreases insulin sensitivity and increases inflammation. CgA and the N-terminal fragment of vasostatin-1 can enhance the endothelial barrier function, exert antiangiogenic effects, and inhibit tumor growth in animal models, whereas CgA fragments lacking the CgA C-terminal region promote angiogenesis and tumor growth. Overall, the CgA system, consisting of full-length CgA and its fragments, is emerging as an important and complex player in cardiovascular, immunometabolic, and cancer regulation.
Collapse
Affiliation(s)
- Sushil K Mahata
- VA San Diego Healthcare System, San Diego, California.,Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| |
Collapse
|
23
|
Affiliation(s)
- Gunnar Houen
- Department of Autoimmunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
24
|
Massaeli H, Viswanathan D, Pillai DG, Mesaeli N. Endoplasmic reticulum stress enhances endocytosis in calreticulin deficient cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:727-736. [PMID: 30529231 DOI: 10.1016/j.bbamcr.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/18/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
Calreticulin an endoplasmic reticulum (ER) chaperone that is involved in the quality control process and plays an important role as a regulator of intracellular calcium homeostasis. Previously, we illustrated that loss of calreticulin (crt-/-) results in the activation of ubiquitin-proteasome pathway facilitating the increased resistance to apoptosis. Our preliminary data illustrated a significant increase in the endocytosis in the calreticulin knockout mouse embryonic fibroblast cells (crt-/-). Therefore, we hypothesized that the mechanism for this increased endocytosis in the crt-/- cells is due to onset of ER stress. To test this hypothesis, we measured endocytosis in the wild type (wt) and crt-/- cells using uptake of fluorescent dextran and showed a significant increase in the rate of its uptake in crt-/- cells as compared to wt cells. To determine the endocytic pathway involved we examined both clathrin and caveolin-1 dependent endocytosis. Our results illustrated no change in the expression of clathrin heavy chain while there was a significant increase in the expression of caveolin-1 in the crt-/- cells as compared to the wt cells. Furthermore, using shRNA we illustrated that knockdown of clathrin heavy chain had no effect on endocytosis in the crt-/- cells. While knock-down of caveolin-1 significantly reduced endocytosis in the crt-/- cells. Finally, we illustrated that a chemical chaperone, 4‑phenylbutyrate significantly reduced both the endoplasmic reticulum stress and endocytosis in the crt-/- cells. Our data shows for the first time, that ER stress led to enhanced caveolin-1 mediated endocytosis and reversal of ER stress reduces endocytosis.
Collapse
Affiliation(s)
- Hamid Massaeli
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Divya Viswanathan
- Department of Biochemistry, Weill Cornell Medicine in Qatar, Doha, Qatar
| | | | - Nasrin Mesaeli
- Department of Biochemistry, Weill Cornell Medicine in Qatar, Doha, Qatar.
| |
Collapse
|
25
|
Inhibitory effects of vasostatin-1 against atherogenesis. Clin Sci (Lond) 2018; 132:2493-2507. [PMID: 30401690 DOI: 10.1042/cs20180451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022]
Abstract
Vasostatin-1, a chromogranin A (CgA)-derived peptide (76 amino acids), is known to suppress vasoconstriction and angiogenesis. A recent study has shown that vasostatin-1 suppresses the adhesion of human U937 monocytes to human endothelial cells (HECs) via adhesion molecule down-regulation. The present study evaluated the expression of vasostatin-1 in human atherosclerotic lesions and its effects on inflammatory responses in HECs and human THP-1 monocyte-derived macrophages, macrophage foam cell formation, migration and proliferation of human aortic smooth muscle cells (HASMCs) and extracellular matrix (ECM) production by HASMCs, and atherogenesis in apolipoprotein E-deficient (ApoE-/-) mice. Vasostatin-1 was expressed around Monckeberg's medial calcific sclerosis in human radial arteries. Vasostatin-1 suppressed lipopolysaccharide (LPS)-induced up-regulation of monocyte chemotactic protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HECs. Vasostatin-1 suppressed inflammatory M1 phenotype and LPS-induced interleukin-6 (IL-6) secretion via nuclear factor-κB (NF-κB) down-regulation in macrophages. Vasostatin-1 suppressed oxidized low-density lipoprotein (oxLDL)-induced foam cell formation associated with acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) and CD36 down-regulation and ATP-binding cassette transporter A1 (ABCA1) up-regulation in macrophages. In HASMCs, vasostatin-1 suppressed angiotensin II (AngII)-induced migration and collagen-3 and fibronectin expression via decreasing ERK1/2 and p38 phosphorylation, but increased elastin expression and matrix metalloproteinase (MMP)-2 and MMP-9 activities via increasing Akt and JNK phosphorylation. Vasostatin-1 did not affect the proliferation and apoptosis in HASMCs. Four-week infusion of vasostatin-1 suppressed the development of aortic atherosclerotic lesions with reductions in intra-plaque inflammation, macrophage infiltration, and SMC content, and plasma glucose level in ApoE-/- mice. These results indicate the inhibitory effects of vasostatin-1 against atherogenesis. The present study provided the first evidence that vasostatin-1 may serve as a novel therapeutic target for atherosclerosis.
Collapse
|
26
|
Chaibangyang W, Geadkaew-Krenc A, Smooker PM, Tesana S, Grams R. Evaluation of Opisthorchis viverrini calreticulin for potential host modulation. Acta Trop 2018; 187:175-181. [PMID: 30098943 DOI: 10.1016/j.actatropica.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
The multifunctional calreticulin (CALR) was identified as a major calcium-binding protein of the endoplasmic reticulum before being recognized as a chaperone in the same place. Only later were activities of calreticulin outside the endoplasmic reticulum described that for example affect cell proliferation and the innate immune system. In the present work we have investigated those extracellular activities of CALR from the cancerogenic human liver fluke Opisthorchis viverrini (OvCALR), as they might be important in host/parasite interaction. We first demonstrate that OvCALR is released from the parasite and stimulates a specific humoral immune response. Recombinant OvCALR is then shown to suppress proliferation of primary endothelial cells, their motility and sprouting activities. The potential of OvCALR to interfere with the complement system is established, firstly by demonstrating its direct binding to C1q and, secondly by suppression of hemolysis of sensitized red blood cells. These findings suggest that OvCALR is an important parasite antigen that could modulate diverse host functions and support parasite survival.
Collapse
Affiliation(s)
- Wanlapa Chaibangyang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | - Amornrat Geadkaew-Krenc
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | - Peter M Smooker
- School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Smarn Tesana
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand.
| |
Collapse
|
27
|
Muntjewerff EM, Dunkel G, Nicolasen MJT, Mahata SK, van den Bogaart G. Catestatin as a Target for Treatment of Inflammatory Diseases. Front Immunol 2018; 9:2199. [PMID: 30337922 PMCID: PMC6180191 DOI: 10.3389/fimmu.2018.02199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
It is increasingly clear that inflammatory diseases and cancers are influenced by cleavage products of the pro-hormone chromogranin A (CgA), such as the 21-amino acids long catestatin (CST). The goal of this review is to provide an overview of the anti-inflammatory effects of CST and its mechanism of action. We discuss evidence proving that CST and its precursor CgA are crucial for maintaining metabolic and immune homeostasis. CST could reduce inflammation in various mouse models for diabetes, colitis and atherosclerosis. In these mouse models, CST treatment resulted in less infiltration of immune cells in affected tissues, although in vitro monocyte migration was increased by CST. Both in vivo and in vitro, CST can shift macrophage differentiation from a pro- to an anti-inflammatory phenotype. Thus, the concept is emerging that CST plays a role in tissue homeostasis by regulating immune cell infiltration and macrophage differentiation. These findings warrant studying the effects of CST in humans and make it an interesting therapeutic target for treatment and/or diagnosis of various metabolic and immune diseases.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gina Dunkel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mara J T Nicolasen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, United States.,Department of Medicine, University of California at San Diego, La Jolla, CA, United States
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
28
|
Bee YS, Ma YL, Chen J, Tsai PJ, Sheu SJ, Lin HC, Huang H, Liu GS, Tai MH. Inhibition of Experimental Choroidal Neovascularization by a Novel Peptide Derived from Calreticulin Anti-Angiogenic Domain. Int J Mol Sci 2018; 19:ijms19102993. [PMID: 30274378 PMCID: PMC6213176 DOI: 10.3390/ijms19102993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
Choroidal neovascularization (CNV) is a key pathological feature of several leading causes of vision loss including neovascular age-related macular degeneration. Here, we show that a calreticulin anti-angiogenic domain (CAD)-like peptide 27, CAD27, inhibited in vitro angiogenic activities, including tube formation, migration of endothelial cells, and vascular sprouting from rat aortic ring explants. In a rat model of laser-induced CNV, we demonstrate that intravitreal injection of CAD27 significantly attenuated the formation of CNV lesions as measured via fundus fluorescein angiography and choroid flat-mounts (19.5% and 22.4% reductions at 10 μg and 20 μg of CAD27 injected, respectively). Similarly, the reduction of CNV lesions was observed in rats that had received topical applications of CAD27 (choroid flat-mounts: 17.9% and 32.5% reductions at 10 μg/mL and 20 μg/mL of CAD27 instilled, respectively). Retinal function was unaffected, as measured using electroretinography in both groups receiving interareal injection or topical applications of CAD27 for at least fourteen days. These findings show that CAD27 can be used as a potential therapeutic alternative for targeting CNV in diseases such as neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 807, Taiwan.
- National Defense Medical Center, Taipei 114, Taiwan.
| | - Yi-Ling Ma
- Division of Nephrology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Jinying Chen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia.
- Department of Ophthalmology, Jinan University, Guangzhou 510632, China.
| | - Pei-Jhen Tsai
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Hsiu-Chen Lin
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Hu Huang
- Aier Eye Institute, Aier School of Ophthalmology, Central South University, Changsha 410083, China.
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia.
- Department of Ophthalmology, Jinan University, Guangzhou 510632, China.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia.
| | - Ming-Hong Tai
- Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
29
|
Zhao K, Yang S, Geng J, Gong X, Gong W, Shen L, Ning B. Combination of anginex gene therapy and radiation decelerates the growth and pulmonary metastasis of human osteosarcoma xenografts. Cancer Med 2018; 7:2518-2529. [PMID: 29659181 PMCID: PMC6010866 DOI: 10.1002/cam4.1476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/23/2023] Open
Abstract
Investigate whether rAAV-anginex gene therapy combined with radiotherapy could decrease growth and pulmonary metastasis of osteosarcoma in mice and examine the mechanisms involved in this therapeutic strategy. During in vitro experiment, multiple treatment regimes (rAAV-eGFP, radiotherapy, rAAV-anginex, combination therapy) were applied to determine effects on proliferation of endothelial cells (ECs) and G-292 osteosarcoma cells. During in vivo analysis, the same multiple treatment regimes were applied to osteosarcoma tumor-bearing mice. Use microcomputed tomography to evaluate tumor size. Eight weeks after tumor cell inoculation, immunohistochemistry was used to assess the therapeutic efficacy according to microvessel density (MVD), proliferating cell nuclear antigen (PCNA), and terminal-deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assays. Metastasis of lungs was also evaluated by measuring number of metastatic nodules and wet weight of metastases. The proliferation of ECs and the tumor volumes in combination therapy group were inhibited more effectively than the other three groups at end point (P < 0.05). Cell clone assay showed anginex had radiosensitization effect on ECs. Immunohistochemistry showed tumors from mice treated with combination therapy exhibited the lowest MVD and proliferation rate, with highest apoptosis rate, as confirmed by IHC staining for CD34 and PCNA and TUNEL assays (P < 0.05). Combination therapy also induced the fewest metastatic nodules and lowest wet weights of the lungs (P < 0.05). rAAV-anginex combined with radiotherapy induced apoptosis of osteosarcoma cells and inhibited tumor growth and pulmonary metastasis on the experimental osteosarcoma models. We conclude that the primary mechanism of this process may be due to sensitizing effect of anginex to radiotherapy.
Collapse
Affiliation(s)
- Kai Zhao
- Jinan Central Hospital Affiliated to Shandong UniversityNo. 105, Jiefang RoadJinan250013ShandongChina
| | - Shang‐You Yang
- Department of Surgery, OrthopedicsUniversity of Kansas School of Medicine‐WichitaWichita67214Kansas
| | - Jun Geng
- Jinan Central Hospital Affiliated to Shandong UniversityNo. 105, Jiefang RoadJinan250013ShandongChina
| | - Xuan Gong
- Department of Surgery, OrthopedicsUniversity of Kansas School of Medicine‐WichitaWichita67214Kansas
| | - Weiming Gong
- Jinan Central Hospital Affiliated to Shandong UniversityNo. 105, Jiefang RoadJinan250013ShandongChina
| | - Lin Shen
- Jinan Central Hospital Affiliated to Shandong UniversityNo. 105, Jiefang RoadJinan250013ShandongChina
| | - Bin Ning
- Jinan Central Hospital Affiliated to Shandong UniversityNo. 105, Jiefang RoadJinan250013ShandongChina
| |
Collapse
|
30
|
Chiba A, Watanabe-Takano H, Miyazaki T, Mochizuki N. Cardiomyokines from the heart. Cell Mol Life Sci 2018; 75:1349-1362. [PMID: 29238844 PMCID: PMC11105766 DOI: 10.1007/s00018-017-2723-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
The heart is regarded as an endocrine organ as well as a pump for circulation, since atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were discovered in cardiomyocytes to be secreted as hormones. Both ANP and BNP bind to their receptors expressed on remote organs, such as kidneys and blood vessels; therefore, the heart controls the circulation by pumping blood and by secreting endocrine peptides. Cardiomyocytes secrete other peptides besides natriuretic peptides. Although most of such cardiomyocyte-derived peptides act on the heart in autocrine/paracrine fashions, several peptides target remote organs. In this review, to overview current knowledge of endocrine properties of the heart, we focus on cardiomyocyte-derived peptides (cardiomyokines) that act on the remote organs as well as the heart. Cardiomyokines act on remote organs to regulate cardiovascular homeostasis, systemic metabolism, and inflammation. Therefore, through its endocrine function, the heart can maintain physiological conditions and prevent organ damage under pathological conditions.
Collapse
Affiliation(s)
- Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
- AMED-CREST, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka, 565-8565, Japan.
| |
Collapse
|
31
|
Aberrant Glycosylation Augments the Immuno-Stimulatory Activities of Soluble Calreticulin. Molecules 2018; 23:molecules23030523. [PMID: 29495436 PMCID: PMC6017544 DOI: 10.3390/molecules23030523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/29/2022] Open
Abstract
Calreticulin (CRT), a luminal resident calcium-binding glycoprotein of the cell, is a tumor-associated antigen involved in tumorigenesis and also an autoantigen targeted by autoantibodies found in patients with various autoimmune diseases. We have previously shown that prokaryotically expressed recombinant murine CRT (rCRT) exhibits strong stimulatory activities against monocytes/macrophages in vitro and potent immunogenicity in vivo, which is partially attributable to self-oligomerization of soluble rCRT. However, even in oligomerized form native CRT (nCRT) isolated from mouse liver is much less active than rCRT, arguing against the possibility that self-oligomerization alone would license potent pro-inflammatory properties to nCRT. Since rCRT differs from nCRT in its lack of glycosylation, we wondered if aberrant glycosylation of eukaryotically expressed CRT (eCRT) would significantly enhance its immunological activity. In the present study, tunicamycin, an N-glycosyltransferase inhibitor, was employed to treat CHO cells (CHO-CRT) stably expressing full-length recombinant mouse CRT in secreted form for preparation of aberrantly glycosylated eCRT (tun-eCRT). Our biochemical and immunological analysis results indicate that eCRT produced by CHO-CRT cells is similar to nCRT in terms of glycosylation level, lack of self-oligomerization, relatively poor immunogenicity and weak macrophage-stimulatory activity, while tun-eCRT shows reduced glycosylation yet much enhanced ability to elicit specific humoral responses in mice and TNF-α and nitric oxide production by macrophages in vitro. Given that abberant glycosylation of proteins is a hallmark of cancer cells and also related to the development of autoimmune disorders in humans, our data may provide useful clues for better understanding of potentiating roles of dysregulated glycosylation of molecules such as CRT in tumorigenesis and autoimmunity.
Collapse
|
32
|
Tu L, Wang JH, Barathi VA, Prea SM, He Z, Lee JH, Bender J, King AE, Logan GJ, Alexander IE, Bee YS, Tai MH, Dusting GJ, Bui BV, Zhong J, Liu GS. AAV-mediated gene delivery of the calreticulin anti-angiogenic domain inhibits ocular neovascularization. Angiogenesis 2018; 21:95-109. [PMID: 29318471 DOI: 10.1007/s10456-017-9591-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022]
Abstract
Ocular neovascularization is a common pathological feature in diabetic retinopathy and neovascular age-related macular degeneration that can lead to severe vision loss. We evaluated the therapeutic efficacy of a novel endogenous inhibitor of angiogenesis, the calreticulin anti-angiogenic domain (CAD180), and its functional 112-residue fragment, CAD-like peptide 112 (CAD112), delivered using a self-complementary adeno-associated virus serotype 2 (scAAV2) in rodent models of oxygen-induced retinopathy and laser-induced choroidal neovascularization. The expression of CAD180 and CAD112 was elevated in human umbilical vein endothelial cells transduced with scAAV2-CAD180 or scAAV2-CAD112, respectively, and both inhibited angiogenic activity in vitro. Intravitreal gene delivery of scAAV2-CAD180 or scAAV2-CAD112 significantly inhibited ischemia-induced retinal neovascularization in rat eyes (CAD180: 52.7% reduction; CAD112: 49.2% reduction) compared to scAAV2-mCherry, as measured in retinal flatmounts stained with isolectin B4. Moreover, the retinal structure and function were unaffected by scAAV2-CAD180 or scAAV2-CAD112, as measured by optical coherence tomography and electroretinography. Moreover, subretinal delivery of scAAV2-CAD180 or scAAV2-CAD112 significantly attenuated laser-induced choroidal neovascularization in mouse eyes compared to scAAV2-mCherry, as measured by fundus fluorescein angiography (CAD180: 62.4% reduction; CAD112: 57.5% reduction) and choroidal flatmounts (CAD180: 40.21% reduction; CAD112: 43.03% reduction). Gene delivery using scAAV2-CAD180 or scAAV2-CAD112 has significant potential as a therapeutic option for the management of ocular neovascularization.
Collapse
Affiliation(s)
- Leilei Tu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Veluchamy A Barathi
- Translational Pre-clinical Model Platform, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, DUKE-NUS Graduate Medical School, Singapore, Singapore
| | - Selwyn M Prea
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Jia Hui Lee
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - James Bender
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, University of Sydney, Sydney, NSW, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, University of Sydney, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Westmead, NSW, Australia
| | - Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Jingxiang Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Guei-Sheung Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia.
- , Liverpool St, Hobart, TAS, 7000, Australia.
| |
Collapse
|
33
|
|
34
|
Calderon-Salais S, Velazquez-Bernardino P, Balderas-Hernandez VE, Barba de la Rosa AP, De Leon-Rodriguez A. Constitutive expression of the active fragment of human vasostatin Vs30 in Pichia pastoris SMD1168H. Protein Expr Purif 2017; 144:40-45. [PMID: 29221829 DOI: 10.1016/j.pep.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/25/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022]
Abstract
Vasostatin 30 (Vs30) is an active fragment derived from the N-terminal region (135-164 aa) of human calreticulin and has the ability to inhibit angiogenesis. In this work, the expression of Vs30 was performed using a protease-deficient strain of the methylotrophic yeast Pichia pastoris. The vs30 gene was optimized for P. pastoris preferential codon usage and inserted into constitutive expression vector pGAPZαA. In addition, a plasmid with four copies of the expression cassette was obtained and transformed into P. pastoris. The flask fermentation conditions were: culture volume of 25 mL in 250 mL baffled flasks at 28 °C, pH 6 and harvest time of 48 h. Up to 21.07 mg/L Vs30 were attained and purified by ultrafiltration with a 30-kDa cut-off membrane and the recovery was 49.7%. Bioactivity of Vs30 was confirmed by the inhibition of cell proliferation, as well as the inhibition of the capillary-like structures formation of EA.hy926 cells in vitro. This work constitutes the first report on the expression of Vs30 in Pichia pastoris using a constitutive promoter and multi-copy approach such as strategies to improve the recombinant Vs30 expression.
Collapse
Affiliation(s)
- Sergio Calderon-Salais
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José 2055, Col. Lomas 4(a) Sección, C.P. 78216 San Luis Potosí, SLP, Mexico
| | - Prisiliana Velazquez-Bernardino
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José 2055, Col. Lomas 4(a) Sección, C.P. 78216 San Luis Potosí, SLP, Mexico
| | - Victor E Balderas-Hernandez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José 2055, Col. Lomas 4(a) Sección, C.P. 78216 San Luis Potosí, SLP, Mexico
| | - Ana P Barba de la Rosa
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José 2055, Col. Lomas 4(a) Sección, C.P. 78216 San Luis Potosí, SLP, Mexico
| | - Antonio De Leon-Rodriguez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, A.C., Camino a la Presa San José 2055, Col. Lomas 4(a) Sección, C.P. 78216 San Luis Potosí, SLP, Mexico.
| |
Collapse
|
35
|
He XY, Gong FY, Chen Y, Zhou Z, Gong Z, Gao XM. Calreticulin Fragment 39-272 Promotes B16 Melanoma Malignancy through Myeloid-Derived Suppressor Cells In Vivo. Front Immunol 2017; 8:1306. [PMID: 29075268 PMCID: PMC5643410 DOI: 10.3389/fimmu.2017.01306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/27/2017] [Indexed: 02/02/2023] Open
Abstract
Calreticulin (CRT), a multifunctional Ca2+-binding glycoprotein mainly located in the endoplasmic reticulum, is a tumor-associated antigen that has been shown to play protective roles in angiogenesis suppression and anti-tumor immunity. We previously reported that soluble CRT (sCRT) was functionally similar to heat shock proteins or damage-associated molecular patterns in terms of ability to activate myeloid cells and elicit strong inflammatory cytokine production. In the present study, B16 melanoma cell lines expressing recombinant CRT fragment 39-272 (sCRT/39-272) in secreted form (B16-CRT), or recombinant enhanced green fluorescence protein (rEGFP) (B16-EGFP), were constructed for investigation on the roles of sCRT in tumor development. When s.c. inoculated into C57BL/6 mice, the B16-CRT cells were significantly more aggressive (in terms of solid tumor growth rate) than B16-EGFP controls in a TLR4- and myeloid-derived suppressor cells (MDSC)-dependent manner. The B16-CRT-bearing mice showed increased Gr1+ MDSC infiltration in tumor tissues, accelerated proliferation of CD11b+Ly6G+Ly6Clow (G-MDSC) precursors in bone marrow, and higher percentages of G-MDSCs in spleen and blood, which was mirrored by decreased percentage of dendritic cells (DC) in periphery. In in vitro studies, recombinant sCRT/39-272 was able to promote migration and survival of tumor-derived MDSCs via interaction with TLR4, inhibit MDSC differentiation into DC, and also elicit expression of inflammatory proteins S100A8 and S100A9 which are essential for functional maturation and chemotactic migration of MDSCs. Our data provide solid evidence for CRT as a double-edged sword in tumor development.
Collapse
Affiliation(s)
- Xiao-Yan He
- School of Biology and Basic Medical Sciences, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Fang-Yuan Gong
- School of Biology and Basic Medical Sciences, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yong Chen
- School of Biology and Basic Medical Sciences, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zhe Zhou
- School of Biology and Basic Medical Sciences, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zheng Gong
- School of Biology and Basic Medical Sciences, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- School of Biology and Basic Medical Sciences, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
36
|
Li J, Chen S, Ge J, Lu F, Ren S, Zhao Z, Pu X, Chen X, Sun J, Gu Y. A novel therapeutic vaccine composed of a rearranged human papillomavirus type 16 E6/E7 fusion protein and Fms-like tyrosine kinase-3 ligand induces CD8 + T cell responses and antitumor effect. Vaccine 2017; 35:6459-6467. [PMID: 29029939 DOI: 10.1016/j.vaccine.2017.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/26/2017] [Accepted: 09/03/2017] [Indexed: 01/15/2023]
Abstract
The development of cervical cancer is mainly caused by infection with high risk genotypes of human papillomavirus, particularly type 16 (HPV16), which accounts for more than 50% of cervical cancer. The two early viral oncogenes, E6 and E7, are continuously expressed in cervical cancer cells and are necessary to maintain the malignant cellular phenotype, thus providing ideal targets for immunotherapy of cervical cancer. In this study, a novel vaccine strategy was developed based on a rationally shuffled HPV16 E6/E7 fusion protein, the addition of Fms-like tyrosine kinase-3 ligand (Flt3L) or the N domain of calreticulin (NCRT), and the usage of a CpG adjuvant. Four recombinant proteins were constructed: m16E6E7 (mutant E6/E7 fusion protein), rm16E6E7 (rearranged mutant HPV16 E6/E7 fusion protein), Flt3L-RM16 (Flt3L fused to rm16E6E7), and NCRT-RM16 (NCRT fused to rm16E6E7). Our results suggest that Flt3L-RM16 was the most potent of these proteins in terms of inducing E6- and E7-specific CD8+ T cell responses. Additionally, Flt3L-RM16 significantly induced regression of established E6/E7-expressing TC-1 tumors. Higher doses of Flt3L-RM16 trended toward higher levels of antitumor activity, but these differences did not reach statistical significance. In summary, this study found that Flt3L-RM16 fusion protein is a promising therapeutic vaccine for immunotherapy of HPV16-associated cervical cancer.
Collapse
Affiliation(s)
- Jianqiang Li
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Si Chen
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Jun Ge
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Feng Lu
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Sulin Ren
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Zhiqiang Zhao
- Suzhou Yuankang Bio-pharmaceutical Co., Ltd., Suzhou, China.
| | - Xiuying Pu
- Suzhou Yuankang Bio-pharmaceutical Co., Ltd., Suzhou, China.
| | - Xiaoxiao Chen
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Jiaojiao Sun
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, Nanjing, China.
| | - Yueqing Gu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
37
|
Velásquez JJ, Navarro-Vargas JR, Moncada L. Potential pharmacological use of salivary compounds from hematophagous organisms. REVISTA DE LA FACULTAD DE MEDICINA 2017. [DOI: 10.15446/revfacmed.v65n3.52835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. La saliva de los artrópodos hematófagos contiene un arsenal de compuestos que les permite acceder a la sangre de sus hospederos vertebrados sin ser detectados.Objetivo. Explorar los compuestos salivares de insectos hematófagos que tienen propiedades vasodilatadoras, anticoagulantes, antiinflamatorias, inmunomoduladoras y anestésicas, las cuales se pueden aprovechar por su alto potencial farmacológico.Materiales y métodos. Se realizó una revisión no sistemática de la literatura mediante búsqueda electrónica en las bases de datos PubMed, EMBASE, OvidSP y ScienceDirect; la búsqueda no se limitó por fecha, idioma ni tipo de artículo. Se buscaron artículos sobre los compuestos salivares de los insectos hematófagos, cuyo tema central fuese los efectos en la hemostasia, inmunomodulación y uso farmacológico. Se encontraron 59 artículos que cumplían con los criterios para ser incluidos en la revisión.Conclusión. La saliva de los insectos hematófagos posee gran variedad de moléculas, lo que ofrece una fuente de investigación y un potencial incalculable para el descubrimiento de compuestos que podrían llegar a tener utilidad farmacológica.
Collapse
|
38
|
Bee YS, Tu L, Sheu SJ, Lin HC, Tang JH, Wang JH, Prea SM, Dusting GJ, Wu DC, Zhong J, Bui BV, Tai MH, Liu GS. Gene Delivery of Calreticulin Anti-Angiogenic Domain Attenuates the Development of Choroidal Neovascularization in Rats. Hum Gene Ther 2017; 28:403-414. [DOI: 10.1089/hum.2016.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Youn-Shen Bee
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Leilei Tu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiu-Chen Lin
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jia-Hua Tang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - Selwyn M. Prea
- Department of Optometry and Vision Sciences, University of Melbourne, East Melbourne, Australia
| | - Gregory J. Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - Deng-Chyang Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jingxiang Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, University of Melbourne, East Melbourne, Australia
| | - Ming-Hong Tai
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| |
Collapse
|
39
|
Bandyopadhyay GK, Mahata SK. Chromogranin A Regulation of Obesity and Peripheral Insulin Sensitivity. Front Endocrinol (Lausanne) 2017; 8:20. [PMID: 28228748 PMCID: PMC5296320 DOI: 10.3389/fendo.2017.00020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/23/2017] [Indexed: 01/15/2023] Open
Abstract
Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. The intracellular functions of CgA include the initiation and regulation of dense-core granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein is co-stored and co-released with secreted hormones. The extracellular functions of CgA include the generation of bioactive peptides, such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual CgA-derived peptides may regulate different physiological functions. Indeed, additional studies have revealed that the pro-inflammatory PST influences insulin sensitivity and glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and insulin-resistant models, and their potential use as therapeutic targets.
Collapse
Affiliation(s)
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Metabolic Physiology and Ultrastructural Biology Laboratory, VA San Diego Healthcare System, San Diego, CA, USA
- *Correspondence: Sushil K. Mahata,
| |
Collapse
|
40
|
Ramírez-Toloza G, Abello P, Ferreira A. Is the Antitumor Property of Trypanosoma cruzi Infection Mediated by Its Calreticulin? Front Immunol 2016; 7:268. [PMID: 27462315 PMCID: PMC4939398 DOI: 10.3389/fimmu.2016.00268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
Eight to 10 million people in 21 endemic countries are infected with Trypanosoma cruzi. However, only 30% of those infected develop symptoms of Chagas' disease, a chronic, neglected tropical disease worldwide. Similar to other pathogens, T. cruzi has evolved to resist the host immune response. Studies, performed 80 years ago in the Soviet Union, proposed that T. cruzi infects tumor cells with similar capacity to that displayed for target tissues such as cardiac, aortic, or digestive. An antagonistic relationship between T. cruzi infection and cancer development was also proposed, but the molecular mechanisms involved have remained largely unknown. Probably, a variety of T. cruzi molecules is involved. This review focuses on how T. cruzi calreticulin (TcCRT), exteriorized from the endoplasmic reticulum, targets the first classical complement component C1 and negatively regulates the classical complement activation cascade, promoting parasite infectivity. We propose that this C1-dependent TcCRT-mediated virulence is critical to explain, at least an important part, of the parasite capacity to inhibit tumor development. We will discuss how TcCRT, by directly interacting with venous and arterial endothelial cells, inhibits angiogenesis and tumor growth. Thus, these TcCRT functions not only illustrate T. cruzi interactions with the host immune defensive strategies, but also illustrate a possible co-evolutionary adaptation to privilege a prolonged interaction with its host.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile , Santiago , Chile
| | - Paula Abello
- Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile , Santiago , Chile
| | - Arturo Ferreira
- Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile , Santiago , Chile
| |
Collapse
|
41
|
Eggleton P, Bremer E, Dudek E, Michalak M. Calreticulin, a therapeutic target? Expert Opin Ther Targets 2016; 20:1137-47. [DOI: 10.1517/14728222.2016.1164695] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Garbati MR, Welgan CA, Landefeld SH, Newell LF, Agarwal A, Dunlap JB, Chourasia TK, Lee H, Elferich J, Traer E, Rattray R, Cascio MJ, Press RD, Bagby GC, Tyner JW, Druker BJ, Dao KHT. Mutant calreticulin-expressing cells induce monocyte hyperreactivity through a paracrine mechanism. Am J Hematol 2016; 91:211-9. [PMID: 26573090 DOI: 10.1002/ajh.24245] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 01/05/2023]
Abstract
Mutations in the calreticulin gene (CALR) were recently identified in approximately 70-80% of patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis. All frameshift mutations generate a recurring novel C-terminus. Here we provide evidence that mutant calreticulin does not accumulate efficiently in cells and is abnormally enriched in the nucleus and extracellular space compared to wildtype calreticulin. The main determinant of these findings is the loss of the calcium-binding and KDEL domains. Expression of type I mutant CALR in Ba/F3 cells confers minimal IL-3-independent growth. Interestingly, expression of type I and type II mutant CALR in a nonhematopoietic cell line does not directly activate JAK/STAT signaling compared to wildtype CALR and JAK2-V617F expression. These results led us to investigate paracrine mechanisms of JAK/STAT activation. Here we show that conditioned media from cells expressing type I mutant CALR exaggerate cytokine production from normal monocytes with or without treatment with a toll-like receptor agonist. These effects are not dependent on the novel C-terminus. These studies offer novel insights into the mechanism of JAK/STAT activation in patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis.
Collapse
Affiliation(s)
- Michael R. Garbati
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Catherine A. Welgan
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Sally H. Landefeld
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Laura F. Newell
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Anupriya Agarwal
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Jennifer B. Dunlap
- Knight Cancer Institute, Oregon Health and Science University; Portland Oregon
- Department of Pathology; Oregon Health and Science University; Portland Oregon
| | - Tapan K. Chourasia
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Hyunjung Lee
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Johannes Elferich
- Department of Biochemistry and Molecular Biology; Oregon Health and Science University; Portland Oregon
| | - Elie Traer
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Rogan Rattray
- Knight Cancer Institute, Oregon Health and Science University; Portland Oregon
- Department of Pathology; Oregon Health and Science University; Portland Oregon
| | - Michael J. Cascio
- Department of Pathology; Oregon Health and Science University; Portland Oregon
| | - Richard D. Press
- Knight Cancer Institute, Oregon Health and Science University; Portland Oregon
- Department of Pathology; Oregon Health and Science University; Portland Oregon
| | - Grover C. Bagby
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
- Department of Cell, Development, and Cancer Biology; Oregon Health and Science University, Knight Cancer Institute; Portland Oregon
| | - Brian J. Druker
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
- Department of Cell, Development, and Cancer Biology; Oregon Health and Science University, Knight Cancer Institute; Portland Oregon
- Howard Hughes Medical Institute, Oregon Health and Science University; Portland Oregon
| | - Kim-Hien T. Dao
- Knight Cancer Institute, Hematology and Medical Oncology, Oregon Health and Science University; Portland Oregon
| |
Collapse
|
43
|
Fan J, Wang Z, Huang L, Shen Y. Efficient refolding of the bifunctional therapeutic fusion protein VAS-TRAIL by a triple agent solution. Protein Expr Purif 2015; 125:68-73. [PMID: 26358405 DOI: 10.1016/j.pep.2015.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 11/15/2022]
Abstract
VAS-TRAIL is a bifunctional fusion protein that combines anti-angiogenic activity with tumor-selective apoptotic activity for enhanced anti-tumor efficacy. VAS-TRAIL is expressed as inclusion body in Escherichia coli, but protein refolding is difficult to achieve and results in low yields of bioactive protein. In this study, we describe an efficient method for VAS-TRAIL refolding. The solubilization of aggregated VAS-TRAIL was achieved by a triple agent solution, which consists of an alkaline solution (pH 11.5) containing 0.4M l-arginine and 2M urea. The solubilized protein showed high purity and preserved secondary structure according to fluorescence properties. VAS-TRAIL refolding was performed through stepwise dialysis and resulted in more than 50% recovery of the soluble protein. The function of l-arginine was additive with alkaline pH, as shown by the significant improvement in refolding yield (≈30%) by l-arginine-containing solubilization solutions compared with alkaline solubilization solutions without l-arginine. The refolded VAS-TRAIL also showed β-sheet structures and the propensity for oligomerization. Bioassays showed that the refolded fusion protein exhibited the expected activities, including its apoptotic activities toward tumor and endothelial cells, which proposed its promising therapeutic potential.
Collapse
Affiliation(s)
- Jiying Fan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Zhanqing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Liying Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
44
|
Fan J, Huang L, Sun J, Qiu Y, Zhou J, Shen Y. Strategy for linker selection to enhance refolding and bioactivity of VAS-TRAIL fusion protein based on inclusion body conformation and activity. J Biotechnol 2015; 209:16-22. [PMID: 26072465 DOI: 10.1016/j.jbiotec.2015.06.383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/06/2015] [Indexed: 11/25/2022]
Abstract
A bifunctional fusion protein, VAS-TRAIL, was designed for superior therapeutic efficacy by combining anti-angiogenesis activity with tumor-selective apoptosis activity. The protein was expressed as inclusion body (IB) in Escherichia coli. To enhance refolding yield and bioactivity, four fusions were constructed with different linkers (no linker, flexible linker, rigid linker, and helix-forming linker). A novel linker selection strategy based on IB conformational quality and activity was applied to predict the suitable linker. The conformational quality and activity of VAS-TRAIL IBs were analyzed by ATR-FTIR and cytotoxicity assay, respectively. Results demonstrated that aggregated VRT (fusion with rigid linker) contained the highest native-like β structure content and retained part of the expected activity, namely, cytotoxicity activity on tumor cells. This finding suggested that the rigid linker was the most suitable candidate. Further results of in vitro refolding and subsequent circular dichroism and activity assay of four refolded fusions were significantly correlated with the predictions. Refolding of VRT yielded more soluble proteins containing the expected secondary structure and the highest bioactivity compared with that of other fusions. Our research may offer an efficient method for the high-throughput design of aggregated-prone therapeutic fusion protein.
Collapse
Affiliation(s)
- Jiying Fan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Liying Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Qiu
- Shanghai Gebaide Biotechnical Co., Ltd., Shanghai 201403, China
| | - Jinsong Zhou
- Shanghai Gebaide Biotechnical Co., Ltd., Shanghai 201403, China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
45
|
Inhibition of angiogenesis by a synthetic fusion protein VTF derived from vasostatin and tumstatin. Anticancer Drugs 2015; 25:1044-51. [PMID: 24942148 DOI: 10.1097/cad.0000000000000134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The inhibition of angiogenesis represents a potential strategy for antitumor therapy. A novel synthetic fusion protein VTF, composed of bioactive fragments from two different angiogenesis inhibitors, vasostatin and tumstatin with a (Gly-Ser-Gly)2 bridge, was generated using the pET-15b expression vector. The fusion protein VTF showed significantly enhanced efficacy in inhibiting human endothelial cell proliferation and tube formation and neovascularization on chick embryo chorioallantoic membrane. Moreover, VTF suppressed the growth of B16 melanoma and the formation of tumor blood vessels potently in vivo. These results indicated that the fusion protein containing the bioactive fragments of multiple angiogenesis inhibitors might be a promising therapeutic agent for tumor treatment.
Collapse
|
46
|
Ramírez-Toloza G, Aguilar-Guzmán L, Valck C, Abello P, Ferreira A. Is it all That Bad When Living with an Intracellular Protozoan? The Role of Trypanosoma cruzi Calreticulin in Angiogenesis and Tumor Growth. Front Oncol 2015; 4:382. [PMID: 25629005 PMCID: PMC4292450 DOI: 10.3389/fonc.2014.00382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/19/2014] [Indexed: 10/28/2022] Open
Abstract
The immune system protects against disease, but may aberrantly silence immunity against "altered self," with consequent development of malignancies. Among the components of the endoplasmic reticulum (ER), important in immunity, is calreticulin (CRT) that, in spite of its residence in the ER, can be translocated to the exterior. Trypanosoma cruzi is the agent of Chagas disease, one of the most important global neglected infections, affecting several hundred thousand people. The syndrome, mainly digestive and circulatory, affects only one-third of those infected. The anti-tumor effects of the infection are known for several decades, but advances in the identification of responsible T. cruzi molecules are scarce. We have shown that T. cruzi CRT (TcCRT) better executes the antiangiogenic and anti-tumor effects of mammal CRT and its N-terminus vasostatin. In this regard, recombinant TcCRT (rTcCRT) and/or its N-terminus inhibit angiogenesis in vitro, ex vivo, and in vivo. TcCRT also inhibits the growth of murine adenocarcinomas and melanomas. Finally, rTcCRT fully reproduces the anti-tumor effect of T. cruzi infection in mice. Thus, we hypothesize that, the long reported anti-tumor effect of T. cruzi infection is mediated at least in part by TcCRT.
Collapse
Affiliation(s)
- Galia Ramírez-Toloza
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile , Santiago , Chile
| | - Lorena Aguilar-Guzmán
- Faculty of Veterinary Medicine and Livestock Sciences, University of Chile , Santiago , Chile
| | - Carolina Valck
- Program of Immunology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile
| | - Paula Abello
- Program of Immunology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile
| | - Arturo Ferreira
- Program of Immunology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile
| |
Collapse
|
47
|
Gutiérrez T, Simmen T. Endoplasmic reticulum chaperones and oxidoreductases: critical regulators of tumor cell survival and immunorecognition. Front Oncol 2014; 4:291. [PMID: 25386408 PMCID: PMC4209815 DOI: 10.3389/fonc.2014.00291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/07/2014] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) chaperones and oxidoreductases are abundant enzymes that mediate the production of fully folded secretory and transmembrane proteins. Resisting the Golgi and plasma membrane-directed “bulk flow,” ER chaperones and oxidoreductases enter retrograde trafficking whenever they are pulled outside of the ER by their substrates. Solid tumors are characterized by the increased production of reactive oxygen species (ROS), combined with reduced blood flow that leads to low oxygen supply and ER stress. Under these conditions, hypoxia and the unfolded protein response upregulate their target genes. When this occurs, ER oxidoreductases and chaperones become important regulators of tumor growth. However, under these conditions, these proteins not only promote the folding of proteins, but also alter the properties of the plasma membrane and hence modulate tumor immune recognition. For instance, high levels of calreticulin serve as an “eat-me” signal on the surface of tumor cells. Conversely, both intracellular and surface BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the properties of tumor tissue include protein disulfide isomerase (PDI), Ero1α and GRP94. Understanding the roles and mechanisms of ER chaperones in regulating tumor cell functions and immunorecognition will lead to important insight for the development of novel cancer therapies.
Collapse
Affiliation(s)
- Tomás Gutiérrez
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
48
|
Weng WC, Lin KH, Wu PY, Lu YC, Weng YC, Wang BJ, Liao YF, Hsu WM, Lee WT, Lee H. Calreticulin Regulates VEGF-A in Neuroblastoma Cells. Mol Neurobiol 2014; 52:758-70. [PMID: 25288151 DOI: 10.1007/s12035-014-8901-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023]
Abstract
Calreticulin (CRT) has been previously correlated with the differentiation of neuroblastoma (NB), implying a favorable prognostic factor. Vascular endothelial growth factor (VEGF) has been reported to participate in the behavior of NB. This study investigated the association of CRT and VEGF-A in NB cells. The expressions of VEGF-A and HIF-1α, with overexpression or knockdown of CRT, were measured in three NB cells (SH-SY5Y, SK-N-DZ, and stNB-V1). An inducible CRT NB cell line and knockdown CRT stable cell lines were also established. The impacts of CRT overexpression on NB cell apoptosis, proliferation, and differentiation were also evaluated. We further examined the role of VEGF-A in the NB cell differentiation via VEGF receptor blockade. Constitutive overexpression of CRT led to NB cell differentiation without proliferation. Thus, an inducible CRT stNB-V1 cell line was generated by a tetracycline-regulated gene system. CRT overexpression increased VEGF-A and HIF-1α messenger RNA (mRNA) expressions in SH-SY5Y, SK-N-DZ, and stNB-V1 cells. CRT overexpression also enhanced VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. Knockdown of CRT decreased VEGF-A and HIF-1α mRNA expressions and lowered VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. We further demonstrated that NB cell apoptosis was not affected by CRT overexpression in stNB-V1 cells. Nevertheless, overexpression of CRT suppressed cell proliferation and enhanced cell differentiation in stNB-V1 cells, whereas blockage of VEGFR-1 markedly suppressed the expression of neuron-specific markers including GAP43, NSE2, and NFH, as well as TrkA, a molecular marker indicative of NB cell differentiation. Our findings suggest that VEGF-A is involved in CRT-related neuronal differentiation in NB. Our work may provide important information for developing a new therapeutic strategy to improve the outcome of NB patients.
Collapse
Affiliation(s)
- Wen-Chin Weng
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li G, Petiwala SM, Nonn L, Johnson JJ. Inhibition of CHOP accentuates the apoptotic effect of α-mangostin from the mangosteen fruit (Garcinia mangostana) in 22Rv1 prostate cancer cells. Biochem Biophys Res Commun 2014; 453:75-80. [PMID: 25261723 DOI: 10.1016/j.bbrc.2014.09.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 01/09/2023]
Abstract
The mangosteen (Garcinia mangostana) fruit has been a popular food in Southeast Asia for centuries and is increasing in popularity in Western countries. We identified α-Mangostin as a primary phytochemical modulating ER stress proteins in prostate cancer cells and propose that α-Mangostin is responsible for exerting a biological effect in prostate cancer cells. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two patients undergoing radical prostatectomy were treated with α-Mangostin and evaluated by RT-PCR, Western blot, fluorescent microscopy and siRNA transfection to evaluate ER stress. Next, we evaluated α-Mangostin for microsomal stability, pharmacokinetic parameters, and anti-cancer activity in nude mice. α-Mangostin significantly upregulated ER stress markers in prostate cancer cells. Interestingly, α-Mangostin did not promote ER stress in prostate epithelial cells (PrECs) from prostate cancer patients. CHOP knockdown enhanced α-Mangostin-induced apoptosis in prostate cancer cells. α-Mangostin significantly suppressed tumor growth in a xenograft tumor model without obvious toxicity. Our study suggests that α-Mangostin is not the only active constituent from the mangosteen fruit requiring further work to understand the complex chemical composition of the mangosteen.
Collapse
Affiliation(s)
- Gongbo Li
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmacy Practice, United States
| | - Sakina M Petiwala
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmacy Practice, United States
| | - Larisa Nonn
- University of Illinois at Chicago, College of Pharmacy, Department of Pathology, United States; University of Illinois Cancer Center, United States
| | - Jeremy J Johnson
- University of Illinois at Chicago, College of Pharmacy, Department of Pharmacy Practice, United States; University of Illinois Cancer Center, United States.
| |
Collapse
|
50
|
Peng XC, Wang M, Chen XX, Liu J, Xiao GH, Liao HL. Plasmid-encoding vasostatin inhibited the growth and metastasis of human hepatocellular carcinoma cells. Mol Cell Biochem 2014; 395:265-72. [PMID: 24997628 DOI: 10.1007/s11010-014-2135-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/17/2014] [Indexed: 02/05/2023]
Abstract
The growth and metastasis of solid tumors depends on angiogenesis. Anti-angiogenesis therapy may represent a promising therapeutic option. Vasostatin, the N-terminal domain of calreticulin, is a very potent endogenous inhibitor of angiogenesis and tumor growth. In this study, we attempted to investigate whether plasmid-encoding vasostatin complexed with cationic liposome could suppress the growth and metastasis of hepatocellular carcinoma in vivo and discover its possible mechanism of action. Apoptosis induction of pSecTag2B-vasostatin plasmid on murine endothelial cells (MS1) was examined by flow cytometric analysis in vitro. Nude mice bearing HCCLM3 tumor received pSecTag2B-vasostatin, pSecTag2B-Null, and 0.9 % NaCl solution, respectively. Tumor net weight was measured and survival time was observed. Microvessel density within tumor tissues was determined by CD31 immunohistochemistry. H&E staining of lungs and TUNEL assay of primary tumor tissues were also conducted. The results displayed that pSecTag2B-vasostatin could inhibit the growth and metastasis of hepatocellular carcinoma xenografts and prolong survival time compared with the controls in vivo. Moreover, histologic analysis revealed that pSecTag2B-vasostatin treatment increased apoptosis and inhibited angiogenesis. The present data may be of importance to the further exploration of this new anti-angiogenesis approach in the treatment of hepatocellular cancer.
Collapse
Affiliation(s)
- Xing-Chen Peng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China,
| | | | | | | | | | | |
Collapse
|