1
|
Trac N, Chen Z, Oh HS, Jones L, Huang Y, Giblin J, Gross M, Sta Maria NS, Jacobs RE, Chung EJ. MRI Detection of Lymph Node Metastasis through Molecular Targeting of C-C Chemokine Receptor Type 2 and Monocyte Hitchhiking. ACS NANO 2024; 18:2091-2104. [PMID: 38212302 DOI: 10.1021/acsnano.3c09201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Biopsy is the clinical standard for diagnosing lymph node (LN) metastasis, but it is invasive and poses significant risk to patient health. Magnetic resonance imaging (MRI) has been utilized as a noninvasive alternative but is limited by low sensitivity, with only ∼35% of LN metastases detected, as clinical contrast agents cannot discriminate between healthy and metastatic LNs due to nonspecific accumulation. Nanoparticles targeted to the C-C chemokine receptor 2 (CCR2), a biomarker highly expressed in metastatic LNs, have the potential to guide the delivery of contrast agents, improving the sensitivity of MRI. Additionally, cancer cells in metastatic LNs produce monocyte chemotactic protein 1 (MCP1), which binds to CCR2+ inflammatory monocytes and stimulates their migration. Thus, the molecular targeting of CCR2 may enable nanoparticle hitchhiking onto monocytes, providing an additional mechanism for metastatic LN targeting and early detection. Hence, we developed micelles incorporating gadolinium (Gd) and peptides derived from the CCR2-binding motif of MCP1 (MCP1-Gd) and evaluated the potential of MCP1-Gd to detect LN metastasis. When incubated with migrating monocytes in vitro, MCP1-Gd transport across lymphatic endothelium increased 2-fold relative to nontargeting controls. After administration into mouse models with initial LN metastasis and recurrent LN metastasis, MCP1-Gd detected metastatic LNs by increasing MRI signal by 30-50% relative to healthy LNs. Furthermore, LN targeting was dependent on monocyte hitchhiking, as monocyte depletion decreased accumulation by >70%. Herein, we present a nanoparticle contrast agent for MRI detection of LN metastasis mediated by CCR2-targeting and demonstrate the potential of monocyte hitchhiking for enhanced nanoparticle delivery.
Collapse
Affiliation(s)
- Noah Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Zixi Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hyun-Seok Oh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Leila Jones
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yi Huang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua Giblin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Mitchell Gross
- Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, California 90064, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute and Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Russell E Jacobs
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute and Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Department of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Ruddle NH. Regulation, Maintenance, and Remodeling of High Endothelial Venules in Homeostasis, Inflammation, and Cancer. CURRENT OPINION IN PHYSIOLOGY 2023; 36:100705. [PMID: 38523879 PMCID: PMC10956444 DOI: 10.1016/j.cophys.2023.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
High endothelial venules (HEVs), high walled cuboidal blood vessels, through their expression of adhesion molecules and chemokines, allow the entrance of lymphoid cells into primary, secondary, and tertiary lymphoid structures (aka tertiary lymphoid organs). HEV heterogeneity exists between various lymphoid organs in their expression of peripheral node addressin (PNAd) and mucosal vascular addressin adhesion molecule 1(MAdCAM-1). Transcriptomic analyses reveal extensive heterogeneity, plasticity, and regulation of HEV gene expression in ontogeny, acute inflammation, and chronic inflammation within and between lymphoid organs. Rules regulating HEV development are flexible in inflammation. HEVs in tumor tertiary lymphoid structures are diagnostic of favorable clinical outcome and response to Immunotherapy, including immune check point blockade. Immunotherapy induces HEVs and provides an entrance for naïve, central memory, and effector cells and a niche for stem like precursor cells. Understanding HEV regulation will permit their exploitation as routes for drug delivery to autoimmune lesions, rejecting organs, and tumors.
Collapse
Affiliation(s)
- Nancy H Ruddle
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520-8034
| |
Collapse
|
3
|
Arroz-Madeira S, Bekkhus T, Ulvmar MH, Petrova TV. Lessons of Vascular Specialization From Secondary Lymphoid Organ Lymphatic Endothelial Cells. Circ Res 2023; 132:1203-1225. [PMID: 37104555 PMCID: PMC10144364 DOI: 10.1161/circresaha.123.322136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Secondary lymphoid organs, such as lymph nodes, harbor highly specialized and compartmentalized niches. These niches are optimized to facilitate the encounter of naive lymphocytes with antigens and antigen-presenting cells, enabling optimal generation of adaptive immune responses. Lymphatic vessels of lymphoid organs are uniquely specialized to perform a staggering variety of tasks. These include antigen presentation, directing the trafficking of immune cells but also modulating immune cell activation and providing factors for their survival. Recent studies have provided insights into the molecular basis of such specialization, opening avenues for better understanding the mechanisms of immune-vascular interactions and their applications. Such knowledge is essential for designing better treatments for human diseases given the central role of the immune system in infection, aging, tissue regeneration and repair. In addition, principles established in studies of lymphoid organ lymphatic vessel functions and organization may be applied to guide our understanding of specialization of vascular beds in other organs.
Collapse
Affiliation(s)
- Silvia Arroz-Madeira
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| | - Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Maria H. Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| |
Collapse
|
4
|
Vella G, Hua Y, Bergers G. High endothelial venules in cancer: Regulation, function, and therapeutic implication. Cancer Cell 2023; 41:527-545. [PMID: 36827979 DOI: 10.1016/j.ccell.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
The lack of sufficient intratumoral CD8+ T lymphocytes is a significant obstacle to effective immunotherapy in cancer. High endothelial venules (HEVs) are organ-specific and specialized postcapillary venules uniquely poised to facilitate the transmigration of lymphocytes to lymph nodes (LNs) and other secondary lymphoid organs (SLOs). HEVs can also form in human and murine cancer (tumor HEVs [TU-HEVs]) and contribute to the generation of diffuse T cell-enriched aggregates or tertiary lymphoid structures (TLSs), which are commonly associated with a good prognosis. Thus, therapeutic induction of TU-HEVs may provide attractive avenues to induce and sustain the efficacy of immunotherapies by overcoming the major restriction of T cell exclusion from the tumor microenvironment. In this review, we provide current insight into the commonalities and discrepancies of HEV formation and regulation in LNs and tumors and discuss the specific function and significance of TU-HEVs in eliciting, predicting, and aiding anti-tumoral immunity.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Yichao Hua
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Li H, Sun Y, Sun L. A Teleost CXCL10 Is Both an Immunoregulator and an Antimicrobial. Front Immunol 2022; 13:917697. [PMID: 35795684 PMCID: PMC9251016 DOI: 10.3389/fimmu.2022.917697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Chemokines are a group of cytokines that play important roles in cell migration, inflammation, and immune defense. In this study, we identified a CXC chemokine, CXCL10, from Japanese flounder Paralichthys olivaceus (named PoCXCL10) and investigated its immune function. Structurally, PoCXCL10 possesses an N-terminal coil, three β-strands, and a C-terminal α-helix with cationic and amphipathic properties. PoCXCL10 expression occurred in multiple tissues and was upregulated by bacterial pathogens. Recombinant PoCXCL10 (rPoCXCL10) promoted the migration, cytokine expression, and phagocytosis of flounder peripheral blood leukocytes (PBLs). rPoCXCL10 bound to and inhibited the growth of a variety of common Gram-negative and Gram-positive fish pathogens. rPoCXCL10 killed the pathogens by causing bacterial membrane permeabilization and structure destruction. When introduced in vivo, rPoCXCL10 significantly inhibited bacterial dissemination in fish tissues. A peptide derived from the C-terminal α-helix exhibited bactericidal activity and competed with rPoCXCL10 for bacterial binding. Deletion of the α-helix affected the in vitro bactericidal activity but not the chemotaxis or in vivo antimicrobial activity of PoCXCL10. Together, these results indicate that PoCXCL10 exerts the role of both an immunoregulator and a bactericide/bacteriostatic via different structural domains. These findings provide new insights into the immune function and working mechanism of fish CXC chemokines.
Collapse
Affiliation(s)
- Huili Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology; CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Li Sun,
| |
Collapse
|
6
|
Rahman ML, Bassig BA, Dai Y, Hu W, Wong JYY, Blechter B, Hosgood HD, Ren D, Duan H, Niu Y, Xu J, Fu W, Meliefste K, Zhou B, Yang J, Ye M, Jia X, Meng T, Bin P, Silverman DT, Vermeulen R, Rothman N, Zheng Y, Lan Q. Proteomic analysis of serum in workers exposed to diesel engine exhaust. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:18-28. [PMID: 34894159 DOI: 10.1002/em.22469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Diesel engine exhaust (DEE) is classified as a Group 1 human carcinogen. Using a targeted proteomics approach, we aimed to identify proteins associated with DEE and characterize these markers to understand the mechanisms of DEE-induced carcinogenicity. In this cross-sectional molecular epidemiology study, we measured elemental carbon (EC) using a personal air monitor and quantified 1317 targeted proteins in the serum using the SOMAScan assay (SOMALogic) among 19 diesel exposed factory workers and 19 unexposed controls. We used linear regressions to identify proteins associated with DEE and examined their exposure-response relationship across levels of EC using linear trend tests. We further examined pathway enrichment of DEE-related proteins using MetaCore. Occupational exposure to DEE was associated with altered levels of 22 serum proteins (permutation p < .01). Of these, 13 proteins (CXCL11, HAPLN1, FLT4, CD40LG, PES1, IGHE.IGK..IGL, TNFSF9, PGD, NAGK, CCL25, CCL4L1, PDXK, and PLA2G1B) showed an exposure-response relationship with EC (p trend < .01), with serum levels of all but PLA2G1B declining with increasing air levels of EC. For instance, C-X-C Motif Chemokine Ligand 11 (CXCL11) showed the most significant association with DEE (β = -0.25; permutation p = .00004), where mean serum levels were 4121.1, 2356.7, and 2298.8 relative fluorescent units among the unexposed, lower exposed (median, range : 56.9, 40.2-62.1 μg/m3 EC), and higher exposed (median, range of EC: 72.9, 66.9-107.7 μg/m3 EC) groups, respectively (p trend = .0005). Pathway analysis suggested that these proteins are enriched in pathways related to inflammation and immune regulation. Our study suggests that DEE exposure is associated with altered serum proteins, which play a role in inflammation and immune regulation.
Collapse
Affiliation(s)
- Mohammad L Rahman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Bryan A Bassig
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Yufei Dai
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Jason Y Y Wong
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Batel Blechter
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - H Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Danzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Huawei Duan
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Xu
- School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Meng Ye
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaowei Jia
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Bin
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
7
|
Zhang Y, Xiao X, Hu Y, Liao Z, Zhu W, Jiang R, Yang C, Zhang Y, Su J. CXCL20a, a Teleost-Specific Chemokine That Orchestrates Direct Bactericidal, Chemotactic, and Phagocytosis-Killing-Promoting Functions, Contributes to Clearance of Bacterial Infections. THE JOURNAL OF IMMUNOLOGY 2021; 207:1911-1925. [PMID: 34462313 DOI: 10.4049/jimmunol.2100300] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
The major role of chemokines is to act as a chemoattractant to guide the migration of immune cells to the infectious sites. In the current study, we found that CiCXCL20a, a teleost-specific chemokine from grass carp (Ctenopharyngodon idella), demonstrates broad-spectrum, potent, direct bactericidal activity and immunomodulatory functions to bacterial infections, apart from the chemotaxis. CiCXCL20a kills bacteria by binding, mainly targeting acid lipids, perforating bacterial membrane, resulting in bacterial cytoplasm leakage and death. CiCXCL20a aggregates and neutralizes LPS, agglutinates Gram-negative bacteria, and binds to peptidoglycan and Gram-positive bacteria, but not agglutinate them. All the complexes may be phagocytized and cleared away. CiCXCL20a chemoattracts leukocytes, facilitates phagocytosis of myeloid leukocytes, not lymphoid leukocytes, and enhances the bacteria-killing ability in leukocytes. We further identified its receptor CiCXCR3.1b1. Furthermore, we investigated the physiological roles of CiCXCL20a against Aeromonas hydrophila infection in vivo. The recombinant CiCXCL20a increases the survival rate and decreases the tissue bacterial loads, edema, and lesions. Then, we verified this function by purified CiCXCL20a Ab blockade, and the survival rate decreases, and the tissue bacterial burdens increase. In addition, zebrafish (Danio rerio) DrCXCL20, an ortholog of CiCXCL20a, was employed to verify the bactericidal function and mechanism. The results indicated that DrCXCL20 also possesses wide-spectrum, direct bactericidal activity through membrane rupture mechanism. The present study, to our knowledge, provides the first evidence that early vertebrate chemokine prevents from bacterial infections by direct bactericidal and phagocytosis-killing-promoting manners. The results also demonstrate the close functional relationship between chemokines and antimicrobial peptides.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; and.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yazhen Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wentao Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Rui Jiang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; and
| |
Collapse
|
8
|
Vella G, Guelfi S, Bergers G. High Endothelial Venules: A Vascular Perspective on Tertiary Lymphoid Structures in Cancer. Front Immunol 2021; 12:736670. [PMID: 34484246 PMCID: PMC8416033 DOI: 10.3389/fimmu.2021.736670] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
High endothelial venules (HEVs) are specialized postcapillary venules composed of cuboidal blood endothelial cells that express high levels of sulfated sialomucins to bind L-Selectin/CD62L on lymphocytes, thereby facilitating their transmigration from the blood into the lymph nodes (LN) and other secondary lymphoid organs (SLO). HEVs have also been identified in human and murine tumors in predominantly CD3+T cell-enriched areas with fewer CD20+B-cell aggregates that are reminiscent of tertiary lymphoid-like structures (TLS). While HEV/TLS areas in human tumors are predominantly associated with increased survival, tumoral HEVs (TU-HEV) in mice have shown to foster lymphocyte-enriched immune centers and boost an immune response combined with different immunotherapies. Here, we discuss the current insight into TU-HEV formation, function, and regulation in tumors and elaborate on the functional implication, opportunities, and challenges of TU-HEV formation for cancer immunotherapy.
Collapse
Affiliation(s)
- Gerlanda Vella
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sophie Guelfi
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, Vlaams Instituut voor Biotechnologie (VIB)-Center for Cancer Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
9
|
Blanchard L, Girard JP. High endothelial venules (HEVs) in immunity, inflammation and cancer. Angiogenesis 2021; 24:719-753. [PMID: 33956259 PMCID: PMC8487881 DOI: 10.1007/s10456-021-09792-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
High endothelial venules (HEVs) are specialized blood vessels mediating lymphocyte trafficking to lymph nodes (LNs) and other secondary lymphoid organs. By supporting high levels of lymphocyte extravasation from the blood, HEVs play an essential role in lymphocyte recirculation and immune surveillance for foreign invaders (bacterial and viral infections) and alterations in the body’s own cells (neoantigens in cancer). The HEV network expands during inflammation in immune-stimulated LNs and is profoundly remodeled in metastatic and tumor-draining LNs. HEV-like blood vessels expressing high levels of the HEV-specific sulfated MECA-79 antigens are induced in non-lymphoid tissues at sites of chronic inflammation in many human inflammatory and allergic diseases, including rheumatoid arthritis, Crohn’s disease, allergic rhinitis and asthma. Such vessels are believed to contribute to the amplification and maintenance of chronic inflammation. MECA-79+ tumor-associated HEVs (TA-HEVs) are frequently found in human tumors in CD3+ T cell-rich areas or CD20+ B-cell rich tertiary lymphoid structures (TLSs). TA-HEVs have been proposed to play important roles in lymphocyte entry into tumors, a process essential for successful antitumor immunity and lymphocyte-mediated cancer immunotherapy with immune checkpoint inhibitors, vaccines or adoptive T cell therapy. In this review, we highlight the phenotype and function of HEVs in homeostatic, inflamed and tumor-draining lymph nodes, and those of HEV-like blood vessels in chronic inflammatory diseases. Furthermore, we discuss the role and regulation of TA-HEVs in human cancer and mouse tumor models.
Collapse
Affiliation(s)
- Lucas Blanchard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
10
|
Trac N, Chung EJ. Overcoming physiological barriers by nanoparticles for intravenous drug delivery to the lymph nodes. Exp Biol Med (Maywood) 2021; 246:2358-2371. [PMID: 33957802 DOI: 10.1177/15353702211010762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lymph nodes are major sites of cancer metastasis and immune activity, and thus represent important clinical targets. Although not as well-studied compared to subcutaneous administration, intravenous drug delivery is advantageous for lymph node delivery as it is commonly practiced in the clinic and has the potential to deliver therapeutics systemically to all lymph nodes. However, rapid clearance by the mononuclear phagocyte system, tight junctions of the blood vascular endothelium, and the collagenous matrix of the interstitium can limit the efficiency of lymph node drug delivery, which has prompted research into the design of nanoparticle-based drug delivery systems. In this mini review, we describe the physiological and biological barriers to lymph node targeting, how they inform nanoparticle design, and discuss the future outlook of lymph node targeting.
Collapse
Affiliation(s)
- Noah Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, Los Angeles, CA 90033, USA.,Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
In Sickness and in Health: The Immunological Roles of the Lymphatic System. Int J Mol Sci 2021; 22:ijms22094458. [PMID: 33923289 PMCID: PMC8123157 DOI: 10.3390/ijms22094458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are distinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific functions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mechanisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and chronic inflammation, and subsequent resolution.
Collapse
|
12
|
Brulois K, Rajaraman A, Szade A, Nordling S, Bogoslowski A, Dermadi D, Rahman M, Kiefel H, O'Hara E, Koning JJ, Kawashima H, Zhou B, Vestweber D, Red-Horse K, Mebius RE, Adams RH, Kubes P, Pan J, Butcher EC. A molecular map of murine lymph node blood vascular endothelium at single cell resolution. Nat Commun 2020; 11:3798. [PMID: 32732867 PMCID: PMC7393069 DOI: 10.1038/s41467-020-17291-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
Blood vascular endothelial cells (BECs) control the immune response by regulating blood flow and immune cell recruitment in lymphoid tissues. However, the diversity of BEC and their origins during immune angiogenesis remain unclear. Here we profile transcriptomes of BEC from peripheral lymph nodes and map phenotypes to the vasculature. We identify multiple subsets, including a medullary venous population whose gene signature predicts a selective role in myeloid cell (vs lymphocyte) recruitment to the medulla, confirmed by videomicroscopy. We define five capillary subsets, including a capillary resident precursor (CRP) that displays stem cell and migratory gene signatures, and contributes to homeostatic BEC turnover and to neogenesis of high endothelium after immunization. Cell alignments show retention of developmental programs along trajectories from CRP to mature venous and arterial populations. Our single cell atlas provides a molecular roadmap of the lymph node blood vasculature and defines subset specialization for leukocyte recruitment and vascular homeostasis.
Collapse
Affiliation(s)
- Kevin Brulois
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anusha Rajaraman
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Agata Szade
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sofia Nordling
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ania Bogoslowski
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Denis Dermadi
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Milladur Rahman
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Helena Kiefel
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward O'Hara
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Hiroto Kawashima
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Beijing, China
| | - Dietmar Vestweber
- Department Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, University of Münster, Faculty of Medicine, Münster, Germany
| | - Paul Kubes
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Junliang Pan
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
13
|
Sullivan C, Brown NE, Vasiliauskas J, Pathrose P, Starnes SL, Waltz SE. Prostate Epithelial RON Signaling Promotes M2 Macrophage Activation to Drive Prostate Tumor Growth and Progression. Mol Cancer Res 2020; 18:1244-1254. [PMID: 32439702 DOI: 10.1158/1541-7786.mcr-20-0060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/11/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
Abstract
Effective treatment of advanced prostate cancer persists as a significant clinical need as only 30% of patients with distant disease survive to 5 years after diagnosis. Targeting signaling and tumor cell-immune cell interactions in the tumor microenvironment has led to the development of powerful immunotherapeutic agents, however, the prostate tumor milieu remains impermeable to these strategies highlighting the need for novel therapeutic targets. In this study, we provide compelling evidence to support the role of the RON receptor tyrosine kinase as a major regulator of macrophages in the prostate tumor microenvironment. We show that loss of RON selectively in prostate epithelial cells leads to significantly reduced prostate tumor growth and metastasis and is associated with increased intratumor infiltration of macrophages. We further demonstrate that prostate epithelial RON loss induces transcriptional reprogramming of macrophages to support expression of classical M1 markers and suppress expression of alternative M2 markers. Interestingly, our results show epithelial RON activation drives upregulation of RON expression in macrophages as a positive feed-forward mechanism to support prostate tumor growth. Using 3D coculture assays, we provide additional evidence that epithelial RON expression coordinates interactions between prostate tumor cells and macrophages to promote macrophage-mediated tumor cell growth. Taken together, our results suggest that RON receptor signaling in prostate tumor cells directs the functions of macrophages in the prostate tumor microenvironment to promote prostate cancer. IMPLICATIONS: Epithelial RON is a novel immunotherapeutic target that is responsible for directing the macrophage antitumor immune response to support prostate tumor growth and progression.
Collapse
Affiliation(s)
- Camille Sullivan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nicholas E Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Juozas Vasiliauskas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Peterson Pathrose
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sandra L Starnes
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
14
|
Xiang M, Grosso RA, Takeda A, Pan J, Bekkhus T, Brulois K, Dermadi D, Nordling S, Vanlandewijck M, Jalkanen S, Ulvmar MH, Butcher EC. A Single-Cell Transcriptional Roadmap of the Mouse and Human Lymph Node Lymphatic Vasculature. Front Cardiovasc Med 2020; 7:52. [PMID: 32426372 PMCID: PMC7204639 DOI: 10.3389/fcvm.2020.00052] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Single-cell transcriptomics promise to revolutionize our understanding of the vasculature. Emerging computational methods applied to high-dimensional single-cell data allow integration of results between samples and species and illuminate the diversity and underlying developmental and architectural organization of cell populations. Here, we illustrate these methods in the analysis of mouse lymph node (LN) lymphatic endothelial cells (LEC) at single-cell resolution. Clustering identifies five well-delineated subsets, including two medullary sinus subsets not previously recognized as distinct. Nearest neighbor alignments in trajectory space position the major subsets in a sequence that recapitulates the known features and suggests novel features of LN lymphatic organization, providing a transcriptional map of the lymphatic endothelial niches and of the transitions between them. Differences in gene expression reveal specialized programs for (1) subcapsular ceiling endothelial interactions with the capsule connective tissue and cells; (2) subcapsular floor regulation of lymph borne cell entry into the LN parenchyma and antigen presentation; and (3) pathogen interactions and (4) LN remodeling in distinct medullary subsets. LEC of the subcapsular sinus floor and medulla, which represent major sites of cell entry and exit from the LN parenchyma respectively, respond robustly to oxazolone inflammation challenge with enriched signaling pathways that converge on both innate and adaptive immune responses. Integration of mouse and human single-cell profiles reveals a conserved cross-species pattern of lymphatic vascular niches and gene expression, as well as specialized human subsets and genes unique to each species. The examples provided demonstrate the power of single-cell analysis in elucidating endothelial cell heterogeneity, vascular organization, and endothelial cell responses. We discuss the findings from the perspective of LEC functions in relation to niche formations in the unique stromal and highly immunological environment of the LN.
Collapse
Affiliation(s)
- Menglan Xiang
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Rubén Adrián Grosso
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Akira Takeda
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Junliang Pan
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Tove Bekkhus
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kevin Brulois
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Denis Dermadi
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
| | - Sofia Nordling
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Michael Vanlandewijck
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Stockholm, Sweden
| | - Sirpa Jalkanen
- MediCity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Maria H. Ulvmar
- The Beijer Laboratory, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Eugene C. Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Palo Alto Veterans Institute for Research, Palo Alto, CA, United States
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
15
|
Selective Upregulation of Transcripts for Six Molecules Related to T Cell Costimulation and Phagocyte Recruitment and Activation among 734 Immunity-Related Genes in the Brain during Perforin-Dependent, CD8 + T Cell-Mediated Elimination of Toxoplasma gondii Cysts. mSystems 2020; 5:5/2/e00189-20. [PMID: 32291349 PMCID: PMC7159899 DOI: 10.1128/msystems.00189-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We recently found that an invasion of CD8+ cytotoxic T cells into tissue cysts of Toxoplasma gondii initiates an elimination of the cysts in association with an accumulation of microglia and macrophages. In the present study, we compared mRNA levels for 734 immune-related genes in the brains of infected SCID mice that received perforin-sufficient or -deficient CD8+ immune T cells at 3 weeks after infection. At 7 days after the T cell transfer, mRNA levels for only six genes were identified to be greater in the recipients of the perforin-sufficient T cells than in the recipients of the perforin-deficient T cells. These six molecules included two T cell costimulatory molecules, inducible T cell costimulator receptor (ICOS) and its ligand (ICOSL); two chemokine receptors, C-X-C motif chemokine receptor 3 (CXCR3) and CXCR6; and two molecules related to an activation of microglia and macrophages, interleukin 18 receptor 1 (IL-18R1) and chitinase-like 3 (Chil3). Consistently, a marked reduction of cyst numbers and upregulation of ICOS, CXCR3, CXCR6, IL-18R1, and Chil3 mRNA levels were also detected when the perforin-sufficient CD8+ immune T cells were transferred to infected SCID mice at 6 weeks after infection, indicating that the CD8+ T cell-mediated protective immunity is capable of eliminating mature T. gondii cysts. These results together suggest that ICOS-ICOSL interactions are crucial for activating CD8+ cytotoxic immune T cells to initiate the destruction of T. gondii cysts and that CXCR3, CXCR6, and IL-18R are involved in recruitment and activation of microglia and macrophages to the T cell-attacked cysts for their elimination.IMPORTANCE T. gondii establishes a chronic infection by forming tissue cysts, which can grow into sizes greater than 50 μm in diameter as a consequence of containing hundreds to thousands of organisms surrounded by the cyst wall within infected cells. Our recent studies using murine models uncovered that CD8+ cytotoxic T cells penetrate into the cysts in a perforin-dependent manner and induce their elimination, which is accompanied with an accumulation of phagocytic cells to the T cell-attacked target. This is the first evidence of the ability of the T cells to invade into a large target for its elimination. However, the mechanisms involved in anticyst immunity remain unclear. Immune profiling analyses of 734 immune-related genes in the present study provided a valuable foundation to initiate elucidating detailed molecular mechanisms of the novel effector function of the immune system operated by perforin-mediated invasion of CD8+ T cells into large targets for their elimination.
Collapse
|
16
|
Thierry GR, Gentek R, Bajenoff M. Remodeling of reactive lymph nodes: Dynamics of stromal cells and underlying chemokine signaling. Immunol Rev 2020; 289:42-61. [PMID: 30977194 DOI: 10.1111/imr.12750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022]
Abstract
Lymph nodes (LNs) are secondary immune organs dispersed throughout the body. They are primarily composed of lymphocytes, "transient passengers" that are only present for a few hours. During this time, they extensively interact with a meshwork of stromal cells. Although these cells constitute less than 5% of all LN cells, they are integral to LN function: Stromal cells create a three-dimensional network that provides a rigid backbone for the transport of lymph and generates "roads" for lymphocyte migration. Beyond structural support, the LN stroma also produces survival signals for lymphocytes and provides nutrients, soluble factors, antigens, and immune cells collectively required for immune surveillance and the generation of adaptive immune responses. A unique feature of LNs is their ability to considerably and rapidly change size: the volume and cellularity of inflamed LNs can increase up to 20-fold before returning to homeostatic levels. This cycle will be repeated many times during life and is accommodated by stromal cells. The dynamics underlying this dramatic remodeling are subject of this review. We will first introduce the main types of LN stromal cells and explain their known functions. We will then discuss how these cells enable LN growth during immune responses, with a particular focus on underlying cellular mechanisms and molecular cues. Similarly, we will elaborate on stromal dynamics mediating the return to LN homeostasis, a process that is mechanistically much less understood than LN expansion.
Collapse
Affiliation(s)
- Guilhem R Thierry
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Rebecca Gentek
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Marc Bajenoff
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| |
Collapse
|
17
|
Eckert N, Permanyer M, Yu K, Werth K, Förster R. Chemokines and other mediators in the development and functional organization of lymph nodes. Immunol Rev 2020; 289:62-83. [PMID: 30977201 DOI: 10.1111/imr.12746] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 12/28/2022]
Abstract
Secondary lymphoid organs like lymph nodes (LNs) are the main inductive sites for adaptive immune responses. Lymphocytes are constantly entering LNs, scanning the environment for their cognate antigen and get replenished by incoming cells after a certain period of time. As only a minor percentage of lymphocytes recognizes cognate antigen, this mechanism of permanent recirculation ensures fast and effective immune responses when necessary. Thus, homing, positioning, and activation as well as egress require precise regulation within LNs. In this review we discuss the mediators, including chemokines, cytokines, growth factors, and others that are involved in the formation of the LN anlage and subsequent functional organization of LNs. We highlight very recent findings in the fields of LN development, steady-state migration in LNs, and the intranodal processes during an adaptive immune response.
Collapse
Affiliation(s)
- Nadine Eckert
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kai Yu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Wong E, Xu RH, Rubio D, Lev A, Stotesbury C, Fang M, Sigal LJ. Migratory Dendritic Cells, Group 1 Innate Lymphoid Cells, and Inflammatory Monocytes Collaborate to Recruit NK Cells to the Virus-Infected Lymph Node. Cell Rep 2019; 24:142-154. [PMID: 29972776 DOI: 10.1016/j.celrep.2018.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/30/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022] Open
Abstract
Circulating natural killer (NK) cells help protect the host from lympho-hematogenous acute viral diseases by rapidly entering draining lymph nodes (dLNs) to curb virus dissemination. Here, we identify a highly choreographed mechanism underlying this process. Using footpad infection with ectromelia virus, a pathogenic DNA virus of mice, we show that TLR9/MyD88 sensing induces NKG2D ligands in virus-infected, skin-derived migratory dendritic cells (mDCs) to induce production of IFN-γ by classical NK cells and other types of group 1 innate lymphoid cells (ILCs) already in dLNs, via NKG2D. Uninfected inflammatory monocytes, also recruited to dLNs by mDCs in a TLR9/MyD88-dependent manner, respond to IFN-γ by secreting CXCL9 for optimal CXCR3-dependent recruitment of circulating NK cells. This work unveils a TLR9/MyD88-dependent mechanism whereby in dLNs, three cell types-mDCs, group 1 ILCs (mostly NK cells), and inflammatory monocytes-coordinate the recruitment of protective circulating NK cells to dLNs.
Collapse
Affiliation(s)
- Eric Wong
- Department of Microbiology and Immunology, Thomas Jefferson University, BLSB 709, 233 South 10(th) Street, Philadelphia, PA 19107, USA
| | - Ren-Huan Xu
- Immune Cell Development and Host Defense Program, Research Institute of Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Daniel Rubio
- Immune Cell Development and Host Defense Program, Research Institute of Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Avital Lev
- Immune Cell Development and Host Defense Program, Research Institute of Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Colby Stotesbury
- Department of Microbiology and Immunology, Thomas Jefferson University, BLSB 709, 233 South 10(th) Street, Philadelphia, PA 19107, USA
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, BLSB 709, 233 South 10(th) Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
19
|
Pfuderer PL, Ballhausen A, Seidler F, Stark HJ, Grabe N, Frayling IM, Ager A, von Knebel Doeberitz M, Kloor M, Ahadova A. High endothelial venules are associated with microsatellite instability, hereditary background and immune evasion in colorectal cancer. Br J Cancer 2019; 121:395-404. [PMID: 31358939 PMCID: PMC6738093 DOI: 10.1038/s41416-019-0514-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Microsatellite-unstable (MSI) tumours show a high load of mutational neoantigens, as a consequence of DNA mismatch repair deficiency. Consequently, MSI tumours commonly present with dense immune infiltration and develop immune evasion mechanisms. Whether improved lymphocyte recruitment contributes to the pronounced immune infiltration in MSI tumours is unknown. We analysed the density of high endothelial venules (HEV) and postcapillary blood vessels specialised for lymphocyte trafficking, in MSI colorectal cancers (CRC). METHODS HEV density was determined by immunohistochemical staining of FFPE tissue sections from MSI (n = 48) and microsatellite-stable (MSS, n = 35) CRCs. Associations with clinical and pathological variables were analysed. RESULTS We found elevated HEV densities in MSI compared with MSS CRCs (median 0.049 vs 0.000 counts/mm2, respectively, p = 0.0002), with the highest densities in Lynch syndrome MSI CRCs. Dramatically elevated HEV densities were observed in B2M-mutant Lynch syndrome CRCs, pointing towards a link between lymphocyte recruitment and immune evasion (median 0.485 vs 0.0885 counts/mm2 in B2M-wild-type tumours, p = 0.0237). CONCLUSIONS Our findings for the first time indicate a significant contribution of lymphocyte trafficking in immune responses against MSI CRC, particularly in the context of Lynch syndrome. High HEV densities in B2M-mutant tumours underline the significance of immunoediting during tumour evolution.
Collapse
Affiliation(s)
- Pauline L Pfuderer
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Alexej Ballhausen
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Seidler
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Jürgen Stark
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis (TIGA) Center, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumour Diseases (NCT), Heidelberg, Germany
| | - Ian M Frayling
- Inherited Tumour Syndromes Research Group, Institute of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
20
|
Rhinovirus-induces progression of lung disease in a mouse model of COPD via IL-33/ST2 signaling axis. Clin Sci (Lond) 2019; 133:983-996. [PMID: 30952808 DOI: 10.1042/cs20181088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022]
Abstract
Rhinovirus (RV), which is associated with acute exacerbations, also causes persistent lung inflammation in patients with chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not well-known. Recently, we demonstrated that RV causes persistent lung inflammation with accumulation of a subset of macrophages (CD11b+/CD11c+), and CD8+ T cells, and progression of emphysema. In the present study, we examined the mechanisms underlying the RV-induced persistent inflammation and progression of emphysema in mice with COPD phenotype. Our results demonstrate that at 14 days post-RV infection, in addition to sustained increase in CCL3, CXCL-10 and IFN-γ expression as previously observed, levels of interleukin-33 (IL-33), a ligand for ST2 receptor, and matrix metalloproteinase (MMP)12 are also elevated in mice with COPD phenotype, but not in normal mice. Further, MMP12 was primarily expressed in CD11b+/CD11c+ macrophages. Neutralization of ST2, reduced the expression of CXCL-10 and IFN-γ and attenuated accumulation of CD11b+/CD11c+ macrophages, neutrophils and CD8+ T cells in COPD mice. Neutralization of IFN-γ, or ST2 attenuated MMP12 expression and prevented progression of emphysema in these mice. Taken together, our results indicate that RV may stimulate expression of CXCL-10 and IFN-γ via activation of ST2/IL-33 signaling axis, which in turn promote accumulation of CD11b+/CD11c+ macrophages and CD8+ T cells. Furthermore, RV-induced IFN-γ stimulates MMP12 expression particularly in CD11b+/CD11c+ macrophages, which may degrade alveolar walls thus leading to progression of emphysema in these mice. In conclusion, our data suggest an important role for ST2/IL-33 signaling axis in RV-induced pathological changes in COPD mice.
Collapse
|
21
|
Veerman K, Tardiveau C, Martins F, Coudert J, Girard JP. Single-Cell Analysis Reveals Heterogeneity of High Endothelial Venules and Different Regulation of Genes Controlling Lymphocyte Entry to Lymph Nodes. Cell Rep 2019; 26:3116-3131.e5. [PMID: 30865898 DOI: 10.1016/j.celrep.2019.02.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
High-endothelial venules (HEVs) are specialized blood vessels allowing recirculation of naive lymphocytes through lymphoid organs. Here, using full-length, single-cell RNA sequencing, RNA fluorescence in situ hybridization (FISH), flow cytometry, and immunohistofluorescence, we reveal the heterogeneity of HEVs in adult mouse peripheral lymph nodes (PLNs) under conditions of homeostasis, antigenic stimulation, and after inhibition of lymphotoxin-β receptor (LTβR) signaling. We demonstrate that HEV endothelial cells are in an activated state during homeostasis, and we identify the genes characteristic of the differentiated HEV phenotype. We show that LTβR signaling regulates many HEV genes and pathways in resting PLNs and that immune stimulation induces a global and temporary inflammatory phenotype in HEVs without compromising their ability to recruit naive lymphocytes. Most importantly, we uncover differences in the regulation of genes controlling lymphocyte trafficking, Glycam1, Fut7, Gcnt1, Chst4, B3gnt3, and Ccl21a, that have implications for HEV function and regulation in health and disease.
Collapse
Affiliation(s)
- Krystle Veerman
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Tardiveau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Frédéric Martins
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), UMR1048, INSERM, UPS, Toulouse, France; Plateforme Genome et Transcriptome (GeT), Genopole Toulouse, Toulouse, France
| | - Juliette Coudert
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
22
|
Inhibitory Effect of Alisma canaliculatum Ethanolic Extract on NF-κB-Dependent CXCR3 and CXCL10 Expression in TNFα-Exposed MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2018; 19:ijms19092607. [PMID: 30177620 PMCID: PMC6165157 DOI: 10.3390/ijms19092607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
CXC motif chemokine ligand 10 (CXCL10) and its receptor CXC motif chemokine receptor 3 (CXCR3), play important roles in the motility of breast cancer cells. Alisma canaliculatum is a herb that has been used as a traditional medicine for thousands of years in Korea and China. Whether A. canaliculatum inhibits the motility of metastatic breast cancer cells is not clear yet. In this study, we show that A. canaliculatum ethanolic extract (ACE) prevented tumor necrosis factor-alpha (TNFα)-induced migration of MDA-MB-231 cells. ACE significantly attenuated TNFα-induced upregulation of CXCL10 and CXCR3 expression at the gene promoter level. Mechanistically, ACE inhibits TNFα-induced phosphorylation of inhibitor of κB (IκB) kinase (IKK), IκB and p65/RelA, leading to the suppression of nuclear translocation of p65/RelA nuclear factor kappa-B (NF-κB). Also, ACE inhibited NF-κB-dependent CXCR3 and CXCL10 promoter activities. These results suggest that ACE abrogates TNFα-induced migration of MDA-MB-231 breast cancer cells through down-regulation of IKK-NF-κB-dependent CXCR3 and CXCL10 expression. Our results suggest that ACE has potential as a herbal supplement for the inhibition of breast cancer metastasis.
Collapse
|
23
|
Urra S, Fischer MC, Martínez JR, Véliz L, Orellana P, Solar A, Bohmwald K, Kalergis A, Riedel C, Corvalán AH, Roa JC, Fuentealba R, Cáceres CJ, López-Lastra M, León A, Droppelmann N, González HE. Differential expression profile of CXCR3 splicing variants is associated with thyroid neoplasia. Potential role in papillary thyroid carcinoma oncogenesis? Oncotarget 2017; 9:2445-2467. [PMID: 29416784 PMCID: PMC5788652 DOI: 10.18632/oncotarget.23502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most prevalent endocrine neoplasia. The increased incidence of PTC in patients with thyroiditis and the frequent immune infiltrate found in PTC suggest that inflammation might be a risk factor for PTC development. The CXCR3-ligand system is involved in thyroid inflammation and CXCR3 has been found upregulated in many tumors, suggesting its pro-tumorigenic role under the inflammatory microenvironment. CXCR3 ligands (CXCL4, CXCL9, CXCL10 and CXCL11) trigger antagonistic responses partly due to the presence of two splice variants, CXCR3A and CXCR3B. Whereas CXCR3A promotes cell proliferation, CXCR3B induces apoptosis. However, the relation between CXCR3 variant expression with chronic inflammation and PTC development remains unknown. Here, we characterized the expression pattern of CXCR3 variants and their ligands in benign tumors and PTC. We found that CXCR3A and CXCL10 mRNA levels were increased in non-metastatic PTC when compared to non-neoplastic tissue. This increment was also observed in a PTC epithelial cell line (TPC-1). Although elevated protein levels of both isoforms were detected in benign and malignant tumors, the CXCR3A expression remained greater than CXCR3B and promoted proliferation in Nthy-ori-3-1 cells. In non-metastatic PTC, inflammation was conditioning for the CXCR3 ligands increased availability. Consistently, CXCL10 was strongly induced by interferon gamma in normal and tumor thyrocytes. Our results suggest that persistent inflammation upregulates CXCL10 expression favoring tumor development via enhanced CXCR3A-CXCL10 signaling. These findings may help to further understand the contribution of inflammation as a risk factor in PTC development and set the basis for potential therapeutic studies.
Collapse
Affiliation(s)
- Soledad Urra
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin C Fischer
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José R Martínez
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto Véliz
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Orellana
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonieta Solar
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Kalergis
- Millennium Institute on Immunology and Immunotherapy, Department of Molecular Genetics and Microbiology, Faculty of Biological Science, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Riedel
- Millennium Institute of Immunology and Immunotherapy, Department of Cell Biology, Faculty of Biological Science and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Department of Hematology and Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Roa
- Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Fuentealba
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - C Joaquin Cáceres
- Laboratory of Molecular Virology, Millennium Institute of Immunology and Immunotherapy, Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratory of Molecular Virology, Millennium Institute of Immunology and Immunotherapy, Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Augusto León
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Droppelmann
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hernán E González
- Department of Surgical Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Department of Endocrinology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
24
|
Merani S, Truong WW, Hancock W, Anderson CC, Shapiro AMJ. Chemokines and Their Receptors in Islet Allograft Rejection and as Targets for Tolerance Induction. Cell Transplant 2017; 15:295-309. [PMID: 28863747 DOI: 10.3727/000000006783981963] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Graft rejection is a major barrier to successful outcome of transplantation surgery. Islet transplantation introduces insulin secreting tissue into type 1 diabetes mellitus recipients, relieving patients from exogenous insulin injection. However, insulitis of grafted tissue and allograft rejection prevent long-term insulin independence. Leukocyte trafficking is necessary for the launch of successful immune responses to pathogen or allograft. Chemokines, small chemotactic cytokines, direct the migration of leukocytes through their interaction with chemokine receptors found on cell surfaces of immune cells. Unique receptor expression of leukocytes, and the specificity of chemokine secretion during various states of immune response, suggest that the extracellular chemokine milieu specifically homes certain leukocyte subsets. Thus, only those leukocytes required for the current immune task are attracted to the inflammatory site. Chemokine blockade, using antagonists and monoclonal antibodies directed against chemokine receptors, is an emerging and specific immunosuppressive strategy. Importantly, chemokine blockade may potentiate tolerance induction regimens to be used following transplantation surgery, and prevent the need for life-long immunosuppression of islet transplant recipients. Here, the role for chemokine blockade in islet transplant rejection and tolerance is reviewed.
Collapse
Affiliation(s)
- Shaheed Merani
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - Wayne W Truong
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - Wayne Hancock
- Department of Pathology and Laboratory Medicine, Joseph Stokes, Jr. Research Institute and Biesecker Pediatric Liver Center, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Colin C Anderson
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| | - A M James Shapiro
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton AB, Canada
| |
Collapse
|
25
|
Koo YJ, Kim TJ, Min KJ, So KA, Jung US, Hong JH. CXCL11 mediates TWIST1-induced angiogenesis in epithelial ovarian cancer. Tumour Biol 2017; 39:1010428317706226. [PMID: 28488542 DOI: 10.1177/1010428317706226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To investigate the role of TWIST1 in tumor angiogenesis in epithelial ovarian cancer and to identify key molecules involved in angiogenesis. TWIST1 small interfering RNA was transfected into A2780 cells, while a complementary DNA vector was transfected into non-malignant human ovarian surface epithelial cells to generate a TWIST1-overexpressing cell line. To evaluate how this affects angiogenesis, human umbilical vein endothelial cell tube formation assays were performed using the control and transfected cell lines. An antibody-based cytokine array was used to identify the molecules involved in TWIST1-mediated angiogenesis. After knockdown of TWIST1 via transfection of TWIST1 small interfering RNA into A2780 cells, the number of tubes formed by human umbilical vein endothelial cells significantly decreased in a tube formation assay. In a cytokine array, TWIST1 downregulation did not significantly decrease the secretion of the common pro-angiogenic factor, vascular endothelial growth factor, but instead inhibited the expression of the CXC chemokine ligand 11, which was confirmed by both an enzyme-linked immunosorbent assay and western blotting. In contrast, TWIST1 overexpression resulted in increased secretion of CXC chemokine ligand 11. Conversely, CXC chemokine ligand 11 downregulation did not inhibit the expression of TWIST1. Furthermore, the ability of TWIST1-expressing A2780 cells to induce angiogenesis was found to be inhibited after CXC chemokine ligand 11 knockdown in a tube formation assay. TWIST1 plays an important role in angiogenesis in epithelial ovarian cancer and is mediated by a novel pro-angiogenic factor, CXC chemokine ligand 11. Downregulation of CXC chemokine ligand 11 can inhibit tumor angiogenesis, suggesting that anti-CXC chemokine ligand 11 therapy may offer an alternative treatment strategy for TWIST1-positive ovarian cancer.
Collapse
Affiliation(s)
- Yu-Jin Koo
- 1 Department of Obstetrics and Gynecology, Yeungnam University Medical Center, Daegu, Korea
| | - Tae-Jin Kim
- 2 Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Kyung-Jin Min
- 3 Department of Obstetrics and Gynecology, Korea University Ansan Hospital, Ansan, Korea
| | - Kyeong-A So
- 2 Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Korea
| | - Un-Suk Jung
- 4 Department of Obstetrics and Gynecology, Hanyang University Guri Hospital, Guri, Korea
| | - Jin-Hwa Hong
- 5 Department of Obstetrics and Gynecology, Korea University Guro Hospital, Seoul, Korea
| |
Collapse
|
26
|
Lu XJ, Chen Q, Rong YJ, Chen F, Chen J. CXCR3.1 and CXCR3.2 Differentially Contribute to Macrophage Polarization in Teleost Fish. THE JOURNAL OF IMMUNOLOGY 2017; 198:4692-4706. [PMID: 28500070 DOI: 10.4049/jimmunol.1700101] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 12/29/2022]
Abstract
The study of multiple copies of chemokine receptor genes in various teleosts has long appealed to investigators seeking to understand the evolution of the immune system. The CXCR CXCR3 gene has two isoforms, CXCR3.1 and CXCR3.2, which are both expressed in macrophages. The distinct roles of teleost CXCR3s have not been identified previously. In this article, we found that CXCR3.1 and CXCR3.2 differentially contributed to macrophage polarization in the teleosts: ayu (Plecoglossus altivelis), grass carp (Ctenopharyngodon idella), and spotted green pufferfish (Tetraodon nigroviridis). In ayu macrophages, the P. altivelis CXCR3.1 (PaCXCR3.1) gene was constitutively expressed, whereas the P. altivelis CXCR3.2 (PaCXCR3.2) gene was induced postinfection with Escherichia coli Upon E. coli infection, PaCXCR3.1+ and PaCXCR3.2+ macrophages showed an M1 and an M2 phenotype, respectively. CXCL9-11-like proteins mediated M1 and M2 polarization by interacting with the PaCXCR3.1 and PaCXCR3.2 proteins on macrophages, respectively. The transcription factors P. altivelis STAT1 and P. altivelis STAT3 were activated in PaCXCR3.1+ and PaCXCR3.2+ macrophages, respectively. Furthermore, the prognosis of septic ayu adoptively transferred with PaCXCR3.2+ macrophages was improved. Our data reveal a previously unknown mechanism for macrophage polarization, suggesting that redundant genes may regulate crucial functions in the teleost immune system.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Qiang Chen
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Ye-Jing Rong
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Feng Chen
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, Ningbo University, Ningbo 315211, People's Republic of China
| |
Collapse
|
27
|
Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol 2016; 34:203-42. [DOI: 10.1146/annurev-immunol-041015-055649] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Olga Schulz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | | | | | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
28
|
Petrovic-Djergovic D, Popovic M, Chittiprol S, Cortado H, Ransom RF, Partida-Sánchez S. CXCL10 induces the recruitment of monocyte-derived macrophages into kidney, which aggravate puromycin aminonucleoside nephrosis. Clin Exp Immunol 2015; 180:305-15. [PMID: 25561167 DOI: 10.1111/cei.12579] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 01/11/2023] Open
Abstract
The mechanism responsible for trafficking of monocyte-derived macrophages into kidney in the puromycin aminonucleoside model of nephrotic syndrome in rats (PAN-NS), and the significance of this infiltration, remain largely unknown. CXCL10, a chemokine secreted in many T helper type 1 (Th1) inflammatory diseases, exhibits important roles in trafficking of monocytes and activated T cells. We hypothesized that induction of circulating interferon (IFN)-γ and glomerular tumour necrosis factor (TNF)-α during PAN-NS would stimulate the release of CXCL10 by podocytes, leading to infiltration of activated immune cells and greater glomerular injury. We found that serum IFN-γ, glomerular Cxcl10 mRNA and intra- and peri-glomerular macrophage infiltration were induced strongly during the late acute phase of PAN-NS in Wistar rats, but not in nude (Foxn1(rnu/rnu) ) rats lacking functional effector T lymphocytes. Wistar rats also developed significantly greater proteinuria than nude rats, which could be abolished by macrophage depletion. Stimulation of cultured podocytes with both IFN-γ and TNF-α markedly induced the expression of Cxcl10 mRNA and CXCL10 secretion. Together, these data support our hypothesis that increased circulating IFN-γ and glomerular TNF-α induce synergistically the production and secretion of CXCL10 by podocytes, attracting activated macrophages into kidney tissue. The study also suggests that IFN-γ, secreted from Th1 lymphocytes, may prime proinflammatory macrophages that consequently aggravate renal injury.
Collapse
Affiliation(s)
- D Petrovic-Djergovic
- Centers for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ager A, May MJ. Understanding high endothelial venules: Lessons for cancer immunology. Oncoimmunology 2015; 4:e1008791. [PMID: 26155419 PMCID: PMC4485764 DOI: 10.1080/2162402x.2015.1008791] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/06/2023] Open
Abstract
High endothelial venules (HEVs) are blood vessels especially adapted for lymphocyte trafficking which are normally found in secondary lymphoid organs such as lymph nodes (LN) and Peyer's patches. It has long been known that HEVs develop in non-lymphoid organs during chronic inflammation driven by autoimmunity, infection or allografts. More recently, HEVs have been observed in solid, vascularized tumors and their presence correlated with reduced tumor size and improved patient outcome. It is proposed that newly formed HEV promote antitumor immunity by recruiting naive lymphocytes into the tumor, thus allowing the local generation of cancerous tissue-destroying lymphocytes. Understanding how HEVs develop and function are therefore important to unravel their role in human cancers. In LN, HEVs develop during embryonic and early post-natal life and are actively maintained by the LN microenvironment. Systemic blockade of lymphotoxin-β receptor leads to HEV de-differentiation, but the LN components that induce HEV differentiation have remained elusive. Recent elegant studies using gene-targeted mice have demonstrated clearly that triggering the lymphotoxin-β receptor in endothelial cells (EC) induces the differentiation of HEV and that CD11c+ dendritic cells play a crucial role in this process. It will be important to determine whether lymphotoxin-β receptor-dependent signaling in EC drives the development of HEV during tumorigenesis and which cells have HEV-inducer properties. This may reveal therapeutic approaches to promote HEV neogenesis and determine the impact of newly formed HEV on tumor immunity.
Collapse
Key Words
- EC, endothelial cells
- FRC, fibroblast reticular cells
- HEC, high endothelial cells
- HEV, high endothelial venules
- LN, lymph nodes
- LPA, lysophosphatidic acid
- LT, lymphotoxin
- LT-βR, lymphotoxin-β receptor
- MAdCAM, mucosal cell adhesion molecule
- PNAd, peripheral node addressin
- SIP, sphingosine-1-phosphate
- T cell homing
- TLO, tertiary lymphoid organ
- VE-cadherin, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- dendritic cells
- high endothelial venules
- lymphotoxin-β receptor
- tumor immunotherapy
Collapse
Affiliation(s)
- Ann Ager
- Infection and Immunity; School of Medicine; Cardiff University ; Cardiff, UK
| | - Michael J May
- School of Veterinary Medicine; University of Pennsylvania ; Philadelphia, PA, USA
| |
Collapse
|
30
|
Increased recruitment of bone marrow-derived cells into the brain associated with altered brain cytokine profile in senescence-accelerated mice. Brain Struct Funct 2015; 221:1513-31. [PMID: 25577138 DOI: 10.1007/s00429-014-0987-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/30/2014] [Indexed: 12/31/2022]
Abstract
Bone marrow-derived cells enter the brain in a non-inflammatory condition through the attachments of choroid plexus and differentiate into ramified myeloid cells. Neurodegenerative conditions may be associated with altered immune-brain interaction. The senescence-accelerated mouse prone 10 (SAMP10) undergoes earlier onset neurodegeneration than C57BL/6 (B6) strain. We hypothesized that the dynamics of immune cells migrating from the bone marrow to the brain is perturbed in SAMP10 mice. We created 4 groups of radiation chimeras by intra-bone marrow-bone marrow transplantation using 2-month-old (2 mo) and 10 mo SAMP10 and B6 mice as recipients with GFP transgenic B6 mice as donors, and analyzed histologically 4 months later. In the [B6 → 10 mo SAMP10] chimeras, more ramified marrow-derived cells populated a larger number of discrete brain regions than the other chimeras, especially in the diencephalon. Multiplex cytokine assays of the diencephalon prepared from non-treated 3 mo and 12 mo SAMP10 and B6 mice revealed that 12 mo SAMP10 mice exhibited higher tissue concentrations of CXCL1, CCL11, G-CSF, CXCL10 and IL-6 than the other groups. Immunohistologically, choroid plexus epithelium and ependyma produced CXCL1, while astrocytic processes in the attachments of choroid plexus expressed CCL11 and G-CSF. The median eminence produced CXCL10, hypothalamic neurons G-CSF and tanycytes CCL11 and G-CSF. These brain cytokine profile changes in 12 mo SAMP10 mice were likely to contribute to acceleration of the dynamics of marrow-derived cells to the diencephalon. Further studies on the functions of ramified marrow-derived myeloid cells would enhance our understanding of the brain-bone marrow interaction.
Collapse
|
31
|
Torraca V, Cui C, Boland R, Bebelman JP, van der Sar AM, Smit MJ, Siderius M, Spaink HP, Meijer AH. The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. Dis Model Mech 2015; 8:253-69. [PMID: 25573892 PMCID: PMC4348563 DOI: 10.1242/dmm.017756] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recruitment of leukocytes to infectious foci depends strongly on the local release of chemoattractant mediators. The human CXC chemokine receptor 3 (CXCR3) is an important node in the chemokine signaling network and is expressed by multiple leukocyte lineages, including T cells and macrophages. The ligands of this receptor originate from an ancestral CXCL11 gene in early vertebrates. Here, we used the optically accessible zebrafish embryo model to explore the function of the CXCR3-CXCL11 axis in macrophage recruitment and show that disruption of this axis increases the resistance to mycobacterial infection. In a mutant of the zebrafish ortholog of CXCR3 (cxcr3.2), macrophage chemotaxis to bacterial infections was attenuated, although migration to infection-independent stimuli was unaffected. Additionally, attenuation of macrophage recruitment to infection could be mimicked by treatment with NBI74330, a high-affinity antagonist of CXCR3. We identified two infection-inducible CXCL11-like chemokines as the functional ligands of Cxcr3.2, showing that the recombinant proteins exerted a Cxcr3.2-dependent chemoattraction when locally administrated in vivo. During infection of zebrafish embryos with Mycobacterium marinum, a well-established model for tuberculosis, we found that Cxcr3.2 deficiency limited the macrophage-mediated dissemination of mycobacteria. Furthermore, the loss of Cxcr3.2 function attenuated the formation of granulomatous lesions, the typical histopathological features of tuberculosis, and led to a reduction in the total bacterial burden. Prevention of mycobacterial dissemination by targeting the CXCR3 pathway, therefore, might represent a host-directed therapeutic strategy for treatment of tuberculosis. The demonstration of a conserved CXCR3-CXCL11 signaling axis in zebrafish extends the translational applicability of this model for studying diseases involving the innate immune system.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Chao Cui
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Ralf Boland
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jan-Paul Bebelman
- Amsterdam Institute for Molecules, Medicines and Systems, Division Medicinal Chemistry, Faculty of Sciences, VU University, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Astrid M van der Sar
- Department of Medical Microbiology and Infection Control, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems, Division Medicinal Chemistry, Faculty of Sciences, VU University, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Marco Siderius
- Amsterdam Institute for Molecules, Medicines and Systems, Division Medicinal Chemistry, Faculty of Sciences, VU University, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
32
|
Chadzinska M, Golbach L, Pijanowski L, Scheer M, Verburg-van Kemenade BML. Characterization and expression analysis of an interferon-γ2 induced chemokine receptor CXCR3 in common carp (Cyprinus carpio L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:68-76. [PMID: 25036761 DOI: 10.1016/j.dci.2014.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Chemokine and chemokine receptor signalling pairs play a crucial role in regulation of cell migration, morphogenesis, and cell activation. Expressed in mammals on activated T and NK cells, chemokine receptor CXCR3 binds interferon-γ inducible chemokines CXCL9-11 and CCL21. Here we sequenced the carp CXCR3 chemokine receptor and showed its relationship to CXCR3a receptors found in other teleosts. We found high expression of the CXCR3 gene in most of the organs and tissues of the immune system and in immune-related tissues such as gills and gut, corroborating a predominantly immune-related function. The very high expression in gill and gut moreover indicates a role for CXCR3 in cell recruitment during infection. High in vivo expression of CXCR3 at later stages of inflammation, as well as its in vitro sensitivity to IFN-γ2 stimulation indicate that in carp, CXCR3 is involved in macrophage-mediated responses. Moreover, as expression of the CXCR3 and CXCb genes coincides in the focus of inflammation and as both the CXCb chemokines and the CXCR3 receptor are significantly up-regulated upon IFN-γ stimulation it is hypothesized that CXCb chemokines may be putative ligands for CXCR3.
Collapse
Affiliation(s)
- M Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| | - L Golbach
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - L Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - M Scheer
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - B M L Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
33
|
Abstract
Adaptive immunity is involved in the pathogenesis of atherosclerosis, but the recruitment of T and B lymphocytes to atherosclerotic lesions is not as well studied as that of monocytes. In this review, we summarize the current understanding of the role of lymphocyte subsets in the pathogenesis of atherosclerosis and discuss chemokines and chemokine receptors involved in lymphocyte homing to atherosclerotic lesions. We review evidence for involvement of the chemokines CCL5, CCL19, CCL21, CXCL10, and CXCL16 and macrophage migration inhibitory factor in lymphocyte homing in atherosclerosis. Also, we review the role of their receptors CCR5, CCR6, CCR7, CXCR3, CXCR6, and CXCR2/CXCR4 and the role of the L-selectin in mouse models of atherosclerosis.
Collapse
Affiliation(s)
- Jie Li
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA
| | - Klaus Ley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA.
| |
Collapse
|
34
|
IL-21 promotes late activator APC-mediated T follicular helper cell differentiation in experimental pulmonary virus infection. PLoS One 2014; 9:e105872. [PMID: 25251568 PMCID: PMC4175070 DOI: 10.1371/journal.pone.0105872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/28/2014] [Indexed: 11/20/2022] Open
Abstract
IL-21 is a type-I cytokine that has pleiotropic immuno-modulatory effects. Primarily produced by activated T cells including NKT and TFH cells, IL-21 plays a pivotal role in promoting TFH differentiation through poorly understood cellular and molecular mechanisms. Here, employing a mouse model of influenza A virus (IAV) infection, we demonstrate that IL-21, initially produced by NKT cells, promotes TFH differentiation by promoting the migration of late activator antigen presenting cell (LAPC), a recently identified TFH inducer, from the infected lungs into the draining lymph nodes (dLN). LAPC migration from IAV-infected lung into the dLN is CXCR3-CXCL9 dependent. IL-21-induced TNF-α production by conventional T cells is critical to stimulate CXCL9 expression by DCs in the dLN, which supports LAPC migration into the dLN and ultimately facilitates TFH differentiation. Our results reveal a previously unappreciated mechanism for IL-21 modulation of TFH responses during respiratory virus infection.
Collapse
|
35
|
Hermida MDR, Doria PG, Taguchi AMP, Mengel JO, dos-Santos WLC. Leishmania amazonensis infection impairs dendritic cell migration from the inflammatory site to the draining lymph node. BMC Infect Dis 2014; 14:450. [PMID: 25142021 PMCID: PMC4143564 DOI: 10.1186/1471-2334-14-450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/13/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND In vitro studies show that Leishmania infection decreases the adhesion of inflammatory phagocytes to connective tissue by a mechanism dependent on the modulation of integrin function. However, we know little about the influence of this reduction in leukocyte adhesion on parasite dissemination from the infection site. METHODS In this work, we used a model of chronic peritonitis induced by thioglycollate to study the effect of L. amazonensis infection on the ability of inflammatory phagocyte populations to migrate from an inflammatory site to the draining lymph node. Uninfected or Leishmania-infected thioglycollate-elicited peritoneal exudate cells were transferred from C57BL/6 to BALB/c mice or from Ly5.1+ to Ly5.1- mice. The transferred cells were injected into the peritoneal cavity and tracked to the draining lymph node. RESULTS Migrating cells corresponded to approximately 1% of the injected leukocytes. The proportion of migrating CD11b+CD11c+ (myeloid dendritic cell) was lower after incubation with Leishmania (1.3 to 2.6 times lower in the experiments using C57BL/6 to BALB/c animals and 2.7 to 3.4 times lower in the experiments using Ly5.1+ to Ly5.1- animals) than after leukocyte incubation with medium alone (P < 0.01). There was no consistent decrease in the migration of CD11b+F4/80+ (macrophage) or SSChi GR-1+ (neutrophil) populations. CONCLUSIONS Coincubation with Leishmania changes the migratory pattern of dendritic cells in vivo. Such changes in dendritic cell migration may be associated with immunological events that maintain inflammation at the sites of infection.
Collapse
|
36
|
Kim J, Choi JY, Park SH, Yang SH, Park JA, Shin K, Lee EY, Kawachi H, Kohsaka H, Song YW. Therapeutic effect of anti-C-X-C motif chemokine 10 (CXCL10) antibody on C protein-induced myositis mouse. Arthritis Res Ther 2014; 16:R126. [PMID: 24939012 PMCID: PMC4095607 DOI: 10.1186/ar4583] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/06/2014] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION C-X-C motif chemokine 10 (CXCL10) is a chemokine that plays a critical role in the infiltration of T cells in autoimmune diseases and is reported to be expressed in muscle tissue of polymyositis. To determine the therapeutic efficacy of CXCL10 blockade, we investigated the role of CXCL10 and the effect of anti-CXCL10 antibody treatment in C protein-induced myositis (CIM), an animal model of polymyositis. METHODS CIM was induced with human skeletal muscle C protein fragment in female C57BL/6 mice. Immunohistochemistry of CXCL10 and C-X-C motif chemokine receptor 3 (CXCR3) and measurement of serum CXCL10 were performed. Cell surface markers and interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) in CIM lymph node cells was investigated by flow cytometry. Mice with CIM were treated with anti-CXCL10 antibody or control antibody (anti-RVG1) and the inflammation in muscle tissue was assessed. RESULTS Immunohistochemistry showed increased expression of CXCL10 and CXCR3 in the inflammatory lesions of muscle in CIM. Especially, CD8+ T cells invading myofiber expressed CXCR3. Serum level of CXCL10 was increased in CIM compared to the level in normal mice (normal mouse, 14.3 ± 5.3 pg/ml vs. CIM, 368.5 ± 135.6 pg/ml, P < 0.001). CXCR3 positivity in CD8+ T cells was increased compared to that of CD4+ T cells in the lymph node cells of CIM (CXCR3+ among CD8+ T cell, 65.9 ± 2.1% vs. CXCR3+ among CD4+ T cell, 23.5 ± 4.7%, P <0.001). Moreover, IFN-γ+ cells were increased among CXCR3+CD8+ T cells compared to CXCR3-CD8+ T cells (CXCR3+CD8+ T cell, 28.0 ± 4.2% vs. CXCR3-CD8+ T cell, 9.5 ± 1.5%, P = 0.016). Migration of lymph node cells was increased in response to CXCL10 (chemotactic index was 1.91 ± 0.45). CIM mice treated with anti-CXCL10 antibody showed a lower inflammation score in muscles than those with anti-RVG1 (median, anti-CXCL10 treatment group, 0.625 vs. anti-RVG1 treatment group, 1.25, P = 0.007). CONCLUSIONS CXCL10/CXCR3 expression was increased in the inflammation of CIM model and its blockade suppressed inflammation in muscle.
Collapse
|
37
|
Ondrackova P, Leva L, Kucerova Z, Vicenova M, Mensikova M, Faldyna M. Distribution of porcine monocytes in different lymphoid tissues and the lungs during experimental Actinobacillus pleuropneumoniae infection and the role of chemokines. Vet Res 2013; 44:98. [PMID: 24134635 PMCID: PMC4015119 DOI: 10.1186/1297-9716-44-98] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 09/26/2013] [Indexed: 02/08/2023] Open
Abstract
Monocytes play an essential role in the defense against bacterial pathogens. Bone marrow (BM) and peripheral blood (PB) monocytes in pigs consist of the main “steady-state” subpopulations: CD14hi/CD163-/SLA-DR- and CD14low/CD163+/SLA-DR+. During inflammation, the subpopulation of “inflammatory” monocytes expressing very high levels of CD163, but lacking the SLA-DR molecule (being CD14low/CD163+/SLA-DR-) appears in the BM and PB and replaces the CD14low/CD163+/SLA-DR+ subpopulation. However, current knowledge of monocyte migration into inflamed tissues in pigs is limited. The aim of the present study was to evaluate the distribution of “inflammatory” CD14low/CD163+/SLA-DR- monocytes during experimental inflammation induced by Actinobacillus pleuropneumoniae (APP) and a possible role for chemokines in attracting “inflammatory” CD14low/CD163+/SLA-DR- monocytes into the tissues. Monocyte subpopulations were detected by flow cytometry. Chemokines and chemokine receptors were detected by RT-qPCR. The “steady-state” monocytes were found in the BM, PB, spleen and lungs of control pigs. After APP-infection, “inflammatory” monocytes replaced the “steady-state” subpopulation in BM, PB, spleen and moreover, they appeared in an unaffected area, demarcation zone and necrotic area of the lungs and in tracheobronchial lymph nodes. They did not appear in mesenteric lymph nodes. Levels of mRNA for various chemokines with their appropriate receptors were found to be elevated in BM (CCL3-CCR1/CCR5, CCL8-CCR2/CCR5, CCL19-CCR7), necrotic area of the lungs (CCL3-CCR1, CCL5-CCR1/CCR3, CCL11-CCR3, CCL22/CCR4) and tracheobronchial lymph nodes (CCL3-CCR1) and therefore they could play a role in attracting monocytes into inflamed tissues. In conclusion, “inflammatory” monocytes appear in different lymphoid tissues and the lungs after APP infection in pigs. Various chemokines could drive this process.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin Faldyna
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic.
| |
Collapse
|
38
|
Jawad S, Liu B, Li Z, Katamay R, Campos M, Wei L, Sen HN, Ling D, Martinez Estrada F, Amaral J, Chan CC, Fariss R, Gordon S, Nussenblatt RB. The role of macrophage class a scavenger receptors in a laser-induced murine choroidal neovascularization model. Invest Ophthalmol Vis Sci 2013; 54:5959-70. [PMID: 23927892 DOI: 10.1167/iovs.12-11380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Laser-induced choroidal neovascularization (CNV) is a widely used model to mimic many features of CNV resulting from wet AMD. Macrophages have been implicated in the pathogenesis of AMD. Class A scavenger receptors, scavenger receptor-A (SR-A) and macrophage receptor with collagenous domain (MARCO), are expressed on macrophages and are associated with macrophage function. The goal of this study is to examine the role of macrophage scavenger receptors in immune cell recruitment and the formation of CNV. METHODS Laser photocoagulation was performed in wild-type and knockout mice with deletion of SR-A (SR-A(-/-)), MARCO (MARCO(-/-)), or both SR-A and MARCO double knockout (DKO). Immune cell recruitment at different time points and CNV lesions at 14 days after laser treatment were evaluated through immunostaining and confocal microscopy. Microarray analysis was performed in eyes 1 day after laser injury. RESULTS Wild-type eyes showed higher chemokine/receptor expression compared with knockout eyes after laser injury. Scavenger receptor deficiency markedly impaired the recruitment of neutrophils and macrophages to CNV lesions at 1- and 3-days post laser injury, respectively. Significantly reduced CNV volumes were found in the eyes from scavenger receptor knockout mice compared with wild-type mice. CONCLUSIONS The deficiency of scavenger receptors impairs the formation of CNV and immune cell recruitment. Our findings suggest a potential role for scavenger receptors in contributing to CNV formation and inflammation in AMD.
Collapse
Affiliation(s)
- Shayma Jawad
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Kindlin-3 is an integrin-binding focal adhesion adaptor absent in patients with leukocyte and platelet adhesion deficiency syndrome and is critical for firm integrin-dependent leukocyte adhesion. The role of this adaptor in leukocyte diapedesis has never been investigated. In the present study, the functions of Kindlin-3 in this process were investigated in effector T lymphocytes trafficking to various lymphoid and nonlymphoid tissues. In vitro, Kindlin-3-deficient T cells displayed severely impaired lymphocyte function antigen-1-dependent lymphocyte adhesion but partially conserved very late antigen-4 adhesiveness. In vivo, the number of adoptively transferred Kindlin-3-deficient T effectors was dramatically elevated in the circulating pool compared with normal effectors, and the Kindlin-3 mutant effectors failed to enter inflamed skin lesions. The frequency of Kindlin-3-deficient T effectors arrested on vessel walls within inflamed skin-draining lymph nodes was also reduced. Strikingly, however, Kindlin-3-deficient effector T cells accumulated inside these vessels at significantly higher numbers than their wild-type lymphocyte counterparts and successfully extravasated into inflamed lymph nodes. Nevertheless, on entering these organs, the interstitial motility of these lymphocytes was impaired. This is the first in vivo demonstration that Kindlin-3-stabilized integrin adhesions, although essential for lymphocyte arrest on blood vessels and interstitial motility, are not obligatory for leukocyte diapedesis.
Collapse
|
40
|
IP-10/CXCL10 and MIG/CXCL9 as novel markers for the diagnosis of lymphoma-associated hemophagocytic syndrome. Ann Hematol 2013; 93:393-401. [PMID: 23975214 PMCID: PMC3918116 DOI: 10.1007/s00277-013-1878-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/05/2013] [Indexed: 11/29/2022]
Abstract
Lymphoma-associated hemophagocytic syndrome (LAHS) is a serious disorder, and its early diagnosis and treatment with appropriate chemotherapy are very important. However, reliable markers for early diagnosis of LAHS have not been identified. We screened serum cytokines using a newly introduced assay system, cytometric bead array (CBA), and identified interferon-inducible protein 10 (IP-10)/CXCL10 and monokine induced by interferon gamma (MIG)/CXCL9 as useful markers. Serum concentrations of IP-10 and MIG at the time of LAHS diagnosis were greater than 500 and 5,000 pg/ml, respectively. The sensitivity and specificity for LAHS diagnosis were 100 and 95 %, respectively, when we set the above values as the cut-off levels. Serum levels of these two chemokines were already elevated at the time of admission and significantly decreased after successful treatment, indicating their usefulness for both the diagnosis and therapeutic outcomes for LAHS. IP-10 and MIG were also useful in distinguishing severe from moderate/mild LAHS, and B-cell-type LAHS from T-cell/natural killer cell-type LAHS. Furthermore, IP-10 and MIG were of use to distinguish LAHS from sepsis in patients with hematologic malignancies. Rapid measurement of IP-10 and MIG by CBA appeared to be important for early diagnosis and treatment of LAHS.
Collapse
|
41
|
Peperzak V, Veraar EAM, Xiao Y, Bąbała N, Thiadens K, Brugmans M, Borst J. CD8+ T Cells Produce the Chemokine CXCL10 in Response to CD27/CD70 Costimulation To Promote Generation of the CD8+ Effector T Cell Pool. THE JOURNAL OF IMMUNOLOGY 2013; 191:3025-36. [DOI: 10.4049/jimmunol.1202222] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Masopust D, Schenkel JM. The integration of T cell migration, differentiation and function. Nat Rev Immunol 2013; 13:309-20. [PMID: 23598650 DOI: 10.1038/nri3442] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T cells function locally. Accordingly, T cells' recognition of antigen, their subsequent activation and differentiation, and their role in the processes of infection control, tumour eradication, autoimmunity, allergy and alloreactivity are intrinsically coupled with migration. Recent discoveries revise our understanding of the regulation and patterns of T cell trafficking and reveal limitations in current paradigms. Here, we review classic and emerging concepts, highlight the challenge of integrating new observations with existing T cell classification schemes and summarize the heuristic framework provided by viewing T cell differentiation and function first through the prism of migration.
Collapse
Affiliation(s)
- David Masopust
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
43
|
Abstract
Lymph nodes are compartmentalized organs but whether this feature has a role in T cell differentiation has been unclear. In this issue, Groom et al. (2012) reveal that spatially separated expression of two CXCR3 ligands guides Th1 cell development.
Collapse
Affiliation(s)
- Mehrdad Matloubian
- Division of Rheumatology, Department of Medicine, and Rosalind Russell Medical Research Center for Arthritis, University of California-San Francisco, CA 94143, USA.
| | | |
Collapse
|
44
|
Sung JH, Zhang H, Moseman EA, Alvarez D, Iannacone M, Henrickson SE, de la Torre JC, Groom JR, Luster AD, von Andrian UH. Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell 2012; 150:1249-63. [PMID: 22980984 DOI: 10.1016/j.cell.2012.08.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/12/2012] [Accepted: 08/03/2012] [Indexed: 12/20/2022]
Abstract
A defining feature of vertebrate immunity is the acquisition of immunological memory, which confers enhanced protection against pathogens by mechanisms that are incompletely understood. Here, we compared responses by virus-specific naive T cells (T(N)) and central memory T cells (T(CM)) to viral antigen challenge in lymph nodes (LNs). In steady-state LNs, both T cell subsets localized in the deep T cell area and interacted similarly with antigen-presenting dendritic cells. However, upon entry of lymph-borne virus, only T(CM) relocalized rapidly and efficiently toward the outermost LN regions in the medullary, interfollicular, and subcapsular areas where viral infection was initially confined. This rapid peripheralization was coordinated by a cascade of cytokines and chemokines, particularly ligands for T(CM)-expressed CXCR3. Consequently, in vivo recall responses to viral infection by CXCR3-deficient T(CM) were markedly compromised, indicating that early antigen detection afforded by intranodal chemokine guidance of T(CM) is essential for efficient antiviral memory.
Collapse
Affiliation(s)
- Jung Hwan Sung
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Romagnani P, Crescioli C. CXCL10: a candidate biomarker in transplantation. Clin Chim Acta 2012; 413:1364-73. [PMID: 22366165 DOI: 10.1016/j.cca.2012.02.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 02/10/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Interferon (IFN) γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is a small cytokine belonging to the CXC chemokine family. This family of signaling molecules is known to control several biological functions and to also play pivotal roles in disease initiation and progression. By binding to its specific cognate receptor CXCR3, CXCL10 critically regulates chemotaxis during several immune-inflammatory processes. In particular, this chemokine controls chemotaxis during the inflammatory response resulting from allograft rejection after transplantation. Interestingly, a strong association has been described between CXCL10 production, immune response and the fate of the graft following allotransplantation. Enhanced CXCL10 production has been observed in recipients of transplants of different organs. This enhanced production likely comes from either the graft or the immune cells and is correlated with an increase in the concentration of circulating CXCL10. Because CXCL10 can be easily measured in the serum and plasma from a patient, the detection and quantitation of circulating CXCL10 could be used to reveal a transplant recipient's immune status. The purpose of this review is to examine the critical role of CXCL10 in the pathogenesis of allograft rejection following organ transplantation. This important role highlights the potential utilization of CXCL10 not only as a therapeutic target but also as a biomarker to predict the severity of rejection, to monitor the inflammatory status of organ recipients and, hopefully, to fine-tune patient therapy in transplantation.
Collapse
Affiliation(s)
- Paola Romagnani
- Excellence Center for Research, Transfer and High Education (DENOthe), University of Florence, 50139 Florence, Italy
| | | |
Collapse
|
46
|
Stanisic M, Lyngstadaas SP, Pripp AH, Aasen AO, Lindegaard KF, Ivanovic J, Ilstad E, Konglund A, Sandell T, Ellingsen O, Saehle T. Chemokines as markers of local inflammation and angiogenesis in patients with chronic subdural hematoma: a prospective study. Acta Neurochir (Wien) 2012; 154:113-20; discussion 120. [PMID: 22037980 DOI: 10.1007/s00701-011-1203-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/03/2011] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The goal of this study was to investigate the chemokines CCL2, CXCL8, CXCL9 and CXCL10 as markers of the inflammatory responses in chronic subdural hematoma (CSDH). METHODS Samples of peripheral venous blood and CSDH fluid (obtained during surgery) in 76 adult patients were prospectively analyzed. Chemokine values were assessed by a Multiplex antibody bead kit. RESULTS We found significantly higher levels of chemokines CCL2, CXCL8, CXCL9 and CXCL10 in hematoma fluid compared with serum. CONCLUSIONS Chemokines are elevated in the hematoma cavity of patients with CSDH. It is likely that these signaling modulators play an important role in promoting local inflammation. Furthermore, biological activity of CCL2 and CXCL8 may promote neovascularization within the outer CSDH membrane, and a compensatory angiostatic activity of CXCL9 and CXCL10 may contribute to repairing this disorder. This phenomenon was restricted to the hematoma site, and the systemic chemokine levels might not reflect local immune responses.
Collapse
Affiliation(s)
- Milo Stanisic
- Department of Neurosurgery, Oslo University Hospital, Nydalen, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Segers D, Lipton JA, Leenen PJM, Cheng C, Tempel D, Pasterkamp G, Moll FL, de Crom R, Krams R. Atherosclerotic Plaque Stability Is Affected by the Chemokine CXCL10 in Both Mice and Humans. Int J Inflam 2011; 2011:936109. [PMID: 22164344 PMCID: PMC3227498 DOI: 10.4061/2011/936109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/25/2011] [Indexed: 01/04/2023] Open
Abstract
Background. The chemokine CXCL10 is specifically upregulated during experimental development of plaque with an unstable phenotype. In this study we evaluated the functional consequences of these findings in mice and humans. Methods and Results. In ApoE−/− mice, we induced unstable plaque with using a flow-altering device around the carotid artery. From week 1 to 4, mice were injected with a neutralizing CXCL10 antibody. After 9 weeks, CXCL10 inhibition resulted in a more stable plaque phenotype: collagen increased by 58% (P = 0.002), smooth muscle cell content increased 2-fold (P = 0.03), while macrophage MHC class II expression decreased by 50% (P = 0.005). Also, the size of necrotic cores decreased by 41% (P = 0.01). In 106 human carotid endarterectomy specimens we found that increasing concentrations of CXCL10 strongly associate with an increase in atheromatous plaque phenotype (ANOVA, P = 0.003), with high macrophage, low smooth muscle cell, and low collagen content. Conclusions. In the present study we showed that CXCL10 is associated with the development of vulnerable plaque in human and mice. We conclude that CXCL10 might provide a new lead towards plaque-stabilizing therapy.
Collapse
Affiliation(s)
- Dolf Segers
- Department of Cardiology, Erasmus University Medical Center, 3522ZZ Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kawada K, Hasegawa S, Murakami T, Itatani Y, Hosogi H, Sonoshita M, Kitamura T, Fujishita T, Iwamoto M, Matsumoto T, Matsusue R, Hida K, Akiyama G, Okoshi K, Yamada M, Kawamura J, Taketo MM, Sakai Y. Molecular mechanisms of liver metastasis. Int J Clin Oncol 2011; 16:464-72. [PMID: 21847533 DOI: 10.1007/s10147-011-0307-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Indexed: 12/13/2022]
Abstract
Colorectal cancer is the second most common cancer, and is the third leading cause of cancer-related death in Japan. The majority of these deaths is attributable to liver metastasis. Recent studies have provided increasing evidence that the chemokine-chemokine receptor system is a potential mechanism of tumor metastasis via multiple complementary actions: (a) by promoting cancer cell migration, invasion, survival and angiogenesis; and (b) by recruiting distal stromal cells (i.e., myeloid bone marrow-derived cells) to indirectly facilitate tumor invasion and metastasis. Here, we discuss recent preclinical and clinical data supporting the view that chemokine pathways are potential therapeutic targets for liver metastasis of colorectal cancer.
Collapse
Affiliation(s)
- Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Immune-mediated cancer regression requires tumor infiltration by antigen-specific effector T cells, but lymphocytes are commonly sparse in melanoma metastases. Activated T cells express CXCR3, whose cognate chemokines are CXCL9/MIG, CXCL10/IP-10, and CXCL11/I-TAC. Little is known about expression of these chemokines in lymph node (LN) metastases of melanoma. We evaluated whether metastatic melanoma induces these CXCR3-cognate chemokines in human LN-derived tissues. In addition, as these chemokines can be induced by interferon (IFN), we evaluated whether type I or II IFNs (IFN-α or IFN-γ, respectively) can modulate chemokine expression in an in vitro model of the human tumor microenvironment. Production of CXCL9-11 by melanoma-infiltrated nodes (MIN) was no different than tumor-free nodes; both produced less chemokine than activated LN (sentinel immunized nodes, SIN). These data suggest that melanoma infiltration into LN neither induces nor reduces CXCL9-11. Stimulation with IFN-α or IFN-γ increased production of CXCL10-11 from MIN, but not tumor-free node or SIN. IFN-γ also increased production of CXCL9 in MIN. In IFN-treated SIN, CD14+ cells were the primary source of CXCL9-11, whereas melanoma cells were the source of chemokine in MIN. Melanoma cells in MIN express IFN receptors. Consistent with these observations, multiple human melanoma lines expressed IFN receptors and produced CXCL9-11 in response to IFN treatment. Thus, melanoma infiltration of LN is insufficient to induce the production of CXCL9-11, but melanoma may be a significant source of IFN-induced chemokines. Collectively, these data suggest that IFN-α or IFN-γ may act in the tumor microenvironment to increase the chemotactic gradient for CXCR3+ T cells.
Collapse
|
50
|
Yoshida T, Mei H, Dörner T, Hiepe F, Radbruch A, Fillatreau S, Hoyer BF. Memory B and memory plasma cells. Immunol Rev 2010; 237:117-39. [PMID: 20727033 DOI: 10.1111/j.1600-065x.2010.00938.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vaccination provides a powerful means to control infections. It exploits and exemplifies the ability of the immune system to preserve the information that a specific pathogen has been encountered in the past. The cells and molecular mechanisms of immunological memory are still being discussed controversially. Here, we review the current concepts of memory B cells, the signals involved in their maintenance, and their role in enhanced secondary reactions. Memory plasma cells, secreting protective antibodies over lifetime, have been recognized only recently. Their characterization as cells resting in terms of proliferation and migration, and surviving in dedicated stromal niches, in the absence of antigen, has generated new concepts of how memory cells in general are organized by stroma cells, the 'resting memory'. In autoimmunity and chronic inflammation, memory B cells and memory plasma cells can be essential players, and they require special attention, as they do not respond to most conventional therapies. Their selective targeting will depend on a molecular understanding of their lifestyle.
Collapse
Affiliation(s)
- Taketoshi Yoshida
- Charité Centre 12, Clinic for Internal Medicine, Rheumatology, Clinical Immunology, Charité University Hospital Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|