1
|
Chalepaki AM, Gkoris M, Chondrou I, Kourti M, Georgakopoulos-Soares I, Zaravinos A. A multi-omics analysis of effector and resting treg cells in pan-cancer. Comput Biol Med 2025; 189:110021. [PMID: 40088713 DOI: 10.1016/j.compbiomed.2025.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Regulatory T cells (Tregs) are critical for maintaining the stability of the immune system and facilitating tumor escape through various mechanisms. Resting T cells are involved in cell-mediated immunity and remain in a resting state until stimulated, while effector T cells promote immune responses. Here, we investigated the roles of two gene signatures, one for resting Tregs (FOXP3 and IL2RA) and another for effector Tregs (FOXP3, CTLA-4, CCR8 and TNFRSF9) in pan-cancer. Using data from The Cancer Genome Atlas (TCGA), The Cancer Proteome Atlas (TCPA) and Gene Expression Omnibus (GEO), we focused on the expression profile of the two signatures, the existence of single nucleotide variants (SNVs) and copy number variants (CNVs), methylation, infiltration of immune cells in the tumor and sensitivity to different drugs. Our analysis revealed that both signatures are differentially expressed across different cancer types, and correlate with patient survival. Furthermore, both types of Tregs influence important pathways in cancer development and progression, like apoptosis, epithelial-to-mesenchymal transition (EMT) and the DNA damage pathway. Moreover, a positive correlation was highlighted between the expression of gene markers in both resting and effector Tregs and immune cell infiltration in adrenocortical carcinoma, while mutations in both signatures correlated with enrichment of specific immune cells, mainly in skin melanoma and endometrial cancer. In addition, we reveal the existence of widespread CNVs and hypomethylation affecting both Treg signatures in most cancer types. Last, we identified a few correlations between the expression of CCR8 and TNFRSF9 and sensitivity to several drugs, including COL-3, Chlorambucil and GSK1070916, in pan-cancer. Overall, these findings highlight new evidence that both Treg signatures are crucial regulators of cancer progression, providing potential clinical outcomes for cancer therapy.
Collapse
Affiliation(s)
- Anna-Maria Chalepaki
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Marios Gkoris
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Irene Chondrou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Malamati Kourti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| |
Collapse
|
2
|
Choi SH, Chen YW, Panian J, Yuen K, McKay RR. Emerging innovative treatment strategies for advanced clear cell renal cell carcinoma. Oncologist 2025; 30:oyae276. [PMID: 39401004 PMCID: PMC11954509 DOI: 10.1093/oncolo/oyae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Dramatic advances in biological discoveries, since the 1990s, have continued to reshape the treatment paradigm of metastatic renal cell carcinoma (RCC). Von Hippel Lindau (VHL) gene alterations are associated with pro-angiogenic activity and are central to the pathogenesis of clear cell RCC (ccRCC), the most predominant histologic subtype of RCC. Antiangiogenic strategies revolving around this VHL/HIF/VEGF axis have been shown to improve survival in metastatic ccRCC. The discovery of immune checkpoints and agents that target their inhibition introduced a new treatment paradigm for patients with RCC. While initially approved as monotherapy, studies investigating immune checkpoint inhibitor combinations have led to their approval as the new standard of care, providing durable responses and unprecedented improvements in clinical outcome. Despite these advances, the projected 14 390 deaths in 2024 from RCC underscore the need to continue efforts in expanding and optimizing treatment options for patients with metastatic RCC. This article reviews key findings that have transformed the way we understand and treat metastatic RCC, in addition to highlighting novel treatment strategies that are currently under development.
Collapse
Affiliation(s)
- Sharon H Choi
- Division of Hematology Oncology, University of California San Diego, San Diego, CA, United States
| | - Yu-Wei Chen
- Division of Hematology Oncology, University of California San Diego, San Diego, CA, United States
| | - Justine Panian
- Division of Hematology Oncology, University of California San Diego, San Diego, CA, United States
| | - Kit Yuen
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Rana R McKay
- Division of Hematology Oncology, University of California San Diego, San Diego, CA, United States
- Department of Urology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
3
|
Engelhart MJ, Brock OD, Till JM, Glowacki RWP, Cantwell JW, Clarke DJ, Wesener DA, Ahern PP. BT1549 coordinates the in vitro IL-10 inducing activity of Bacteroides thetaiotaomicron. Microbiol Spectr 2025; 13:e0166924. [PMID: 39868786 DOI: 10.1128/spectrum.01669-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025] Open
Abstract
The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses. Despite the importance of this microbiome-driven immunomodulation, detailed knowledge of the microbial factors that promote these responses remains limited. We have previously established that the gut symbiont Bacteroides thetaiotaomicron stimulates the production of the anti-inflammatory cytokine IL-10 via soluble factors in a Toll-like receptor 2 (TLR2)-MyD88-dependent manner. Here, using TLR2 activity reporter cell lines, we show that the capacity of B. thetaiotaomicron to stimulate TLR2 activity was not critically dependent on either of the canonical heterodimeric forms of TLR2, TLR2/TLR1, or TLR2/TLR6, that typically mediate its function. Furthermore, biochemical manipulation of B. thetaiotaomicron-conditioned media suggests that IL-10 induction is mediated by a protease-resistant or non-proteogenic factor. We next uncovered that deletion of gene BT1549, a predicted secreted lipoprotein, significantly impaired the capacity of B. thetaiotaomicron to induce IL-10, while complementation in trans restored IL-10 induction, suggesting a role for BT1549 in the immunomodulatory function of B. thetaiotaomicron. Collectively, these data provide molecular insight into the pathways through which B. thetaiotaomicron operates to promote intestinal immune tolerance and symbiosis. IMPORTANCE Intestinal homeostasis requires the establishment of peaceful interactions between the gut microbiome and the intestinal immune system. Members of the gut microbiome, like the symbiont Bacteroides thetaiotaomicron, actively induce anti-inflammatory immune responses to maintain mutualistic relationships with the host. Despite the importance of such interactions, the specific microbial factors responsible remain largely unknown. Here, we show that B. thetaiotaomicron, which stimulates Toll-like receptor 2 (TLR2) to drive IL-10 production, can stimulate TLR2 independently of TLR1 or TLR6, the two known TLR that can form heterodimers with TLR2 to mediate TLR2-dependent responses. Furthermore, we show that IL-10 induction is likely mediated by a protease-resistant or non-proteogenic factor, and that this requires gene BT1549, a predicted secreted lipoprotein and peptidase. Collectively, our work provides insight into the molecular dialog through which B. thetaiotaomicron coordinates anti-inflammatory immune responses. This knowledge may facilitate future strategies to promote such responses for therapeutic purposes.
Collapse
Affiliation(s)
- Morgan J Engelhart
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Orion D Brock
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jessica M Till
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert W P Glowacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jason W Cantwell
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - David J Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Darryl A Wesener
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Philip P Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Fisher MS, Sennikov SV. T-regulatory cells for the treatment of autoimmune diseases. Front Immunol 2025; 16:1511671. [PMID: 39967659 PMCID: PMC11832489 DOI: 10.3389/fimmu.2025.1511671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Autoimmune diseases result from imbalances in the immune system and disturbances in the mechanisms of immune tolerance. T-regulatory cells (Treg) are key factors in the formation of immune tolerance. Tregs modulate immune responses and repair processes, controlling the innate and adaptive immune system. The use of Tregs in the treatment of autoimmune diseases began with the manipulation of endogenous Tregs using immunomodulatory drugs. Then, a method of adoptive transfer of Tregs grown in vitro was developed. Adoptive transfer of Tregs includes polyclonal Tregs with non-specific effects and antigen-specific Tregs in the form of CAR-Treg and TCR-Treg. This review discusses non-specific and antigen-specific approaches to the use of Tregs, their advantages, disadvantages, gaps in development, and future prospects.
Collapse
Affiliation(s)
- Marina S. Fisher
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University under the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
- Laboratory of Immune Engineering, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University under the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
5
|
Søndergaard JN, Tulyeu J, Priest D, Sakaguchi S, Wing JB. Single cell suppression profiling of human regulatory T cells. Nat Commun 2025; 16:1325. [PMID: 39900891 PMCID: PMC11791207 DOI: 10.1038/s41467-024-55746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Regulatory T cells (Treg) play an important role in regulating immune homeostasis in health and disease. Traditionally their suppressive function has been assayed by mixing purified cell populations, which does not provide an accurate picture of a physiologically relevant response. To overcome this limitation, we here develop 'single cell suppression profiling of human Tregs' (scSPOT). scSPOT uses a 52-marker CyTOF panel, a cell division detection algorithm, and a whole PBMC system to assess the effect of Tregs on all other cell types simultaneously. In this head-to-head comparison, we find Tregs having the clearest suppressive effects on effector memory CD8 T cells through partial division arrest, cell cycle inhibition, and effector molecule downregulation. Additionally, scSPOT identifies a Treg phenotypic split previously observed in viral infection and propose modes of action by the FDA-approved drugs Ipilimumab and Tazemetostat. scSPOT is thus scalable, robust, widely applicable, and may be used to better understand Treg immunobiology and screen for therapeutic compounds.
Collapse
Affiliation(s)
- Jonas Nørskov Søndergaard
- Human Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan.
| | - Janyerkye Tulyeu
- Human Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - David Priest
- Laboratory of Human Single Cell Immunology, WPI-IFReC, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI-IFReC, Osaka University, Suita, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - James B Wing
- Human Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan.
- Laboratory of Human Single Cell Immunology, WPI-IFReC, Osaka University, Suita, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan.
| |
Collapse
|
6
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2025; 52:145-156. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms, including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
7
|
Shao Y, Mu Q, Wang R, Luo H, Song Z, Wang P, Song J, Ge C, Zhang J, Min J, Wang F. SLC39A10 is a key zinc transporter in T cells and its loss mitigates autoimmune disease. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2817-y. [PMID: 39862347 DOI: 10.1007/s11427-024-2817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Zinc homeostasis plays an essential role in maintaining immune function and is tightly regulated by zinc transporters. We previously reported that the zinc transporter SLC39A10, located in the cell membrane, critically regulates the susceptibility of macrophages to inflammatory stimuli; however, the functional role of SLC39A10 in T cells is currently unknown. Here, we identified two SNPs in SLC39A10 that are associated with inflammatory bowel disease (IBD). We then generated transgenic mice with T cell-specific deletion of Slc39a10 (cKO) and found that its loss not only protects against disease progression in IBD and experimental autoimmune encephalomyelitis (EAE), but also induces massive apoptosis via a p53/p21- and Bcl2-independent process. Mechanistically, we show that Slc39a10 serves as a key zinc importer upon activation of T cell receptor to safeguard DNA replication. Together, these findings provide new mechanistic insights and potential targets for the development of new therapeutic strategies for the treatment and/or prevention of T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Yichang Shao
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qingdian Mu
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rong Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongbin Luo
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zijun Song
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Pengfei Wang
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jingshu Song
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chaodong Ge
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Smolag KI, Olszowka J, Rosberg R, Johansson E, Marinko E, Leandersson K, O’Connell DJ, Governa V, Tuysuz EC, Belting M, Pietras A, Martin M, Blom AM. Complement Factor H Is an ICOS Ligand Modulating Tregs in the Glioma Microenvironment. Cancer Immunol Res 2025; 13:122-138. [PMID: 39378431 PMCID: PMC11712038 DOI: 10.1158/2326-6066.cir-23-1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
The survival rate of patients with glioma has not significantly increased in recent years despite aggressive treatment and advances in immunotherapy. The limited response to treatments is partially attributed to the immunosuppressive tumor microenvironment, in which regulatory T cells (Treg) play a pivotal role in immunologic tolerance. In this study, we investigated the impact of complement factor H (FH) on Tregs within the glioma microenvironment and found that FH is an ICOS ligand. The binding of FH to this immune checkpoint molecule promoted the survival and function of Tregs and induced the secretion of TGFβ and IL10 while suppressing T-cell proliferation. We further demonstrated that cancer cells in human and mouse gliomas directly produce FH. Database investigations revealed that upregulation of FH expression was associated with the presence of Tregs and correlated with worse prognosis for patients with glioma. We confirmed the effect of FH on glioma development in a mouse model, in which FH knockdown was associated with a decrease in the number of ICOS+ Tregs and demonstrated a tendency of prolonged survival (P = 0.064). Because the accumulation of Tregs represents a promising prognostic and therapeutic target, evaluating FH expression should be considered when assessing the effectiveness of and resistance to immunotherapies against glioma.
Collapse
Affiliation(s)
- Karolina I. Smolag
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jakub Olszowka
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Rebecca Rosberg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Elinn Johansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Elisabet Marinko
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - David J. O’Connell
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Valeria Governa
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emre Can Tuysuz
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Mattias Belting
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Myriam Martin
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M. Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
9
|
Lee KY, Mei Y, Liu H, Schwarz H. CD137-expressing regulatory T cells in cancer and autoimmune diseases. Mol Ther 2025; 33:51-70. [PMID: 39668561 PMCID: PMC11764688 DOI: 10.1016/j.ymthe.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, with critical roles in preventing aberrant immune responses that occur in autoimmune diseases and chronic inflammation. Conversely, the abundance of Tregs in cancer is associated with impaired anti-tumor immunity, and tumor immune evasion. Recent work demonstrates that CD137, a well-known costimulatory molecule for T cells, is highly expressed on Tregs in pathological conditions, while its expression is minimal or negligible on peripheral Tregs. The expression of CD137 marks Tregs with potent immunosuppressive phenotype that foster cancer progression and are protective against certain autoimmune diseases. Hence CD137 has emerged as a marker for Tregs. However, several important questions still remain regarding the expression and function of CD137 in Tregs. Here, we provide an overview of our current knowledge of Treg mechanisms of action, with a focus on the role of CD137 in modulating Treg activity. We also explore the implications of CD137+ Tregs in both cancer and autoimmune diseases, emphasizing the significance of targeting these cells for therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Kang Yi Lee
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Yu Mei
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Haiyan Liu
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore.
| | - Herbert Schwarz
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
10
|
McTaggart T, Lim JX, Smith KJ, Heaney B, McDonald D, Hulme G, Hussain R, Coxhead J, Degnan AE, Isaacs J, Pratt A, Amarnath S. Deep phenotyping of T regulatory cells in psoriatic arthritis highlights targetable mechanisms of disease. J Biol Chem 2025; 301:108059. [PMID: 39662827 PMCID: PMC11750473 DOI: 10.1016/j.jbc.2024.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/08/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Regulatory T cells (Tregs) are immune regulatory T cells that are vital for controlling inflammation. The role of Tregs in inflammatory diseases namely psoriatic arthritis (PsA) is still poorly understood. The underlying reason being a lack of robust unbiased analysis to test the immune regulatory phenotype of human Tregs. Here, we propose that checkpoint receptors can identify functional Tregs in PsA. Using unbiased BD Rhapsody single-cell analysis, we have analyzed the expression pattern of checkpoint receptors in Tregs and found that PsA Tregs are enriched in the expression of CTLA4, TIGIT, PD-1, and GITR while TIM3 was downregulated. Furthermore, PD-1+ Tregs in PsA had an increased type 1 phenotype and expressed the protease asparaginyl endopeptidase. By harnessing the PD-1 signaling pathway and inhibiting asparaginyl endopeptidase, PsA Treg function was significantly enhanced in in vitro suppressor assays. Next, we interrogated the cell interaction pathways of Tregs in PsA and found a diminished crosstalk with circulating osteoclast precursors through the CD244-CD48 coreceptor pathways. Therapeutically, PsA Treg function could be enhanced by modulating PD-1 and osteoclast interactions. Our study suggests that unconventional immune cell crosstalk with Tregs is severely diminished in PsA.
Collapse
Affiliation(s)
- Tegan McTaggart
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - Jing Xuan Lim
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - Katie J Smith
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - Bronagh Heaney
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK
| | - David McDonald
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Gillian Hulme
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Abbie Ea Degnan
- Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle Upon Tyne, UK; Department of Rheumatology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - John Isaacs
- Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle Upon Tyne, UK; Department of Rheumatology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Arthur Pratt
- Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle Upon Tyne, UK; Department of Rheumatology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Shoba Amarnath
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK; NIHR, Biomedical Research Centre, Newcastle Upon Tyne, UK.
| |
Collapse
|
11
|
Yang Q, Liang Y, Inoue-Hatanaka T, Koh Z, Ilkenhans N, Suman E, Yu J, Zheng Y. PPARδ restrains the suppression function of intra-tumoral Tregs by limiting CIITA-MHC II expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628819. [PMID: 39763816 PMCID: PMC11702609 DOI: 10.1101/2024.12.16.628819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Regulatory T cells (Treg cells) play a critical role in suppressing anti-tumor immunity, often resulting in unfavorable clinical outcomes across numerous cancers. However, systemic Treg depletion, while augmenting anti-tumor responses, also triggers detrimental autoimmune disorders. Thus, dissecting the mechanisms by which Treg cells navigate and exert their functions within the tumor microenvironment (TME) is pivotal for devising innovative Treg-centric cancer therapies. Our study highlights the role of peroxisome proliferator-activated receptor β/δ (PPARδ), a nuclear hormone receptor involved in fatty acid metabolism. Remarkably, PPARδ ablation in Treg escalated tumor growth and augmented the immunosuppressive characteristics of the TME. This absence of PPARδ spurred an increased expression of genes central to antigen presentation, notably CIITA and MHC II. Our results showcase a novel association where the absence of CIITA in PPARδ-deficient Treg bolsters anti-tumor responses, casting CIITA as a pivotal downstream regulator of PPARδ within Treg. In vitro assays demonstrated that elevated CIITA levels enhance the suppressive capacity of Treg, facilitated by an antigen-independent interaction between Treg-MHC II and Tconv-TCR/CD4/Lag3. A significant revelation was the role of type 1 interferon as a TME signal that promotes the genesis of MHC II+ Treg; PPARδ deficiency intensifies this phenomenon by amplifying type 1 interferon signaling, mediated by a notable upsurge in JAK3 transcription and an increase of pSTAT1-Y701. In conclusion, the co-regulation between TME cues and PPARδ signaling shapes the adaptive and suppressive roles of Treg cells through the CIITA-MHC II pathway. Strategically targeting the potent MHC II+ Treg population could open a new avenue for cancer therapies by boosting anti-tumor defenses while curbing autoimmune threats.
Collapse
Affiliation(s)
- Qiyuan Yang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yuqiong Liang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tomoko Inoue-Hatanaka
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zhiqian Koh
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nadja Ilkenhans
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ethan Suman
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
12
|
Mazerolles F, Rieux-Laucat F. Inducing and regulating human naive CD4 + T cell proliferation by different antigen presenting cells. J Immunol Methods 2024; 535:113775. [PMID: 39547545 DOI: 10.1016/j.jim.2024.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
We have shown in previous studies that naive CD4+ T cells isolated from human peripheral blood are induced to proliferate by CD4negCD11c+CD14negCD16neg dendritic cells presenting the superantigen SEE. Since this population is very poorly expressed in blood, we tried to find other antigen presenting cells (APCs) to induce this proliferation. The aim of the previous studies was to investigate the regulation of T cell proliferation in pediatric monogenic autoimmune diseases and the regulation of this proliferation by regulatory T cells (TREGs). Since the blood samples from pediatric patients were very small, it was important to study other APCs that are more commonly present in the blood. In this study we tested different APCs isolated from controls, CD19+ B cells, CD11c+CD14+ and CD11c+CD14neg monocytes, CD11c+CD14negCD16+ and CD16neg dendritic cells. The different T cell populations, naive effector T cells and regulatory T cells were separated simultaneously from the same sample. We show in these studies that CD19+ B cells, CD14neg and more specifically CD14negCD16+, are also able to induce T cell proliferation as previously described with CD14negCD16neg DCs, but under different conditions. No proliferation was induced with CD14+ monocytes. However, these three APCs are less potent than CD16neg and inhibition by TREG is more difficult to detect. In addition, when we test the role of CTLA-4 in the regulation of TEFF proliferation, we observe that for some APCs, the inhibition by CTLA-4 was quite different. No inhibition was observed with CD19+ B cells in contrast to CD11c+CD14negCD16+ and CD11c+CD14negCD16neg.
Collapse
Affiliation(s)
- Fabienne Mazerolles
- INSERM UMR1163, Laboratory of Immunogenetics of Paediatric Autoimmunity, Paris, France; Paris Descartes - Sorbonne Paris Cité University, Imagine Institute Paris, France.
| | - Frédéric Rieux-Laucat
- INSERM UMR1163, Laboratory of Immunogenetics of Paediatric Autoimmunity, Paris, France; Paris Descartes - Sorbonne Paris Cité University, Imagine Institute Paris, France
| |
Collapse
|
13
|
Podder V, Ranjan T, Margolin K, Maharaj A, Ahluwalia MS. Evaluating the Safety of Immune Checkpoint Inhibitors and Combination Therapies in the Management of Brain Metastases: A Comprehensive Review. Cancers (Basel) 2024; 16:3929. [PMID: 39682118 DOI: 10.3390/cancers16233929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Brain metastases (BM) are a frequent and severe complication in patients with lung cancer, breast cancer, and melanoma. Immune checkpoint inhibitors (ICIs) have become a crucial treatment option for BM, whether used alone or in combination with chemotherapy and stereotactic radiosurgery (SRS). However, ICIs are associated with immune-related adverse events (irAEs) that can affect multiple organ systems, complicating their use in BM patients. This review examines the mechanisms of irAEs and their effects on different organs and evaluates the safety of ICIs across various treatment strategies for BM. Our analysis indicates that ICIs significantly improve survival and disease control in BM patients, but their use increases the risk of irAEs, including dermatologic, gastrointestinal, endocrine, pulmonary, and neurologic toxicities. Neurotoxic events, particularly treatment-associated brain necrosis (TABN) and encephalitis, are more common in BM patients. While the overall incidence of irAEs is similar between patients with and without BM, the neurotoxicity risk is higher in the BM population. Combining ICIs with chemotherapy and SRS enhances efficacy but also heightens the risk of adverse events across organ systems. ICIs offer substantial benefits for BM patients but require careful management to mitigate the risks of irAEs. Close patient monitoring, individualized treatment protocols, and prompt intervention are essential for optimizing the outcomes. Future research should focus on refining combination strategies and improving the management of irAEs, particularly neurotoxicity, to maximize therapeutic benefits for BM patients.
Collapse
Affiliation(s)
- Vivek Podder
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA
| | - Tulika Ranjan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA
| | - Kim Margolin
- Saint John's Cancer Institute, Santa Monica, CA 90404, USA
| | - Arun Maharaj
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA
| | | |
Collapse
|
14
|
Pant A, Jain A, Chen Y, Patel K, Saleh L, Tzeng S, Nitta RT, Zhao L, Wu CYJ, Bederson M, Wang WL, Bergsneider BHL, Choi J, Medikonda R, Verma R, Cho KB, Kim LH, Kim JE, Yazigi E, Lee SY, Rajendran S, Rajappa P, Mackall CL, Li G, Tyler B, Brem H, Pardoll DM, Lim M, Jackson CM. The CCR6-CCL20 Axis Promotes Regulatory T-cell Glycolysis and Immunosuppression in Tumors. Cancer Immunol Res 2024; 12:1542-1558. [PMID: 39133127 DOI: 10.1158/2326-6066.cir-24-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Regulatory T cells (Treg) are important players in the tumor microenvironment. However, the mechanisms behind their immunosuppressive effects are poorly understood. We found that CCR6-CCL20 activity in tumor-infiltrating Tregs is associated with greater glycolytic activity and ablation of Ccr6 reduced glycolysis and lactic acid production while increasing compensatory glutamine metabolism. Immunosuppressive activity toward CD8+ T cells was abrogated in Ccr6-/- Tregs due to reduction in activation-induced glycolysis. Furthermore, Ccr6-/- mice exhibited improved survival across multiple tumor models compared to wild-type mice and Treg and CD8+ T-cell depletion abrogated the improvement. In addition, Ccr6 ablation further promoted the efficacy of anti-PD-1 therapy in a preclinical glioma model. Follow-up knockdown of Ccl20 with siRNA also demonstrated improvement in antitumor efficacy. Our results unveil CCR6 as a marker and regulator of Treg-induced immunosuppression and identify approaches to target the metabolic determinants of Treg immunosuppressive activity.
Collapse
Affiliation(s)
- Ayush Pant
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aanchal Jain
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yiyun Chen
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Kisha Patel
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura Saleh
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephany Tzeng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ryan T Nitta
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Liang Zhao
- Department of Oncology and Medicine, Bloomberg-Kimmel Institute for Immunotherapy, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Caren Yu-Ju Wu
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Maria Bederson
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - William Lee Wang
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | | | - John Choi
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Ravi Medikonda
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Rohit Verma
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Kwang Bog Cho
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Lily H Kim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Jennifer E Kim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eli Yazigi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Si Yeon Lee
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Sakthi Rajendran
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Prajwal Rajappa
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Crystal L Mackall
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, California
| | - Gordon Li
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Betty Tyler
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henry Brem
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Oncology and Medicine, Bloomberg-Kimmel Institute for Immunotherapy, the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, Stanford School of Medicine, Palo Alto, California
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Ohara D, Takeuchi Y, Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell Mol Immunol 2024; 21:1183-1200. [PMID: 39379604 PMCID: PMC11528014 DOI: 10.1038/s41423-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- ImmunoSensation Cluster of Excellence, University of Bonn, Bonn, Germany.
| |
Collapse
|
16
|
Foyle KL, Chin PY, Merkwirth C, Wilson J, Hosking SL, Green ES, Chong MY, Zhang B, Moldenhauer LM, Ferguson GD, Morris GP, Karras JG, Care AS, Robertson SA. IL-2 Complexed With Anti-IL-2 Antibody Expands the Maternal T-Regulatory Cell Pool and Alleviates Fetal Loss in Abortion-Prone Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2128-2149. [PMID: 39117109 DOI: 10.1016/j.ajpath.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Regulatory T (Treg) cells are essential for immune tolerance of embryo implantation, and insufficient Treg cells provokes early pregnancy loss. An abortion-prone mouse model was used to evaluate IL-2 complexed with JES6-1 anti-IL-2 antibody (IL-2/JES6-1) to boost uterine Treg cells and improve reproductive success. IL-2/JES6-1, but not IL-2/IgG, administered in periconception to CBA/J females mated with DBA/2 males elicited a greater than twofold increase in the proportion of CD4+ T cells expressing forkhead box P3 (FOXP3), and an increased ratio of FOXP3+ Treg cells/FOXP3- T conventional cells in the uterus and its draining lymph nodes at embryo implantation that was sustained into midgestation. An attenuated phenotype was evident in both thymic-derived and peripheral Treg cells with elevated cytotoxic T-lymphocyte antigen-4, CD25, and FOXP3 indicating improved suppressive function, as well as increased proliferative marker Ki-67. IL-2/JES6-1 treatment reduced fetal loss from 31% to 10%, accompanied by a 6% reduction in late gestation fetal weight, despite comparable placental size and architecture. Similar effects of IL-2/JES6-1 on Treg cells and fetal growth were seen in CBA/J females with healthy pregnancies sired by BALB/c males. These findings show that expanding the uterine Treg cell pool through targeting IL-2 signaling is a strategy worthy of further investigation for mitigating risk of immune-mediated fetal loss.
Collapse
Affiliation(s)
- Kerrie L Foyle
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Peck Y Chin
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Jasmine Wilson
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Shanna L Hosking
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ella S Green
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Mei Y Chong
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Bihong Zhang
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan M Moldenhauer
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Gerald P Morris
- Department of Pathology, University of California, San Diego, La Jolla, California
| | | | - Alison S Care
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
17
|
Arshi A, Mahmoudi E, Raeisi F, Dehghan Tezerjani M, Bahramian E, Ahmed Y, Peng C. Exploring potential roles of long non-coding RNAs in cancer immunotherapy: a comprehensive review. Front Immunol 2024; 15:1446937. [PMID: 39257589 PMCID: PMC11384988 DOI: 10.3389/fimmu.2024.1446937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Cancer treatment has long been fraught with challenges, including drug resistance, metastasis, and recurrence, making it one of the most difficult diseases to treat effectively. Traditional therapeutic approaches often fall short due to their inability to target cancer stem cells and the complex genetic and epigenetic landscape of tumors. In recent years, cancer immunotherapy has revolutionized the field, offering new hope and viable alternatives to conventional treatments. A particularly promising area of research focuses on non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), and their role in cancer resistance and the modulation of signaling pathways. To address these challenges, we performed a comprehensive review of recent studies on lncRNAs and their impact on cancer immunotherapy. Our review highlights the crucial roles that lncRNAs play in affecting both innate and adaptive immunity, thereby influencing the outcomes of cancer treatments. Key observations from our review indicate that lncRNAs can modify the tumor immune microenvironment, enhance immune cell infiltration, and regulate cytokine production, all of which contribute to tumor growth and resistance to therapies. These insights suggest that lncRNAs could serve as potential targets for precision medicine, opening up new avenues for developing more effective cancer immunotherapies. By compiling recent research on lncRNAs across various cancers, this review aims to shed light on their mechanisms within the tumor immune microenvironment.
Collapse
Affiliation(s)
- Asghar Arshi
- Department of Biology, York University, Toronto, ON, Canada
| | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Islamic Azad University, Shahrekord, Iran
| | | | - Masoud Dehghan Tezerjani
- Department of bioinformatics, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bahramian
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Yeasin Ahmed
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
18
|
Vakrakou AG, Kourepini E, Skordos I, Nieto N, Panoutsakopoulou V, Paschalidis N. Osteopontin Regulates Treg Cell Stability and Function with Implications for Anti-Tumor Immunity and Autoimmunity. Cancers (Basel) 2024; 16:2952. [PMID: 39272810 PMCID: PMC11393878 DOI: 10.3390/cancers16172952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Foxp3-expressing regulatory T (Treg) cells represent the most highly immunosuppressive cell in the tumor microenvironment (TME) that halts effective anti-tumor immunity. Osteopontin (Opn), an extracellular matrix (ECM) glycophosphoprotein, plays key roles in many types of immune-related diseases and is associated with cancer aggressiveness when expressed by tumor cells. However, its role in Foxp3Treg heterogeneity, function, and stability in the TME is poorly defined. We generated mice with a Foxp3-specific deletion of Opn and assessed the ability of Opn-deficient Tregs to suppress inflammation. As these mice aged, they developed a scurfy-like syndrome characterized by aberrant and excessive activation of effector T cells. We evaluated and further confirmed the reduced suppressive capacity of Opn-deficient Tregs in an in vivo suppression assay of colitis. We also found that mice with Opn-deficient Foxp3+ Tregs have enhanced anti-tumor immunity and reduced tumor burden, associated with an unstable Treg phenotype, paralleled by reduced Foxp3 expression in tumor-infiltrating lymphocytes. Finally, we observed reduced Foxp3 and Helios expression in Opn-deficient Tregs compared to wild-type controls after in vitro activation. Our findings indicate that targeting Opn in Tregs reveals vigorous and effective ways of promoting Treg instability and dysfunction in the TME, facilitating anti-tumor immunity.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Laboratory of Neuroimmunology, First Department of Neurology, Aeginition Hospital, National and Kapodistrian, University of Athens, 21 Papadiamantopoulou, Ilisia, 11528 Athens, Greece
| | - Evangelia Kourepini
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| | - Ioannis Skordos
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vily Panoutsakopoulou
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| | - Nikolaos Paschalidis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Efessiou Street, 11527 Athens, Greece
| |
Collapse
|
19
|
Duarte-Silva M, Parra RS, Feitosa MR, Nardini V, Maruyama SR, da Rocha JJR, Feres O, de Barros Cardoso CR. Leukocyte dysfunction and reduced CTLA-4 expression are associated with perianal Crohn's disease. Clin Exp Immunol 2024; 217:78-88. [PMID: 38517030 PMCID: PMC11188538 DOI: 10.1093/cei/uxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
Although perianal Crohn's disease (PCD) is highly associated with the exacerbated inflammation, the molecular basis and immunological signature that distinguish patients who present a history of perianal lesions are still unclear. This paper aims to define immunological characteristics related to PCD. In this cross-sectional observational study, we enrolled 20 healthy controls and 39 CD patients. Blood samples were obtained for the detection of plasma cytokines and lipopolysaccharides (LPS). Peripheral blood mononuclear cells (PBMCs) were phenotyped by flow cytometry. Leukocytes were stimulated with LPS or anti-CD3/anti-CD28 antibodies. Our results show that CD patients had augmented plasma interleukin (IL)-6 and LPS. However, their PBMC was characterized by decreased IL-6 production, while patients with a history of PCD produced higher IL-6, IL-8, and interferon-γ, along with decreased tumor necrosis factor alpha (TNF). CD patients had augmented FoxP3 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulatory markers, though the PCD subjects presented a significant reduction in CTLA-4 expression. CTLA-4 as well as IL-6 and TNF responses were able to distinguish the PCD patients from those who did not present perianal complications. In conclusion, IL-6, TNF, and CTLA-4 exhibit a distinct expression pattern in CD patients with a history of PCD, regardless of disease activity. These findings clarify some mechanisms involved in the development of the perianal manifestations and may have a great impact on the disease management.
Collapse
Affiliation(s)
- Murillo Duarte-Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rogério Serafim Parra
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marley Ribeiro Feitosa
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Viviani Nardini
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sandra Regina Maruyama
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - José Joaquim Ribeiro da Rocha
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Omar Feres
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
20
|
Nikolouzakis TK, Chrysos E, Docea AO, Fragkiadaki P, Souglakos J, Tsiaoussis J, Tsatsakis A. Current and Future Trends of Colorectal Cancer Treatment: Exploring Advances in Immunotherapy. Cancers (Basel) 2024; 16:1995. [PMID: 38893120 PMCID: PMC11171065 DOI: 10.3390/cancers16111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer of the colon and rectum (CRC) has been identified among the three most prevalent types of cancer and cancer-related deaths for both sexes. Even though significant progress in surgical and chemotherapeutic techniques has markedly improved disease-free and overall survival rates in contrast to those three decades ago, recent years have seen a stagnation in these improvements. This underscores the need for new therapies aiming to augment patient outcomes. A number of emerging strategies, such as immune checkpoint inhibitors (ICIs) and adoptive cell therapy (ACT), have exhibited promising outcomes not only in preclinical but also in clinical settings. Additionally, a thorough appreciation of the underlying biology has expanded the scope of research into potential therapeutic interventions. For instance, the pivotal role of altered telomere length in early CRC carcinogenesis, leading to chromosomal instability and telomere dysfunction, presents a promising avenue for future treatments. Thus, this review explores the advancements in CRC immunotherapy and telomere-targeted therapies, examining potential synergies and how these novel treatment modalities intersect to potentially enhance each other's efficacy, paving the way for promising future therapeutic advancements.
Collapse
Affiliation(s)
| | - Emmanuel Chrysos
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Greece; (T.K.N.); (E.C.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Persefoni Fragkiadaki
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| |
Collapse
|
21
|
Zhang M, Wan Y, Han J, Li J, Gong H, Mu X. The clinical association of programmed death-1/PD-L1 axis, myeloid derived suppressor cells subsets and regulatory T cells in peripheral blood of stable COPD patients. PeerJ 2024; 12:e16988. [PMID: 38560459 PMCID: PMC10981408 DOI: 10.7717/peerj.16988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) have crucial immunosuppressive role in T cell dysfunction in various disease processes. However, the role of MDSCs and their impact on Tregs in COPD have not been fully understood. The aim of the present study is to investigate the immunomodulatory role of MDSCs and their potential impact on the expansion and function of Tregs in COPD patients. Methods Peripheral blood samples were collected to analyze circulating MDSCs, Tregs, PD-1/PD-L1 expression to assess the immunomodulatory role of MDSC and their potential impact on the expansion and function of Treg in COPD. A total of 54 COPD patients and 24 healthy individuals were enrolled in our study. Flow cytometric analyses were performed to identify granulocytic MDSCs (G-MDSCs), monocytic MDSCs (M-MDSCs), Tregs, and the expression of PD-1/PD-L1(L2) on MDSCs and Tregs in peripheral blood. Results Our results revealed a significantly higher percentage of G-MDSCs and M-MDSCs (p < 0.001) in COPD patients compared to the healthy controls. Additionally, a significantly higher proportion of peripheral blood Tregs was observed in COPD patients. Furthermore, an increased expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on Tregs (p < 0.01) was detected in COPD patients. The expression of PD-1 on CD4+ Tcells and Tregs, but not CD8+Tcells, was found to be increased in patients with COPD compared to controls. Furthermore, an elevated expression of PD-L1 on M-MDSCs (p < 0.01) was also observed in COPD patients. A positive correlation was observed between the accumulation of M-MDSCs and Tregs in COPD patients. Additionally, the percentage of circulating M-MDSCs is positively associated with the level of PD-1 (r = 0.51, p < 0.0001) and CTLA-4 (r = 0.42, p = 0.0014) on Tregs in COPD. Conclusion The recruitment of MDSCs, accumulation of Tregs, and up-regulation of CTLA-4 on Treg in COPD, accompanied by an increased level of PD-1/PD-L1, suggest PD-1/PD-L1 axis may be potentially involved in MDSCs-induced the expansion and activation of Treg at least partially in COPD.
Collapse
Affiliation(s)
- Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yinghua Wan
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jie Han
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jun Li
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Haihong Gong
- Affiliated Hospital of Qingdao University Medical College, Department of Respiratory and Critical Care Medicine, Qingdao, China
| | - Xiangdong Mu
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Bi Y, Kong R, Peng Y, Cai D, Zhang Y, Yang F, Li X, Deng W, Liu F, He B, Cao C, Deng C, Tang X, Fan L, Yu H, Zhou Z. Multiply restimulated human cord blood-derived Tregs maintain stabilized phenotype and suppressive function and predict their therapeutic effects on autoimmune diabetes. Diabetol Metab Syndr 2024; 16:71. [PMID: 38515175 PMCID: PMC10956208 DOI: 10.1186/s13098-024-01277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) are involved in the maintenance of immune homeostasis and immune regulation. Clinical trials on the adoptive transfer of Tregs have been ongoing for > 10 years. However, many unresolved issues remain in the production of readymade Treg products and selection of patients. Hence, this study aimed to develop a method to expand off-the-shelf Tregs derived from umbilical cord blood (UCB-Tregs) in vitro without changing their phenotype and inhibitory function. In addition, the study intended to design an approach to precisely select patients who are more likely to benefit from the adoptive Treg transfer therapy. METHODS UCB-Tregs were isolated and cultured in a medium containing human recombinant IL-2 and rapamycin and then multiply restimulated with human T-activator CD3/CD28 dynabeads. The phenotype and suppressive capacity of Tregs were assessed on days 18 and 42. The relationship between the suppressive function of UCB-Tregs in vitro and clinical indicators was analyzed, and the ability of the in vitro suppressive capacity to predict the in vivo therapeutic effects was evaluated. RESULTS UCB-Tregs expanded 123-fold and 5,981-fold at 18 and 42 days, respectively. The suppressive function of UCB-Tregs on the proliferation of immune cells at 42 days was not significantly different compared with that of UCB-Tregs obtained at 18 days. The suppression rate of UCB-Tregs to PBMCs was negatively correlated with the course of diabetes. Moreover, the high-suppression group exhibited a better treatment response than the low-suppression group during the 12-month follow-up period. CONCLUSIONS Multiply restimulated UCB-Tregs expanded at a large scale without any alterations in their classical phenotypic features and inhibitory functions. The suppressive function of Tregs in vitro was negatively correlated with the disease duration. The present study revealed the possibility of predicting the in vivo therapeutic effects via the in vitro inhibition assay. Thus, these findings provided a method to obtain off-the-shelf Treg products and facilitated the selection of patients who are likely to respond to the treatment, thereby moving toward the goal of precision treatment.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Donghua Cai
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fan Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen Deng
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Binbin He
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuqing Cao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chao Deng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohan Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Fan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
23
|
Deng W, Zhao Z, Zou T, Kuang T, Wang J. Research Advances in Fusion Protein-Based Drugs for Diabetes Treatment. Diabetes Metab Syndr Obes 2024; 17:343-362. [PMID: 38288338 PMCID: PMC10823413 DOI: 10.2147/dmso.s421527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by elevated blood glucose levels, resulting in multi-organ dysfunction and various complications. Fusion proteins can form multifunctional complexes by combining the target proteins with partner proteins. It has significant advantages in improving the performance of the target proteins, extending their biological half-life, and enhancing patient drug compliance. Fusion protein-based drugs have emerged as promising new drugs in diabetes therapeutics. However, there has not been a systematic review of fusion protein-based drugs for diabetes therapeutics. Hence, we conducted a comprehensive review of published literature on diabetic fusion protein-based drugs for diabetes, with a primary focus on immunoglobulin G (IgG) fragment crystallizable (Fc) region, albumin, and transferrin (TF). This review aims to provide a reference for the subsequent development and clinical application of fusion protein-based drugs in diabetes therapeutics.
Collapse
Affiliation(s)
- Wenying Deng
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Zeyi Zhao
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tao Zou
- Department of Cardiovascular Medicine, First Affiliated Hospital of University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tongdong Kuang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi Province, 541199, People’s Republic of China
| | - Jing Wang
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| |
Collapse
|
24
|
Klaus T, Hieber C, Bros M, Grabbe S. Integrins in Health and Disease-Suitable Targets for Treatment? Cells 2024; 13:212. [PMID: 38334604 PMCID: PMC10854705 DOI: 10.3390/cells13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Integrin receptors are heterodimeric surface receptors that play multiple roles regarding cell-cell communication, signaling, and migration. The four members of the β2 integrin subfamily are composed of an alternative α (CD11a-d) subunit, which determines the specific receptor properties, and a constant β (CD18) subunit. This review aims to present insight into the multiple immunological roles of integrin receptors, with a focus on β2 integrins that are specifically expressed by leukocytes. The pathophysiological role of β2 integrins is confirmed by the drastic phenotype of patients suffering from leukocyte adhesion deficiencies, most often resulting in severe recurrent infections and, at the same time, a predisposition for autoimmune diseases. So far, studies on the role of β2 integrins in vivo employed mice with a constitutive knockout of all β2 integrins or either family member, respectively, which complicated the differentiation between the direct and indirect effects of β2 integrin deficiency for distinct cell types. The recent generation and characterization of transgenic mice with a cell-type-specific knockdown of β2 integrins by our group has enabled the dissection of cell-specific roles of β2 integrins. Further, integrin receptors have been recognized as target receptors for the treatment of inflammatory diseases as well as tumor therapy. However, whereas both agonistic and antagonistic agents yielded beneficial effects in animal models, the success of clinical trials was limited in most cases and was associated with unwanted side effects. This unfavorable outcome is most probably related to the systemic effects of the used compounds on all leukocytes, thereby emphasizing the need to develop formulations that target distinct types of leukocytes to modulate β2 integrin activity for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (T.K.); (C.H.); (M.B.)
| |
Collapse
|
25
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
26
|
Babamohamadi M, Mohammadi N, Faryadi E, Haddadi M, Merati A, Ghobadinezhad F, Amirian R, Izadi Z, Hadjati J. Anti-CTLA-4 nanobody as a promising approach in cancer immunotherapy. Cell Death Dis 2024; 15:17. [PMID: 38191571 PMCID: PMC10774412 DOI: 10.1038/s41419-023-06391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Cancer is one of the most common diseases and causes of death worldwide. Since common treatment approaches do not yield acceptable results in many patients, developing innovative strategies for effective treatment is necessary. Immunotherapy is one of the promising approaches that has been highly regarded for preventing tumor recurrence and new metastases. Meanwhile, inhibiting immune checkpoints is one of the most attractive methods of cancer immunotherapy. Cytotoxic T lymphocyte-associated protein-4 (CTLA-4) is an essential immune molecule that plays a vital role in cell cycle modulation, regulation of T cell proliferation, and cytokine production. This molecule is classically expressed by stimulated T cells. Inhibition of overexpression of immune checkpoints such as CTLA-4 receptors has been confirmed as an effective strategy. In cancer immunotherapy, immune checkpoint-blocking drugs can be enhanced with nanobodies that target immune checkpoint molecules. Nanobodies are derived from the variable domain of heavy antibody chains. These small protein fragments have evolved entirely without a light chain and can be used as a powerful tool in imaging and treating diseases with their unique structure. They have a low molecular weight, which makes them smaller than conventional antibodies while still being able to bind to specific antigens. In addition to low molecular weight, specific binding to targets, resistance to temperature, pH, and enzymes, high ability to penetrate tumor tissues, and low toxicity make nanobodies an ideal approach to overcome the disadvantages of monoclonal antibody-based immunotherapy. In this article, while reviewing the cellular and molecular functions of CTLA-4, the structure and mechanisms of nanobodies' activity, and their delivery methods, we will explain the advantages and challenges of using nanobodies, emphasizing immunotherapy treatments based on anti-CTLA-4 nanobodies.
Collapse
Affiliation(s)
- Mehregan Babamohamadi
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nastaran Mohammadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Faryadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Haddadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Merati
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Laboratory Sciences, School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farbod Ghobadinezhad
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Jin WJ, Jagodinsky JC, Vera JM, Clark PA, Zuleger CL, Erbe AK, Ong IM, Le T, Tetreault K, Berg T, Rakhmilevich AL, Kim K, Newton MA, Albertini MR, Sondel PM, Morris ZS. NK cells propagate T cell immunity following in situ tumor vaccination. Cell Rep 2023; 42:113556. [PMID: 38096050 PMCID: PMC10843551 DOI: 10.1016/j.celrep.2023.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
We report an in situ vaccination, adaptable to nearly any type of cancer, that combines radiotherapy targeting one tumor and intratumoral injection of this site with tumor-specific antibody and interleukin-2 (IL-2; 3xTx). In a phase I clinical trial, administration of 3xTx (with an immunocytokine fusion of tumor-specific antibody and IL-2, hu14.18-IL2) to subjects with metastatic melanoma increases peripheral CD8+ T cell effector polyfunctionality. This suggests the potential for 3xTx to promote antitumor immunity against metastatic tumors. In poorly immunogenic syngeneic murine melanoma or head and neck carcinoma models, 3xTx stimulates CD8+ T cell-mediated antitumor responses at targeted and non-targeted tumors. During 3xTx treatment, natural killer (NK) cells promote CTLA4+ regulatory T cell (Treg) apoptosis in non-targeted tumors. This is dependent on NK cell expression of CD86, which is upregulated downstream of KLRK1. NK cell depletion increases Treg infiltration, diminishing CD8+ T cell-dependent antitumor response. These findings demonstrate that NK cells sustain and propagate CD8+ T cell immunity following 3xTx.
Collapse
Affiliation(s)
- Won Jong Jin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Justin C Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Jessica M Vera
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Paul A Clark
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Cindy L Zuleger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Amy K Erbe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Trang Le
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Kaitlin Tetreault
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Tracy Berg
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Alexander L Rakhmilevich
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Michael A Newton
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Mark R Albertini
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, USA; The Medical Service, William S. Middleton Memorial Veterans Hospital, Madison, WI 53792, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
28
|
Chen H, Wang X, Wang Y, Chang X. What happens to regulatory T cells in multiple myeloma. Cell Death Discov 2023; 9:468. [PMID: 38129374 PMCID: PMC10739837 DOI: 10.1038/s41420-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Abnormal tumor microenvironment and immune escape in multiple myeloma (MM) are associated with regulatory T cells (Tregs), which play an important role in maintaining self-tolerance and regulating the overall immune response to infection or tumor cells. In patients with MM, there are abnormalities in the number, function and distribution of Tregs, and these abnormalities may be related to the disease stage, risk grade and prognosis of patients. During the treatment, Tregs have different responses to various treatment regiments, thus affecting the therapeutic effect of MM. It is also possible to predict the therapeutic response by observing the changes of Tregs. In addition to the above, we reviewed the application of Tregs in the treatment of MM. In conclusion, there is still much room for research on the mechanism and application of Tregs in MM.
Collapse
Affiliation(s)
- Huixian Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
29
|
Wu D. Proapoptotic protein Bim regulates the suppressive function of Treg cells. J Zhejiang Univ Sci B 2023; 24:1180-1184. [PMID: 38057275 PMCID: PMC10710911 DOI: 10.1631/jzus.b2300288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/02/2023] [Indexed: 12/08/2023]
Abstract
Regulatory T (Treg) cells are a special immunosuppressive subset of cluster of differentiation 4-positive (CD4+)-T lymphocytes and play a pivotal role in the establishment of immune homeostasis in vivo (Zhang et al., 2021). The transcription factor forkhead box protein P3 (Foxp3) is the master marker of Treg cells, which is highly expressed in Treg cells and is also essential for their suppressive function (Hori et al., 2003). In addition to Foxp3, other regulators of Treg cells have been discovered (Wu et al., 2017, 2022; Wu and Sun, 2023a, 2023b); however, a deeper understanding of the regulation of these cells is required.
Collapse
Affiliation(s)
- Di Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
30
|
Bei KF, Moshkelgosha S, Liu BJ, Juvet S. Intragraft regulatory T cells in the modern era: what can high-dimensional methods tell us about pathways to allograft acceptance? Front Immunol 2023; 14:1291649. [PMID: 38077395 PMCID: PMC10701590 DOI: 10.3389/fimmu.2023.1291649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Replacement of diseased organs with transplanted healthy donor ones remains the best and often only treatment option for end-stage organ disease. Immunosuppressants have decreased the incidence of acute rejection, but long-term survival remains limited. The broad action of current immunosuppressive drugs results in global immune impairment, increasing the risk of cancer and infections. Hence, achievement of allograft tolerance, in which graft function is maintained in the absence of global immunosuppression, has long been the aim of transplant clinicians and scientists. Regulatory T cells (Treg) are a specialized subset of immune cells that control a diverse array of immune responses, can prevent allograft rejection in animals, and have recently been explored in early phase clinical trials as an adoptive cellular therapy in transplant recipients. It has been established that allograft residency by Tregs can promote graft acceptance, but whether intragraft Treg functional diversification and spatial organization contribute to this process is largely unknown. In this review, we will explore what is known regarding the properties of intragraft Tregs during allograft acceptance and rejection. We will summarize recent advances in understanding Treg tissue residency through spatial, transcriptomic and high-dimensional cytometric methods in both animal and human studies. Our discussion will explore properties of intragraft Tregs in mediating operational tolerance to commonly transplanted solid organs. Finally, given recent developments in Treg cellular therapy, we will review emerging knowledge of whether and how these adoptively transferred cells enter allografts in humans. An understanding of the properties of intragraft Tregs will help lay the foundation for future therapies that will promote immune tolerance.
Collapse
Affiliation(s)
- Ke Fan Bei
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Bo Jie Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
31
|
Nagler CR. Inhibition of Immunological Suppression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1255-1256. [PMID: 37987807 DOI: 10.4049/jimmunol.2300296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This Pillars of Immunology article is a commentary on “Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation,” a pivotal article written by S. Read, V. Malmström, and F. Powrie, and published in the Journal of Experimental Medicine, in 2000. https://doi.org/10.1084/jem.192.2.295.
Collapse
Affiliation(s)
- Cathryn R Nagler
- Pritzker School of Molecular Engineering and Biological Sciences Division, University of Chicago, Chicago, IL
| |
Collapse
|
32
|
Catalán-Serra I, Ricanek P, Grimstad T. "Out of the box" new therapeutic strategies for Crohn´s disease: moving beyond biologics. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2023; 115:614-634. [PMID: 35748460 DOI: 10.17235/reed.2022.9010/2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New treatment options beyond immunosuppression have emerged in recent years for patients with Crohn´s disease (CD), a chronic systemic condition affecting primarily the gut with great impact in the quality of life. The cause of CD is largely unknown, and a curative treatment is not yet available. In addition, despite the growing therapeutic armamentarium in recent years almost half of the patients don´t achieve a sustained response over time. Thus, new therapeutic strategies are urgently needed. In this review, we discuss the current state of promising new "out of the box" possibilities to control chronic inflammation beyond current pharmacological treatments, including: exclusive enteral nutrition, specific diets, cell therapies using T regs, hyperbaric oxygen, fecal microbiota transplantation, phage therapy, helminths, cannabis and vagal nerve stimulation. The exploration of original and novel therapeutic modalities is key to address their potential as main or complementary treatments in selected CD populations in order to increase efficacy, minimize side effects and improve quality of life of patients.
Collapse
|
33
|
Abstract
Numerous animal models of colitis have provided important insights into the pathogenesis of inflammatory bowel disease (IBD), contributing to a better understanding of the underlying mechanisms for IBD. As aberrant CD4+ T cell responses play a critical role in the pathogenesis and development of IBD, T cell adoptive transfer models of colitis have become a valuable tool in investigating the immunopathogenesis of intestinal inflammation. While the adoptive transfer of CD4+ CD45RBhi T cells into immunedeficient recipient mice was the first discovered and is currently the most widely used model, several variations of the T cell transfer model have also been developed with distinct features. Here, we describe the history, principle, and characteristics of adoptive transfer colitis models and discuss their strengths, limitations, and applications.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Microbiome Research, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
34
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
35
|
Bi Y, Kong R, Peng Y, Yu H, Zhou Z. Umbilical cord blood and peripheral blood-derived regulatory T cells therapy: Progress in type 1 diabetes. Clin Immunol 2023; 255:109716. [PMID: 37544491 DOI: 10.1016/j.clim.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Regulatory T cells (Tregs) are key regulators for the inflammatory response and play a role in maintaining the immune tolerance. Type 1 diabetes (T1D) is a relatively common autoimmune disease that results from the loss of immune tolerance to β-cell-associated antigens. Preclinical models have demonstrated the safety and efficacy of Tregs given in transplant rejection and autoimmune diseases such as T1D. Adoptive transfer of Tregs has been utilized in clinical trials for over a decade. However, the achievement of the adoptive transfer of Tregs therapy in clinical application remains challenging. In this review, we highlight the characterization of Tregs and compare the differences between umbilical cord blood and adult peripheral blood-derived Tregs. Additionally, we summarize conditional modifications in the expansion of Tregs in clinical trials, especially for the treatment of T1D. Finally, we discuss the existing technical challenges for Tregs in clinical trials for the treatment of T1D.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
36
|
Engelhart MJ, Glowacki RWP, Till JM, Harding CV, Martens EC, Ahern PP. The NQR Complex Regulates the Immunomodulatory Function of Bacteroides thetaiotaomicron. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:767-781. [PMID: 37486212 PMCID: PMC10527448 DOI: 10.4049/jimmunol.2200892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
The gut microbiome and intestinal immune system are engaged in a dynamic interplay that provides myriad benefits to host health. However, the microbiome can also elicit damaging inflammatory responses, and thus establishing harmonious immune-microbiome interactions is essential to maintain homeostasis. Gut microbes actively coordinate the induction of anti-inflammatory responses that establish these mutualistic interactions. Despite this, the microbial pathways that govern this dialogue remain poorly understood. We investigated the mechanisms through which the gut symbiont Bacteroides thetaiotaomicron exerts its immunomodulatory functions on murine- and human-derived cells. Our data reveal that B. thetaiotaomicron stimulates production of the cytokine IL-10 via secreted factors that are packaged into outer membrane vesicles, in a TLR2- and MyD88-dependent manner. Using a transposon mutagenesis-based screen, we identified a key role for the B. thetaiotaomicron-encoded NADH:ubiquinone oxidoreductase (NQR) complex, which regenerates NAD+ during respiration, in this process. Finally, we found that disruption of NQR reduces the capacity of B. thetaiotaomicron to induce IL-10 by impairing biogenesis of outer membrane vesicles. These data identify a microbial pathway with a previously unappreciated role in gut microbe-mediated immunomodulation that may be targeted to manipulate the capacity of the microbiome to shape host immunity.
Collapse
Affiliation(s)
- Morgan J. Engelhart
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert W. P. Glowacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica M. Till
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Clifford V. Harding
- Department of Pathology, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
37
|
Hendekli CM. Drawbacks of immune checkpoint inhibition and rigorous management for immune-related adverse events along with a mathematical model to assess therapy success and optimum therapy duration and a strategy against tumor plasticity. J Cancer Res Clin Oncol 2023; 149:9375-9398. [PMID: 37076644 DOI: 10.1007/s00432-023-04718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE Immune checkpoint inhibition therapy (ICIT) is an emerging field in oncology especially opening new horizons to chemotherapy refractory patients. However, immune-related adverse events (irAEs) and undesired response patterns such as progression after the initial good response in a subset of patients pose a major challenge and drawback to ICIT. This paper provides deep insight into ICIT related bottlenecks and corresponding effective management and combat strategies for very complex complications. METHODS The relevant literatures from PubMed have been reviewed. Based on obtained information, rigorous and exhaustive analyses have been made to present novel methods and strategies against ICIT drawbacks and bottlenecks. RESULTS The results show that baseline biomarker tests are very crucial to identify suitable candidates for ICIT and frequent assessments throughout ICIT help to recognize possible irAEs at early stages. Equally important are the necessity for mathematical definitions for the ICIT success rate and optimum duration, and the development of combat mechanisms against loss of sensitivity within the tumor microenvironment (TME). CONCLUSION Rigorous management approaches are presented for mostly observed irAEs. Furthermore, for the first time in the literature, a non-linear mathematical model is invented to measure the ICIT success rate and to decide about the optimum ICIT duration. Finally, a strategy against tumor plasticity is introduced.
Collapse
|
38
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
39
|
Mikami N, Sakaguchi S. Regulatory T cells in autoimmune kidney diseases and transplantation. Nat Rev Nephrol 2023; 19:544-557. [PMID: 37400628 DOI: 10.1038/s41581-023-00733-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) are naturally present in the immune system and have roles in the maintenance of immunological self-tolerance and immune system and tissue homeostasis. Treg cells suppress T cell activation, expansion and effector functions by various mechanisms, particularly by controlling the functions of antigen-presenting cells. They can also contribute to tissue repair by suppressing inflammation and facilitating tissue regeneration, for example, via the production of growth factors and the promotion of stem cell differentiation and proliferation. Monogenic anomalies of Treg cells and genetic variations of Treg cell functional molecules can cause or predispose patients to the development of autoimmune diseases and other inflammatory disorders, including kidney diseases. Treg cells can potentially be utilized or targeted to treat immunological diseases and establish transplantation tolerance, for example, by expanding natural Treg cells in vivo using IL-2 or small molecules or by expanding them in vitro for adoptive Treg cell therapy. Efforts are also being made to convert antigen-specific conventional T cells into Treg cells and to generate chimeric antigen receptor Treg cells from natural Treg cells for adoptive Treg cell therapies with the aim of achieving antigen-specific immune suppression and tolerance in the clinic.
Collapse
Affiliation(s)
- Norihisa Mikami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
40
|
Wu D, Sun Y. The Functional Redundancy of Neddylation E2s and E3s in Modulating the Fitness of Regulatory T Cells. RESEARCH (WASHINGTON, D.C.) 2023; 6:0212. [PMID: 37600496 PMCID: PMC10437198 DOI: 10.34133/research.0212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Neddylation is necessary for activation of Cullin-RING ligases (CRLs), which degrade various immune regulatory proteins. Our recent study showed that while depletion of neddylation E2-E3 pair Ube2f-Sag in regulatory T (Treg) cells had no obvious phenotype, the same depletion of either Ube2m or Rbx1 caused inflammation disorders with different severity. Whether these E2s or E3s compensate each other in functional regulations of Treg cells is, however, previously unknown. In this report, we generated Foxp3Cre;Ube2mfl/fl;Ube2ffl/fl or Foxp3Cre;Rbx1fl/fl;Sagfl/fl double-null mice by simultaneous deletion of both neddylation E2s or E3s in Treg cells, respectively. Remarkably, Ube2m&Ube2f double-null mice developed much severe autoimmune phenotypes than did Ube2m-null mice, indicating that Ube2m markedly compensates Ube2f in Treg cells. The minor worsened autoimmune phenotypes seen at the very early stage in Rbx1&Sag double-null than Rbx1-null mice is likely due to already severe phenotypes of the later, indicating a minor compensation of Rbx1 for Sag. The RNA profiling-based analyses revealed that up- and down-regulations of few signaling pathways in Treg cells are associated with the severity of autoimmune phenotypes. Finally, severer inflammation phenotypes seen in mice with double E3-null than with double E2-null Treg cells indicate a neddylation-independent mechanism of 2 E3s, also known to serve as the RING component of CRLs in regulation of Treg cell fitness.
Collapse
Affiliation(s)
- Di Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for Cancer, Zhejiang Province, China.
- Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for Cancer, Zhejiang Province, China.
- Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
41
|
Régnier P, Le Joncour A, Maciejewski-Duval A, Darrasse-Jèze G, Dolladille C, Meijers WC, Bastarache L, Fouret P, Bruneval P, Arbaretaz F, Sayetta C, Márquez A, Rosenzwajg M, Klatzmann D, Cacoub P, Moslehi JJ, Salem JE, Saadoun D. CTLA-4 Pathway Is Instrumental in Giant Cell Arteritis. Circ Res 2023; 133:298-312. [PMID: 37435729 DOI: 10.1161/circresaha.122.322330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Giant cell arteritis (GCA) causes severe inflammation of the aorta and its branches and is characterized by intense effector T-cell infiltration. The roles that immune checkpoints play in the pathogenesis of GCA are still unclear. Our aim was to study the immune checkpoint interplay in GCA. METHODS First, we used VigiBase, the World Health Organization international pharmacovigilance database, to evaluate the relationship between GCA occurrence and immune checkpoint inhibitors treatments. We then further dissected the role of immune checkpoint inhibitors in the pathogenesis of GCA, using immunohistochemistry, immunofluorescence, transcriptomics, and flow cytometry on peripheral blood mononuclear cells and aortic tissues of GCA patients and appropriated controls. RESULTS Using VigiBase, we identified GCA as a significant immune-related adverse event associated with anti-CTLA-4 (cytotoxic T-lymphocyte-associated protein-4) but not anti-PD-1 (anti-programmed death-1) nor anti-PD-L1 (anti-programmed death-ligand 1) treatment. We further dissected a critical role for the CTLA-4 pathway in GCA by identification of the dysregulation of CTLA-4-derived gene pathways and proteins in CD4+ (cluster of differentiation 4) T cells (and specifically regulatory T cells) present in blood and aorta of GCA patients versus controls. While regulatory T cells were less abundant and activated/suppressive in blood and aorta of GCA versus controls, they still specifically upregulated CTLA-4. Activated and proliferating CTLA-4+ Ki-67+ regulatory T cells from GCA were more sensitive to anti-CTLA-4 (ipilimumab)-mediated in vitro depletion versus controls. CONCLUSIONS We highlighted the instrumental role of CTLA-4 immune checkpoint in GCA, which provides a strong rationale for targeting this pathway.
Collapse
Affiliation(s)
- Paul Régnier
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Alexandre Le Joncour
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Département de Médecine Interne et Immunologie Clinique, Sorbonne Université, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France (A.L.J., P.C., D.S.)
- Centre National de Référence Maladies Autoimmunes Systémiques Rares, Centre National de Référence Maladies Autoinflammatoires et Amylose Inflammatoire, Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), Paris, France (A.L.J., P.C., D.S.)
| | - Anna Maciejewski-Duval
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Guillaume Darrasse-Jèze
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Faculté de Médecine Paris Descartes (G.D.-J.), Université de Paris, France
| | - Charles Dolladille
- Normandie University, University of Caen Normandy, Centre Hospitalier Universitaire (CHU) de Caen Normandie, PICARO Cardio-Oncology Program, Department of Pharmacology, INSERM ANTICIPE U1086: Unité de Recherche Interdisciplinaire pour la Prévention et le Traitement des Cancers, Centre François Baclesse, France (C.D.)
| | - Wouter C Meijers
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (W.C.M., J.-E.S.)
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (L.B.)
| | - Pierre Fouret
- Service d'anatomie et cytologie pathologiques, Groupe Hospitalier Pitié-Salpêtrière (P.F.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Patrick Bruneval
- Service d'anatomie pathologie, Hôpital Européen Georges Pompidou (P.B.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Floriane Arbaretaz
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, Sorbonne Université, INSERM (F.A.), Université de Paris, France
| | - Célia Sayetta
- ICM Institut du Cerveau, CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France (C.S.)
| | - Ana Márquez
- Instituto de Parasitología y Biomedicina "López-Neyra," CSIC, PTS Granada, Spain (A.M.)
- Systemic Autoimmune Disease Unit, Instituto de Investigación Biosanitaria de Granada, Spain (A.M.)
| | - Michelle Rosenzwajg
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - David Klatzmann
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
| | - Patrice Cacoub
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Département de Médecine Interne et Immunologie Clinique, Sorbonne Université, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France (A.L.J., P.C., D.S.)
- Centre National de Référence Maladies Autoimmunes Systémiques Rares, Centre National de Référence Maladies Autoinflammatoires et Amylose Inflammatoire, Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), Paris, France (A.L.J., P.C., D.S.)
| | - Javid J Moslehi
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco (J.J.M.)
| | - Joe-Elie Salem
- Department of Pharmacology, INSERM, CIC-1901, UNICO-GRECO Cardiooncology Program, Sorbonne Université (J.-E.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands (W.C.M., J.-E.S.)
| | - David Saadoun
- Immunology-Immunopathology-Immunotherapy (i3) Laboratory, INSERM UMR-S 959, Sorbonne Université, Paris, France (P.R., A.L.J., A.M.-D., G.D.-J., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Biotherapy Unit (CIC-BTi), Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Groupe Hospitalier Pitié-Salpêtrière (P.R., A.L.J., A.M.-D., M.R., D.K., P.C., D.S.), Assistance Publique-Hôpitaux de Paris (AP-HP), France
- Département de Médecine Interne et Immunologie Clinique, Sorbonne Université, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France (A.L.J., P.C., D.S.)
- Centre National de Référence Maladies Autoimmunes Systémiques Rares, Centre National de Référence Maladies Autoinflammatoires et Amylose Inflammatoire, Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), Paris, France (A.L.J., P.C., D.S.)
| |
Collapse
|
42
|
Lax BM, Palmeri JR, Lutz EA, Sheen A, Stinson JA, Duhamel L, Santollani L, Kennedy A, Rothschilds AM, Spranger S, Sansom DM, Wittrup KD. Both intratumoral regulatory T cell depletion and CTLA-4 antagonism are required for maximum efficacy of anti-CTLA-4 antibodies. Proc Natl Acad Sci U S A 2023; 120:e2300895120. [PMID: 37487077 PMCID: PMC10400942 DOI: 10.1073/pnas.2300895120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Anti-CTLA-4 antibodies have successfully elicited durable tumor regression in the clinic; however, long-term benefit is limited to a subset of patients for select cancer indications. The incomplete understanding of their mechanism of action has hindered efforts at improvement, with conflicting hypotheses proposing either antagonism of the CTLA-4:B7 axis or Fc effector-mediated regulatory T cell (Treg) depletion governing efficacy. Here, we report the engineering of a nonantagonistic CTLA-4 binding domain (b1s1e2) that depletes intratumoral Tregs as an Fc fusion. Comparison of b1s1e2-Fc to 9d9, an antagonistic anti-CTLA-4 antibody, allowed for interrogation of the separate contributions of CTLA-4 antagonism and Treg depletion to efficacy. Despite equivalent levels of intratumoral Treg depletion, 9d9 achieved more long-term cures than b1s1e2-Fc in MC38 tumors, demonstrating that CTLA-4 antagonism provided additional survival benefit. Consistent with prior reports that CTLA-4 antagonism enhances priming, treatment with 9d9, but not b1s1e2-Fc, increased the percentage of activated T cells in the tumor-draining lymph node (tdLN). Treg depletion with either construct was restricted to the tumor due to insufficient surface CTLA-4 expression on Tregs in other compartments. Through intratumoral administration of diphtheria toxin in Foxp3-DTR mice, we show that depletion of both intratumoral and nodal Tregs provided even greater survival benefit than 9d9, consistent with Treg-driven restraint of priming in the tdLN. Our data demonstrate that anti-CTLA-4 therapies require both CTLA-4 antagonism and intratumoral Treg depletion for maximum efficacy-but that potential future therapies also capable of depleting nodal Tregs could show efficacy in the absence of CTLA-4 antagonism.
Collapse
Affiliation(s)
- Brianna M. Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Joseph R. Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Emi A. Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Alan Kennedy
- Institute of Immunity and Transplantation, University College London, LondonNW3 2PP, United Kingdom
| | - Adrienne M. Rothschilds
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David M. Sansom
- Institute of Immunity and Transplantation, University College London, LondonNW3 2PP, United Kingdom
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
43
|
Wu X, Tao M, Zhu L, Zhang T, Zhang M. Pathogenesis and current therapies for non-infectious uveitis. Clin Exp Med 2023; 23:1089-1106. [PMID: 36422739 PMCID: PMC10390404 DOI: 10.1007/s10238-022-00954-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Non-infectious uveitis (NIU) is a disorder with various etiologies and is characterized by eye inflammation, mainly affecting people of working age. An accurate diagnosis of NIU is crucial for appropriate therapy. The aim of therapy is to improve vision, relieve ocular inflammation, prevent relapse, and avoid treatment side effects. At present, corticosteroids are the mainstay of topical or systemic therapy. However, repeated injections are required for the treatment of chronic NIU. Recently, new drug delivery systems that may ensure intraocular delivery of therapeutic drug levels have been highlighted. Furthermore, with the development of immunosuppressants and biologics, specific therapies can be selected based on the needs of each patient. Immunosuppressants used in the treatment of NIU include calcineurin inhibitors and antimetabolites. However, systemic immunosuppressive therapy itself is associated with adverse effects due to the inhibition of immune function. In patients with refractory NIU or those who cannot tolerate corticosteroids and immunosuppressors, biologics have emerged as alternative treatments. Thus, to improve the prognosis of patients with NIU, NIU should be managed with different drugs according to the response to treatment and possible side effects.
Collapse
Affiliation(s)
- Xue Wu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Mengying Tao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Zhu
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Ting Zhang
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Sankar K, Pearson AN, Worlikar T, Perricone MD, Holcomb EA, Mendiratta-Lala M, Xu Z, Bhowmick N, Green MD. Impact of immune tolerance mechanisms on the efficacy of immunotherapy in primary and secondary liver cancers. Transl Gastroenterol Hepatol 2023; 8:29. [PMID: 37601739 PMCID: PMC10432235 DOI: 10.21037/tgh-23-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/22/2023] Open
Abstract
The liver is a functionally unique organ with an immunosuppressive microenvironment. The liver is the sixth most common site of primary cancer in humans and is a frequent site of metastasis from other solid tumors. The development of effective therapies for primary and metastatic liver cancer has been challenging due to the complex metabolic and immune microenvironment of the liver. The liver tumor microenvironment (TME) in primary and secondary (metastatic) liver cancers is heterogenous and consists of unique immune and stromal cell populations. Crosstalk between these cell populations and tumor cells creates an immunosuppressive microenvironment within the liver which potentiates cancer progression. Immune checkpoint inhibitors (ICIs) are now clinically approved for the management of primary and secondary liver cancer and can partially overcome liver immune tolerance, but their efficacy is limited. In this review, we describe the liver microenvironment and the use of immunotherapy in primary and secondary liver cancer. We discuss emerging combination strategies utilizing locoregional and systemic therapy approaches which may enhance efficacy of immunotherapy in primary and secondary liver cancer. A deeper understanding of the immunosuppressive microenvironment of the liver will inform novel therapies and therapeutic combinations in order to improve outcomes of patients with primary and secondary liver cancer.
Collapse
Affiliation(s)
- Kamya Sankar
- Division of Medical Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ashley N. Pearson
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Matthew D. Perricone
- Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Erin A. Holcomb
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Neil Bhowmick
- Division of Medical Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael D. Green
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Fayyad-Kazan M, Rouas R, Merimi M, Najar M, Badran B, Lewalle P, Fayyad-Kazan H. Human CD4 +CD25 +CD127 lowFOXP3 + regulatory T lymphocytes and CD4 +CD25 -FOXP3 - conventional T lymphocytes: a differential transcriptome profile. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:919-929. [PMID: 37246921 DOI: 10.1080/15257770.2023.2216226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
CD4+CD25+ FOXP3+ regulatory T cells (Tregs) represent a subpopulation of CD4+ T cells central for the suppression of physiological and pathological immune reactions. Although distinct cell surface antigens are expressed in regulatory T cells, those components are also present on the surface of activated CD4+CD25- FOXP3-T cells, thus making the discrimination between Tregs and conventional CD4+ T difficult and isolation of Tregs complex. Yet, the molecular components driving Tregs' function are still not fully characterized. Aiming at unraveling molecular components specifically marking Tregs, and upon using quantitative real-time PCR (qRT-PCR) followed by bioinformatics analysis, we identified, in this study, differential transcriptional profiles, in peripheral blood CD4 + CD25 + CD127low FOXP3+ Tregs versus CD4 + CD25-FOXP3- conventional T cells, for set of genes with distinct immunological roles. In conclusion, this study identifies some novel genes that appeared to be differentially transcribed in CD4+ Tregs versus conventional T cells. The identified genes could serve as novel molecular targets relevant to Tregs' function and isolation.
Collapse
Affiliation(s)
- Mohammad Fayyad-Kazan
- College of Arts and Sciences, Department of Natural and Applied Sciences, The American University of Iraq-Baghdad (AUIB), Baghdad, Iraq
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Hematology Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology, Hematology Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
- Genetics and Immune-Cell therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Mehdi Najar
- Laboratory of Experimental Hematology, Hematology Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Hematology Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| |
Collapse
|
46
|
Lin N, Yin W, Miller H, Byazrova MG, Herrada AA, Benlagha K, Lee P, Guan F, Lei J, Gong Q, Yan Y, Filatov A, Liu C. The role of regulatory T cells and follicular T helper cells in HBV infection. Front Immunol 2023; 14:1169601. [PMID: 37275865 PMCID: PMC10235474 DOI: 10.3389/fimmu.2023.1169601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatitis B has become one of the major global health threats, especially in developing countries and regions. Hepatitis B virus infection greatly increases the risk for liver diseases such as cirrhosis and cancer. However, treatment for hepatitis B is limited when considering the huge base of infected people. The immune response against hepatitis B is mediated mainly by CD8+ T cells, which are key to fighting invading viruses, while regulatory T cells prevent overreaction of the immune response process. Additionally, follicular T helper cells play a key role in B-cell activation, proliferation, differentiation, and formation of germinal centers. The pathogenic process of hepatitis B virus is generally the result of a disorder or dysfunction of the immune system. Therefore, we present in this review the critical functions and related biological processes of regulatory T cells and follicular T helper cells during HBV infection.
Collapse
Affiliation(s)
- Nengqi Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Research and Development, BD Biosciences, San Jose, CA, United States
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Youqing Yan
- Department of Infectious Disease, Wuhan No.7 Hospital, Wuhan, China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Klaus T, Wilson A, Fichter M, Bros M, Bopp T, Grabbe S. The Role of LFA-1 for the Differentiation and Function of Regulatory T Cells-Lessons Learned from Different Transgenic Mouse Models. Int J Mol Sci 2023; 24:6331. [PMID: 37047302 PMCID: PMC10094578 DOI: 10.3390/ijms24076331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Regulatory T cells (Treg) are essential for the maintenance of peripheral tolerance. Treg dysfunction results in diverse inflammatory and autoimmune diseases with life-threatening consequences. β2-integrins (CD11a-d/CD18) play important roles in the migration of leukocytes into inflamed tissues and cell signaling. Of all β2-integrins, T cells, including Treg, only express CD11a/CD18, termed lymphocyte function-associated antigen 1 (LFA-1), on their surface. In humans, loss-of-function mutations in the common subunit CD18 result in leukocyte adhesion deficiency type-1 (LAD-1). Clinical symptoms vary depending on the extent of residual β2-integrin function, and patients may experience leukocytosis and recurrent infections. Some patients can develop autoimmune diseases, but the immune processes underlying the paradoxical situation of immune deficiency and autoimmunity have been scarcely investigated. To understand this complex phenotype, different transgenic mouse strains with a constitutive knockout of β2-integrins have been established. However, since a constitutive knockout affects all leukocytes and may limit the validity of studies focusing on their cell type-specific role, we established a Treg-specific CD18-floxed mouse strain. This mini-review aims to delineate the role of LFA-1 for the induction, maintenance, and regulatory function of Treg in vitro and in vivo as deduced from observations using the various β2-integrin-deficient mouse models.
Collapse
Affiliation(s)
- Tanja Klaus
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Alicia Wilson
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, 55131 Mainz, Germany
| |
Collapse
|
48
|
Zheng C, Shi Y, Zou Y. T cell co-stimulatory and co-inhibitory pathways in atopic dermatitis. Front Immunol 2023; 14:1081999. [PMID: 36993982 PMCID: PMC10040887 DOI: 10.3389/fimmu.2023.1081999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) targeting the T cell inhibitory pathways has revolutionized cancer treatment. However, ICIs might induce progressive atopic dermatitis (AD) by affecting T cell reactivation. The critical role of T cells in AD pathogenesis is widely known. T cell co-signaling pathways regulate T cell activation, where co-signaling molecules are essential for determining the magnitude of the T cell response to antigens. Given the increasing use of ICIs in cancer treatment, a timely overview of the role of T cell co-signaling molecules in AD is required. In this review, we emphasize the importance of these molecules involved in AD pathogenesis. We also discuss the potential of targeting T cell co-signaling pathways to treat AD and present the unresolved issues and existing limitations. A better understanding of the T cell co-signaling pathways would aid investigation of the mechanism, prognosis evaluation, and treatment of AD.
Collapse
Affiliation(s)
- Chunjiao Zheng
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Institute of Psoriasis, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| | - Ying Zou
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| |
Collapse
|
49
|
Jacobse J, Brown RE, Li J, Pilat JM, Pham L, Short SP, Peek CT, Rolong A, Washington MK, Martinez-Barricarte R, Byndloss MX, Shelton C, Markle JG, Latour YL, Allaman MM, Cassat JE, Wilson KT, Choksi YA, Williams CS, Lau KS, Flynn CR, Casanova JL, Rings EHHM, Samsom JN, Goettel JA. Interleukin-23 receptor signaling impairs the stability and function of colonic regulatory T cells. Cell Rep 2023; 42:112128. [PMID: 36807140 PMCID: PMC10432575 DOI: 10.1016/j.celrep.2023.112128] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/29/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
The cytokine interleukin-23 (IL-23) is involved in the pathogenesis of inflammatory and autoimmune conditions including inflammatory bowel disease (IBD). IL23R is enriched in intestinal Tregs, yet whether IL-23 modulates intestinal Tregs remains unknown. Here, investigating IL-23R signaling in Tregs specifically, we show that colonic Tregs highly express Il23r compared with Tregs from other compartments and their frequency is reduced upon IL-23 administration and impairs Treg suppressive function. Similarly, colonic Treg frequency is increased in mice lacking Il23r specifically in Tregs and exhibits a competitive advantage over IL-23R-sufficient Tregs during inflammation. Finally, IL-23 antagonizes liver X receptor pathway, cellular cholesterol transporter Abca1, and increases Treg apoptosis. Our results show that IL-23R signaling regulates intestinal Tregs by increasing cell turnover, antagonizing suppression, and decreasing cholesterol efflux. These results suggest that IL-23 negatively regulates Tregs in the intestine with potential implications for promoting chronic inflammation in patients with IBD.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Rachel E Brown
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah P Short
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher T Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Rolong
- Department of Cell and Developmental Biology and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ruben Martinez-Barricarte
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Catherine Shelton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Janet G Markle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yvonne L Latour
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Margaret M Allaman
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S Lau
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France; The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | - Edmond H H M Rings
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands; Sophia Children's Hospital, Department of Pediatrics, Erasmus University, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeremy A Goettel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
50
|
Bouqdayr M, Abbad A, Baba H, Saih A, Wakrim L, Kettani A. Computational analysis of structural and functional evaluation of the deleterious missense variants in the human CTLA4 gene. J Biomol Struct Dyn 2023; 41:14179-14196. [PMID: 36764830 DOI: 10.1080/07391102.2023.2178509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
CTLA-4 is an immune checkpoint receptor that negatively regulates the T-cell function expressed after T-cell activation to break the immune response. The current study predicted the genomic analysis to explore the functional variations of missense SNPs in the human CTLA4 gene using PolyPhen2, SIFT, PANTHER, PROVEAN, Fathmm, Mutation Assessor, PhD-SNP, SNPs&GO, SNAP2, and MutPred2. Phylogenetic conservation protein was predicted by ConSurf. Protein structural analysis was carried out by I-Mutant3, MUpro, iStable2, PremPS, and ERIS servers. Molecular dynamics trajectory analysis (RMSD, RMSF, Rg, SASA, H-bonds, and PCA) was performed to analyze the dynamic behavior of native and mutant CTLA-4 at the atomic level. Our in-silico analysis suggested that C58S, G118R, P137Q, P137R, P137L, P138T, and G146L variants were predicted to be the most deleterious missense variants and highly conserved residues. Moreover, the molecular dynamics analysis proposed a decrease in the protein stability and compactness with the P137R and P138T highlighting the impact of these variants on the function of the CTLA-4 protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Meryem Bouqdayr
- Laboratory of Biology and Health, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca, Casablanca, Morocco
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Abbad
- Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hanâ Baba
- Laboratory of Biology and Health, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca, Casablanca, Morocco
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Asmae Saih
- Laboratory of Biology and Health, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca, Casablanca, Morocco
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Lahcen Wakrim
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Kettani
- Laboratory of Biology and Health, Faculty of Sciences Ben M'sick, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|