1
|
Sturmlechner I, Jain A, Hu B, Jadhav RR, Cao W, Okuyama H, Tian L, Weyand CM, Goronzy JJ. Aging trajectories of memory CD8 + T cells differ by their antigen specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605197. [PMID: 39211225 PMCID: PMC11360919 DOI: 10.1101/2024.07.26.605197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Memory T cells are a highly dynamic and heterogeneous population that is maintained by cytokine-driven homeostatic proliferation interspersed with episodes of antigen-mediated expansion and contraction which affect their functional state and their durability. This heterogeneity complicates studies on the impact of aging on global human memory cells, specifically, it is unclear how aging drives memory T cell dysfunction. Here, we used chronic infection with Epstein-Barr virus (EBV) to assess the influence of age on memory states at the level of antigen-specific CD8 + T cells. We find that in young adults (<40 years), EBV-specific CD8 + T cells assume preferred differentiation states depending on their peptide specificity. By age >65-years, different T cell specificities had undergone largely distinct aging trajectories, which had in common a loss in adaptive and a gain in innate immunity signatures. No evidence was seen for cellular senescence or exhaustion. While naïve/stem-like EBV-specific T cells disappeared with age, T cell diversity of EBV-specific memory cells did not change or even increased. In summary, by controlling for antigen specificity we uncover age-associated shifts in gene expression and TCR diversity that have implications for optimizing vaccination strategies and adoptive T cell therapy.
Collapse
|
2
|
Fischer F, Mücke J, Werny L, Gerrer K, Mihatsch L, Zehetmaier S, Riedel I, Geisperger J, Bodenhausen M, Schulte-Hillen L, Hoffmann D, Protzer U, Mautner J, Behrends U, Bauer T, Körber N. Evaluation of novel Epstein-Barr virus-derived antigen formulations for monitoring virus-specific T cells in pediatric patients with infectious mononucleosis. Virol J 2024; 21:139. [PMID: 38877590 PMCID: PMC11179387 DOI: 10.1186/s12985-024-02411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Infection with the Epstein-Barr virus (EBV) elicits a complex T-cell response against a broad range of viral proteins. Hence, identifying potential differences in the cellular immune response of patients with different EBV-associated diseases or different courses of the same disorder requires interrogation of a maximum number of EBV antigens. Here, we tested three novel EBV-derived antigen formulations for their ability to reactivate virus-specific T cells ex vivo in patients with EBV-associated infectious mononucleosis (IM). METHODS We comparatively analyzed EBV-specific CD4+ and CD8+ T-cell responses to three EBV-derived antigen formulations in 20 pediatric patients during the early phase of IM: T-activated EBV proteins (BZLF1, EBNA3A) and EBV-like particles (EB-VLP), both able to induce CD4+ and CD8+ T-cell responses ex vivo, as well as an EBV-derived peptide pool (PP) covering 94 well-characterized CD8+ T-cell epitopes. We assessed the specificity, magnitude, kinetics, and functional characteristics of EBV-specific immune responses at two sequential time points (v1 and v2) within the first six weeks after IM symptom onset (Tonset). RESULTS All three tested EBV-derived antigen formulations enabled the detection of EBV-reactive T cells during the early phase of IM without prior T-cell expansion in vitro. EBV-reactive CD4+ and CD8+ T cells were mainly mono-functional (CD4+: mean 64.92%, range 56.15-71.71%; CD8+: mean 58.55%, range 11.79-85.22%) within the first two weeks after symptom onset (v1) with IFN-γ and TNF-secreting cells representing the majority of mono-functional EBV-reactive T cells. By contrast, PP-reactive CD8+ T cells were primarily bi-functional (>60% at v1 and v2), produced IFN-γ and TNF and had more tri-functional than mono-functional components. We observed a moderate correlation between viral load and EBNA3A, EB-VLP, and PP-reactive CD8+ T cells (rs = 0.345, 0.418, and 0.356, respectively) within the first two weeks after Tonset, but no correlation with the number of detectable EBV-reactive CD4+ T cells. CONCLUSIONS All three EBV-derived antigen formulations represent innovative and generic recall antigens suitable for monitoring EBV-specific T-cell responses ex vivo. Their combined use facilitates a thorough analysis of EBV-specific T-cell immunity and allows the identification of functional T-cell signatures linked to disease development and severity.
Collapse
Affiliation(s)
- Franziska Fischer
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Mücke
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Louisa Werny
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
| | - Katrin Gerrer
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lorenz Mihatsch
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Zehetmaier
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
| | - Isa Riedel
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jonas Geisperger
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maren Bodenhausen
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lina Schulte-Hillen
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Hoffmann
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Josef Mautner
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Tanja Bauer
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Nina Körber
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany.
- German Centre for Infection Research (DZIF), Munich, Germany.
| |
Collapse
|
3
|
Wang Y, Zhang W, Shi R, Luo Y, Feng Z, Chen Y, Zhang Q, Zhou Y, Liang J, Ye X, Feng Q, Zhang X, Xu M. Identification of HLA-A*11:01 and A*02:01-Restricted EBV Peptides Using HLA Peptidomics. Viruses 2024; 16:669. [PMID: 38793551 PMCID: PMC11125987 DOI: 10.3390/v16050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Epstein-Barr Virus (EBV) is closely linked to nasopharyngeal carcinoma (NPC), notably prevalent in southern China. Although type II latency of EBV plays a crucial role in the development of NPC, some lytic genes and intermittent reactivation are also critical for viral propagation and tumor progression. Since T cell-mediated immunity is effective in targeted killing of EBV-positive cells, it is important to identify EBV-derived peptides presented by highly prevalent human leukocyte antigen class I (HLA-I) molecules throughout the EBV life cycle. Here, we constructed an EBV-positive NPC cell model to evaluate the presentation of EBV lytic phase peptides on streptavidin-tagged specific HLA-I molecules. Utilizing a mass spectrometry (LC-MS/MS)-based immunopeptidomic approach, we characterized eleven novel EBV peptides as well as two previously identified peptides. Furthermore, we determined these peptides were immunogenic and could stimulate PBMCs from EBV VCA/NA-IgA positive donors in an NPC endemic southern Chinese population. Overall, this work demonstrates that highly prevalent HLA-I-specific EBV peptides can be captured and functionally presented to elicit immune responses in an in vitro model, which provides insight into the epitopes presented during EBV lytic cycle and reactivation. It expands the range of viral targets for potential NPC early diagnosis and treatment.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Wanlin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Ruona Shi
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (R.S.); (Z.F.)
| | - Yanran Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Zhenhuan Feng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (R.S.); (Z.F.)
| | - Yanhong Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Qiuting Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Yan Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Jingtong Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Xiaoping Ye
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Qisheng Feng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| | - Xiaofei Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (R.S.); (Z.F.)
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (Y.W.); (W.Z.); (Y.L.); (Y.C.); (Q.Z.); (Y.Z.); (J.L.); (X.Y.); (Q.F.)
| |
Collapse
|
4
|
Ben Hamza A, Welters C, Stadler S, Brüggemann M, Dietze K, Brauns O, Brümmendorf TH, Winkler T, Bullinger L, Blankenstein T, Rosenberger L, Leisegang M, Kammertöns T, Herr W, Moosmann A, Strobel J, Hackstein H, Dornmair K, Beier F, Hansmann L. Virus-reactive T cells expanded in aplastic anemia eliminate hematopoietic progenitor cells by molecular mimicry. Blood 2024; 143:1365-1378. [PMID: 38277625 DOI: 10.1182/blood.2023023142] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
ABSTRACT Acquired aplastic anemia is a bone marrow failure syndrome characterized by hypocellular bone marrow and peripheral blood pancytopenia. Frequent clinical responses to calcineurin inhibition and antithymocyte globulin strongly suggest critical roles for hematopoietic stem/progenitor cell-reactive T-cell clones in disease pathophysiology; however, their exact contribution and antigen specificities remain unclear. We determined differentiation states and targets of dominant T-cell clones along with their potential to eliminate hematopoietic progenitor cells in the bone marrow of 15 patients with acquired aplastic anemia. Single-cell sequencing and immunophenotyping revealed oligoclonal expansion and effector differentiation of CD8+ T-cell compartments. We reexpressed 28 dominant T-cell receptors (TCRs) of 9 patients in reporter cell lines to determine reactivity with (1) in vitro-expanded CD34+ bone marrow, (2) CD34- bone marrow, or (3) peptide pools covering immunodominant epitopes of highly prevalent viruses. Besides 5 cytomegalovirus-reactive TCRs, we identified 3 TCRs that recognized antigen presented on hematopoietic progenitor cells. T cells transduced with these TCRs eliminated hematopoietic progenitor cells of the respective patients in vitro. One progenitor cell-reactive TCR (11A5) also recognized an epitope of the Epstein-Barr virus-derived latent membrane protein 1 (LMP1) presented on HLA-A∗02:01. We identified 2 LMP1-related mimotopes within the human proteome as activating targets of TCR 11A5, providing proof of concept that molecular mimicry of viral and self-epitopes can drive T cell-mediated elimination of hematopoietic progenitor cells in aplastic anemia.
Collapse
Affiliation(s)
- Amin Ben Hamza
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carlotta Welters
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Serena Stadler
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
| | - Monika Brüggemann
- Department of Medicine II, Hematology and Oncology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Kerstin Dietze
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Brauns
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Thomas Winkler
- Division of Genetics, Department of Biology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
| | - Thomas Blankenstein
- Molecular Immunology and Gene Therapy, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Leonie Rosenberger
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Leisegang
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL
| | - Thomas Kammertöns
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Moosmann
- Department of Medicine III, Klinikum der Universität München, Munich, Germany
- German Center for Infection Research, Munich, Germany
- Helmholtz Munich, Munich, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium, Partner Site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Bednarska K, Chowdhury R, Tobin JWD, Swain F, Keane C, Boyle S, Khanna R, Gandhi MK. Epstein-Barr virus-associated lymphomas decoded. Br J Haematol 2024; 204:415-433. [PMID: 38155519 DOI: 10.1111/bjh.19255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Epstein-Barr virus (EBV)-associated lymphomas cover a range of histological B- and T-cell non-Hodgkin and Hodgkin lymphoma subtypes. The role of EBV on B-cell malignant pathogenesis and its impact on the tumour microenvironment are intriguing but incompletely understood. Both the International Consensus Classification (ICC) and 5th Edition of the World Health Organization (WHO-HAEM5) proposals give prominence to the distinct clinical, prognostic, genetic and tumour microenvironmental features of EBV in lymphoproliferative disorders. There have been major advances in our biological understanding, in how to harness features of EBV and its host immune response for targeted therapy, and in using EBV as a method to monitor disease response. In this article, we showcase the latest developments and how they may be integrated to stimulate new and innovative approaches for further lines of investigation and therapy.
Collapse
Affiliation(s)
- Karolina Bednarska
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rakin Chowdhury
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Joshua W D Tobin
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Fiona Swain
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Colm Keane
- Frazer Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Stephen Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maher K Gandhi
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
- Department of Haematology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Couturaud B, Doix B, Carretero-Iglesia L, Allard M, Pradervand S, Hebeisen M, Rufer N. Overall avidity declines in TCR repertoires during latent CMV but not EBV infection. Front Immunol 2023; 14:1293090. [PMID: 38053994 PMCID: PMC10694213 DOI: 10.3389/fimmu.2023.1293090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the MHC (pMHC) on cells is an essential parameter for efficient T cell-mediated immunity. Yet, whether the TCR-ligand avidity can drive the clonal evolution of virus antigen-specific CD8 T cells, and how this process is determined in latent Cytomegalovirus (CMV)- against Epstein-Barr virus (EBV)-mediated infection remains largely unknown. Methods To address these issues, we quantified monomeric TCR-pMHC dissociation rates on CMV- and EBV-specific individual TCRαβ clonotypes and polyclonal CD8 T cell populations in healthy donors over a follow-up time of 15-18 years. The parameters involved during the long-term persistence of virus-specific T cell clonotypes were further evaluated by gene expression profiling, phenotype and functional analyses. Results Within CMV/pp65-specific T cell repertoires, a progressive contraction of clonotypes with high TCR-pMHC avidity and low CD8 binding dependency was observed, leading to an overall avidity decline during long-term antigen exposure. We identified a unique transcriptional signature preferentially expressed by high-avidity CMV/pp65-specific T cell clonotypes, including the inhibitory receptor LILRB1. Interestingly, T cell clonotypes of high-avidity showed higher LILRB1 expression than the low-avidity ones and LILRB1 blockade moderately increased T cell proliferation. Similar findings were made for CD8 T cell repertoires specific for the CMV/IE-1 epitope. There was a gradual in vivo loss of high-avidity T cells with time for both CMV specificities, corresponding to virus-specific CD8 T cells expressing enhanced LILRB1 levels. In sharp contrast, the EBV/BMFL1-specific T cell clonal composition and distribution, once established, displayed an exceptional stability, unrelated to TCR-pMHC binding avidity or LILRB1 expression. Conclusions These findings reveal an overall long-term avidity decline of CMV- but not EBV-specific T cell clonal repertoires, highlighting the differing role played by TCR-ligand avidity over the course of these two latent herpesvirus infections. Our data further suggest that the inhibitor receptor LILRB1 potentially restricts the clonal expansion of high-avidity CMV-specific T cell clonotypes during latent infection. We propose that the mechanisms regulating the long-term outcome of CMV- and EBV-specific memory CD8 T cell clonotypes in humans are distinct.
Collapse
Affiliation(s)
- Barbara Couturaud
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Bastien Doix
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Laura Carretero-Iglesia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Sylvain Pradervand
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, Lausanne, Switzerland
| | - Michael Hebeisen
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
7
|
Dasari V, McNeil LK, Beckett K, Solomon M, Ambalathingal G, Thuy TL, Panikkar A, Smith C, Steinbuck MP, Jakubowski A, Seenappa LM, Palmer E, Zhang J, Haqq CM, DeMuth PC, Khanna R. Lymph node targeted multi-epitope subunit vaccine promotes effective immunity to EBV in HLA-expressing mice. Nat Commun 2023; 14:4371. [PMID: 37553346 PMCID: PMC10409721 DOI: 10.1038/s41467-023-39770-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/28/2023] [Indexed: 08/10/2023] Open
Abstract
The recent emergence of a causal link between Epstein-Barr virus (EBV) and multiple sclerosis has generated considerable interest in the development of an effective vaccine against EBV. Here we describe a vaccine formulation based on a lymph node targeting Amphiphile vaccine adjuvant, Amphiphile-CpG, admixed with EBV gp350 glycoprotein and an engineered EBV polyepitope protein that includes 20 CD8+ T cell epitopes from EBV latent and lytic antigens. Potent gp350-specific IgG responses are induced in mice with titers >100,000 in Amphiphile-CpG vaccinated mice. Immunization including Amphiphile-CpG also induces high frequencies of polyfunctional gp350-specific CD4+ T cells and EBV-specific CD8+ T cells that are 2-fold greater than soluble CpG and are maintained for >7 months post immunization. This combination of broad humoral and cellular immunity against multiple viral determinants is likely to provide better protection against primary infection and control of latently infected B cells leading to protection against the development of EBV-associated diseases.
Collapse
Affiliation(s)
- Vijayendra Dasari
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia.
| | | | - Kirrilee Beckett
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Matthew Solomon
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - George Ambalathingal
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - T Le Thuy
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Archana Panikkar
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Caitlyn Smith
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | | | - Jeff Zhang
- Elicio Therapeutics, Inc, Boston, MA, USA
| | | | | | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
8
|
Yamada M, Macedo C, Louis K, Shi T, Landsittel D, Nguyen C, Shinjoh M, Michaels MG, Feingold B, Mazariegos GV, Green M, Metes D. Distinct association between chronic Epstein-Barr virus infection and T cell compartments from pediatric heart, kidney, and liver transplant recipients. Am J Transplant 2023; 23:1145-1158. [PMID: 37187296 DOI: 10.1016/j.ajt.2023.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
Chronic Epstein-Barr virus (EBV) infection after pediatric organ transplantation (Tx) accounts for significant morbidity and mortality. The risk of complications, such as posttransplant lymphoproliferative disorders, in high viral load (HVL) carriers is the highest in heart Tx recipients. However, the immunologic signatures of such a risk have been insufficiently defined. Here, we assessed the phenotypic, functional, and transcriptomic profiles of peripheral blood CD8+/CD4+ T cells, including EBV-specific T cells, in 77 pediatric heart, kidney, and liver Tx recipients and established the relationship between memory differentiation and progression toward exhaustion. Unlike kidney and liver HVL carriers, heart HVL carriers displayed distinct CD8+ T cells with (1) up-regulation of interleukin-21R, (2) decreased naive phenotype and altered memory differentiation, (3) accumulation of terminally exhausted (TEX PD-1+T-bet-Eomes+) and decrease of functional precursors of exhausted (TPEX PD-1intT-bet+) effector subsets, and (4) transcriptomic signatures supporting the phenotypic changes. In addition, CD4+ T cells from heart HVL carriers displayed similar changes in naive and memory subsets, elevated Th1 follicular helper cells, and plasma interleukin-21, suggesting an alternative inflammatory mechanism that governs T cell responses in heart Tx recipients. These results may explain the different incidences of EBV complications and may help improve the risk stratification and clinical management of different types of Tx recipients.
Collapse
Affiliation(s)
- Masaki Yamada
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Camila Macedo
- Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Louis
- Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Tiange Shi
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas Landsittel
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Indiana, Pennsylvania, USA
| | - Christina Nguyen
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Masayoshi Shinjoh
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Marian G Michaels
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian Feingold
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Clinical and Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George V Mazariegos
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Green
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diana Metes
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
9
|
Andersen O, Ernberg I, Hedström AK. Treatment Options for Epstein-Barr Virus-Related Disorders of the Central Nervous System. Infect Drug Resist 2023; 16:4599-4620. [PMID: 37465179 PMCID: PMC10351589 DOI: 10.2147/idr.s375624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
Epstein-Barr virus (EBV), a causative agent for several types of lymphomas and mucosal cancers, is a human lymphotropic herpesvirus with the capacity to establish lifelong latent infection. More than 90% of the human population worldwide is infected. The primary infection is usually asymptomatic in childhood, whereas infectious mononucleosis (IM) is common when the infection occurs in adolescence. Primary EBV infection, with or without IM, or reactivation of latent infection in immunocompromised individuals have been associated with a wide range of neurologic conditions, such as encephalitis, meningitis, acute disseminated encephalomyelitis, and cerebellitis. EBV is also involved in malignant lymphomas in the brain. An increasing number of reports on EBV-related disorders of the central nervous system (CNS) including the convincing association with multiple sclerosis (MS) have put in focus EBV-related conditions beyond its established link to malignancies. In this review, we present the clinical manifestations of EBV-related CNS-disorders, put them in the context of known EBV biology and focus on available treatment options and future therapeutic approaches.
Collapse
Affiliation(s)
- Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Biomedicum Q8C, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Feng X, Meng M, Li H, Gao Y, Song W, Di R, Li Z, Zhang X, Zhang M. T-cell dysfunction in natural killer/T-cell lymphoma. Oncoimmunology 2023; 12:2212532. [PMID: 37250921 PMCID: PMC10210841 DOI: 10.1080/2162402x.2023.2212532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Natural killer/T-cell lymphoma (NKTCL) is an incurable aggressive T-cell lymphoma closely correlated with Epstein‒Barr virus (EBV) infection. Chronic and consistent viral infection induces T-cell exhaustion. Herein, we describe T-cell dysfunction in NKTCL patients for the first time. Peripheral blood mononuclear cells (PBMCs) from age-matched healthy donors (HDs) and NKTCL patients were collected, and lymphocyte distributions, multiple surface inhibitory receptors (IRs), effector cytokine production and cell proliferation were determined by flow cytometry. PBMCs from HDs were cocultured with NKTCL cell lines to verify the clinical findings. IR expression was further assessed in NKTCL tumor biopsies using multiplex immunohistochemistry (mIHC). NKTCL patients have higher frequencies than HDs of inhibitory T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs). T-cell distribution also varies between NKTCL patients and HDs. T cells from NKTCL patients demonstrated higher expression levels of multiple IRs than HDs. Meanwhile, T-cell proliferation and interferon-γ production was significantly reduced in NKTCL patients. More importantly, the number of EBV-specific cytotoxic cells was lower in NTKCL patients, and these cells demonstrated upregulation of multiple IRs and secreted fewer effector cytokines. Interestingly, NKTCL cells caused normal PBMCs to acquire T-cell exhaustion phenotypes and induced generation of Tregs and MDSCs. In line with ex vivo finding, mIHC results showed that CD8+ T cells from NKTCL tumor biopsies expressed much higher level of IRs compared with reactive lymphoid hyperplasia individuals. The immune microenvironment of NKTCL patients exhibited T-cell dysfunction and accumulation of inhibitory cell components, which may contribute to impaired antitumor immunity.
Collapse
Affiliation(s)
- Xiaoyan Feng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Miaomiao Meng
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Yuyang Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Ruiqing Di
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Nursing Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Jo HA, Hyun SJ, Hyun YS, Lee YH, Kim SM, Baek IC, Sohn HJ, Kim TG. Comprehensive Analysis of Epstein-Barr Virus LMP2A-Specific CD8 + and CD4 + T Cell Responses Restricted to Each HLA Class I and II Allotype Within an Individual. Immune Netw 2023; 23:e17. [PMID: 37179751 PMCID: PMC10166658 DOI: 10.4110/in.2023.23.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 05/15/2023] Open
Abstract
Latent membrane protein 2A (LMP2A), a latent Ag commonly expressed in Epstein-Barr virus (EBV)-infected host cells, is a target for adoptive T cell therapy in EBV-associated malignancies. To define whether individual human leukocyte antigen (HLA) allotypes are used preferentially in EBV-specific T lymphocyte responses, LMP2A-specific CD8+ and CD4+ T cell responses in 50 healthy donors were analyzed by ELISPOT assay using artificial Ag-presenting cells expressing a single allotype. CD8+ T cell responses were significantly higher than CD4+ T cell responses. CD8+ T cell responses were ranked from highest to lowest in the order HLA-A, HLA-B, and HLA-C loci, and CD4+ T cell responses were ranked in the order HLA-DR, HLA-DP, and HLA-DQ loci. Among the 32 HLA class I and 56 HLA class II allotypes, 6 HLA-A, 7 HLA-B, 5 HLA-C, 10 HLA-DR, 2 HLA-DQ, and 2 HLA-DP allotypes showed T cell responses higher than 50 spot-forming cells (SFCs)/5×105 CD8+ or CD4+ T cells. Twenty-nine donors (58%) showed a high T cell response to at least one allotype of HLA class I or class II, and 4 donors (8%) had a high response to both HLA class I and class II allotypes. Interestingly, we observed an inverse correlation between the proportion of LMP2A-specific T cell responses and the frequency of HLA class I and II allotypes. These data demonstrate the allele dominance of LMP2A-specific T cell responses among HLA allotypes and their intra-individual dominance in response to only a few allotypes in an individual, which may provide useful information for genetic, pathogenic, and immunotherapeutic approaches to EBV-associated diseases.
Collapse
Affiliation(s)
- Hyeong-A Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung-Joo Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - You-Seok Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yong-Hun Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sun-Mi Kim
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - In-Cheol Baek
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyun-Jung Sohn
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
12
|
Co-Infection of the Epstein-Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses 2022; 14:v14122709. [PMID: 36560713 PMCID: PMC9782805 DOI: 10.3390/v14122709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The two human tumor viruses, Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future.
Collapse
|
13
|
Suominen H, Paaso A, Koskimaa HM, Grénman S, Syrjänen K, Syrjänen S, Louvanto K. Peripheral Blood T-lymphocyte Phenotypes in Mother-Child Pairs Stratified by the Maternal HPV Status: Persistent HPV16 vs. HPV-Negative: A Case-Control Study. Viruses 2022; 14:v14122633. [PMID: 36560637 PMCID: PMC9788282 DOI: 10.3390/v14122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Only few studies exist on the phenotype distribution of peripheral blood lymphocytes concerning persistent oral HPV infection. T-lymphocyte subsets were phenotyped in women who had persistent genital or oral HPV16 infection, using HPV-negative women as a reference group. A subset of 42 mothers and their children (n = 28), were stratified into two groups according to the mothers' HPV status. PBMCs from previously cryopreserved venous samples were immunophenotyped by flow cytometry. Proportions of the CD4+ or CD8+ lymphocytes by their immunophenotype subsets were compared between HPV-positive and -negative mothers and their children. The mean rank distribution of CD8+ memory cells was significantly higher among mothers with persistent genital HPV16 infection. The median levels of both the antigen-presenting CD4+ cells and activated CD8+ cells were significantly lower in mothers with persistent oral HPV16 infection. When oral and genital HPV16-persistors were analyzed as a group, a marker of terminal effector cells was significantly increased as compared to HPV-negative women. Significantly higher levels of activated CD4+, CD8+ and circulating CD8+ memory cells were found among children whose mothers had persistent oral HPV16 infection. Persistent HPV16 infections are associated with changes in peripheral blood T-lymphocyte subsets. The mother's persistent oral HPV16 infection possibly results in immune alterations in her offspring.
Collapse
Affiliation(s)
- Helmi Suominen
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Anna Paaso
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - Hanna-Mari Koskimaa
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - Seija Grénman
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, 20014 Turku, Finland
| | | | - Stina Syrjänen
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Department of Pathology, Turku University Hospital, 20014 Turku, Finland
| | - Karolina Louvanto
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry, Faculty of Medicine, University of Turku, 20014 Turku, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital, 33100 Tampere, Finland
- Correspondence: ; Tel.: +35-8504713838
| |
Collapse
|
14
|
Four-Parameter FluoroSpot Assay Reveals That the Varicella Zoster Virus Elicits a Robust Memory T Cell IL-10 Response throughout Childhood. J Virol 2022; 96:e0131022. [PMID: 36314824 PMCID: PMC9683015 DOI: 10.1128/jvi.01310-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During childhood, the composition and function of the T cell compartment undergoes significant changes. In healthy individuals, primary infection with herpesviruses is followed by latency, and occasional subclinical reactivation ensures transmission and contributes to an emerging pool of memory T cells. In immunocompromised individuals, herpesviruses can be life threatening. However, knowledge about the spectrum of virus-specific cytokine responses is limited. Here, we investigated peripheral blood mononuclear cells (PBMCs) from children with differential carrier statuses for cytomegalovirus (CMV), Epstein-Barr virus (EBV), and varicella zoster virus (VZV) (n = 32, age 1 to 17 years). We examined memory T cell subsets as well as IFN-γ-, IL-10-, IL-17A-, and IL-22-producing T cells after polyclonal activation or stimulation with viral peptides using flow cytometry and a 4-parameter FluoroSpot assay. Age and herpesvirus carriage influenced the size of the memory T cell subsets. A positive association between age and the number of IFN-γ-, IL-17A- and IL-22-producing T cells was found following polyclonal activation. For CMV, age was positively associated with IL-17A spot-forming cells (SFC), while for VZV, age was negatively associated with IL-22 and positively associated with IFN-γ SFC. Upon activation with CMV, VZV, and EBV peptides, IFN-γ SFCs dominated. Notably, VZV responses were characterized by a higher IL-10 SFC population compared to both CMV and EBV. Our findings suggest that cytokine responses vary across herpesvirus-type-specific memory T cells and may more adequately reflect their composition. An observed deviation between polyclonal and herpesvirus-specific T cell cytokine responses in children needs to be considered when interpreting the associations between herpesvirus carrier status and bulk T cell reactivity. In summary, these findings may have implications for the treatment of immunocompromised patients. IMPORTANCE Infection with herpesviruses accounts for 35 to 40 billion human cases worldwide. Despite this, little is known about how herpesviruses shape the immune system in the asymptomatic carrier. Particularly in children, primary infection is connected to no or mild symptoms ahead of latency for life. Most research on cellular responses against herpesviruses focuses on inflammatory cytokines associated with antiproliferative and antitumor mechanisms and not the spectrum of cytokine responses in healthy humans. This study investigated four divergent cytokine-producing T cell responses to herpesviruses, reflecting different immunological functions. Three common childhood herpesviruses were selected: Epstein-Barr virus, cytomegalovirus, and varicella-zoster virus. Curiously, not all viruses induced the same pattern of cytokines. Varicella-zoster responses were characterized by IL-10, which is considered regulatory. Besides broadening understanding of responses to herpesviruses, our results raise the possibility that reactivation of varicella-zoster may be counterproductive in cancer treatment through the action of IL-10-producing T-cells.
Collapse
|
15
|
Welters C, Lammoglia Cobo MF, Stein CA, Hsu MT, Ben Hamza A, Penter L, Chen X, Buccitelli C, Popp O, Mertins P, Dietze K, Bullinger L, Moosmann A, Blanc E, Beule D, Gerbitz A, Strobel J, Hackstein H, Rahn HP, Dornmair K, Blankenstein T, Hansmann L. Immune Phenotypes and Target Antigens of Clonally Expanded Bone Marrow T Cells in Treatment-Naïve Multiple Myeloma. Cancer Immunol Res 2022; 10:1407-1419. [PMID: 36122410 PMCID: PMC9627264 DOI: 10.1158/2326-6066.cir-22-0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
Multiple myeloma is a hematologic malignancy of monoclonal plasma cells that accumulate in the bone marrow. Despite their clinical and pathophysiologic relevance, the roles of bone marrow-infiltrating T cells in treatment-naïve patients are incompletely understood. We investigated whether clonally expanded T cells (i) were detectable in multiple myeloma bone marrow, (ii) showed characteristic immune phenotypes, and (iii) whether dominant clones recognized antigens selectively presented on multiple myeloma cells. Single-cell index sorting and T-cell receptor (TCR) αβ sequencing of bone marrow T cells from 13 treatment-naïve patients showed dominant clonal expansion within CD8+ cytolytic effector compartments, and only a minority of expanded T-cell clones expressed the classic immune-checkpoint molecules PD-1, CTLA-4, or TIM-3. To identify their molecular targets, TCRs of 68 dominant bone marrow clones from five selected patients were reexpressed and incubated with multiple myeloma and non-multiple myeloma cells from corresponding patients. Only 1 of 68 TCRs recognized antigen presented on multiple myeloma cells. This TCR was HLA-C-restricted, self-peptide-specific and could be activated by multiple myeloma cells of multiple patients. The remaining dominant T-cell clones did not recognize multiple myeloma cells and were, in part, specific for antigens associated with chronic viral infections. In conclusion, we showed that dominant bone marrow T-cell clones in treatment-naïve patients rarely recognize antigens presented on multiple myeloma cells and exhibit low expression of classic immune-checkpoint molecules. Our data provide experimental context for experiences from clinical immune-checkpoint inhibition trials and will inform future T cell-dependent therapeutic strategies.
Collapse
Affiliation(s)
- Carlotta Welters
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - María Fernanda Lammoglia Cobo
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Alexander Stein
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meng-Tung Hsu
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Germany
| | - Amin Ben Hamza
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaojing Chen
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Germany
| | - Christopher Buccitelli
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Oliver Popp
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Kerstin Dietze
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Moosmann
- Department of Medicine III, Klinikum der Universität München, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Armin Gerbitz
- Hans Messner Allogeneic Stem Cell Transplant Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Hans-Peter Rahn
- Preparative Flow Cytometry, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, LMU Munich, Germany
| | - Thomas Blankenstein
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Corresponding Author: Leo Hansmann, Charité–Universitätsmedizin Berlin (CVK), Department of Hematology, Oncology, and Tumor Immunology, Augustenburger Platz 1, 13353 Berlin, Germany. Phone: 49-(0)30-450-665238; Fax: 49-(0)30-450-553914; E-mail:
| |
Collapse
|
16
|
Rapid single-cell identification of Epstein-Barr virus-specific T-cell receptors for cellular therapy. Cytotherapy 2022; 24:818-826. [PMID: 35525797 DOI: 10.1016/j.jcyt.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Epstein-Barr virus (EBV) is associated with solid and hematopoietic malignancies. After allogeneic stem cell transplantation, EBV infection or reactivation represents a potentially life-threatening condition with no specific treatment available in clinical routine. In vitro expansion of naturally occurring EBV-specific T cells for adoptive transfer is time-consuming and influenced by the donor's T-cell receptor (TCR) repertoire and requires a specific memory compartment that is non-existent in seronegative individuals. The authors present highly efficient identification of EBV-specific TCRs that can be expressed on human T cells and recognize EBV-infected cells. METHODS AND RESULTS Mononuclear cells from six stem cell grafts were expanded in vitro with three HLA-B*35:01- or four HLA-A*02:01-presented peptides derived from six EBV proteins expressed during latent and lytic infection. Epitope-specific T cells expanded on average 42-fold and were single-cell-sorted and TCRαβ-sequenced. To confirm specificity, 11 HLA-B*35:01- and six HLA-A*02:01-restricted dominant TCRs were expressed on reporter cell lines, and 16 of 17 TCRs recognized their presumed target peptides. To confirm recognition of virus-infected cells and assess their value for adoptive therapy, three selected HLA-B*35:01- and four HLA-A*02:01-restricted TCRs were expressed on human peripheral blood lymphocytes. All TCR-transduced cells recognized EBV-infected lymphoblastoid cell lines. CONCLUSIONS The authors' approach provides sets of EBV epitope-specific TCRs in two different HLA contexts. Resulting cellular products do not require EBV-seropositive donors, can be adjusted to cell subsets of choice with exactly defined proportions of target-specific T cells, can be tracked in vivo and will help to overcome unmet clinical needs in the treatment and prophylaxis of EBV reactivation and associated malignancies.
Collapse
|
17
|
Clark F, Gil A, Thapa I, Aslan N, Ghersi D, Selin LK. Cross-reactivity influences changes in human influenza A virus and Epstein Barr virus specific CD8 memory T cell receptor alpha and beta repertoires between young and old. Front Immunol 2022; 13:1011935. [PMID: 36923729 PMCID: PMC10009332 DOI: 10.3389/fimmu.2022.1011935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/30/2022] [Indexed: 03/03/2023] Open
Abstract
Older people have difficulty controlling infection with common viruses such as influenza A virus (IAV), RNA virus which causes recurrent infections due to a high rate of genetic mutation, and Epstein Barr virus (EBV), DNA virus which persists in B cells for life in the 95% of people that become acutely infected. We questioned whether changes in epitope-specific memory CD8 T cell receptor (TCR) repertoires to these two common viruses could occur with increasing age and contribute to waning immunity. We compared CD8 memory TCR alpha and beta repertoires in two HLA-A2+ EBV- and IAV-immune donors, young (Y) and older (O) donors to three immunodominant epitopes known to be cross-reactive, IAV-M158-66 (IAV-M1), EBV-BMLF1280-288 (EBV-BM), and EBV-BRLF1109-117 (EBV-BR). We, therefore, also designed these studies to examine if TCR cross-reactivity could contribute to changes in repertoire with increasing age. TCR high throughput sequencing showed a significant difference in the pattern of TRBV usage between Y and O. However, there were many more differences in AV and AJ usage, between the age groups suggesting that changes in TCRα usage may play a greater role in evolution of the TCR repertoire emphasizing the importance of studying TRAV repertoires. With increasing age there was a preferential retention of TCR for all three epitopes with features in their complementarity-determining region (CDR3) that increased their ease of generation, and their cross-reactive potential. Young and older donors differed in the patterns of AV/AJ and BV/BJ pairings and usage of dominant CDR3 motifs specific to all three epitopes. Both young and older donors had cross-reactive responses between these 3 epitopes, which were unique and differed from the cognate responses having features that suggested they could interact with either ligand. There was an increased tendency for the classic IAV-M1 specific clone BV19-IRSS-JB2.7/AV27-CAGGGSQGNLIF-AJ42 to appear among the cross-reactive clones, suggesting that the dominance of this clone may relate to its cross-reactivity with EBV. These results suggest that although young and older donors retain classic TCR features for each epitope their repertoires are gradually changing with age, maintaining TCRs that are cross-reactive between these two common human viruses, one with recurrent infections and the other a persistent virus which frequently reactivates.
Collapse
Affiliation(s)
- Fransenio Clark
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
18
|
Shanavas M, Law SC, Hertzberg M, Hicks RJ, Seymour JF, Li Z, Merida de Long L, Nath K, Sabdia MB, Gunawardana J, Gandhi MK, Keane C. Intratumoral T-cell receptor repertoire is predictive of interim PET scan results in patients with diffuse large B-cell lymphoma treated with rituximab/cyclophosphamide/doxorubicin/prednisolone/vincristine (R-CHOP) chemoimmunotherapy. Clin Transl Immunology 2021; 10:e1351. [PMID: 34745610 PMCID: PMC8548874 DOI: 10.1002/cti2.1351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/14/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022] Open
Abstract
Objectives A diverse intratumoral T‐cell receptor (TCR) repertoire is associated with improved survival in diffuse large B‐cell lymphoma (DLBCL) treated with rituximab/cyclophosphamide/doxorubicin/prednisolone/vincristine (R‐CHOP) chemoimmunotherapy. We explored the impact of intratumoral TCR repertoire on interim PET (iPET) done after four cycles of R‐CHOP, the relationships between intratumoral and circulating repertoire, and the phenotypes of expanded clonotypes. Methods We sequenced the third complementarity‐determining region of TCRβ in tumor samples, blood at pre‐therapy and after four cycles of R‐CHOP in 35 patients enrolled in ALLGNHL21 trial in high‐risk DLBCL. We correlated the TCR diversity metrics with iPET status, gene expression profiles and HLA‐class I genotypes. We then sequenced the FACS‐sorted peripheral blood T cells in six patients, and pentamer‐sorted EBV‐specific CD8+ T cells in one patient from this cohort. Results Compared with iPET− patients, the intratumoral TCR repertoire in iPET+ patients was characterised by higher cumulative frequency of abundant clonotypes and higher productive clonality. There was a variable overlap between circulating and intratumoral repertoires, with the dominant intratumoral clonotypes more likely to be detected in the blood. The majority of shared clonotypes were CD8+ PD‐1HI T cells, and CD8+ T cells had the largest clonal expansions in tumor and blood. In a patient with EBV+ DLBCL, EBV‐specific intratumoral clonotypes were trackable in the blood. Conclusion This study demonstrates that clonally expanded intratumoral TCR repertoires are associated with iPET+ and that the blood can be used to track tumor‐associated antigen‐specific clonotypes. These findings assist the rationale design and therapeutic monitoring of immunotherapeutic strategies in DLBCL.
Collapse
Affiliation(s)
- Mohamed Shanavas
- Mater Research University of Queensland Brisbane QLD Australia.,Department of Haematology Mater Hospital Brisbane QLD Australia
| | - Soi-Cheng Law
- Mater Research University of Queensland Brisbane QLD Australia
| | - Mark Hertzberg
- Department of Haematology Prince of Wales Hospital and University of NSW Randwick NSW Australia
| | - Rodney J Hicks
- Department of Cancer Imaging Peter MacCallum Cancer Centre East Melbourne Melbourne VIC Australia
| | - John F Seymour
- Department of Haematology Peter MacCallum Cancer Centre Royal Melbourne Hospital & University of Melbourne Parkville VIC Australia
| | - Zhixiu Li
- Centre for Genomics and Personalised Health School of Biomedical Sciences, Faculty of Health Translational Research Institute Queensland University of Technology (QUT) Woolloongabba QLD Australia
| | | | - Karthik Nath
- Mater Research University of Queensland Brisbane QLD Australia
| | | | - Jay Gunawardana
- Mater Research University of Queensland Brisbane QLD Australia
| | - Maher K Gandhi
- Mater Research University of Queensland Brisbane QLD Australia.,Department of Haematology Princess Alexandra Hospital Brisbane QLD Australia
| | - Colm Keane
- Mater Research University of Queensland Brisbane QLD Australia.,Department of Haematology Princess Alexandra Hospital Brisbane QLD Australia
| |
Collapse
|
19
|
Castro IM, Ricciardi MJ, Gonzalez-Nieto L, Rakasz EG, Lifson JD, Desrosiers RC, Watkins DI, Martins MA. Recombinant Herpesvirus Vectors: Durable Immune Responses and Durable Protection against Simian Immunodeficiency Virus SIVmac239 Acquisition. J Virol 2021; 95:e0033021. [PMID: 33910957 PMCID: PMC8223948 DOI: 10.1128/jvi.00330-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/23/2021] [Indexed: 01/29/2023] Open
Abstract
A prophylactic vaccine that confers durable protection against human immunodeficiency virus (HIV) would provide a valuable tool to prevent new HIV/AIDS cases. As herpesviruses establish lifelong infections that remain largely subclinical, the use of persistent herpesvirus vectors to deliver HIV antigens may facilitate the induction of long-term anti-HIV immunity. We previously developed recombinant (r) forms of the gamma-herpesvirus rhesus monkey rhadinovirus (rRRV) expressing a replication-incompetent, near-full-length simian immunodeficiency virus (SIVnfl) genome. We recently showed that 8/16 rhesus macaques (RMs) vaccinated with a rDNA/rRRV-SIVnfl regimen were significantly protected against intrarectal (i.r.) challenge with SIVmac239. Here we investigated the longevity of this vaccine-mediated protection. Despite receiving no additional booster immunizations, the protected rDNA/rRRV-SIVnfl vaccinees maintained detectable cellular and humoral anti-SIV immune responses for more than 1.5 years after the rRRV boost. To assess if these responses were still protective, the rDNA/rRRV-SIVnfl vaccinees were subjected to a second round of marginal-dose i.r. SIVmac239 challenges, with eight SIV-naive RMs serving as concurrent controls. After three SIV exposures, 8/8 control animals became infected, compared to 3/8 vaccinees. This difference in SIV acquisition was statistically significant (P = 0.0035). The three vaccinated monkeys that became infected exhibited significantly lower viral loads than those in unvaccinated controls. Collectively, these data illustrate the ability of rDNA/rRRV-SIVnfl vaccination to provide long-term immunity against stringent mucosal challenges with SIVmac239. Future work is needed to identify the critical components of this vaccine-mediated protection and the extent to which it can tolerate sequence mismatches in the challenge virus. IMPORTANCE We report on the long-term follow-up of a group of rhesus macaques (RMs) that received an AIDS vaccine regimen and were subsequently protected against rectal acquisition of simian immunodeficiency virus (SIV) infection. The vaccination regimen employed included a live recombinant herpesvirus vector that establishes persistent infection in RMs. Consistent with the recurrent SIV antigen expression afforded by this herpesvirus vector, vaccinees maintained detectable SIV-specific immune responses for more than 1.5 years after the last vaccination. Importantly, these vaccinated RMs were significantly protected against a second round of rectal SIV exposures performed 1 year after the first SIV challenge phase. These results are relevant for HIV vaccine development because they show the potential of herpesvirus-based vectors to maintain functional antiretroviral immunity without the need for repeated boosting.
Collapse
Affiliation(s)
| | | | | | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - David I. Watkins
- Department of Pathology, University of Miami, Miami, Florida, USA
| | - Mauricio A. Martins
- Department of Immunology and Microbiology, Scripps Research, Jupiter, Florida, USA
| |
Collapse
|
20
|
Ye J, Cao W, Tao Z, Zhao S, Wang C, Xu X, Zhao A, Gao J. Novel method for effectively amplifying human peripheral blood T cells in vitro. Exp Cell Res 2020; 399:112451. [PMID: 33352191 DOI: 10.1016/j.yexcr.2020.112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/26/2022]
Abstract
The use of chimeric antigen receptor-modified T cells (CAR T cells) is an effective therapy for advanced cancer, especially hematological malignancies, and this method has attracted widespread attention in the last several years. The type, number and vitality of the effector cells clearly play important roles in this approach. In this study, to expand the possibility of curing cancer through adoptive cell therapy (ACT), we developed a novel method for effectively obtaining abundant T cells in vitro. The fusion proteins of three cytokines, SA-hIL-2, SA-hIL-7 and SA-hIL-21, were anchored onto biotin magnetic beads to increase the number of cytokines on the surface of the magnetic beads, which increased the local concentration of cytokines and thus promoted the binding of cytokines to T cells. Next, we examined the effects of these modified magnetic beads on the proliferation rate of T cells and CD19 CAR T cells. In this study, we report the expression and purification of the active bifunctional fusion proteins SA-hIL-2, SA-hIL-7 and SA-hIL-21, which were bound to biotin magnetic beads to develop a platform that was employed to increase the local concentration of cytokines. When the cells had been cultured for 14 days, the proliferation rate of the CD3+ T cells in the group that received cytokine-coupled biotin magnetic beads (Beads-SA-CK) was higher than that of the cells in the groups that received soluble cytokines (Soluble-SA-CK) and that of the cells in the standard group (Standard-CK). We speculate that this difference may be the result of the increased expression of Bcl-2 and the increased phosphorylation of Stat5. Moreover, our results preliminarily indicate that compared with the other two treatments, Soluble-SA-CK and Standard-CK, adding cytokine-coupled biotin magnetic beads more effectively increases the proliferation rate of CD19 CAR-T cells. As expected, the CD19 CAR-T cells stimulated by Beads-SA-CK had a stronger anticancer effect than the cells stimulated by the other two treatments. An effective method of preparing abundant T cells in vitro was developed, and it may provide a novel strategy for ACT.
Collapse
Affiliation(s)
- Jun Ye
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wanwan Cao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zhibo Tao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Shuping Zhao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chunling Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xing Xu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ai Zhao
- Department of Hematology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China; Zhejiang Qixin Biotech, Wenzhou, Zhejiang, China.
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Qixin Biotech, Wenzhou, Zhejiang, China.
| |
Collapse
|
21
|
Zhao Y, Wang F, Dong G, Sheng Q, Feng S. A disease progression prediction model and nervous system symptoms in coronavirus disease 2019 patients. Am J Transl Res 2020; 12:8192-8207. [PMID: 33437392 PMCID: PMC7791519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate factors affecting coronavirus disease 2019 (COVID-19) progression, also to explore the clinical features and prognosis of nervous system symptom (NSS) involved COVID-19 patients. 417 COVID-19 patients were analyzed in this retrospective study, and they were clinically classified as severe patients and non-severe patients. According to NSS involved status, COVID-19 patients were further divided into NSS patients and non-NSS patients. Elderly cases, males, common comorbidities, NSS, respiratory/cardiovascular/gastrointestinal symptoms, bilateral lesion, multifocal lesion, bacterial infection, bacterial&fungal infection were more common in severe patients compared to non-severe patients. Meanwhile, severe COVID-19 patients showed increased baseline APTT, TT, D-dimer, CRP, ESR, CK-MB, creatine kinase, AST, ALT, creatinine, but decreased baseline platelet level, lymphocyte, albumin, GFR compared to non-severe patients. Notably, the continuous differences of lymphocyte, D-dimer, CRP, AST, ALT, albumin, GFR between severe patients and non-severe patients during treatment were observed. Age, NSS, bacterial & fungal infection, CRP and creatinine were further identified as independent risk factors for severe COVID-19, which could predict severe COVID-19 with area under curve of 0.861. Furthermore, severe patients presented with worse prognosis. Regrading NSS patients, they were related to older age, surgery history, diabetes comorbidities, respiratory/cardiovascular/gastrointestinal symptoms, bilateral lesion, multifocal lesion, bacterial infection, bacterial&fungal infection and more dysregulated laboratory indexes compared to non-NSS patients. Besides, NSS patients were correlated with poor prognosis to some extent. More intensive attention should be paid to COVID-19 patients with severe-disease risk factors and those with NSS involvement, in case of rapid deterioration.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Neurology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Southern University of Science and TechnologyShenzhen 518114, China
| | - Fuxiang Wang
- Department for Infectious Diseases, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Southern University of Science and TechnologyShenzhen 518114, China
| | - Gaolei Dong
- Department of Neurology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Southern University of Science and TechnologyShenzhen 518114, China
| | - Qi Sheng
- Department of Neurology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Southern University of Science and TechnologyShenzhen 518114, China
| | - Shiyan Feng
- Department for Infectious Diseases, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, Southern University of Science and TechnologyShenzhen 518114, China
| |
Collapse
|
22
|
Tao D, Zhang N, Huang Q, Ge C, Li Q, Li S, Weng K, Guo Q, Sui J, Wang C, Zhang X, Wang Y. Association of Epstein-Barr virus infection with peripheral immune parameters and clinical outcome in advanced nasopharyngeal carcinoma. Sci Rep 2020; 10:21976. [PMID: 33319825 PMCID: PMC7738521 DOI: 10.1038/s41598-020-78892-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to investigate the association of Epstein-Barr virus (EBV) with peripheral blood immune cell counts and clinical outcomes in advanced nasopharyngeal carcinoma (NPC) patients. In a retrospective design, 146 patients with NPC at stage IV were enrolled in this study. The association of EBV status with peripheral blood immune cell counts, distant metastases, and long-term survival in patients with advanced NPC were determined. Eighty-seven (59.6%) of all patients were positive for EBV. Compared with patients with normal NK cell count, patients with lower NK cell count showed a significantly lower EBV viral load (median: 614.0 vs. 2190.0 copies/mL, P = 0.024). EBV-positive patients showed a significantly higher incidence of liver metastasis than EBV-negative patients (32.6% vs. 23.7%, P = 0.021). Multi-variant regression analysis showed that EBV infection was independently associated with liver metastasis (OR: 2.33, P = 0.043). EBV positive patients showed a significantly worse PFS (P = 0.001) and OS (P = 0.001) than EBV negative patients. Multivariate Cox regression analysis revealed that EBV infection was independently associated with a worse PFS (HR: 1.94, P = 0.003), and OS (HR: 2.12, P = 0.014) in advanced NPC. In conclusion, EBV infection is associated with a high risk of liver metastasis and is also an independent negative predictor for PFS and OS in patients with advanced NPC. EBV infection is associated with lower CD8% and higher NK%, while lower NK cell count is associated with lower EBV viral load.
Collapse
Affiliation(s)
- Dan Tao
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ningning Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China. .,Breast Cancer Center, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
| | - Qingqing Huang
- Department of Nutrition, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Chuang Ge
- Department of Clinical Laboratory, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Qicheng Li
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Shujie Li
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Kegui Weng
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Qishuai Guo
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Jiangdong Sui
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Can Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Xin Zhang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Ying Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China. .,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
23
|
Ghosh S, Köstel Bal S, Edwards ESJ, Pillay B, Jiménez Heredia R, Erol Cipe F, Rao G, Salzer E, Zoghi S, Abolhassani H, Momen T, Gostick E, Price DA, Zhang Y, Oler AJ, Gonzaga-Jauregui C, Erman B, Metin A, Ilhan I, Haskologlu S, Islamoglu C, Baskin K, Ceylaner S, Yilmaz E, Unal E, Karakukcu M, Berghuis D, Cole T, Gupta AK, Hauck F, Kogler H, Hoepelman AIM, Baris S, Karakoc-Aydiner E, Ozen A, Kager L, Holzinger D, Paulussen M, Krüger R, Meisel R, Oommen PT, Morris E, Neven B, Worth A, van Montfrans J, Fraaij PLA, Choo S, Dogu F, Davies EG, Burns S, Dückers G, Becker RP, von Bernuth H, Latour S, Faraci M, Gattorno M, Su HC, Pan-Hammarström Q, Hammarström L, Lenardo MJ, Ma CS, Niehues T, Aghamohammadi A, Rezaei N, Ikinciogullari A, Tangye SG, Lankester AC, Boztug K. Extended clinical and immunological phenotype and transplant outcome in CD27 and CD70 deficiency. Blood 2020; 136:2638-2655. [PMID: 32603431 PMCID: PMC7735164 DOI: 10.1182/blood.2020006738] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
Biallelic mutations in the genes encoding CD27 or its ligand CD70 underlie inborn errors of immunity (IEIs) characterized predominantly by Epstein-Barr virus (EBV)-associated immune dysregulation, such as chronic viremia, severe infectious mononucleosis, hemophagocytic lymphohistiocytosis (HLH), lymphoproliferation, and malignancy. A comprehensive understanding of the natural history, immune characteristics, and transplant outcomes has remained elusive. Here, in a multi-institutional global collaboration, we collected the clinical information of 49 patients from 29 families (CD27, n = 33; CD70, n = 16), including 24 previously unreported individuals and identified a total of 16 distinct mutations in CD27, and 8 in CD70, respectively. The majority of patients (90%) were EBV+ at diagnosis, but only ∼30% presented with infectious mononucleosis. Lymphoproliferation and lymphoma were the main clinical manifestations (70% and 43%, respectively), and 9 of the CD27-deficient patients developed HLH. Twenty-one patients (43%) developed autoinflammatory features including uveitis, arthritis, and periodic fever. Detailed immunological characterization revealed aberrant generation of memory B and T cells, including a paucity of EBV-specific T cells, and impaired effector function of CD8+ T cells, thereby providing mechanistic insight into cellular defects underpinning the clinical features of disrupted CD27/CD70 signaling. Nineteen patients underwent allogeneic hematopoietic stem cell transplantation (HSCT) prior to adulthood predominantly because of lymphoma, with 95% survival without disease recurrence. Our data highlight the marked predisposition to lymphoma of both CD27- and CD70-deficient patients. The excellent outcome after HSCT supports the timely implementation of this treatment modality particularly in patients presenting with malignant transformation to lymphoma.
Collapse
Affiliation(s)
- Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sevgi Köstel Bal
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Emily S J Edwards
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Sydney, Randwick, NSW, Australia
| | - Bethany Pillay
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Sydney, Randwick, NSW, Australia
| | - Raúl Jiménez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Funda Erol Cipe
- Department of Pediatric Allergy and Immunology, Istinye University, Istanbul, Turkey
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Elisabeth Salzer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Tooba Momen
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emma Gostick
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Vaccine Research Center
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research
- Clinical Genomics Program, and
| | - Andrew J Oler
- Clinical Genomics Program, and
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD
| | | | - Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey
- Can Sucak Research Laboratory for Translational Immunology, Center for Genomics and Rare Diseases, Hacettepe University, Ankara, Turkey
| | - Ayse Metin
- Division of Pediatric Allergy and Immunology, University of Health Sciences/Ankara City Hospital/Children's Hospital, Ankara, Turkey
| | - Inci Ilhan
- Division of Pediatric Oncology, University of Health Sciences/Ankara City Hospital/Children's Hospital, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Allergy and Immunology, School of Medicine, Ankara University, Ankara, Turkey
| | - Candan Islamoglu
- Department of Pediatric Allergy and Immunology, School of Medicine, Ankara University, Ankara, Turkey
| | - Kubra Baskin
- Department of Pediatric Allergy and Immunology, School of Medicine, Ankara University, Ankara, Turkey
| | - Serdar Ceylaner
- Intergen Genetic Diagnosis and Research Center, Ankara, Turkey
| | - Ebru Yilmaz
- Department of Pediatrics, Division of Pediatric Hematology & Oncology & Molecular Biology and Genetic Department, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genom and Stem Cell Institution, GENKOK Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Ekrem Unal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology & Molecular Biology and Genetic Department, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genom and Stem Cell Institution, GENKOK Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Musa Karakukcu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology & Molecular Biology and Genetic Department, Erciyes University, Kayseri, Turkey
- Gevher Nesibe Genom and Stem Cell Institution, GENKOK Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Dagmar Berghuis
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Theresa Cole
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Aditya K Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Fabian Hauck
- Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hubert Kogler
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Andy I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Safa Baris
- Division of Allergy and Immunology, Marmara University, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Allergy and Immunology, Marmara University, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Allergy and Immunology, Marmara University, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Leo Kager
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Michael Paulussen
- Vestische Kinder-und Jugendklinik, Witten/Herdecke University, Datteln, Germany
| | - Renate Krüger
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Meisel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
| | - Prasad T Oommen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emma Morris
- Institute of Immunity & Transplantation, University College London, Royal Free Hospital, London, United Kingdom
| | - Benedicte Neven
- Unité d'Immuno-Hematologie et Rhumatologie, Département de Pédiatrie Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- INSERM U1163, Imagine Institute, Université de Paris, Paris, France
| | - Austen Worth
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, UMC Utrecht, Utrecht, The Netherlands
| | - Pieter L A Fraaij
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Subdivision Infectious Diseases and Immunology, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Sharon Choo
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Figen Dogu
- Department of Pediatric Allergy and Immunology, School of Medicine, Ankara University, Ankara, Turkey
| | - E Graham Davies
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Siobhan Burns
- Institute of Immunity & Transplantation, University College London, Royal Free Hospital, London, United Kingdom
- Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Gregor Dückers
- Department of Pediatrics, Helios Children's Hospital, Krefeld, Germany
| | - Ruy Perez Becker
- Department of Pediatrics, Helios Children's Hospital, Krefeld, Germany
| | - Horst von Bernuth
- Department of Pediatric Pulmonology, Immunology, and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Immunology, Labor Berlin GmbH, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM U1163, Imagine Institute, Université de Paris, Paris, France
| | - Maura Faraci
- Hematopoietic Stem Cell Transplantation Unit and Istituto di Ricovero e Cura Pediatrico a Carattere Scientifico (IRCSS) Istituto Giannina Gaslini Research Institute Genova, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiency, Istituto di Ricovero e Cura Pediatrico a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research
- Clinical Genomics Program, and
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition (NEO), Karolinska Institutet, Karolinska, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
- Beijing Genomics Institute (BGI) Shenzhen, Shenzhen, China
| | - Michael J Lenardo
- Clinical Genomics Program, and
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, MD
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Sydney, Randwick, NSW, Australia
| | - Tim Niehues
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; and
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; and
| | - Aydan Ikinciogullari
- Department of Pediatric Allergy and Immunology, School of Medicine, Ankara University, Ankara, Turkey
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, UNSW Sydney, Randwick, NSW, Australia
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Miliotis CN, Slack FJ. Multi-layered control of PD-L1 expression in Epstein-Barr virus-associated gastric cancer. ACTA ACUST UNITED AC 2020; 6. [PMID: 34212113 PMCID: PMC8244904 DOI: 10.20517/2394-4722.2020.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide. In approximately 10% of GC cases, cancer cells show ubiquitous and monoclonal Epstein-Barr virus (EBV) infection. A significant feature of EBV-associated GC (EBVaGC) is high lymphocytic infiltration and high expression of immune checkpoint proteins, including programmed death-ligand 1 (PD-L1). This highlights EBVaGC as a strong candidate for immune checkpoint blockade therapy. Indeed, several recent studies have shown that EBV positivity in GC correlates with positive response to programmed cell death protein 1 (PD-1)/PD-L1 blockade therapy. Understanding the mechanisms that control PD-L1 expression in EBVaGC can indicate new predictive biomarkers for immunotherapy, as well as therapeutic targets for combination therapy. Various mechanisms have been implicated in PD-L1 expression regulation, including structural variations, post-transcriptional control, oncogenic activation of intrinsic signaling pathways, and increased sensitivity to extrinsic signals. This review provides the most recent updates on the multilayered control of PD-L1 expression in EBVaGC.
Collapse
Affiliation(s)
- Christos N Miliotis
- HMS Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
McHugh D, Caduff N, Murer A, Engelmann C, Deng Y, Zdimerova H, Zens K, Chijioke O, Münz C. Infection and immune control of human oncogenic γ-herpesviruses in humanized mice. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180296. [PMID: 30955487 DOI: 10.1098/rstb.2018.0296] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) comprise the oncogenic human γ-herpesvirus family and are responsible for 2-3% of all tumours in man. With their prominent growth-transforming abilities and high prevalence in the human population, these pathogens have probably shaped the human immune system throughout evolution for near perfect immune control of the respective chronic infections in the vast majority of healthy pathogen carriers. The exclusive tropism of EBV and KSHV for humans has, however, made it difficult in the past to study their infection, tumourigenesis and immune control in vivo. Mice with reconstituted human immune system components (humanized mice) support replication of both viruses with both persisting latent and productive lytic infection. Moreover, B-cell lymphomas can be induced by EBV alone and KSHV co-infection with gene expression hallmarks of human malignancies that are associated with both viruses. Furthermore, cell-mediated immune control by primarily cytotoxic lymphocytes is induced upon infection and can be probed for its functional characteristics as well as putative requirements for its priming. Insights that have been gained from this model and remaining questions will be discussed in this review. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Donal McHugh
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Nicole Caduff
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Anita Murer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Yun Deng
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Hana Zdimerova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Kyra Zens
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich , Switzerland
| |
Collapse
|
26
|
Burns DM, Ryan GB, Harvey CM, Nagy E, Hughes S, Murray PG, Russell NH, Fox CP, Long HM. Non-uniform in vivo Expansion of Epstein-Barr Virus-Specific T-Cells Following Donor Lymphocyte Infusion for Post-transplant Lymphoproliferative Disease. Front Immunol 2019; 10:2489. [PMID: 31736946 PMCID: PMC6828838 DOI: 10.3389/fimmu.2019.02489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/04/2019] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated post-transplant lymphoproliferative disease (PTLD) is a life-threatening complication of T-lymphocyte deplete allogeneic hematopoietic stem cell transplantation (allo-HSCT). For patients with PTLD refractory to Rituximab, donor lymphocyte infusion (DLI) is established as a successful option for salvage therapy. However, although in vivo lymphocyte expansion has been correlated with good clinical outcome following DLI, the specificity and functional characteristics of EBV-specific T-cell responses remain poorly characterized. Here we describe two patients with Rituximab-refractory PTLD complicating T-cell deplete allo-HSCT, both of whom were successfully rescued with 1 × 106/Kg unselected stem cell donor-derived DLI. Prospective analyses revealed that complete clinical and radiological responses were associated with in vivo expansion of T and NK cells. Furthermore, EBV MHC tetramer, and interferon gamma analyses revealed a marked increase in EBV-specific T-cell frequency from 4 weeks after DLI. Reactivity was demonstrated against a range of EBV latent and lytic antigens, including those detected in tumor biopsy material. The immunodominant EBV-specific T cell response expanding in vivo following infusion matched the dominant response present in the DLI preparations prior to administration. Furthermore, differences in the repertoire of subdominant antigen-specific T-cells were also detected, suggesting that antigen-encounter in vivo can shape the immune response. These results demonstrate the value of prospectively studying in vivo T-cell responses, by facilitating the identification of important specificities required for clinical efficacy. Applying this approach on a larger scale promises to yield data which may be essential for the optimization of future adoptive immunotherapeutic strategies for PTLD.
Collapse
Affiliation(s)
- David M Burns
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gordon B Ryan
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | - Caroline M Harvey
- Department of Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Eszter Nagy
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | - Simon Hughes
- Department of Radiology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Paul G Murray
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | - Nigel H Russell
- Department of Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Christopher P Fox
- Department of Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Heather M Long
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Della Chiesa M, De Maria A, Muccio L, Bozzano F, Sivori S, Moretta L. Human NK Cells and Herpesviruses: Mechanisms of Recognition, Response and Adaptation. Front Microbiol 2019; 10:2297. [PMID: 31636622 PMCID: PMC6788305 DOI: 10.3389/fmicb.2019.02297] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/20/2019] [Indexed: 12/01/2022] Open
Abstract
NK cells contribute to early defenses against viruses through their inborn abilities that include sensing of PAMPs and inflammatory signals such as cytokines or chemokines, recognition, and killing of infected cells through activating surface receptors engagement. Moreover, they support adaptive responses via Ab-dependent mechanisms, triggered by CD16, and DC editing. Their fundamental role in anti-viral responses has been unveiled in patients with NK cell deficiencies suffering from severe Herpesvirus infections. Notably, these infections, often occurring as primary infections early in life, can be efficiently cleared by NK, T, and B cells in healthy hosts. Herpesviruses however, generate a complicated balance with the host immune system through their latency cycle moving between immune control and viral reactivation. This lifelong challenge has contributed to the development of numerous evasion mechanisms by Herpesviruses, many of which devoted to elude NK cell surveillance from viral reactivations rather than primary infections. This delicate equilibrium can be altered in proportions of healthy individuals promoting virus reactivation and, more often, in immunocompromised subjects. However, the constant stimulus provided by virus-host interplay has also favored NK-cell adaptation to Herpesviruses. During anti-HCMV responses, NK cells can reshape their receptor repertoire and function, through epigenetic remodeling, and acquire adaptive traits such as longevity and clonal expansion abilities. The major mechanisms of recognition and effector responses employed by NK cells against Herpesviruses, related to their genomic organization will be addressed, including those allowing NK cells to generate memory-like responses. In addition, the mechanisms underlying virus reactivation or control will be discussed.
Collapse
Affiliation(s)
- Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Department of Health Sciences (DISSAL), School of Medical and Pharmaceutical Sciences University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Federica Bozzano
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| |
Collapse
|
28
|
Long HM, Meckiff BJ, Taylor GS. The T-cell Response to Epstein-Barr Virus-New Tricks From an Old Dog. Front Immunol 2019; 10:2193. [PMID: 31620125 PMCID: PMC6759930 DOI: 10.3389/fimmu.2019.02193] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) infects most people and establishes life-long infection controlled by the host's immune system. The genetic stability of the virus, deep understanding of the viral antigens and immune epitopes recognized by the host's T-cell system and the fact that recent infection can be identified by the development of symptomatic infectious mononucleosis makes EBV a powerful system in which to study human immunology. The association between EBV and multiple cancers also means that the lessons learned have strong translational potential. Increasing evidence of a role for resident memory T-cells and non-conventional γδ T-cells in controlling EBV infection suggests new opportunities for research and means the virus will continue to provide exciting new insights into human biology and immunology into the future.
Collapse
Affiliation(s)
- Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Graham S. Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
29
|
Meckiff BJ, Ladell K, McLaren JE, Ryan GB, Leese AM, James EA, Price DA, Long HM. Primary EBV Infection Induces an Acute Wave of Activated Antigen-Specific Cytotoxic CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:1276-1287. [PMID: 31308093 PMCID: PMC6697742 DOI: 10.4049/jimmunol.1900377] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
Primary EBV infection drives highly cytotoxic virus-specific CD4+ T cell responses. EBV-specific memory CD4+ T cells are polyfunctional but lack cytotoxic activity. Acute EBV-specific CD4-CTLs differ transcriptionally from classical memory CD4-CTLs.
CD4+ T cells are essential for immune protection against viruses, yet their multiple roles remain ill-defined at the single-cell level in humans. Using HLA class II tetramers, we studied the functional properties and clonotypic architecture of EBV-specific CD4+ T cells in patients with infectious mononucleosis, a symptomatic manifestation of primary EBV infection, and in long-term healthy carriers of EBV. We found that primary infection elicited oligoclonal expansions of TH1-like EBV-specific CD4+ T cells armed with cytotoxic proteins that responded immediately ex vivo to challenge with EBV-infected B cells. Importantly, these acutely generated cytotoxic CD4+ T cells were highly activated and transcriptionally distinct from classically described cytotoxic CD4+ memory T cells that accumulate during other persistent viral infections, including CMV and HIV. In contrast, EBV-specific memory CD4+ T cells displayed increased cytokine polyfunctionality but lacked cytotoxic activity. These findings suggested an important effector role for acutely generated cytotoxic CD4+ T cells that could potentially be harnessed to improve the efficacy of vaccines against EBV.
Collapse
Affiliation(s)
- Benjamin J Meckiff
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; and
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; and
| | - Gordon B Ryan
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Alison M Leese
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eddie A James
- Tetramer Core Laboratory, Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; and
| | - Heather M Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
30
|
Zhou L, Lu DP. Immune reconstitution of HLA-A*0201/BMLF1- and HLA-A*1101/LMP2-specific Epstein Barr virus cytotoxic T lymphocytes within 90 days after haploidentical hematopoietic stem cell transplantation. Virol J 2019; 16:19. [PMID: 30736814 PMCID: PMC6368816 DOI: 10.1186/s12985-019-1123-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 01/21/2019] [Indexed: 02/05/2023] Open
Abstract
Background Haploidentical hematopoietic stem cell transplant (haplo-HSCT) recipients are at high risk for Epstein Barr virus (EBV)-related diseases. EBV-specific CD8+ cytotoxic T cells can control EBV-infected B cell expansion; however, no studies have investigated EBV-specific immune reconstitution after HSCT, particularly haplo-HSCT. Therefore, in this study, we aimed to characterize EBV-specific immune cell reconstitution after haplo-HSCT. Methods HLA-A*1101 and HLA-A*0201 pentamers folded with immunodominant EBV peptides were used to detect EBV-specific CD8+ T cells by flow cytometry in peripheral blood mononuclear cells from 19 haplo-HSCT recipients and the results were compared with those in controls. We also compared the EBV-specific pentamer-binding cell frequencies in patients with or without EBV-related diseases by flow cytometry. Results Pentamer-binding EBV-specific CD8+ T cells were detected at + 30, + 60 and + 90 days after haplo-HSCT in EBV-seropositive patients subjected to haplo-HSCT from an EBV-seropositive donor. The frequencies of the HLA-A*0201/BMLF1-GLC pentamer in haplo-HSCT patients at + 30 days were significantly lower than those in HLA-A*0201-positive healthy controls (p = 0.019) and patients at + 60 days (p = 0.003). The frequencies of the HLA-A*1101/LMP2-SSC pentamer at + 30, + 60, and + 90 days were significantly decreased compared with those in healthy controls (p = 0.009, 0.019, and 0.039, respectively); however, the frequencies of the HLA-A*1101/LMP2-SSC pentamer did not differ significantly among patients at + 30, + 60, and + 90 days (p = 0.886). There was a significant difference in the frequency of the HLA-A*0201/BMLF1-GLC pentamer at + 60 days between patients with and without EBV-related diseases (p = 0.024). Patients with EBV-related diseases showed lower percentages of HLA-A*0201/BMLF1-GLC specific CD8+ T cells. Conclusions Haplo-HSCT recipients could generate EBV-specific CD8+ T cells within + 30 days after transplantation. The HLA-A*0201/BMLF1-GLC pentamer cell frequency at + 60 days may be a useful indicator for monitoring EBV-related diseases in patients after haplo-HSCT. Transfusion with EBV-CTLs within 60 days after haplo-HSCT may have prophylactic effects against EBV-related diseases.
Collapse
Affiliation(s)
- Ling Zhou
- The Fifth People's Hospital of Shanghai, Fudan University, No. 801 Heqing Road, Minhang County, Shanghai, 200240, China.
| | - Dao-Pei Lu
- The Fifth People's Hospital of Shanghai, Fudan University, No. 801 Heqing Road, Minhang County, Shanghai, 200240, China.,Shanghai Dao-Pei Hospital, No. 126 Ruili Road, Minhang County, Shanghai, 200240, China
| |
Collapse
|
31
|
Forrest C, Hislop AD, Rickinson AB, Zuo J. Proteome-wide analysis of CD8+ T cell responses to EBV reveals differences between primary and persistent infection. PLoS Pathog 2018; 14:e1007110. [PMID: 30248160 PMCID: PMC6171963 DOI: 10.1371/journal.ppat.1007110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/04/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Human herpesviruses are antigenically rich agents that induce strong CD8+T cell responses in primary infection yet persist for life, continually challenging T cell memory through recurrent lytic replication and potentially influencing the spectrum of antigen-specific responses. Here we describe the first lytic proteome-wide analysis of CD8+ T cell responses to a gamma1-herpesvirus, Epstein-Barr virus (EBV), and the first such proteome-wide analysis of primary versus memory CD8+ T cell responses to any human herpesvirus. Primary effector preparations were generated directly from activated CD8+ T cells in the blood of infectious mononucleosis (IM) patients by in vitro mitogenic expansion. For memory preparations, EBV-specific cells in the blood of long-term virus carriers were first re-stimulated in vitro by autologous dendritic cells loaded with a lysate of lytically-infected cells, then expanded as for IM cells. Preparations from 7 donors of each type were screened against each of 70 EBV lytic cycle proteins in combination with the donor's individual HLA class I alleles. Multiple reactivities against immediate early (IE), early (E) and late (L) lytic cycle proteins, including many hitherto unrecognised targets, were detected in both contexts. Interestingly however, the two donor cohorts showed a different balance between IE, E and L reactivities. Primary responses targeted IE and a small group of E proteins preferentially, seemingly in line with their better presentation on the infected cell surface before later-expressed viral evasins take full hold. By contrast, target choice equilibrates in virus carriage with responses to key IE and E antigens still present but with responses to a select subset of L proteins now often prominent. We infer that, for EBV at least, long-term virus carriage with its low level virus replication and lytic antigen release is associated with a re-shaping of the virus-specific response.
Collapse
Affiliation(s)
- Calum Forrest
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D. Hislop
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan B. Rickinson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jianmin Zuo
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
32
|
Edwards ESJ, Bier J, Cole TS, Wong M, Hsu P, Berglund LJ, Boztug K, Lau A, Gostick E, Price DA, O'Sullivan M, Meyts I, Choo S, Gray P, Holland SM, Deenick EK, Uzel G, Tangye SG. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. J Allergy Clin Immunol 2018; 143:276-291.e6. [PMID: 29800648 DOI: 10.1016/j.jaci.2018.04.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/15/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Germline gain-of function (GOF) mutations in PIK3CD, encoding the catalytic p110δ subunit of phosphoinositide 3-kinase (PI3K), result in hyperactivation of the PI3K-AKT-mechanistic target of rapamycin pathway and underlie a novel inborn error of immunity. Affected subjects exhibit perturbed humoral and cellular immunity, manifesting as recurrent infections, autoimmunity, hepatosplenomegaly, uncontrolled EBV and/or cytomegalovirus infection, and increased incidence of B-cell lymphoproliferation, lymphoma, or both. Mechanisms underlying disease pathogenesis remain unknown. OBJECTIVE Understanding the cellular and molecular mechanisms underpinning inefficient surveillance of EBV-infected B cells is required to understand disease in patients with PIK3CD GOF mutations, identify key molecules required for cell-mediated immunity against EBV, and develop immunotherapeutic interventions for the treatment of this and other EBV-opathies. METHODS We studied the consequences of PIK3CD GOF mutations on the generation, differentiation, and function of CD8+ T cells and natural killer (NK) cells, which are implicated in host defense against infection with herpesviruses, including EBV. RESULTS PIK3CD GOF total and EBV-specific CD8+ T cells were skewed toward an effector phenotype, with exaggerated expression of markers associated with premature immunosenescence/exhaustion and increased susceptibility to reactivation-induced cell death. These findings were recapitulated in a novel mouse model of PI3K GOF mutations. NK cells in patients with PIK3CD GOF mutations also exhibited perturbed expression of differentiation-associated molecules. Both CD8+ T and NK cells had reduced capacity to kill EBV-infected B cells. PIK3CD GOF B cells had increased expression of CD48, programmed death ligand 1/2, and CD70. CONCLUSIONS PIK3CD GOF mutations aberrantly induce exhaustion, senescence, or both and impair cytotoxicity of CD8+ T and NK cells. These defects might contribute to clinical features of affected subjects, such as impaired immunity to herpesviruses and tumor surveillance.
Collapse
Affiliation(s)
- Emily S J Edwards
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Julia Bier
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Theresa S Cole
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Melanie Wong
- Children's Hospital at Westmead, Westmead, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia
| | - Peter Hsu
- Children's Hospital at Westmead, Westmead, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Lucinda J Berglund
- CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia; Immunopathology Department, Westmead Hospital, Westmead, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, St Anna Children's Hospital and Children's Cancer Research Institute, Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, and Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Anthony Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom; Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | | | - Isabelle Meyts
- Department of Pediatrics, University Hospital Leuven, Leuven, Belgium; Department of Microbiology and Immunology, Childhood Immunology, KU Leuven, Leuven, Belgium
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia; Immunology Laboratory, Laboratory Services, Royal Children's Hospital, Melbourne, Australia
| | - Paul Gray
- CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia; University of New South Wales School of Women's and Children's Health, Randwick, Australia
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia.
| |
Collapse
|
33
|
Jandus C, Usatorre AM, Viganò S, Zhang L, Romero P. The Vast Universe of T Cell Diversity: Subsets of Memory Cells and Their Differentiation. Methods Mol Biol 2018; 1514:1-17. [PMID: 27787788 DOI: 10.1007/978-1-4939-6548-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The T cell receptor confers specificity for antigen recognition to T cells. By the first encounter with the cognate antigen, reactive T cells initiate a program of expansion and differentiation that will define not only the ultimate quantity of specific cells that will be generated, but more importantly their quality and functional heterogeneity. Recent achievements using mouse model infection systems have helped to shed light into the complex network of factors that dictate and sustain memory T cell differentiation, ranging from antigen load, TCR signal strength, metabolic fitness, transcriptional programs, and proliferative potential. The different models of memory T cell differentiation are discussed in this chapter, and key phenotypic and functional attributes of memory T cell subsets are presented, both for mouse and human cells. Therapeutic manipulation of memory T cell generation is expected to provide novel unique ways to optimize current immunotherapies, both in infection and cancer.
Collapse
Affiliation(s)
- Camilla Jandus
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Amaia Martínez Usatorre
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Selena Viganò
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Lianjun Zhang
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Pedro Romero
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
34
|
Cruz-Muñoz ME, Fuentes-Pananá EM. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System. Front Microbiol 2018; 8:2521. [PMID: 29354096 PMCID: PMC5760548 DOI: 10.3389/fmicb.2017.02521] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses are the most abundant and diverse biological entities in the planet. Historically, our main interest in viruses has focused on their pathogenic role, recognized by pandemics that have decimated the world population. However, viral infections have also played a major role in the evolution of cellular organisms, both through interchanging of genes with novel functions and shaping the immune system. Examples abound of infections that seriously compromise the host integrity, but evidence of plant and insect viruses mutualistic relationships have recently surfaced in which infected hosts are better suited for survival, arguing that virus-host interactions are initially parasitic but become mutualistic over years of co-evolution. A similar mutual help scenario has emerged with commensal gut bacteria. EBV is a herpesvirus that shares more than a hundred million years of co-evolution with humans, today successfully infecting close to 100% of the adult world population. Infection is usually acquired early in childhood persisting for the host lifetime mostly without apparent clinical symptoms. Disturbance of this homeostasis is rare and results in several diseases, of which the best understood are infectious mononucleosis and several EBV-associated cancers. Less understood are recently found inborn errors of the immune system that result in primary immunodeficiencies with an increased predisposition almost exclusive to EBV-associated diseases. Puzzling to these scenarios of broken homeostasis is the co-existence of immunosuppression, inflammation, autoimmunity and cancer. Homologous to EBV, HCMV, HHV-6 and HHV-7 are herpesviruses that also latently infect most individuals. Several lines of evidence support a mutualistic equilibrium between HCMV/EBV and hosts, that when altered trigger diseases in which the immune system plays a critical role. Interestingly, these beta and gamma herpesviruses persistently infect all immune lineages and early precursor cells. In this review, we will discuss the evidence of the benefits that infection of immune cells with these herpesviruses brings to the host. Also, the circumstances in which this positive relationship is broken, predisposing the host to diseases characterized by an abnormal function of the host immune system.
Collapse
Affiliation(s)
- Mario E Cruz-Muñoz
- Laboratorio de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
35
|
Cohen JI. Vaccine Development for Epstein-Barr Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:477-493. [PMID: 29896681 DOI: 10.1007/978-981-10-7230-7_22] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and is associated with several malignancies, including nasopharyngeal carcinoma, gastric carcinoma, Hodgkin lymphoma, Burkitt lymphoma, and lymphomas in immunocompromised persons, as well as multiple sclerosis. A vaccine is currently unavailable. While monomeric EBV gp350 was shown in a phase 2 trial to reduce the incidence of infectious mononucleosis, but not the rate of EBV infection, newer formulations of gp350 including multimeric forms, viruslike particles, and nanoparticles may be more effective. A vaccine that also includes additional viral glycoproteins, lytic proteins, or latency proteins might improve the effectiveness of an EBV gp350 vaccine. Clinical trials to determine if an EBV vaccine can reduce the rate of infectious mononucleosis or posttransplant lymphoproliferative disease should be performed. The former is important since infectious mononucleosis can be associated with debilitating fatigue as well as other complications, and EBV infectious mononucleosis is associated with increased rates of Hodgkin lymphoma and multiple sclerosis. A vaccine to reduce EBV posttransplant lymphoproliferative disease would be an important proof of principle to prevent an EBV-associated malignancy. Trials of an EBV vaccine to reduce the incidence of Hodgkin lymphoma, multiple sclerosis, or Burkitt lymphoma would be difficult but feasible.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Abbott RJ, Pachnio A, Pedroza-Pacheco I, Leese AM, Begum J, Long HM, Croom-Carter D, Stacey A, Moss PAH, Hislop AD, Borrow P, Rickinson AB, Bell AI. Asymptomatic Primary Infection with Epstein-Barr Virus: Observations on Young Adult Cases. J Virol 2017; 91:e00382-17. [PMID: 28835490 PMCID: PMC5640854 DOI: 10.1128/jvi.00382-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
Epstein-Barr virus (EBV) is typically acquired asymptomatically in childhood. In contrast, infection later in life often leads to infectious mononucleosis (IM), a febrile illness characterized by anti-EBV IgM antibody positivity, high loads of circulating latently infected B cells, and a marked lymphocytosis caused by hyperexpansion of EBV-specific CD8+ T cells plus a milder expansion of CD56dim NKG2A+ KIR- natural killer (NK) cells. How the two situations compare is unclear due to the paucity of studies on clinically silent infection. Here we describe five prospectively studied patients with asymptomatic infections identified in a seroepidemiologic survey of university entrants. In each case, the key blood sample had high cell-associated viral loads without a marked CD8 lymphocytosis or NK cell disturbance like those seen in patients during the acute phase of IM. Two of the cases with the highest viral loads showed a coincident expansion of activated EBV-specific CD8+ T cells, but overall CD8+ T cell numbers were either unaffected or only mildly increased. Two cases with slightly lower loads, in whom serology suggests the infection may have been caught earlier in the course of infection, also showed no T or NK cell expansion at the time. Interestingly, in another case with a higher viral load, in which T and NK cell responses were undetectable in the primary blood sample in which infection was detected, EBV-specific T cell responses did not appear until several months later, by which time the viral loads in the blood had already fallen. Thus, some patients with asymptomatic primary infections have very high circulating viral loads similar to those in patients during the acute phase of IM and a cell-mediated immune response that is qualitatively similar to that in IM patients but of a lower magnitude. However, other patients may have quite different immune responses that ultimately could reveal novel mechanisms of host control.IMPORTANCE Epstein-Barr virus (EBV) is transmitted orally, replicates in the throat, and then invades the B lymphocyte pool through a growth-transforming latent infection. While primary infection in childhood is usually asymptomatic, delayed infection is associated with infectious mononucleosis (IM), a febrile illness in which patients have high circulating viral loads and an exaggerated virus-induced immune response involving both CD8+ T cells and natural killer (NK) cells. Here we show that in five cases of asymptomatic infection, viral loads in the blood were as high as those in patients during the acute phase of IM, whereas the cell-mediated responses, even when they resembled those in patients during the acute phase of IM in timing and quality, were never as exaggerated. We infer that IM symptoms arise as a consequence not of the virus infection per se but of the hyperactivated immune response. Interestingly, there were idiosyncratic differences among asymptomatic cases in the relationship between the viral load and the response kinetics, emphasizing how much there is still to learn about primary EBV infection.
Collapse
Affiliation(s)
- Rachel J Abbott
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Annette Pachnio
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Alison M Leese
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Jusnara Begum
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Heather M Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Debbie Croom-Carter
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrea Stacey
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul A H Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D Hislop
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Alan B Rickinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Andrew I Bell
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
37
|
Analysis of BZLF1 mRNA detection in saliva as a marker for active replication of Epstein-Barr virus. J Virol Methods 2017; 244:11-16. [PMID: 28257801 DOI: 10.1016/j.jviromet.2017.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/20/2017] [Indexed: 11/21/2022]
Abstract
Monitoring replicative Epstein-Barr virus (EBV) infection still remains a challenge in modern laboratory routine. The immediate-early protein BZLF1 mediates the switch between latent and replicate forms of EBV infection. The aim of this study was to analyze the feasibility of BZLF1 mRNA detection in saliva as a marker for active replication of the virus. Various specimens (saliva, plasma, PBMC) from 17 patients with EBV-induced infectious mononucleosis (IM) and 4 control patients were examined for expression of viral BZLF1 mRNA by means of real-time PCR. BZLF1 expression was correlated to the amount of viral DNA in either compartment. Digestion of plasma and saliva samples with DNase I allowed distinguishing between encapsidated and naked viral DNA. BZLF1 transcripts were found in all different types of specimens in varying frequencies. BZLF1 expression in saliva, PBMC, and plasma correlated with viral load in each compartment. Interestingly, those patients with detectable BZLF1 expression in saliva had a more severe course of infection with longer duration of hospitalization. In conclusion, this study demonstrates the feasibility of BZLF1 mRNA detection in saliva specimens during replicative EBV infection. Its significance for the diagnosis of reactivated EBV infection, particularly under immunosuppression, has to be elucidated in further studies.
Collapse
|
38
|
Smith C, Khanna R. Adoptive cellular immunotherapy for virus‐associated cancers: a new paradigm in personalized medicine. Immunol Cell Biol 2017; 95:364-371. [DOI: 10.1038/icb.2016.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Corey Smith
- Department of Immunology, QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumor Immunology Laboratory, QIMR Berghofer Medical Research Institute Brisbane Queensland Australia
| | - Rajiv Khanna
- Department of Immunology, QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumor Immunology Laboratory, QIMR Berghofer Medical Research Institute Brisbane Queensland Australia
| |
Collapse
|
39
|
Abolhassani H, Edwards ESJ, Ikinciogullari A, Jing H, Borte S, Buggert M, Du L, Matsuda-Lennikov M, Romano R, Caridha R, Bade S, Zhang Y, Frederiksen J, Fang M, Bal SK, Haskologlu S, Dogu F, Tacyildiz N, Matthews HF, McElwee JJ, Gostick E, Price DA, Palendira U, Aghamohammadi A, Boisson B, Rezaei N, Karlsson AC, Lenardo MJ, Casanova JL, Hammarström L, Tangye SG, Su HC, Pan-Hammarström Q. Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. J Exp Med 2016; 214:91-106. [PMID: 28011864 PMCID: PMC5206499 DOI: 10.1084/jem.20160849] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/04/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Abolhassani et al. show that CD70 deficiency is a novel cause of combined immunodeficiency and EBV-associated diseases, reminiscent of CD27 deficiency. CD70–CD27 interactions play a nonredundant role regulating humoral- and cell-mediated immunity in humans, especially for control of EBV. In this study, we describe four patients from two unrelated families of different ethnicities with a primary immunodeficiency, predominantly manifesting as susceptibility to Epstein-Barr virus (EBV)–related diseases. Three patients presented with EBV-associated Hodgkin’s lymphoma and hypogammaglobulinemia; one also had severe varicella infection. The fourth had viral encephalitis during infancy. Homozygous frameshift or in-frame deletions in CD70 in these patients abolished either CD70 surface expression or binding to its cognate receptor CD27. Blood lymphocyte numbers were normal, but the proportions of memory B cells and EBV-specific effector memory CD8+ T cells were reduced. Furthermore, although T cell proliferation was normal, in vitro–generated EBV-specific cytotoxic T cell activity was reduced because of CD70 deficiency. This reflected impaired activation by, rather than effects during killing of, EBV-transformed B cells. Notably, expression of 2B4 and NKG2D, receptors implicated in controlling EBV infection, on memory CD8+ T cells from CD70-deficient individuals was reduced, consistent with their impaired killing of EBV-infected cells. Thus, autosomal recessive CD70 deficiency is a novel cause of combined immunodeficiency and EBV-associated diseases, reminiscent of inherited CD27 deficiency. Overall, human CD70–CD27 interactions therefore play a nonredundant role in T and B cell–mediated immunity, especially for protection against EBV and humoral immunity.
Collapse
Affiliation(s)
- Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE1418 Stockholm, Sweden.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14149 Tehran, Iran
| | - Emily S J Edwards
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst NSW 2010, Australia
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, 06100 Dikimevi-Ankara, Turkey
| | - Huie Jing
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Stephan Borte
- ImmunoDeficiency Center Leipzig, Hospital St. Georg Leipzig, D-04129 Leipzig, Germany
| | - Marcus Buggert
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE1418 Stockholm, Sweden.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Likun Du
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE1418 Stockholm, Sweden
| | - Mami Matsuda-Lennikov
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rosa Romano
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE1418 Stockholm, Sweden
| | - Rozina Caridha
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE1418 Stockholm, Sweden
| | - Sangeeta Bade
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yu Zhang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Juliet Frederiksen
- Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mingyan Fang
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE1418 Stockholm, Sweden
| | - Sevgi Kostel Bal
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, 06100 Dikimevi-Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, 06100 Dikimevi-Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, 06100 Dikimevi-Ankara, Turkey
| | - Nurdan Tacyildiz
- Department of Pediatric Hematology and Oncology, Ankara University Medical School, 06100 Dikimevi-Ankara, Turkey
| | - Helen F Matthews
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, UK
| | - David A Price
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, UK
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14149 Tehran, Iran.,Primary Immunodeficiency Diseases Network, Universal Scientific Education and Research Network, 14149 Tehran, Iran
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065.,Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale U.1163, Necker Hospital for Sick Children, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14149 Tehran, Iran.,Primary Immunodeficiency Diseases Network, Universal Scientific Education and Research Network, 14149 Tehran, Iran
| | - Annika C Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE1418 Stockholm, Sweden
| | - Michael J Lenardo
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.,Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065.,Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale U.1163, Necker Hospital for Sick Children, 75015 Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France.,Paris Descartes University, Imagine Institute, 75015 Paris, France.,Howard Hughes Medical Institute, New York, NY 10065
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE1418 Stockholm, Sweden
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia .,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst NSW 2010, Australia
| | - Helen C Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 .,Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE1418 Stockholm, Sweden
| |
Collapse
|
40
|
Geerdink JX, Simons SO, Pike R, Stauss HJ, Heijdra YF, Hurst JR. Differences in systemic adaptive immunity contribute to the 'frequent exacerbator' COPD phenotype. Respir Res 2016; 17:140. [PMID: 27793198 PMCID: PMC5084432 DOI: 10.1186/s12931-016-0456-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Some COPD patients are more susceptible to exacerbations than others. Mechanisms underlying these differences in susceptibility are not well understood. We hypothesized that altered cell mediated immune responses may underlie a propensity to suffer from frequent exacerbations in COPD. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from 24 stable COPD patients, eight frequent exacerbators (≥3 diary-card exacerbations/year) and 16 infrequent exacerbators (< 3 diary-card exacerbations/year). Detailed multi-parameter flow cytometry was used to study differences in innate and adaptive systemic immune function between frequent and infrequently exacerbating COPD patients. RESULTS The 24 COPD patients had a mean (SD) age of 76.3 (9.4) years and FEV1 1.43 (0.60)L, 53.3 (18.3)% predicted. PBMCs of frequent exacerbators (FE) contained lower frequencies of CD4+ T central memory cells (CD4+ Tcm) compared to infrequent exacerbators (IE) (FE = 18.7 %; IE = 23.9 %; p = 0.035). This observation was also apparent in absolute numbers of CD4+ Tcm cells (FE = 0.17 × 10^6/mL; IE = 0.25 × 10^6/mL; p = 0.035). PBMCs of FE contained a lower frequency of CD8+ T effector memory cells expressing HLA-DR (Human Leukocyte Antigen - D Related) compared to IE COPD patients (FE = 22.7 %; IE = 31.5 %; p = 0.007). CONCLUSION Differences in the adaptive systemic immune system might associate with exacerbation susceptibility in the 'frequent exacerbator' COPD phenotype. These differences include fewer CD4+ T central memory cells and CD8+ T effector memory cells. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Jasper X Geerdink
- Department of Respiratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands.,UCL Respiratory, University College London, London, UK
| | - Sami O Simons
- Department of Respiratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rebecca Pike
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Hans J Stauss
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Yvonne F Heijdra
- Department of Respiratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - John R Hurst
- UCL Respiratory, University College London, London, UK.
| |
Collapse
|
41
|
van Aalderen MC, Remmerswaal EBM, Heutinck KM, ten Brinke A, Feltkamp MCW, van der Weerd NC, van der Pant KAMI, Bemelman FJ, van Lier RAW, ten Berge IJM. Clinically Relevant Reactivation of Polyomavirus BK (BKPyV) in HLA-A02-Positive Renal Transplant Recipients Is Associated with Impaired Effector-Memory Differentiation of BKPyV-Specific CD8+ T Cells. PLoS Pathog 2016; 12:e1005903. [PMID: 27723787 PMCID: PMC5056763 DOI: 10.1371/journal.ppat.1005903] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
Polyomavirus BK (BKPyV) frequently reactivates in immunosuppressed renal transplant recipients (RTRs) and may lead to graft loss due to BKPyV-induced interstitial nephritis (BKVN). Little is known on the differentiation of CD8+ T cells targeting BKPyV in RTRs. Here we investigated whether BKPyV-specific CD8+ T cell differentiation differs in RTRs with varying degrees of BKPyV reactivation and/or BKVN. Using combinatorial encoding with tetramers carrying BKPyV major capsid protein (VP1) and large T antigen protein (LTAG) epitopes, we investigated CD8+ T cell responses to BKPyV in longitudinally obtained PBMC samples from 46 HLA-A02-positive RTRs and 20 healthy adults. We were also able to isolate BKPyV-specific CD8+ T cells from five renal allografts, two of which were affected by BKVN. Before transplantation, BKPyV-specific CD8+ T cells targeting VP1 and LTAG epitopes appeared predominantly as central-memory and CD27+/CD28+ effector-memory (TEM), and naïve-like PD-1-expressing cells, respectively. After viral reactivation, BKPyV-specific CD8+ T cells assumed CD28− TEM and TEMRA states in patients who were able to control BKPyV, whereas differentiation lagged behind in patients with severe viral reactivation or BKVN. Furthermore, VP1-specific CD69+/CD103+ tissue-resident memory (TRM) cells accumulated in BKVN-affected allografts but lacked signs of effector differentiation. In contrast, granzyme B-expressing effector cells were detected in allografts not affected by BKVN. In conclusion, effector-memory differentiation of BKPyV-specific CD8+ T cells in patients with high viral load or BKVN is impaired. Further characterization of the specific mechanisms behind this altered cellular differentiation is necessary to develop therapies that can prevent the emergence of BKVN. In immunosuppressed renal transplant recipients (RTRs), BKPyV frequently reactivates from latency and may cause severe interstitial nephritis in the allograft (BKVN). Not only is there no effective treatment, it also not understood why BKVN arises in some RTRs but not in all. In the current study we investigated populations of CD8+ T cells targeting epitopes from structural and non-structural BKPyV proteins in RTRs over the course of transplantation. In contrast to RTRs who suffered from self-limiting reactivation of BKPyV, patients who developed severe viral reactivation and BKVN were found to have BKPyV-specific CD8+ T cells which did not, or less often differentiate into CD28− effector-memory cells during viral reactivation. Moreover, virus-specific CD8+ T cell activation and differentiation was not only impaired in the circulation, but possibly also in BKVN-affected renal allografts. In contrast to the CD8+ T cells in kidneys from three patients who did not develop BKVN, T cells in two BKVN-affected kidneys did not display typical cytotoxic effector traits. These findings suggest that impaired BKPyV-specific CD8+ T cell maturation in response to viral reactivation, possibly owing to inter-individual differences in sensitivity to immunosuppressive medication or to certain viral quasispecies, underlies the emergence of severe viral reactivation and BKVN.
Collapse
Affiliation(s)
- Michiel C. van Aalderen
- Department of Experimental Immunology, Amsterdam, the Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
- * E-mail:
| | - Ester B. M. Remmerswaal
- Department of Experimental Immunology, Amsterdam, the Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Kirstin M. Heutinck
- Department of Experimental Immunology, Amsterdam, the Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Anja ten Brinke
- Sanquin Blood Supply Foundation and Landsteiner laboratory, Amsterdam, the Netherlands
| | - Mariet C. W. Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Neelke C. van der Weerd
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Frederike J. Bemelman
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - René A. W. van Lier
- Sanquin Blood Supply Foundation and Landsteiner laboratory, Amsterdam, the Netherlands
| | - Ineke J. M. ten Berge
- Department of Experimental Immunology, Amsterdam, the Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
42
|
Maintenance of the EBV-specific CD8 + TCRαβ repertoire in immunosuppressed lung transplant recipients. Immunol Cell Biol 2016; 95:77-86. [PMID: 27507557 PMCID: PMC5214975 DOI: 10.1038/icb.2016.71] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/04/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is one of the most common viruses in humans, capable of causing life-threatening infections and cancers in immunocompromised individuals. Although CD8+ T cells provide key protection against EBV, the persistence and dynamics of specific T-cell receptor (TCR) clones during immunosuppression in transplant patients is largely unknown. For the first time, we used a novel single-cell TCRαβ multiplex-nested reverse transcriptase PCR to dissect TCRαβ clonal diversity within GLCTLVAML (GLC)-specific CD8+ T cells in healthy individuals and immunocompromised lung transplant recipients. The GLC peptide presented by HLA-A*02:01 is one of the most immunogenic T-cell targets from the EBV proteome. We found that the GLC-specific TCRαβ repertoire was heavily biased toward TRAV5 and encompassed five classes of public TCRαβs, suggesting that these clonotypes are preferentially utilized following infection. We identified that a common TRAV5 was diversely paired with different TRAJ and TRBV/TRBJ genes, in both immunocompetent and immunocompromised individuals, with an average of 12 different TCRαβ clonotypes/donor. Moreover, pre-transplant GLC-specific TCRαβ repertoires were relatively stable over 1 year post transplant under immunosuppression in the absence or presence of EBV reactivation. In addition, we provide the first evidence of early GLC-specific CD8+ T cells at 87 days post transplant, which preceded clinical EBV detection at 242 days in an EBV-seronegative patient receiving a lung allograft from an EBV-seropositive donor. This was associated with a relatively stable TCRαβ repertoire after CD8+ T-cell expansion. Our findings provide insights into the composition and temporal dynamics of the EBV-specific TCRαβ repertoire in immunocompromised transplant patients and suggest that the early detection of EBV-specific T cells might be a predictor of ensuing EBV blood viremia.
Collapse
|
43
|
Tagawa T, Albanese M, Bouvet M, Moosmann A, Mautner J, Heissmeyer V, Zielinski C, Lutter D, Hoser J, Hastreiter M, Hayes M, Sugden B, Hammerschmidt W. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J Exp Med 2016; 213:2065-80. [PMID: 27621419 PMCID: PMC5030804 DOI: 10.1084/jem.20160248] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
EBV reduces the activation of cytotoxic CD4+ effector T cells by inducing a state of reduced immunogenicity in infected B cells. EBV-derived miRNAs suppress release of proinflammatory cytokines, interfere with peptide processing and presentation on HLA class II, repress differentiation of naive CD4+ T cells to Th1 cells, and ultimately avoid killing of infected B cells. Epstein-Barr virus (EBV) is a tumor virus that establishes lifelong infection in most of humanity, despite eliciting strong and stable virus-specific immune responses. EBV encodes at least 44 miRNAs, most of them with unknown function. Here, we show that multiple EBV miRNAs modulate immune recognition of recently infected primary B cells, EBV's natural target cells. EBV miRNAs collectively and specifically suppress release of proinflammatory cytokines such as IL-12, repress differentiation of naive CD4+ T cells to Th1 cells, interfere with peptide processing and presentation on HLA class II, and thus reduce activation of cytotoxic EBV-specific CD4+ effector T cells and killing of infected B cells. Our findings identify a previously unknown viral strategy of immune evasion. By rapidly expressing multiple miRNAs, which are themselves nonimmunogenic, EBV counteracts recognition by CD4+ T cells and establishes a program of reduced immunogenicity in recently infected B cells, allowing the virus to express viral proteins required for establishment of life-long infection.
Collapse
Affiliation(s)
- Takanobu Tagawa
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany
| | - Manuel Albanese
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany
| | - Mickaël Bouvet
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany
| | - Andreas Moosmann
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany
| | - Josef Mautner
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany Children's Hospital, Technical University Munich, D-80337 Munich, Germany
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health Munich, University of Munich, D-80539 Munich, Germany Institute for Immunology, University of Munich, D-80539 Munich, Germany
| | - Christina Zielinski
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, D-80337 Munich, Germany
| | - Dominik Lutter
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Munich, Germany
| | - Jonathan Hoser
- Institute of Bioinformatics and System Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Munich, Germany
| | - Maximilian Hastreiter
- Institute of Bioinformatics and System Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Munich, Germany
| | - Mitch Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Partner site Munich, Germany, D-81377 Munich, Germany German Centre for Infection Research (DZIF), Partner site Munich, Germany, D-81377 Munich, Germany
| |
Collapse
|
44
|
CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol 2016; 17:1187-96. [DOI: 10.1038/ni.3543] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 12/12/2022]
|
45
|
Schmittnaegel M, Hoffmann E, Imhof-Jung S, Fischer C, Drabner G, Georges G, Klein C, Knoetgen H. A New Class of Bifunctional Major Histocompatibility Class I Antibody Fusion Molecules to Redirect CD8 T Cells. Mol Cancer Ther 2016; 15:2130-42. [PMID: 27353170 DOI: 10.1158/1535-7163.mct-16-0207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/17/2016] [Indexed: 11/16/2022]
Abstract
Bifunctional antibody fusion proteins engaging effector T cells for targeted elimination of tumor cells via CD3 binding have shown efficacy in both preclinical and clinical studies. Different from such a polyclonal T-cell recruitment, an alternative concept is to engage only antigen-specific T-cell subsets. Recruitment of specific subsets of T cells may be as potent but potentially lead to fewer side effects. Tumor-targeted peptide-MHC class I complexes (pMHCI-IgGs) bearing known antigenic peptides complexed with MHC class I molecules mark tumor cells as antigenic and utilize the physiologic way to interact with and activate T-cell receptors. If, for example, virus-specific CD8(+) T cells are addressed, the associated strong antigenicity and tight immune surveillance of the effector cells could lead to efficacious antitumor treatment in various tissues. However, peptide-MHC class I fusions are difficult to express recombinantly, especially when fused to entire antibody molecules. Consequently, current formats are largely limited to small antibody fragment fusions expressed in bacteria followed by refolding or chemical conjugation. Here, we describe a new molecular format bearing a single pMHCI complex per IgG fusion molecule characterized by enhanced stability and expression yields. This molecular format can be expressed in a full immunoglobulin format and can be designed as mono- or bivalent antibody binders. Mol Cancer Ther; 15(9); 2130-42. ©2016 AACR.
Collapse
Affiliation(s)
| | - Eike Hoffmann
- Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Sabine Imhof-Jung
- Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Cornelia Fischer
- Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Georg Drabner
- Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Guy Georges
- Large Molecule Research, Roche Innovation Center Munich, Munich, Germany
| | - Christian Klein
- Discovery Oncology, Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Hendrik Knoetgen
- Therapeutic Modalities, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
46
|
Hanley PJ, Melenhorst JJ, Nikiforow S, Scheinberg P, Blaney JW, Demmler-Harrison G, Cruz CR, Lam S, Krance RA, Leung KS, Martinez CA, Liu H, Douek DC, Heslop HE, Rooney CM, Shpall EJ, Barrett AJ, Rodgers JR, Bollard CM. CMV-specific T cells generated from naïve T cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med 2016; 7:285ra63. [PMID: 25925682 DOI: 10.1126/scitranslmed.aaa2546] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adoptive transfer of cytomegalovirus (CMV)-specific T cells derived from adult seropositive donors can effectively restore antiviral immunity after transplantation. However, CMV-seronegative donors lack CMV-specific memory T cells, which restricts the availability of virus-specific T cells for immunoprophylaxis. We demonstrate the feasibility of deriving CMV-specific T cells from naïve cells for T cell therapy. Naïve T cells primed to recognize CMV were restricted to different, atypical epitopes than T cells derived from CMV-seropositive individuals; however, these two cell populations had similar avidities. CMV-seropositive individuals also had T cells recognizing these atypical epitopes, but these cells had a lower avidity than those derived from the seronegative subjects, which suggests that high-avidity T cells to these epitopes may be lost over time. Indeed, recipients of cord blood (CB) grafts who did not develop CMV were found by clonotypic analysis to have T cells recognizing atypical CMVpp65 epitopes. Therefore, we examined unmanipulated CB units and found that T cells with T cell receptors restricted by atypical epitopes were the most common, which may explain why these T cells expanded. When infused to recipients, naïve donor-derived virus-specific T cells that recognized atypical epitopes were associated with prolonged periods of CMV-free survival and complete remission. These data suggest that naïve-derived T cells from seronegative patients may be an additional source of cells for CMV immunoprophylaxis.
Collapse
Affiliation(s)
- Patrick J Hanley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. Program for Cell Enhancement and Technologies for Immunotherapy, The Sheikh Zayed Institute for Pediatric Surgical Innovation, the Center for Cancer and Immunology Research, and the Division of Blood and Marrow Transplantation, Children's National Health System and The George Washington University, Washington, DC 20052, USA
| | - Jan J Melenhorst
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Nikiforow
- Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, MA 02115, USA
| | - Phillip Scheinberg
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James W Blaney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | | | - C Russell Cruz
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Program for Cell Enhancement and Technologies for Immunotherapy, The Sheikh Zayed Institute for Pediatric Surgical Innovation, the Center for Cancer and Immunology Research, and the Division of Blood and Marrow Transplantation, Children's National Health System and The George Washington University, Washington, DC 20052, USA
| | - Sharon Lam
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. Program for Cell Enhancement and Technologies for Immunotherapy, The Sheikh Zayed Institute for Pediatric Surgical Innovation, the Center for Cancer and Immunology Research, and the Division of Blood and Marrow Transplantation, Children's National Health System and The George Washington University, Washington, DC 20052, USA
| | - Robert A Krance
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathryn S Leung
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Caridad A Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hao Liu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - A John Barrett
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Rodgers
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Catherine M Bollard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA. Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA. Program for Cell Enhancement and Technologies for Immunotherapy, The Sheikh Zayed Institute for Pediatric Surgical Innovation, the Center for Cancer and Immunology Research, and the Division of Blood and Marrow Transplantation, Children's National Health System and The George Washington University, Washington, DC 20052, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Abstract
Epstein-Barr virus (EBV) is arguably one of the most successful pathogens of humans, persistently infecting over ninety percent of the world's population. Despite this high frequency of carriage, the virus causes apparently few adverse effects in the vast majority of infected individuals. Nevertheless, the potent growth transforming ability of EBV means the virus has the potential to cause malignancies in infected individuals. Indeed, EBV is thought to cause 1% of human malignancies, equating to 200,000 malignancies each year. A clear factor as to why virus-induced disease is relatively infrequent in healthy infected individuals is the presence of a potent immune response to EBV, in particular, that mediated by T cells. Thus, patient groups with immunodeficiencies or whose cellular immune response is suppressed have much higher frequencies of EBV-induced disease and, in at least some cases, these diseases can be controlled by restoration of the T-cell compartment. In this chapter, we will primarily review the role the αβ subset of T cells in the control of EBV in healthy and diseased individuals.
Collapse
Affiliation(s)
- Andrew D Hislop
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Graham S Taylor
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
48
|
Holland CJ, Dolton G, Scurr M, Ladell K, Schauenburg AJ, Miners K, Madura F, Sewell AK, Price DA, Cole DK, Godkin AJ. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide-MHC Class II Multimers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:5827-36. [PMID: 26553072 PMCID: PMC4671089 DOI: 10.4049/jimmunol.1402787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 10/08/2015] [Indexed: 11/22/2022]
Abstract
Fluorochrome-conjugated peptide-MHC (pMHC) class I multimers are staple components of the immunologist's toolbox, enabling reliable quantification and analysis of Ag-specific CD8(+) T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4(+) T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II-bound peptides, can enhance TCR-pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4(+) T cells, highlighting an unappreciated feature of TCR-pMHC-II interactions.
Collapse
Affiliation(s)
- Christopher J Holland
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Martin Scurr
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Andrea J Schauenburg
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Kelly Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Florian Madura
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and
| | - Andrew J Godkin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom; and Department of Integrated Medicine, University Hospital of Wales, Cardiff CF14 4XW, Wales, United Kingdom
| |
Collapse
|
49
|
Jones K, Wockner L, Brennan RM, Keane C, Chattopadhyay PK, Roederer M, Price DA, Cole DK, Hassan B, Beck K, Gottlieb D, Ritchie DS, Seymour JF, Vari F, Crooks P, Burrows SR, Gandhi MK. The impact of HLA class I and EBV latency-II antigen-specific CD8(+) T cells on the pathogenesis of EBV(+) Hodgkin lymphoma. Clin Exp Immunol 2015; 183:206-20. [PMID: 26422112 PMCID: PMC4711160 DOI: 10.1111/cei.12716] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 12/20/2022] Open
Abstract
In 40% of cases of classical Hodgkin lymphoma (cHL), Epstein–Barr virus (EBV) latency‐II antigens [EBV nuclear antigen 1 (EBNA1)/latent membrane protein (LMP)1/LMP2A] are present (EBV+cHL) in the malignant cells and antigen presentation is intact. Previous studies have shown consistently that HLA‐A*02 is protective in EBV+cHL, yet its role in disease pathogenesis is unknown. To explore the basis for this observation, gene expression was assessed in 33 cHL nodes. Interestingly, CD8 and LMP2A expression were correlated strongly and, for a given LMP2A level, CD8 was elevated markedly in HLA‐A*02–versus HLA‐A*02+ EBV+cHL patients, suggesting that LMP2A‐specific CD8+ T cell anti‐tumoral immunity may be relatively ineffective in HLA‐A*02– EBV+cHL. To ascertain the impact of HLA class I on EBV latency antigen‐specific immunodominance, we used a stepwise functional T cell approach. In newly diagnosed EBV+cHL, the magnitude of ex‐vivo LMP1/2A‐specific CD8+ T cell responses was elevated in HLA‐A*02+ patients. Furthermore, in a controlled in‐vitro assay, LMP2A‐specific CD8+ T cells from healthy HLA‐A*02 heterozygotes expanded to a greater extent with HLA‐A*02‐restricted compared to non‐HLA‐A*02‐restricted cell lines. In an extensive analysis of HLA class I‐restricted immunity, immunodominant EBNA3A/3B/3C‐specific CD8+ T cell responses were stimulated by numerous HLA class I molecules, whereas the subdominant LMP1/2A‐specific responses were confined largely to HLA‐A*02. Our results demonstrate that HLA‐A*02 mediates a modest, but none the less stronger, EBV‐specific CD8+ T cell response than non‐HLA‐A*02 alleles, an effect confined to EBV latency‐II antigens. Thus, the protective effect of HLA‐A*02 against EBV+cHL is not a surrogate association, but reflects the impact of HLA class I on EBV latency‐II antigen‐specific CD8+ T cell hierarchies.
Collapse
Affiliation(s)
- K Jones
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Clinical Immunohaematology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - L Wockner
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - R M Brennan
- Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - C Keane
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Clinical Immunohaematology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia
| | - P K Chattopadhyay
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - D A Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - D K Cole
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - B Hassan
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - K Beck
- Tissue Engineering and Reparative Dentistry, Cardiff University School of Dentistry, Cardiff, UK
| | - D Gottlieb
- Blood and Marrow Transplant Service, Westmead Hospital, Sydney, Australia
| | - D S Ritchie
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - J F Seymour
- University of Melbourne, Melbourne, Australia
| | - F Vari
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - P Crooks
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - S R Burrows
- Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - M K Gandhi
- Blood Cancer Research, University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Clinical Immunohaematology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
50
|
Palendira U, Rickinson AB. Primary immunodeficiencies and the control of Epstein-Barr virus infection. Ann N Y Acad Sci 2015; 1356:22-44. [PMID: 26415106 DOI: 10.1111/nyas.12937] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 12/23/2022]
Abstract
Human primary immunodeficiency (PID) states, where mutations in single immune system genes predispose individuals to certain infectious agents and not others, are experiments of nature that hold important lessons for the immunologist. The number of genetically defined PIDs is rising rapidly, as is the opportunity to learn from them. Epstein-Barr virus (EBV), a human herpesvirus, has long been of interest because of its complex interaction with the immune system. Thus, it causes both infectious mononucleosis (IM), an immunopathologic disease associated with exaggerated host responses, and at least one malignancy, EBV-positive lymphoproliferative disease, when those responses are impaired. Here, we describe the full range of PIDs currently linked with an increased risk of EBV-associated disease. These provide examples where IM-like immunopathology is fatally exaggerated, and others where responses impaired at the stage of induction, expansion, or effector function predispose to malignancy. Current evidence from this rapidly moving field supports the view that lesions in both natural killer cell and T cell function can lead to EBV pathology.
Collapse
Affiliation(s)
- Umaimainthan Palendira
- Centenary Institute, Newtown, New South Wales, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, NSW, Australia
| | - Alan B Rickinson
- Cancer Sciences and Centre for Human Virology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|