1
|
Peignier A, Kim J, Lemenze A, Parker D. Monocyte-regulated interleukin 12 production drives clearance of Staphylococcus aureus. PLoS Pathog 2024; 20:e1012648. [PMID: 39418302 PMCID: PMC11521269 DOI: 10.1371/journal.ppat.1012648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Staphylococcus aureus is a versatile bacterium responsible for conditions ranging from mild skin and soft-tissue infections to serious disorders such as pneumonia and sepsis. Monocytes play a role in protection against pathogens by migrating to inflamed tissues and differentiating into macrophages but their specific role in the context of S. aureus pulmonary infection has not been fully elucidated. Using a CCR2-DTR transgenic mouse model we demonstrate that over the course of infection monocyte depletion resulted in worse airway clearance of S. aureus. The bronchoalveolar lavage fluid (BALF) of CCR2-DTR mice after S. aureus infection displayed significant decreases in interleukin-12 (IL-12), IFN-γ, IP-10, MIG and RANTES, all IFN-γ regulated, compared to wild-type (WT) infected controls. NK cells were identified as the main producers of IFN-γ, but both NK cells and IFN-γ were dispensable for clearance. We demonstrated through cytokine production and RNA-seq analysis that IL-12 and IL-12 regulated genes are strongly induced in monocytes upon S. aureus infection. Administration of IL-12 during infection restored the bacterial burdens in the BALF and lungs of monocyte-depleted CCR2-DTR mice to the levels of WT mice, independent of IFN-γ. In the absence of monocytes, alveolar macrophages are the primary phagocytic cells, and IL-12 influences their capacity to produce reactive oxygen species and clear S. aureus. These results show that production of IL-12 contributes to the control of S. aureus via its influence on alveolar macrophage function.
Collapse
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| | - Alexander Lemenze
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| |
Collapse
|
2
|
Erman B, Aba U, Ipsir C, Pehlivan D, Aytekin C, Cildir G, Cicek B, Bozkurt C, Tekeoglu S, Kaya M, Aydogmus C, Cipe F, Sucak G, Eltan SB, Ozen A, Barıs S, Karakoc-Aydiner E, Kıykım A, Karaatmaca B, Kose H, Uygun DFK, Celmeli F, Arikoglu T, Ozcan D, Keskin O, Arık E, Aytekin ES, Cesur M, Kucukosmanoglu E, Kılıc M, Yuksek M, Bıcakcı Z, Esenboga S, Ayvaz DÇ, Sefer AP, Guner SN, Keles S, Reisli I, Musabak U, Demirbas ND, Haskologlu S, Kilic SS, Metin A, Dogu F, Ikinciogulları A, Tezcan I. Genetic Evaluation of the Patients with Clinically Diagnosed Inborn Errors of Immunity by Whole Exome Sequencing: Results from a Specialized Research Center for Immunodeficiency in Türkiye. J Clin Immunol 2024; 44:157. [PMID: 38954121 PMCID: PMC11219406 DOI: 10.1007/s10875-024-01759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.
Collapse
Affiliation(s)
- Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey.
| | - Umran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Canberk Ipsir
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Caner Aytekin
- Pediatric Immunology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Begum Cicek
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Melisa Kaya
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Allergy and Clinical Immunology, University of Health Sciences, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Funda Cipe
- Department of Pediatric Allergy and Clinical Immunology, Altinbas University School of Medicine, Istanbul, Turkey
| | - Gulsan Sucak
- Medical Park Bahçeşehir Hospital, Clinic of Hematology and Transplantation, İstanbul, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Barıs
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kıykım
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betul Karaatmaca
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology, Diyarbakir Children Hospital, Diyarbakır, Turkey
| | - Dilara Fatma Kocacık Uygun
- Division of Allergy Immunology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Fatih Celmeli
- Republic of Turkey Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Antalya, Turkey
| | - Tugba Arikoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Arık
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Soyak Aytekin
- Department of Pediatric Allergy and Immunology, Etlik City Hospital, Ankara, Turkey
| | - Mahmut Cesur
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Kılıc
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Firat, Elazığ, Turkey
| | - Mutlu Yuksek
- Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Zafer Bıcakcı
- Department of Pediatric Hematology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Çagdaş Ayvaz
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Asena Pınar Sefer
- Department of Pediatric Allergy and Immunology, Şanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Sukrü Nail Guner
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ugur Musabak
- Department of Immunology and Allergy, Baskent University School of Medicine, Ankara, Turkey
| | - Nazlı Deveci Demirbas
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology-Rheumatology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Translational Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan Ikinciogulları
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
3
|
Huang J, He Q, Huang L, Liu L, Yang P, Chen M. Discovering the link between IL12RB1 gene polymorphisms and tuberculosis susceptibility: a comprehensive meta-analysis. Front Public Health 2024; 12:1249880. [PMID: 38317798 PMCID: PMC10839023 DOI: 10.3389/fpubh.2024.1249880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Numerous studies suggest that the risk of tuberculosis (TB) is linked to gene polymorphisms of the interleukin-12 receptor b subunit 1 (IL12RB1), but the association between IL12RB1 polymorphisms and TB susceptibility has not been thoroughly investigated. Methods A meta-analysis was conducted based on eight case-control studies with 10,112 individuals to further explore this topic. A systematic search of PubMed, Web of Science, Excerpt Medica Database, and Google Scholar up until April 6th, 2023 was performed. ORs and 95% CIs were pooled using the random-effect model. The epidemiological credibility of all significant associations was assessed using the Venice criteria and false-positive report probability (FPRP) analyses. Results The IL12RB1 rs11575934 and rs401502 showed solid evidence of no significant association with TB susceptibility. However, a weak association was observed between the IL12RB1 rs375947 biomarker and pulmonary tuberculosis (PTB) susceptibility (OR = 1.64, 95% CI: 1.22, 2.21). Discussion These findings should be confirmed through larger, better-designed studies to clarify the relationship between biomarkers in IL12RB1 gene and different types of TB susceptibility.
Collapse
Affiliation(s)
- Jie Huang
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiurong He
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Huang
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Liping Liu
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Pei Yang
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Min Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
4
|
Abidin MR, Alpan O, Plassmeyer M, Kozhaya L, Loizou D, Dogan M, Upchurch Z, Manes NP, Nita-Lazar A, Unutmaz D, Sønder SU. STAT4 Phosphorylation of T-helper Cells predicts surgical outcomes in Refractory Chronic Rhinosinusitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.11.23299743. [PMID: 38168423 PMCID: PMC10760250 DOI: 10.1101/2023.12.11.23299743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Objective Chronic rhinosinusitis (CRS) impacts an estimated 5% to 15% of people worldwide, incurring significant economic healthcare burden. There is a urgent need for the discovery of predictive biomarkers to improve treatment strategies and outcomes for CRS patients. Study design Cohort study of CRS patients and healthy controls using blood samples. Setting Out-patient clinics. Methods Whole blood samples were collected for flow cytometric analysis. Mechanistic studies involved the transfection of human primary T cells and Jurkat cells. Results Our analysis began with a 63-69 year-old female patient diagnosed with refractory CRS,. Despite undergoing multiple surgeries, she continually faced sinus infections. Whole exome sequencing pinpointed a heterozygous IL-12Rb1 mutation situated in the linker region adjacent to the cytokine binding domain. When subjected to IL-12 stimulation, the patient's CD4 T-cells exhibited diminished STAT4 phosphorylation. However, computer modeling or T-cell lines harboring the same IL-12 receptor mutation did not corroborate the hypothesis that IL-12Rb could be responsible for the reduced phosphorylation of STAT4 by IL-12 stimulation. Upon expanding our investigation to a broader CRS patient group using the pSTAT4 assay, we discerned a subset of refractory CRS patients with abnormally low STAT4 phosphorylation. The deficiency showed improvement both in-vitro and in-vivo after exposure to Latilactobacillus sakei (aka Lactobacillus sakei), an effect at least partially dependent on IL-12. Conclusion In refractory CRS patients, an identified STAT4 defect correlates with poor clinical outcomes after sinus surgery, which can be therapeutically targeted by Latilactobacillus sakei treatment. Prospective double-blind placebo-controlled trials are needed to validate our findings.
Collapse
Affiliation(s)
| | - Oral Alpan
- Amerimmune LLC, 8260 Greensboro Dr VA-22102 McLean, USA
| | | | - Lina Kozhaya
- The Jackson Laboratory, Farmington, CT, 06032 USA
| | - Denise Loizou
- Amerimmune LLC, 8260 Greensboro Dr VA-22102 McLean, USA
| | - Mikail Dogan
- The Jackson Laboratory, Farmington, CT, 06032 USA
| | | | - Nathan P Manes
- Functional Cellular Networks Section, Laboratory of Immune System Biology, NIAID, NIH, USA
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, NIAID, NIH, USA
| | | | | |
Collapse
|
5
|
Bohlen J, Zhou Q, Philippot Q, Ogishi M, Rinchai D, Nieminen T, Seyedpour S, Parvaneh N, Rezaei N, Yazdanpanah N, Momenilandi M, Conil C, Neehus AL, Schmidt C, Arango-Franco CA, Voyer TL, Khan T, Yang R, Puchan J, Erazo L, Roiuk M, Vatovec T, Janda Z, Bagarić I, Materna M, Gervais A, Li H, Rosain J, Peel JN, Seeleuthner Y, Han JE, L'Honneur AS, Moncada-Vélez M, Martin-Fernandez M, Horesh ME, Kochetkov T, Schmidt M, AlShehri MA, Salo E, Saxen H, ElGhazali G, Yatim A, Soudée C, Sallusto F, Ensser A, Marr N, Zhang P, Bogunovic D, Cobat A, Shahrooei M, Béziat V, Abel L, Wang X, Boisson-Dupuis S, Teleman AA, Bustamante J, Zhang Q, Casanova JL. Human MCTS1-dependent translation of JAK2 is essential for IFN-γ immunity to mycobacteria. Cell 2023; 186:5114-5134.e27. [PMID: 37875108 PMCID: PMC10841658 DOI: 10.1016/j.cell.2023.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Human inherited disorders of interferon-gamma (IFN-γ) immunity underlie severe mycobacterial diseases. We report X-linked recessive MCTS1 deficiency in men with mycobacterial disease from kindreds of different ancestries (from China, Finland, Iran, and Saudi Arabia). Complete deficiency of this translation re-initiation factor impairs the translation of a subset of proteins, including the kinase JAK2 in all cell types tested, including T lymphocytes and phagocytes. JAK2 expression is sufficiently low to impair cellular responses to interleukin-23 (IL-23) and partially IL-12, but not other JAK2-dependent cytokines. Defective responses to IL-23 preferentially impair the production of IFN-γ by innate-like adaptive mucosal-associated invariant T cells (MAIT) and γδ T lymphocytes upon mycobacterial challenge. Surprisingly, the lack of MCTS1-dependent translation re-initiation and ribosome recycling seems to be otherwise physiologically redundant in these patients. These findings suggest that X-linked recessive human MCTS1 deficiency underlies isolated mycobacterial disease by impairing JAK2 translation in innate-like adaptive T lymphocytes, thereby impairing the IL-23-dependent induction of IFN-γ.
Collapse
Affiliation(s)
- Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany.
| | - Qinhua Zhou
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Tea Nieminen
- New Children's Hospital, 00290 Helsinki, Finland
| | - Simin Seyedpour
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, P94V+8MF Tehran, Iran; Nanomedicine Research Association (NRA), P94V+8MF Tehran, Iran
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, P94V+8MF Tehran, Iran; Department of Pediatrics, Tehran University of Medical Sciences, P94V+8MF Tehran, Iran; Children's Medical Center, P94V+8MF Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, P94V+8MF Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 1419733151 Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, P94V+8MF Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 1419733151 Tehran, Iran
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Clément Conil
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Carltin Schmidt
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Faculty of Medicine, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Carlos A Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Taushif Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, 8C8M+6Q Doha, Qatar; Department of Immunology, Sidra Medicine, 8C8M+6Q Doha, Qatar; The Jackson Laboratory, Farmington, CT, USA
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Julia Puchan
- Institute of Microbiology, ETH Zürich, 8049 Zürich, Switzerland
| | - Lucia Erazo
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mykola Roiuk
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Taja Vatovec
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Heidelberg University, 69120 Heidelberg, Germany
| | - Zarah Janda
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Heidelberg University, 69120 Heidelberg, Germany
| | - Ivan Bagarić
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Heidelberg University, 69120 Heidelberg, Germany
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | | | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School, New York, NY 10029, USA; Department of Pediatrics, Icahn School, New York, NY 10029, USA; Department of Microbiology, Icahn School, New York, NY 10029, USA
| | - Michael E Horesh
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School, New York, NY 10029, USA; Department of Pediatrics, Icahn School, New York, NY 10029, USA; Department of Microbiology, Icahn School, New York, NY 10029, USA
| | - Tatiana Kochetkov
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Monika Schmidt
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mohammed A AlShehri
- King Fahad Medical City, Children's Specialized Hospital, 12231 Riyadh, Saudi Arabia
| | - Eeva Salo
- New Children's Hospital, 00290 Helsinki, Finland
| | - Harri Saxen
- New Children's Hospital, 00290 Helsinki, Finland
| | - Gehad ElGhazali
- Sheikh Khalifa Medical City- Union71, Purehealth, Abu Dhabi, United Arab Emirates, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Federica Sallusto
- Institute of Microbiology, ETH Zürich, 8049 Zürich, Switzerland; Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Armin Ensser
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nico Marr
- College of Health and Life Sciences, Hamad Bin Khalifa University, 8C8M+6Q Doha, Qatar; Department of Immunology, Sidra Medicine, 8C8M+6Q Doha, Qatar
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School, New York, NY 10029, USA; Department of Pediatrics, Icahn School, New York, NY 10029, USA; Department of Microbiology, Icahn School, New York, NY 10029, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mohammad Shahrooei
- Clinical and Diagnostic Immunology, KU Leuven, 3000 Leuven, Belgium; Dr. Shahrooei Laboratory, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Xiaochuan Wang
- Children's Hospital of Fudan University, 201102 Shanghai, China
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Heidelberg University, 69120 Heidelberg, Germany
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, 75015 Paris, France.
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker hospital for sick children, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10032, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France.
| |
Collapse
|
6
|
Kratzer B, Grabmeier-Pfistershammer K, Trapin D, Körmöczi U, Rottal A, Feichter M, Waidhofer-Söllner P, Smogavec M, Laccone F, Hauser M, Winkler S, Pickl WF, Lechner AM. Mycobacterium avium Complex Infections: Detailed Phenotypic and Functional Immunological Work-Up Is Required despite Genetic Analyses. Int Arch Allergy Immunol 2023; 184:914-931. [PMID: 37279717 DOI: 10.1159/000530844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023] Open
Abstract
INTRODUCTION Cervical scrofulous lymphadenitis due to Mycobacterium avium complex (MAC) in immunocompetent adults is a rare disease. The presence of MAC infections demands meticulous clinical evaluation of patients along with detailed phenotypic and functional evaluation of their immune system including next-generation sequencing (NGS) analyses of target genes. METHODS Exact clinical histories of the index patients both suffering from retromandibular/cervical scrofulous lymphadenitis were obtained along with phenotypic and functional immunological evaluations of leukocyte populations followed by targeted NGS-based sequencing of candidate genes. RESULTS Immunological investigations showed normal serum immunoglobulin and complement levels, but lymphopenia, which was caused by significantly reduced CD3+CD4+CD45RO+ memory T-cell and CD19+ B-cell numbers. Despite normal T-cell proliferation to a number of accessory cell-dependent and -independent stimuli, the PBMC of both patients elaborated clearly reduced levels of a number of cytokines, including IFN-γ, IL-10, IL-12p70, IL-1α, IL-1β, and TNF-α upon TCR-dependent T-cell stimulation with CD3-coated beads but also superantigens. The IFN-γ production deficiency was confirmed for CD3+CD4+ helper and CD4+CD8+ cytotoxic T cells on the single-cell level by multiparametric flow cytometry irrespective of whether PMA/ionomycin-stimulated whole blood cells or gradient-purified PBMC was analyzed. In the female patient L1, targeted NGS-based sequencing revealed a homozygous c.110T>C mutation in the interferon-γ receptor type 1 (IFNGR1) leading to significantly reduced receptor expression on both CD14+ monocytes and CD3+ T cells. Patient S2 presented with normal IFNGR1 expression on CD14+ monocytes but significantly reduced IFNGR1 expression on CD3+ T cells, despite the absence of detectable homozygous mutations in the IFNGR1 itself or disease-related target genes. Exogenous addition of increasing doses of IFN-γ resulted in proper upregulation of high-affinity FcγRI (CD64) on monocytes from patient S2, whereas monocytes from patient L1 showed only partial induction of CD64 expression after incubation with high doses of IFN-γ. CONCLUSION A detailed phenotypic and functional immunological examination is urgently required to determine the cause of a clinically relevant immunodeficiency, despite detailed genetic analyses.
Collapse
Affiliation(s)
- Bernhard Kratzer
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | | | - Doris Trapin
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Ulrike Körmöczi
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Arno Rottal
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Melanie Feichter
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Mateja Smogavec
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Vienna, Austria
| | - Franco Laccone
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Vienna, Austria
| | - Michael Hauser
- Paris Lodron University Salzburg, Division of Allergy and Immunology, Department of Biosciences, Salzburg, Austria
| | - Stefan Winkler
- Medical University of Vienna, Department of Medicine I, Division of Infectious Diseases and Tropical Medicine Vienna, Vienna, Austria
| | - Winfried F Pickl
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
- Karl Landsteiner University, Krems, Austria
| | - Arno M Lechner
- Paracelsus University Salzburg, University Institute for Clinical Microbiology and Hygiene, Salzburg, Austria
| |
Collapse
|
7
|
Philippot Q, Ogishi M, Bohlen J, Puchan J, Arias AA, Nguyen T, Martin-Fernandez M, Conil C, Rinchai D, Momenilandi M, Mahdaviani A, Keramatipour M, Rosain J, Yang R, Khan T, Neehus AL, Materna M, Han JE, Peel J, Mele F, Weisshaar M, Jovic S, Bastard P, Lévy R, Le Voyer T, Zhang P, Renkilaraj MRLM, Arango-Franco CA, Pelham S, Seeleuthner Y, Pochon M, Ata MMA, Ali FA, Migaud M, Soudée C, Kochetkov T, Molitor A, Carapito R, Bahram S, Boisson B, Fieschi C, Mansouri D, Marr N, Okada S, Shahrooei M, Parvaneh N, Chavoshzadeh Z, Cobat A, Bogunovic D, Abel L, Tangye S, Ma CS, Béziat V, Sallusto F, Boisson-Dupuis S, Bustamante J, Casanova JL, Puel A. Human IL-23 is essential for IFN-γ-dependent immunity to mycobacteria. Sci Immunol 2023; 8:eabq5204. [PMID: 36763636 PMCID: PMC10069949 DOI: 10.1126/sciimmunol.abq5204] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023]
Abstract
Patients with autosomal recessive (AR) IL-12p40 or IL-12Rβ1 deficiency display Mendelian susceptibility to mycobacterial disease (MSMD) due to impaired IFN-γ production and, less commonly, chronic mucocutaneous candidiasis (CMC) due to impaired IL-17A/F production. We report six patients from four kindreds with AR IL-23R deficiency. These patients are homozygous for one of four different loss-of-function IL23R variants. All six patients have a history of MSMD, but only two suffered from CMC. We show that IL-23 induces IL-17A only in MAIT cells, possibly contributing to the incomplete penetrance of CMC in patients unresponsive to IL-23. By contrast, IL-23 is required for both baseline and Mycobacterium-inducible IFN-γ immunity in both Vδ2+ γδ T and MAIT cells, probably contributing to the higher penetrance of MSMD in these patients. Human IL-23 appears to contribute to IL-17A/F-dependent immunity to Candida in a single lymphocyte subset but is required for IFN-γ-dependent immunity to Mycobacterium in at least two lymphocyte subsets.
Collapse
Affiliation(s)
- Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Julia Puchan
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Andrés Augusto Arias
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, Australia
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clement Conil
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jessica Peel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marc Weisshaar
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Simon Pelham
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | | | - Fatima Al Ali
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Tatiana Kochetkov
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, Paris, France
| | - Davood Mansouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha Qatar
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima, Japan
| | | | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Teheran University of Medical Sciences, Teheran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Dusan Bogunovic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Stuart Tangye
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cindy S. Ma
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federica Sallusto
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| |
Collapse
|
8
|
Rosain J, Neehus AL, Manry J, Yang R, Le Pen J, Daher W, Liu Z, Chan YH, Tahuil N, Türel Ö, Bourgey M, Ogishi M, Doisne JM, Izquierdo HM, Shirasaki T, Le Voyer T, Guérin A, Bastard P, Moncada-Vélez M, Han JE, Khan T, Rapaport F, Hong SH, Cheung A, Haake K, Mindt BC, Pérez L, Philippot Q, Lee D, Zhang P, Rinchai D, Al Ali F, Ahmad Ata MM, Rahman M, Peel JN, Heissel S, Molina H, Kendir-Demirkol Y, Bailey R, Zhao S, Bohlen J, Mancini M, Seeleuthner Y, Roelens M, Lorenzo L, Soudée C, Paz MEJ, González ML, Jeljeli M, Soulier J, Romana S, L'Honneur AS, Materna M, Martínez-Barricarte R, Pochon M, Oleaga-Quintas C, Michev A, Migaud M, Lévy R, Alyanakian MA, Rozenberg F, Croft CA, Vogt G, Emile JF, Kremer L, Ma CS, Fritz JH, Lemon SM, Spaan AN, Manel N, Abel L, MacDonald MR, Boisson-Dupuis S, Marr N, Tangye SG, Di Santo JP, Zhang Q, Zhang SY, Rice CM, Béziat V, Lachmann N, Langlais D, Casanova JL, Gros P, Bustamante J. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 2023; 186:621-645.e33. [PMID: 36736301 PMCID: PMC9907019 DOI: 10.1016/j.cell.2022.12.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/β-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/β immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/β. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/β-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/β-dependent antiviral immunity.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France.
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Wassim Daher
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Natalia Tahuil
- Department of Immunology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Özden Türel
- Department of Pediatric Infectious Disease, Bezmialem Vakif University Faculty of Medicine, 34093 İstanbul, Turkey
| | - Mathieu Bourgey
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computation Genomics, Montreal, QC H3A 0G1, Canada
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Helena M Izquierdo
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Takayoshi Shirasaki
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Andrew Cheung
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura Pérez
- Department of Immunology and Rheumatology, "J. P. Garrahan" National Hospital of Pediatrics, C1245 CABA Buenos Aires, Argentina
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Danyel Lee
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | | | | | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Umraniye Education and Research Hospital, Department of Pediatric Genetics, 34764 İstanbul, Turkey
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mathieu Mancini
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Marie Roelens
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - María Elvira Josefina Paz
- Department of Pediatric Pathology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - María Laura González
- Central Laboratory, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, AP-HP, 75014 Paris, France
| | - Jean Soulier
- Inserm/CNRS U944/7212, Paris Cité University, 75006 Paris, France; Hematology Laboratory, Saint-Louis Hospital, AP-HP, 75010 Paris, France; National Reference Center for Bone Marrow Failures, Saint-Louis and Robert Debré Hospitals, 75010 Paris, France
| | - Serge Romana
- Rare Disease Genomic Medicine Department, Paris Cité University, Necker Hospital for Sick Children, 75015 Paris, France
| | | | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Alexandre Michev
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | | | - Flore Rozenberg
- Department of Virology, Paris Cité University, Cochin Hospital, 75014 Paris, France
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Guillaume Vogt
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes, Lille University, Lille Pasteur Institute, Lille University Hospital, 59000 Lille, France; Neglected Human Genetics Laboratory, Paris Cité University, 75006 Paris, France
| | - Jean-François Emile
- Pathology Department, Ambroise-Paré Hospital, AP-HP, 92100 Boulogne-Billancourt, France
| | - Laurent Kremer
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Physiology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Stanley M Lemon
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, the Netherlands
| | - Nicolas Manel
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany; Department of Pediatric Pulmonology, Allergology and Neonatology and Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - David Langlais
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Philippe Gros
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France.
| |
Collapse
|
9
|
Ogishi M, Arias AA, Yang R, Han JE, Zhang P, Rinchai D, Halpern J, Mulwa J, Keating N, Chrabieh M, Lainé C, Seeleuthner Y, Ramírez-Alejo N, Nekooie-Marnany N, Guennoun A, Muller-Fleckenstein I, Fleckenstein B, Kilic SS, Minegishi Y, Ehl S, Kaiser-Labusch P, Kendir-Demirkol Y, Rozenberg F, Errami A, Zhang SY, Zhang Q, Bohlen J, Philippot Q, Puel A, Jouanguy E, Pourmoghaddas Z, Bakhtiar S, Willasch AM, Horneff G, Llanora G, Shek LP, Chai LY, Tay SH, Rahimi HH, Mahdaviani SA, Nepesov S, Bousfiha AA, Erdeniz EH, Karbuz A, Marr N, Navarrete C, Adeli M, Hammarstrom L, Abolhassani H, Parvaneh N, Al Muhsen S, Alosaimi MF, Alsohime F, Nourizadeh M, Moin M, Arnaout R, Alshareef S, El-Baghdadi J, Genel F, Sherkat R, Kiykim A, Yücel E, Keles S, Bustamante J, Abel L, Casanova JL, Boisson-Dupuis S. Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency. J Exp Med 2022; 219:e20220094. [PMID: 36094518 PMCID: PMC9472563 DOI: 10.1084/jem.20220094] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 12/21/2022] Open
Abstract
Human cells homozygous for rare loss-of-expression (LOE) TYK2 alleles have impaired, but not abolished, cellular responses to IFN-α/β (underlying viral diseases in the patients) and to IL-12 and IL-23 (underlying mycobacterial diseases). Cells homozygous for the common P1104A TYK2 allele have selectively impaired responses to IL-23 (underlying isolated mycobacterial disease). We report three new forms of TYK2 deficiency in six patients from five families homozygous for rare TYK2 alleles (R864C, G996R, G634E, or G1010D) or compound heterozygous for P1104A and a rare allele (A928V). All these missense alleles encode detectable proteins. The R864C and G1010D alleles are hypomorphic and loss-of-function (LOF), respectively, across signaling pathways. By contrast, hypomorphic G996R, G634E, and A928V mutations selectively impair responses to IL-23, like P1104A. Impairment of the IL-23-dependent induction of IFN-γ is the only mechanism of mycobacterial disease common to patients with complete TYK2 deficiency with or without TYK2 expression, partial TYK2 deficiency across signaling pathways, or rare or common partial TYK2 deficiency specific for IL-23 signaling.
Collapse
Affiliation(s)
- Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Andrés Augusto Arias
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Primary Immunodeficiencies Group, University of Antioquia, Medellin, Colombia
- School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Joshua Halpern
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jeanette Mulwa
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Narelle Keating
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Candice Lainé
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Noé Ramírez-Alejo
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Nioosha Nekooie-Marnany
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sara S. Kilic
- Department of Pediatric Immunology and Rheumatology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Yoshiyuki Minegishi
- Division of Molecular Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Yasemin Kendir-Demirkol
- Department of Pediatric Genetics, Umraniye Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Paris, France
| | - Abderrahmane Errami
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Zahra Pourmoghaddas
- Department of Pediatric Infectious Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Child and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Andre M. Willasch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Child and Adolescent Medicine, University Hospital Frankfurt, Frankfurt, Germany
| | - Gerd Horneff
- Center for Pediatric Rheumatology, Department of Pediatrics, Asklepios Clinic Sankt Augustin, Sankt Augustin, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Genevieve Llanora
- Division of Allergy and Immunology, Department of Paediatrics, Khoo Teck Puat - National University Children’s Medical Institute, National University Health System, Singapore
| | - Lynette P. Shek
- Division of Allergy and Immunology, Department of Paediatrics, Khoo Teck Puat - National University Children’s Medical Institute, National University Health System, Singapore
- Department of Pediatrics, National University of Singapore, Singapore
| | - Louis Y.A. Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, Singapore
- Synthetic Biology for Clinical and Technological Innovation, Life Sciences Institute; Synthetic Biology Translational Research Program, National University of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sen Hee Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Rheumatology, Department of Medicine, National University Hospital, Singapore
| | - Hamid H. Rahimi
- Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Serdar Nepesov
- Department of Pediatric Allergy and Immunology, Istanbul Medipol University, Istanbul, Turkey
| | - Aziz A. Bousfiha
- Clinical Immunology Unit, Department of Pediatrics, King Hassan II University, Ibn-Rochd Hospital, Casablanca, Morocco
| | - Emine Hafize Erdeniz
- Division of Pediatric Infectious Diseases, Ondokuz Mayıs University, Samsun, Turkey
| | - Adem Karbuz
- Division of Pediatric Infectious Diseases, Okmeydani Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Carmen Navarrete
- Department of Immunology, Hospital de Niños Roberto del Río, Santiago de Chile, Chile
| | - Mehdi Adeli
- Division of Allergy and Immunology, Sidra Medicine/Hamad Medical Corp., Doha, Qatar
| | - Lennart Hammarstrom
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Beijing Genomics Institute, Shenzhen, China
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saleh Al Muhsen
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F. Alosaimi
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Alsohime
- Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Pediatric Intensive Care Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Maryam Nourizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moin
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Rand Arnaout
- Section of Allergy & Immunology, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Al Faisal University, Riyadh, Saudi Arabia
| | - Saad Alshareef
- Section of Allergy & Immunology, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Ferah Genel
- University of Health Sciences, Dr Behçet Uz Children’s Hospital, Division of Pediatric Immunology, Izmir, Turkey
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ayça Kiykim
- Pediatric Allergy and Immunology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Esra Yücel
- Division of Pediatric Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY
- Deparment of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
10
|
Wang C, Walter JE. Autoantibodies in immunodeficiency syndromes: The Janus faces of immune dysregulation. Blood Rev 2022; 55:100948. [PMID: 35428517 PMCID: PMC11166480 DOI: 10.1016/j.blre.2022.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/23/2022] [Accepted: 03/13/2022] [Indexed: 11/02/2022]
Abstract
Immunodeficiency syndromes represent a diverse group of inherited and acquired disorders, characterized by a spectrum of clinical manifestations, including recurrent infections, autoimmunity, lymphoproliferation and malignancy. Autoantibodies against various self-antigens reflect the immune dysregulation underlying these disorders, and could contribute to certain clinical findings, such as susceptibility to opportunistic infections, cytopenia of different hematopoietic lineages, and organ-specific autoimmune diseases. The mechanism of autoantibody production in the context of immunodeficiency remains largely unknown but is likely shaped by both intrinsic genetic aberrations and extrinsic exposures to possible infectious agents. These autoantibodies if harbor neutralizing activities and reach certain levels in the circulation, could disrupt the biological functions of their targets, resulting in specific clinical manifestations. Herein, we reviewed the prevalence of autoantibodies against cytokines, hematopoietic cells and organ-specific antigens in immunodeficiency syndromes and examined their associations with certain clinical findings. Moreover, the potential mechanism of autoantibody production was also discussed. These may shed light on the development of mechanism-based therapies to reset the dysregulated immune system in immunodeficient patients.
Collapse
Affiliation(s)
- Chen Wang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, FL, USA; Division of Pediatric Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
11
|
Immune Correlates of Disseminated BCG Infection in IL12RB1-Deficient Mice. Vaccines (Basel) 2022; 10:vaccines10071147. [PMID: 35891311 PMCID: PMC9316795 DOI: 10.3390/vaccines10071147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Interleukin-12 receptor β1 (IL12RB1)-deficient individuals show increased susceptibilities to local or disseminated BCG infection and environmental mycobacteria infection. However, the low clinical penetrance of IL12RB1 deficiency and low recurrence rate of mycobacteria infection suggest that protective immunity still exists in this population. In this study, we investigated the mechanism of tuberculosis suppression using the IL12RB1-deficient mouse model. Our results manifested that Il12rb1−/− mice had significantly increased CFU counts in spleens and lungs, especially when BCG (Danish strain) was inoculated subcutaneously. The innate TNF-a and IFN-γ responses decreased, while the IL-17 responses increased significantly in the lungs of Il12rb1−/− mice. We also found that PPD-specific IFN-γ release was impaired in Il12rb1−/− mice, but the specific TNF-a release was not compromised, and the antibody responses were significantly enhanced. Moreover, correlation analyses revealed that both the innate and PPD-specific IFN-γ responses positively correlated with CFU counts, whereas the innate IL-12a levels negatively correlated with CFU counts in Il12rb1−/− mice lungs. Collectively, these findings proved that the adaptive immunities against mycobacteria are not completely nullified in Il12rb1−/− mice. Additionally, our results imply that IFN-γ responses alone might not be able to contain BCGitis in the setting of IL12RB1 deficiency.
Collapse
|
12
|
Xia L, Liu XH, Yuan Y, Lowrie DB, Fan XY, Li T, Hu ZD, Lu SH. An Updated Review on MSMD Research Globally and A Literature Review on the Molecular Findings, Clinical Manifestations, and Treatment Approaches in China. Front Immunol 2022; 13:926781. [PMID: 36569938 PMCID: PMC9774035 DOI: 10.3389/fimmu.2022.926781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) arises from a group of rare inherited errors of immunity that result in selective susceptibility of otherwise healthy people to clinical disease caused by low virulence strains of mycobacteria, such as Mycobacterium bovis Bacille Calmette-Guérin (BCG) and environmental mycobacteria. Patients have normal resistance to other pathogens and no overt abnormalities in routine immunological and hematological evaluations for primary immunodeficiencies. At least 19 genes and 34 clinical phenotypes have been identified in MSMD. However, there have been no systematic reports on the clinical characteristics and genetic backgrounds of MSMD in China. In this review, on the one hand, we summarize an update findings on molecular defects and immunological mechanisms in the field of MSMD research globally. On the other hand, we undertook a systematic review of PubMed (MEDLINE), the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, EMBASE, CNKI, and Wanfang to identify articles published before Jan 23, 2022, to summarize the clinical characteristics, diagnosis, treatment, and prognosis of MSMD in China. All the English and Chinese publications were searched without any restriction on article types.
Collapse
Affiliation(s)
- Lu Xia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xu-Hui Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuan Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Douglas B. Lowrie
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tao Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhi-Dong Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Zhi-Dong Hu, ; Shui-Hua Lu,
| | - Shui-Hua Lu
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen, China,Department of tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, China,*Correspondence: Zhi-Dong Hu, ; Shui-Hua Lu,
| |
Collapse
|
13
|
Noma K, Mizoguchi Y, Tsumura M, Okada S. Mendelian susceptibility to mycobacterial diseases: state-of-the-art. Clin Microbiol Infect 2022; 28:1429-1434. [DOI: 10.1016/j.cmi.2022.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
|
14
|
Frede N, Rojas-Restrepo J, Caballero Garcia de Oteyza A, Buchta M, Hübscher K, Gámez-Díaz L, Proietti M, Saghafi S, Chavoshzadeh Z, Soler-Palacin P, Galal N, Adeli M, Aldave-Becerra JC, Al-Ddafari MS, Ardenyz Ö, Atkinson TP, Kut FB, Çelmeli F, Rees H, Kilic SS, Kirovski I, Klein C, Kobbe R, Korganow AS, Lilic D, Lunt P, Makwana N, Metin A, Özgür TT, Karakas AA, Seneviratne S, Sherkat R, Sousa AB, Unal E, Patiroglu T, Wahn V, von Bernuth H, Whiteford M, Doffinger R, Jouhadi Z, Grimbacher B. Genetic Analysis of a Cohort of 275 Patients with Hyper-IgE Syndromes and/or Chronic Mucocutaneous Candidiasis. J Clin Immunol 2021; 41:1804-1838. [PMID: 34390440 PMCID: PMC8604890 DOI: 10.1007/s10875-021-01086-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/05/2021] [Indexed: 01/24/2023]
Abstract
Hyper-IgE syndromes and chronic mucocutaneous candidiasis constitute rare primary immunodeficiency syndromes with an overlapping clinical phenotype. In recent years, a growing number of underlying genetic defects have been identified. To characterize the underlying genetic defects in a large international cohort of 275 patients, of whom 211 had been clinically diagnosed with hyper-IgE syndrome and 64 with chronic mucocutaneous candidiasis, targeted panel sequencing was performed, relying on Agilent HaloPlex and Illumina MiSeq technologies. The targeted panel sequencing approach allowed us to identify 87 (32 novel and 55 previously described) mutations in 78 patients, which generated a diagnostic success rate of 28.4%. Specifically, mutations in DOCK8 (26 patients), STAT3 (21), STAT1 (15), CARD9 (6), AIRE (3), IL17RA (2), SPINK5 (3), ZNF341 (2), CARMIL2/RLTPR (1), IL12RB1 (1), and WAS (1) have been detected. The most common clinical findings in this cohort were elevated IgE (81.5%), eczema (71.7%), and eosinophilia (62.9%). Regarding infections, 54.7% of patients had a history of radiologically proven pneumonia, and 28.3% have had other serious infections. History of fungal infection was noted in 53% of cases and skin abscesses in 52.9%. Skeletal or dental abnormalities were observed in 46.2% of patients with a characteristic face being the most commonly reported feature (23.1%), followed by retained primary teeth in 18.9% of patients. Targeted panel sequencing provides a cost-effective first-line genetic screening method which allows for the identification of mutations also in patients with atypical clinical presentations and should be routinely implemented in referral centers.
Collapse
Affiliation(s)
- Natalie Frede
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jessica Rojas-Restrepo
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrés Caballero Garcia de Oteyza
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mary Buchta
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Hübscher
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shiva Saghafi
- Immunology Asthma and Allergy Research Institute Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infectious Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall D'Hebron, Barcelona, Catalonia, Spain
| | - Nermeen Galal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mehdi Adeli
- Sidra Medicine, Weill Cornell Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | - Moudjahed Saleh Al-Ddafari
- Laboratory of Applied Molecular Biology and Immunology, University of Abou-Bekr Belkaïd, Tlemcen, Algeria
| | - Ömür Ardenyz
- Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - T Prescott Atkinson
- Division of Pediatric Allergy & Immunology, University of Alabama At Birmingham, Birmingham, AL, USA
| | - Fulya Bektas Kut
- Departmant of Pediatrics, Division of Pediatric Immunology and Allergy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatih Çelmeli
- Antalya Education and Research Hospital Department of Pediatric Immunology and Allergy, Antalya, Turkey
| | - Helen Rees
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Sara S Kilic
- Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Ilija Kirovski
- Medical Faculty Skopje, 50 Divizija BB, 1000, Skopje, Macedonia
| | - Christoph Klein
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Robin Kobbe
- First Department of Medicine, Division of Infectious Diseases, University Medical Center , Hamburg-Eppendorf, Germany
| | | | - Desa Lilic
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Peter Lunt
- Centre for Academic Child Health, University of Bristol, Bristol, UK
| | - Niten Makwana
- Department of Pediatrics, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Tuba Turul Özgür
- Department of Pediatrics, Division of Immunology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Ayse Akman Karakas
- Department of Dermatology and Venerology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Suranjith Seneviratne
- Institute of Immunity and Transplantation, Royal Free Hospital and University College London, London, UK
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ana Berta Sousa
- Serviço de Genética, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, and Laboratório de Imunologia Básica, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Ekrem Unal
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, 38010, Melikgazi, Kayseri, Turkey.,Deparment of Molecular Biology and Genetics, Gevher Nesibe Genom and Stem Cell Institution, GENKOK Genome and Stem Cell Center, Erciyes University, 38010, Melikgazi, Kayseri, Turkey
| | - Turkan Patiroglu
- Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, 38010, Melikgazi, Kayseri, Turkey
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Immunology, Labor Berlin GmbH, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Margo Whiteford
- Department of Clinical Genetics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Zineb Jouhadi
- Department of Pediatric Infectious Diseases, Children's Hospital CHU Ibn Rochd, University Hassan 2, Casablanca, Morocco
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany. .,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany. .,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany. .,CCI-Center for Chronic Immunodeficiency, Universitätsklinikum Freiburg, Breisacher Straße 115, 79106, Freiburg, Germany.
| |
Collapse
|
15
|
Das J, Banday A, Shandilya J, Sharma M, Vignesh P, Rawat A. An updated review on Mendelian susceptibility to mycobacterial diseases - a silver jubilee celebration of its first genetic diagnosis. Expert Rev Clin Immunol 2021; 17:1103-1120. [PMID: 34259572 DOI: 10.1080/1744666x.2021.1956314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mendelian susceptibility to mycobacterial diseases (MSMD), a group of at least 18 different genetic disorders, encompasses a specific class of inborn errors of immunity that result in predilection to infection with mycobacteria including the weakly virulent strains. Primarily, these consist of defects in the IFN-γ-IL-12/23 circuit that is crucial for immunity against intracellular microorganisms. Although the first genetic etiology of MSMD was discovered in 1996, molecular diagnosis of MSMD in resource-constrained settings may remain far-fetched. Recently, original studies have emerged from developing countries, including India, wherein the genetic diagnosis was confirmed within the country itself. A lag of about 25 years, hence, seems to exist. AREAS COVERED Herein, we review the clinical, laboratory, and mutational profile of the genetic defects responsible for causing MSMD. We intend to enhance the recognition of these disorders in settings endemic for tuberculosis and bridge the gap between the developed and developing countries in the field of MSMD research and therapeutics. EXPERT OPINION Research in the field of MSMD in developing countries, including India, can uncover novel genetic etiologies, as the population exceeds 1.3 billion, a huge burden of tuberculosis (across all clinical spectrums) exists, and BCG vaccination is given universally at birth.
Collapse
Affiliation(s)
- Jhumki Das
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Aaqib Banday
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Jitendra Shandilya
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
16
|
Scheller J, Berg A, Moll JM, Floss DM, Jungesblut C. Current status and relevance of single nucleotide polymorphisms in IL-6-/IL-12-type cytokine receptors. Cytokine 2021; 148:155550. [PMID: 34217594 DOI: 10.1016/j.cyto.2021.155550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/06/2023]
Abstract
Cytokines control immune related events and are critically involved in a plethora of patho-physiological processes including autoimmunity and cancer development. In rare cases, single nucleotide polymorphisms (SNPs) or single nucleotide variations (SNVs) in cytokine receptors eventually cause detrimental ligand-independent, constitutive activation of signal transduction. Most SNPs have, however, no or only marginal influences on gene expression, protein stability, localization and function and thereby only slightly affecting pathogenesis probability. The SNP database (dbSNP) is an archive for a broad collection of polymorphisms in which SNPs are categorized and marked with a locus accession number "reference SNP" (rs). Here, we engineered an algorithm to directly align dbSNP information to DNA and protein sequence information to clearly illustrate a genetic SNP landscape exemplified for all tall cytokine receptors of the IL-6/IL-12 family, including IL-23R, IL-12Rβ1, IL-12Rβ2, gp130, LIFR, OSMR and WSX-1. This information was complemented by a comprehensive literature summary and structural insights of relevant disease-causing SNPs in cytokine/cytokine receptor interfaces. In summary, we present a general strategy with potential to apply to other cytokine receptor networks.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Anna Berg
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
17
|
Bade P, Simonetti F, Sans S, Laboudie P, Kissane K, Chappat N, Lagrange S, Apparailly F, Roubert C, Duroux-Richard I. Integrative Analysis of Human Macrophage Inflammatory Response Related to Mycobacterium tuberculosis Virulence. Front Immunol 2021; 12:668060. [PMID: 34276658 PMCID: PMC8284339 DOI: 10.3389/fimmu.2021.668060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, kills 1.5 to 1.7 million people every year. Macrophages are Mtb's main host cells and their inflammatory response is an essential component of the host defense against Mtb. However, Mtb is able to circumvent the macrophages' defenses by triggering an inappropriate inflammatory response. The ability of Mtb to hinder phagolysosome maturation and acidification, and to escape the phagosome into the cytosol, is closely linked to its virulence. The modulation of the host inflammatory response relies on Mtb virulence factors, but remains poorly studied. Understanding macrophage interactions with Mtb is crucial to develop strategies to control tuberculosis. The present study aims to determine the inflammatory response transcriptome and miRNome of human macrophages infected with the virulent H37Rv Mtb strain, to identify macrophage genetic networks specifically modulated by Mtb virulence. Using human macrophages infected with two different live strains of mycobacteria (live or heat-inactivated Mtb H37Rv and M. marinum), we quantified and analyzed 184 inflammatory mRNAs and 765 micro(mi)RNAs. Transcripts and miRNAs differently modulated by H37Rv in comparison with the two other conditions were analyzed using in silico approaches. We identified 30 host inflammatory response genes and 37 miRNAs specific for H37Rv virulence, and highlight evidence suggesting that Mtb intracellular-linked virulence depends on the inhibition of IL-1β-dependent pro-inflammatory response, the repression of apoptosis and the delay of the recruitment and activation of adaptive immune cells. Our findings provide new potential targets for the development of macrophage-based therapeutic strategies against TB.
Collapse
Affiliation(s)
- Pauline Bade
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
- Evotec ID (Lyon), Lyon, France
| | | | | | | | | | | | | | - Florence Apparailly
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
| | | | - Isabelle Duroux-Richard
- Institute for Regenerative Medicine & Biotherapy (IRMB), INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
18
|
Taur PD, Gowri V, Pandrowala AA, Iyengar VV, Chougule A, Golwala Z, Chandak S, Agarwal R, Keni P, Dighe N, Bodhanwala M, Prabhu S, George B, Fouzia NA, Edison ES, Arunachalam AK, Madkaikar MR, Dalvi AD, Yadav RM, Bargir UA, Kambli PM, Rawat A, Das J, Joshi V, Pilania RK, Jindal AK, Bhat S, Bhattad S, Unni J, Radhakrishnan N, Raj R, Uppuluri R, Patel S, Lashkari HP, Aggarwal A, Kalra M, Udwadia Z, Bafna VS, Kanade T, Puel A, Bustamante J, Casanova JL, Desai MM. Clinical and Molecular Findings in Mendelian Susceptibility to Mycobacterial Diseases: Experience From India. Front Immunol 2021; 12:631298. [PMID: 33732252 PMCID: PMC7959731 DOI: 10.3389/fimmu.2021.631298] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 01/26/2023] Open
Abstract
Mendelian Susceptibility to Mycobacterial diseases (MSMD) are a group of innate immune defects with more than 17 genes and 32 clinical phenotypes identified. Defects in the IFN-γ mediated immunity lead to an increased susceptibility to intracellular pathogens like mycobacteria including attenuated Mycobacterium bovis-Bacillus Calmette-Guérin (BCG) vaccine strains and non-tuberculous environmental mycobacteria (NTM), Salmonella, fungi, parasites like Leishmania and some viruses, in otherwise healthy individuals. Mutations in the IL12RB1 gene are the commonest genetic defects identified. This retrospective study reports the clinical, immunological, and molecular characteristics of a cohort of 55 MSMD patients from 10 centers across India. Mycobacterial infection was confirmed by GeneXpert, Histopathology, and acid fast bacilli staining. Immunological workup included lymphocyte subset analysis, Nitro blue tetrazolium (NBT) test, immunoglobulin levels, and flow-cytometric evaluation of the IFN-γ mediated immunity. Genetic analysis was done by next generation sequencing (NGS). Disseminated BCG-osis was the commonest presenting manifestation (82%) with a median age of presentation of 6 months due to the practice of BCG vaccination at birth. This was followed by infection with Salmonella and non-typhi Salmonella (13%), Cytomegalovirus (CMV) (11%), Candida (7%), NTM (4%), and Histoplasma (2%). Thirty-six percent of patients in cohort were infected by more than one organism. This study is the largest cohort of MSMD patients reported from India to the best of our knowledge and we highlight the importance of work up for IL-12/IL-23/ISG15/IFN-γ circuit in all patients with BCG-osis and suspected MSMD irrespective of age.
Collapse
Affiliation(s)
- Prasad D Taur
- Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Vijaya Gowri
- Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | | | | | - Akshaya Chougule
- Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Zainab Golwala
- Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Shraddha Chandak
- Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Reepa Agarwal
- Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Purva Keni
- Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Neha Dighe
- Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Minnie Bodhanwala
- Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Shakuntala Prabhu
- Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| | - Biju George
- Department of Clinical Hematology, Christian Medical College, Vellore, India
| | - N A Fouzia
- Department of Clinical Hematology, Christian Medical College, Vellore, India
| | | | | | | | - Aparna Dhondi Dalvi
- Indian Council of Medical Research-National Institute of Immunohematology, Mumbai, India
| | - Reetika Malik Yadav
- Indian Council of Medical Research-National Institute of Immunohematology, Mumbai, India
| | - Umair Ahmed Bargir
- Indian Council of Medical Research-National Institute of Immunohematology, Mumbai, India
| | - Priyanka Madhav Kambli
- Indian Council of Medical Research-National Institute of Immunohematology, Mumbai, India
| | - Amit Rawat
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jhumki Das
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vibhu Joshi
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Pilania
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Kumar Jindal
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Bhat
- Mazumdar Shaw Cancer Centre, Narayana Health City, Bengaluru, India
| | | | | | | | | | | | | | | | - Amita Aggarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | | | - Anne Puel
- University of Paris, Institute Imagine, INSERM, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
| | - Jacinta Bustamante
- University of Paris, Institute Imagine, INSERM, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States.,Study Center for Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jean Laurent Casanova
- University of Paris, Institute Imagine, INSERM, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States.,Howard Hughes Medical Institute, New York, NY, United States
| | - Mukesh M Desai
- Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India
| |
Collapse
|
19
|
Casanova JL, Abel L. Lethal Infectious Diseases as Inborn Errors of Immunity: Toward a Synthesis of the Germ and Genetic Theories. ANNUAL REVIEW OF PATHOLOGY 2021; 16:23-50. [PMID: 32289233 PMCID: PMC7923385 DOI: 10.1146/annurev-pathol-031920-101429] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It was first demonstrated in the late nineteenth century that human deaths from fever were typically due to infections. As the germ theory gained ground, it replaced the old, unproven theory that deaths from fever reflected a weak personal or even familial constitution. A new enigma emerged at the turn of the twentieth century, when it became apparent that only a small proportion of infected individuals die from primary infections with almost any given microbe. Classical genetics studies gradually revealed that severe infectious diseases could be driven by human genetic predisposition. This idea gained ground with the support of molecular genetics, in three successive, overlapping steps. First, many rare inborn errors of immunity were shown, from 1985 onward, to underlie multiple, recurrent infections with Mendelian inheritance. Second, a handful of rare and familial infections, also segregating as Mendelian traits but striking humans resistant to other infections, were deciphered molecularly beginning in 1996. Third, from 2007 onward, a growing number of rare or common sporadicinfections were shown to result from monogenic, but not Mendelian, inborn errors. A synthesis of the hitherto mutually exclusive germ and genetic theories is now in view.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
| |
Collapse
|
20
|
Casamayor-Polo L, López-Nevado M, Paz-Artal E, Anel A, Rieux-Laucat F, Allende LM. Immunologic evaluation and genetic defects of apoptosis in patients with autoimmune lymphoproliferative syndrome (ALPS). Crit Rev Clin Lab Sci 2020; 58:253-274. [PMID: 33356695 DOI: 10.1080/10408363.2020.1855623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis plays an important role in controlling the adaptive immune response and general homeostasis of the immune cells, and impaired apoptosis in the immune system results in autoimmunity and immune dysregulation. In the last 25 years, inherited human diseases of the Fas-FasL pathway have been recognized. Autoimmune lymphoproliferative syndrome (ALPS) is an inborn error of immunity, characterized clinically by nonmalignant and noninfectious lymphoproliferation, autoimmunity, and increased risk of lymphoma due to a defect in lymphocyte apoptosis. The laboratory hallmarks of ALPS are an elevated percentage of T-cell receptor αβ double negative T cells (DNTs), elevated levels of vitamin B12, soluble FasL, IL-10, IL-18 and IgG, and defective in vitro Fas-mediated apoptosis. In order of frequency, the genetic defects associated with ALPS are germinal and somatic ALPS-FAS, ALPS-FASLG, ALPS-CASP10, ALPS-FADD, and ALPS-CASP8. Partial disease penetrance and severity suggest the combination of germline and somatic FAS mutations as well as other risk factor genes. In this report, we summarize human defects of apoptosis leading to ALPS and defects that are known as ALPS-like syndromes that can be clinically similar to, but are genetically distinct from, ALPS. An efficient genetic and immunological diagnostic approach to patients suspected of having ALPS or ALPS-like syndromes is essential because this enables the establishment of specific therapeutic strategies for improving the prognosis and quality of life of patients.
Collapse
Affiliation(s)
- Laura Casamayor-Polo
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta López-Nevado
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Frederic Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Luis M Allende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Immunology Department, University Hospital 12 de Octubre, Madrid, Spain.,School of Medicine, University Hospital 12 de Octubre, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
21
|
Mendelian Susceptibility to Mycobacterial Disease: The First Case of a Diagnosed Adult Patient in the Czech Republic. Case Reports Immunol 2020; 2020:8836685. [PMID: 33414972 PMCID: PMC7769627 DOI: 10.1155/2020/8836685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
We present a case of a 42-year-old woman with Mendelian susceptibility to mycobacterial disease. The disease was diagnosed at an adult age with relatively typical clinical manifestations; the skeleton, joints, and soft tissues were affected by nontuberculous mycobacteria: Mycobacterium lentiflavum, M. kansasii, and M. avium. A previously published loss-of-function and functionally validated variant NM_000416.2:c.819_822delTAAT in IFNGR1 in a heterozygous state was detected using whole-exome sequencing. After interferon-γ therapy was started at a dose of 200 µg/m2 three times a week, there was significant clinical improvement, with the need to continue the macrolide-based combination regimen. In the last 4 months, she has been in this therapy without the need for antibiotic treatment.
Collapse
|
22
|
Palterer B, Bartalesi F, Mazzoni A, Maggi L, Provenzano A, Vergoni F, Giglio S, Annunziato F, Parronchi P. Disseminated Mycobacterium xenopi in an Adult with IL-12Rβ1 Deficiency. J Clin Immunol 2020; 40:1166-1170. [PMID: 32856198 DOI: 10.1007/s10875-020-00848-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Boaz Palterer
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, FI, Italy. .,Flow Cytometric Diagnostic Centre and Immunotherapy, Careggi University Hospital, Florence, Italy.
| | - Filippo Bartalesi
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, FI, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, FI, Italy
| | - Aldesia Provenzano
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy.,Medical Genetics Unit, Meyer University Hospital, Florence, Italy
| | - Federica Vergoni
- Pathological Anatomy Unit, Careggi University Hospital, Florence, Italy
| | - Sabrina Giglio
- Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy.,Medical Genetics Unit, Meyer University Hospital, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, FI, Italy.,Flow Cytometric Diagnostic Centre and Immunotherapy, Careggi University Hospital, Florence, Italy
| | - Paola Parronchi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, FI, Italy.,Immunology and Cell Therapies Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
23
|
Mahdaviani SA, Mansouri D, Jamee M, Zaki-Dizaji M, Aghdam KR, Mortaz E, Khorasanizadeh M, Eskian M, Movahedi M, Ghaffaripour H, Baghaie N, Hassanzad M, Chavoshzadeh Z, Mansouri M, Mesdaghi M, Ghaini M, Noori F, Eskandarzadeh S, Kahkooi S, Poorabdolah M, Tabarsi P, Moniri A, Farnia P, Karimi A, Boisson-Dupuis S, Rezaei N, Marjani M, Casanova JL, Bustamante J, Velayati AA. Mendelian Susceptibility to Mycobacterial Disease (MSMD): Clinical and Genetic Features of 32 Iranian Patients. J Clin Immunol 2020; 40:872-882. [DOI: 10.1007/s10875-020-00813-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/23/2020] [Indexed: 01/24/2023]
|
24
|
Gruber C, Bogunovic D. Incomplete penetrance in primary immunodeficiency: a skeleton in the closet. Hum Genet 2020; 139:745-757. [PMID: 32067110 PMCID: PMC7275875 DOI: 10.1007/s00439-020-02131-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/02/2020] [Indexed: 12/11/2022]
Abstract
Primary immunodeficiencies (PIDs) comprise a diverse group of over 400 genetic disorders that result in clinically apparent immune dysfunction. Although PIDs are classically considered as Mendelian disorders with complete penetrance, we now understand that absent or partial clinical disease is often noted in individuals harboring disease-causing genotypes. Despite the frequency of incomplete penetrance in PID, no conceptual framework exists to categorize and explain these occurrences. Here, by reviewing decades of reports on incomplete penetrance in PID we identify four recurrent themes of incomplete penetrance, namely genotype quality, (epi)genetic modification, environmental influence, and mosaicism. For each of these principles, we review what is known, underscore what remains unknown, and propose future experimental approaches to fill the gaps in our understanding. Although the content herein relates specifically to inborn errors of immunity, the concepts are generalizable across genetic diseases.
Collapse
Affiliation(s)
- Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA.
| |
Collapse
|
25
|
Boisson-Dupuis S. The monogenic basis of human tuberculosis. Hum Genet 2020; 139:1001-1009. [PMID: 32055999 DOI: 10.1007/s00439-020-02126-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/02/2020] [Indexed: 12/25/2022]
Abstract
The pathogenesis of tuberculosis (TB) remains poorly understood, as no more than 5-10% of individuals infected with Mycobacterium tuberculosis go on developing clinical disease. The contribution of human genetics to TB pathogenesis has been amply documented by means of classic genetics since the turn of the twentieth century. Over the last 20 years, following-up on the study of Mendelian susceptibility to mycobacterial disease (MSMD), monogenic disorders have been found to underlie TB in some patients. Rare inborn errors of immunity, such as autosomal recessive, complete IL-12Rβ1 and TYK2 deficiencies, impairing the IL-12- and IL-23-dependent induction of IFN-γ, were initially identified in a few patients. More recently, homozygosity for a common variant of TYK2 (P1104A) that selectively disrupts cellular responses to IL-23 was found in two cohorts of TB patients. It shows high penetrance in areas endemic for TB and appears to be responsible for about 1% of TB cases in populations of European descent. Both rare and common genetic etiologies of TB affect IFN-γ immunity, providing a rationale for novel preventive and therapeutic approaches for TB control, including the use of recombinant IFN-γ.
Collapse
Affiliation(s)
- Stephanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France. .,Paris Descartes University, Imagine Institute, Paris, France. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, USA.
| |
Collapse
|
26
|
Fekrvand S, Yazdani R, Olbrich P, Gennery A, Rosenzweig SD, Condino-Neto A, Azizi G, Rafiemanesh H, Hassanpour G, Rezaei N, Abolhassani H, Aghamohammadi A. Primary Immunodeficiency Diseases and Bacillus Calmette-Guérin (BCG)-Vaccine-Derived Complications: A Systematic Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:1371-1386. [PMID: 32006723 DOI: 10.1016/j.jaip.2020.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) vaccine is a live attenuated bacterial vaccine derived from Mycobacterium bovis, which is mostly administered to neonates in regions where tuberculosis is endemic. Adverse reactions after BCG vaccination are rare; however, immunocompromised individuals and in particular patients with primary immunodeficiencies (PIDs) are prone to develop vaccine-derived complications. OBJECTIVE To systematically review demographic, clinical, immunologic, and genetic data of PIDs that present with BCG vaccine complications. Moreover, we performed a meta-analysis aiming to determine the BCG-vaccine complications rate for patients with PID. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (1966 to September 2018) introducing terms related to PIDs, BCG vaccination, and BCG vaccine complications. Studies with human subjects with confirmed PID, BCG vaccination history, and vaccine-associated complications (VACs) were included. RESULTS A total of 46 PIDs associated with BCG-VAC were identified. Severe combined immunodeficiency was the most common (466 cases) and also showed the highest BCG-related mortality. Most BCG infection cases in patients with PID were reported from Iran (n = 219 [18.8%]). The overall frequency of BCG-VAC in the included 1691 PID cases was 41.5% (95% CI, 29.9-53.2; I2 = 98.3%), based on the results of the random-effect method used in this meta-analysis. Patients with Mendelian susceptibility to mycobacterial diseases had the highest frequency of BCG-VACs with a pooled frequency of 90.6% (95% CI, 79.7-1.0; I2 = 81.1%). CONCLUSIONS Several PID entities are susceptible to BCG-VACs. Systemic neonatal PID screening programs may help to prevent a substantial amount of BCG vaccination complications.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Peter Olbrich
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla, Seville, Spain
| | - Andrew Gennery
- Institute of Cellular Medicine, Newcastle University, and Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes Clinical Center, National Institutes of Health, Bethesda, Md
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network for Immunology in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
27
|
Yamazaki-Nakashimada MA, Unzueta A, Berenise Gámez-González L, González-Saldaña N, Sorensen RU. BCG: a vaccine with multiple faces. Hum Vaccin Immunother 2020; 16:1841-1850. [PMID: 31995448 DOI: 10.1080/21645515.2019.1706930] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BCG has been recommended because of its efficacy against disseminated and meningeal tuberculosis. The BCG vaccine has other mechanisms of action besides tuberculosis protection, with immunomodulatory properties that are now being discovered. Reports have shown a significant protective effect against leprosy. Randomized controlled trials suggest that BCG vaccine has beneficial heterologous (nonspecific) effects on mortality in some developing countries. BCG immunotherapy is considered the gold standard adjuvant treatment for non-muscle-invasive bladder cancer. BCG vaccine has also been tested as treatment for diabetes and multiple sclerosis. Erythema of the BCG site is recognized as a clinical clue in Kawasaki disease. BCG administration in the immunodeficient patient is associated with local BCG disease (BCGitis) or disseminated BCG disease (BCGosis) with fatal consequences. BCG administration has been associated with the development of autoimmunity. We present a brief review of the diverse facets of the vaccine, with the discovery of its new modes of action providing new perspectives on this old, multifaceted and controversial vaccine.
Collapse
Affiliation(s)
| | - Alberto Unzueta
- Gastroenterology and Transplant Hepatology, Geisinger Medical Center , Danville, PA, USA
| | | | | | - Ricardo U Sorensen
- Department of Pediatrics, Louisiana State University Health Sciences Center, Louisiana Primary Immunodeficiency Network , New Orleans, LA, USA.,Faculty of Medicine, University of La Frontera , Temuco, Chile
| |
Collapse
|
28
|
Revisiting John Snow to Meet the Challenge of Nontuberculous Mycobacterial Lung Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214250. [PMID: 31683836 PMCID: PMC6862550 DOI: 10.3390/ijerph16214250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023]
Abstract
Nontuberculous mycobacteria (NTM) are ubiquitous components of the soil and surface water microbiome. Disparities by sex, age, and geography demonstrate that both host and environmental factors are key determinants of NTM disease in populations, which predominates in the form of chronic pulmonary disease. As the incidence of NTM pulmonary disease rises across the United States, it becomes increasingly evident that addressing this emerging human health issue requires a bold, multi-disciplinary research framework that incorporates host risk factors for NTM pulmonary disease alongside the determinants of NTM residence in the environment. Such a framework should include the assessment of environmental characteristics promoting NTM growth in soil and surface water, detailed evaluations of water distribution systems, direct sampling of water sources for NTM contamination and species diversity, and studies of host and bacterial factors involved in NTM pathogenesis. This comprehensive approach can identify intervention points to interrupt the transmission of pathogenic NTM species from the environment to the susceptible host and to reduce NTM pulmonary disease incidence.
Collapse
|
29
|
Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, Jongco AM, Keller MD, Kobrynski LJ, Kumanovics A, Lawrence MG, Leiding JW, Lugar PL, Orange JS, Patel K, Platt CD, Puck JM, Raje N, Romberg N, Slack MA, Sullivan KE, Tarrant TK, Torgerson TR, Walter JE. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: A working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2019; 145:46-69. [PMID: 31568798 DOI: 10.1016/j.jaci.2019.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/02/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Genetic testing has become an integral component of the diagnostic evaluation of patients with suspected primary immunodeficiency diseases. Results of genetic testing can have a profound effect on clinical management decisions. Therefore clinical providers must demonstrate proficiency in interpreting genetic data. Because of the need for increased knowledge regarding this practice, the American Academy of Allergy, Asthma & Immunology Primary Immunodeficiency Diseases Committee established a work group that reviewed and summarized information concerning appropriate methods, tools, and resources for evaluating variants identified by genetic testing. Strengths and limitations of tests frequently ordered by clinicians were examined. Summary statements and tables were then developed to guide the interpretation process. Finally, the need for research and collaboration was emphasized. Greater understanding of these important concepts will improve the diagnosis and management of patients with suspected primary immunodeficiency diseases.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex.
| | - Alice Y Chan
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Karin Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Janet Chou
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Morna J Dorsey
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Joud Hajjar
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Artemio M Jongco
- Departments of Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY; Center for Health Innovations and Outcomes Research, Feinstein Institute for Medical Research, Great Neck, NY; Division of Allergy & Immunology, Cohen Children's Medical Center of New York, Great Neck, NY
| | - Michael D Keller
- Department of Allergy and Immunology, Children's National Hospital, Washington, DC
| | - Lisa J Kobrynski
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Monica G Lawrence
- Department of Medicine, Division of Asthma, Allergy and Immunology, University of Virginia Health System, Charlottesville, Va
| | - Jennifer W Leiding
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Cancer and Blood Disorders Institute, Johns Hopkins-All Children's Hospital, St Petersburg, Fla
| | - Patricia L Lugar
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC
| | - Jordan S Orange
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY; New York Presbyterian Morgan Stanley Children's Hospital, New York, NY
| | - Kiran Patel
- Department of Pediatrics, Division of Allergy and Immunology, Emory University School of Medicine, Atlanta, Ga
| | - Craig D Platt
- Department of Pediatrics, Harvard Medical School, Boston, Mass; Division of Allergy and Immunology, Boston Children's Hospital, Boston, Mass
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California at San Francisco, San Francisco, Calif
| | - Nikita Raje
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, Mo; Division of Allergy/Asthma/Immunology, Children's Mercy Hospital, Kansas City, Mo
| | - Neil Romberg
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Maria A Slack
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, NY; Department of Pediatrics, Division of Pediatric Allergy and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Kathleen E Sullivan
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Division of Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Wash; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Wash
| | - Jolan E Walter
- Departments of Pediatrics and Medicine, University of South Florida, St Petersburg, Fla; Division of Pediatric Allergy/Immunology, Johns Hopkins-All Children's Hospital, St Petersburg, Fla; Division of Pediatric Allergy Immunology, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
30
|
Dara N, Nemati S, Teimourian S, Imanzadeh F, Hosseini A, Tajalli S, Sayyari AA, Najafi A, Rohani P, Khatami K, Motevaseli E, de Boer M, Kuijpers TW. Diagnostic Challenges in the Early Onset of Inflammatory Bowel Disease: A Case Report. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2019; 7:251-257. [PMID: 31516885 PMCID: PMC6709932 DOI: 10.22088/ijmcm.bums.7.4.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 02/22/2019] [Indexed: 11/18/2022]
Abstract
Inflammatory bowel disease (IBD) with very early onset manifestations (younger than six years of age) is an essential pediatric gastrointestinal disease that encompasses a group of diverse and rare genetic defects. It may be associated with chronicity, premalignant nature, and high morbidity and mortality during childhood. Because of overlapping phenotypes, the definitive diagnosis based on conventional strategies is frequently a challenge. However, many patients with different molecular pathologies are treated with the same therapeutic strategy. In this context, it is essential to define a more reliable method to provide an opportunity for a rapid and accurate diagnosis. Here we report a novel homozygous exonic variant in a patient with an IBD-like lesion in the colon during the infancy period. A 7 months old boy who was born of a consanguineous marriage developed gastrointestinal disorders early in life. After complete diagnostic workups, this case underwent conventional therapy of IBD for five months; but clinical remission was not achieved. We identified a novel homozygous mutation (c.684C>T p(=)) in exon 7 of IL-12RB1 gene that in silico studies indicated its significance in the splicing process. At the 14th month of age, this case died. Our finding reveals the importance of genetic screening as an early diagnostic tool in the identification of the underlying causes of IBD with very early onset manifestations, particularly infantile (< 2 years of age) IBD. This strategy makes an opportunity in prompt diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Naghi Dara
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharam Nemati
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharam Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Imanzadeh
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Hosseini
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saleheh Tajalli
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Sayyari
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Katayoun Khatami
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Martin de Boer
- Sanquin Blood Supply Organization, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Blood Supply Organization, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, Kerner G, Lim CK, Krementsov DN, Hernandez N, Ma CS, Zhang Q, Markle J, Martinez-Barricarte R, Payne K, Fisch R, Deswarte C, Halpern J, Bouaziz M, Mulwa J, Sivanesan D, Lazarov T, Naves R, Garcia P, Itan Y, Boisson B, Checchi A, Jabot-Hanin F, Cobat A, Guennoun A, Jackson CC, Pekcan S, Caliskaner Z, Inostroza J, Costa-Carvalho BT, de Albuquerque JAT, Garcia-Ortiz H, Orozco L, Ozcelik T, Abid A, Rhorfi IA, Souhi H, Amrani HN, Zegmout A, Geissmann F, Michnick SW, Muller-Fleckenstein I, Fleckenstein B, Puel A, Ciancanelli MJ, Marr N, Abolhassani H, Balcells ME, Condino-Neto A, Strickler A, Abarca K, Teuscher C, Ochs HD, Reisli I, Sayar EH, El-Baghdadi J, Bustamante J, Hammarström L, Tangye SG, Pellegrini S, Quintana-Murci L, Abel L, Casanova JL. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol 2019; 3:3/30/eaau8714. [PMID: 30578352 DOI: 10.1126/sciimmunol.aau8714] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Inherited IL-12Rβ1 and TYK2 deficiencies impair both IL-12- and IL-23-dependent IFN-γ immunity and are rare monogenic causes of tuberculosis, each found in less than 1/600,000 individuals. We show that homozygosity for the common TYK2 P1104A allele, which is found in about 1/600 Europeans and between 1/1000 and 1/10,000 individuals in regions other than East Asia, is more frequent in a cohort of patients with tuberculosis from endemic areas than in ethnicity-adjusted controls (P = 8.37 × 10-8; odds ratio, 89.31; 95% CI, 14.7 to 1725). Moreover, the frequency of P1104A in Europeans has decreased, from about 9% to 4.2%, over the past 4000 years, consistent with purging of this variant by endemic tuberculosis. Surprisingly, we also show that TYK2 P1104A impairs cellular responses to IL-23, but not to IFN-α, IL-10, or even IL-12, which, like IL-23, induces IFN-γ via activation of TYK2 and JAK2. Moreover, TYK2 P1104A is properly docked on cytokine receptors and can be phosphorylated by the proximal JAK, but lacks catalytic activity. Last, we show that the catalytic activity of TYK2 is essential for IL-23, but not IL-12, responses in cells expressing wild-type JAK2. In contrast, the catalytic activity of JAK2 is redundant for both IL-12 and IL-23 responses, because the catalytically inactive P1057A JAK2, which is also docked and phosphorylated, rescues signaling in cells expressing wild-type TYK2. In conclusion, homozygosity for the catalytically inactive P1104A missense variant of TYK2 selectively disrupts the induction of IFN-γ by IL-23 and is a common monogenic etiology of tuberculosis.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Noe Ramirez-Alejo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Zhi Li
- Cytokine Signaling Unit, Pasteur Institute, Paris, France.,INSERM U1221, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Pasteur Institute, Paris, France.,CNRS UMR2000, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Che Kang Lim
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Nicholas Hernandez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Sidra Medicine, Doha, Qatar
| | - Janet Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Ruben Martinez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Robert Fisch
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Joshua Halpern
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Jeanette Mulwa
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Durga Sivanesan
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rodrigo Naves
- Institute of Biochemical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patricia Garcia
- Laboratory of Microbiology, Clinical Laboratory Department School of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Alix Checchi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | | | - Carolyn C Jackson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sevgi Pekcan
- Department of Pediatric Pulmonology, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Zafer Caliskaner
- Meram Faculty of Medicine, Department of Internal Medicine, Division of Allergy and Immunology, Necmettin Erbakan University, Konya, Turkey
| | - Jaime Inostroza
- Jeffrey Modell Center for Diagnosis and Research in Primary Immunodeficiencies, Faculty of Medicine University of La Frontera, Temuco, Chile
| | | | | | | | - Lorena Orozco
- National Institute of Genomic Medicine, Mexico City, Mexico
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ahmed Abid
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco
| | - Ismail Abderahmani Rhorfi
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco.,Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hicham Souhi
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco
| | | | - Adil Zegmout
- Department of Pneumology, Military Hospital Mohammed V, Rabat, Morocco
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen W Michnick
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | | | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - María Elvira Balcells
- Department of Infectious Diseases, Medical School, Pontifical Catholic University of Chile, Santiago, Chile
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, and Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Alexis Strickler
- Department of Pediatrics, San Sebastián University, Santiago, Chile
| | - Katia Abarca
- Department of Infectious Diseases and Pediatric Immunology, School of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Cory Teuscher
- Department of Medicine, Immunobiology Program, University of Vermont, Burlington, VT, USA
| | - Hans D Ochs
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Esra H Sayar
- Department of Pediatric Immunology and Allergy, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | | | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore.,Beijing Genomics Institute BGI-Shenzhen, Shenzhen, China
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Sandra Pellegrini
- Cytokine Signaling Unit, Pasteur Institute, Paris, France.,INSERM U1221, Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Pasteur Institute, Paris, France.,CNRS UMR2000, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA. .,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
32
|
Moradi L, Cheraghi T, Yazdani R, Azizi G, Rasouli S, Zavareh F, Parvaneh L, Parvaneh N, Sohani M, Delavari S, Abolhassani H, Rezaei N, Aghamohammadi A. Mendelian susceptibility to mycobacterial disease: Clinical and immunological findings of patients suspected for IL12Rβ1 deficiency. Allergol Immunopathol (Madr) 2019; 47:491-498. [PMID: 31350062 DOI: 10.1016/j.aller.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mendelian susceptibility to mycobacterial disease (MSMD) is characterized by increased susceptibility to weakly virulent mycobacteria (Bacillus Calmette-Guérin [BCG] vaccines and environmental mycobacteria), Mycobacterium tuberculosis, Candida spp. and Salmonella spp. The aim of this study is to evaluate clinical features and immunological findings of MSMD patients with interleukin 12 receptor beta 1 (IL12Rβ1) deficiency. METHODS Among 117 screened patients with BCG infection following vaccination, 23 suspected MSMD subjects were recruited to this study by the exclusion of severe combined immunodeficiencies and chronic granulomatous diseases. Flow cytometric assessment for surface expression of IL12Rβ1 was performed. Moreover, the clinical and immunological data from the patients was evaluated. RESULTS A significant decrease (less than 1%) in the surface expression of IL12Rβ1 was reported in six cases which showed a significant increase in the count of lymphocytes (p=0.009) and CD8+ T cells (p=0.008) as compared to MSMD subjects with normal expression of surface IL12Rβ1. The frequency of disseminated BCGosis (50% vs. 20%, p=0.29), recurrent infection (83.3% vs. 40%, p=0.14) and salmonellosis (33.3% vs. 0.0%, p=0.07) was higher in IL12Rβ1 deficient subjects than IL12Rβ1 sufficient individuals. CONCLUSION MSMD patients with childhood onset of mycobacteriosis (mostly after BCG vaccination) and recurrent salmonellosis could be evaluated for IL12Rβ1 expression with flow cytometry for punctual diagnosis.
Collapse
|
33
|
Ying W, Liu D, Dong X, Wang W, Hui X, Hou J, Yao H, Zhou Q, Sun B, Sun J, Wang X. Current Status of the Management of Mendelian Susceptibility to Mycobacterial Disease in Mainland China. J Clin Immunol 2019; 39:600-610. [DOI: 10.1007/s10875-019-00672-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/17/2019] [Indexed: 02/03/2023]
|
34
|
McGonagle DG, McInnes IB, Kirkham BW, Sherlock J, Moots R. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies. Ann Rheum Dis 2019; 78:1167-1178. [PMID: 31278139 PMCID: PMC6788885 DOI: 10.1136/annrheumdis-2019-215356] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022]
Abstract
Although the pathogenic mechanisms underlying axial spondyloarthritis (axSpA) and psoriatic arthritis (PsA) are not fully elucidated, several lines of evidence suggest that immune responses mediated by interleukin 17A (IL-17A) play a pivotal role in both diseases. This is best highlighted by the significant clinical efficacy shown with inhibitors of IL-17A in treating axSpA and PsA. Nevertheless, a number of knowledge gaps exist regarding the role of IL-17A in the pathophysiology of spondyloarthritis in man, including its cellular origin, its precise role in discrete disease processes such enthesitis, bone erosion, and bone formation, and the reasons for the discrepant responses to IL-17A inhibition observed in certain other spondyloarthritis manifestations. In this review, we focus on the latest data from studies investigating the role of IL-17A in ankylosing spondylitis (AS) and PsA that build on existing and emerging scientific knowledge in the field. Key remaining research questions are also highlighted to guide future research.
Collapse
Affiliation(s)
- Dennis G McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, UK
| | - Iain B McInnes
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Bruce W Kirkham
- Rheumatology Department, Guy's and Saint Thomas' NHS Foundation Trust, London, UK
| | - Jonathan Sherlock
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Robert Moots
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK .,Department of Academic Rheumatology, Aintree University Hospital, Liverpool, UK
| |
Collapse
|
35
|
Kerner G, Ramirez-Alejo N, Seeleuthner Y, Yang R, Ogishi M, Cobat A, Patin E, Quintana-Murci L, Boisson-Dupuis S, Casanova JL, Abel L. Homozygosity for TYK2 P1104A underlies tuberculosis in about 1% of patients in a cohort of European ancestry. Proc Natl Acad Sci U S A 2019; 116:10430-10434. [PMID: 31068474 PMCID: PMC6534977 DOI: 10.1073/pnas.1903561116] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The human genetic basis of tuberculosis (TB) has long remained elusive. We recently reported a high level of enrichment in homozygosity for the common TYK2 P1104A variant in a heterogeneous cohort of patients with TB from non-European countries in which TB is endemic. This variant is homozygous in ∼1/600 Europeans and ∼1/5,000 people from other countries outside East Asia and sub-Saharan Africa. We report a study of this variant in the UK Biobank cohort. The frequency of P1104A homozygotes was much higher in patients with TB (6/620, 1%) than in controls (228/114,473, 0.2%), with an odds ratio (OR) adjusted for ancestry of 5.0 [95% confidence interval (CI): 1.96-10.31, P = 2 × 10-3]. Conversely, we did not observe enrichment for P1104A heterozygosity, or for TYK2 I684S or V362F homozygosity or heterozygosity. Moreover, it is unlikely that more than 10% of controls were infected with Mycobacterium tuberculosis, as 97% were of European genetic ancestry, born between 1939 and 1970, and resided in the United Kingdom. Had all of them been infected, the OR for developing TB upon infection would be higher. These findings suggest that homozygosity for TYK2 P1104A may account for ∼1% of TB cases in Europeans.
Collapse
Affiliation(s)
- Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Noe Ramirez-Alejo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR2000, 75015 Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France;
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| |
Collapse
|
36
|
Tait Wojno ED, Hunter CA, Stumhofer JS. The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity 2019; 50:851-870. [PMID: 30995503 PMCID: PMC6472917 DOI: 10.1016/j.immuni.2019.03.011] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
The discovery of interleukin (IL)-6 and its receptor subunits provided a foundation to understand the biology of a group of related cytokines: IL-12, IL-23, and IL-27. These family members utilize shared receptors and cytokine subunits and influence the outcome of cancer, infection, and inflammatory diseases. Consequently, many facets of their biology are being therapeutically targeted. Here, we review the landmark discoveries in this field, the combinatorial biology inherent to this family, and how patient datasets have underscored the critical role of these pathways in human disease. We present significant knowledge gaps, including how similar signals from these cytokines can mediate distinct outcomes, and discuss how a better understanding of the biology of the IL-12 family provides new therapeutic opportunities.
Collapse
Affiliation(s)
- Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, 235 Hungerford Hill Rd., Ithaca, NY 14853, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Ave., Philadelphia, PA 19104-4539, USA.
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| |
Collapse
|
37
|
Molecular, Immunological, and Clinical Features of 16 Iranian Patients with Mendelian Susceptibility to Mycobacterial Disease. J Clin Immunol 2019; 39:287-297. [PMID: 30715640 DOI: 10.1007/s10875-019-0593-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/06/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE Mendelian susceptibility to mycobacterial disease (MSMD) is a rare primary immunodeficiency, triggered by non-tuberculous mycobacteria or Bacillus Calmette-Guérin (BCG) vaccines and characterized by severe diseases. All known genetic etiologies are inborn errors of IFN-γ-mediated immunity. Here, we report the molecular, cellular, and clinical features of patients from 15 Iranian families with disseminated disease without vaccination (2 patients) or following live BCG vaccination (14 patients). METHODS We used whole blood samples from 16 patients and 12 age-matched healthy controls. To measure IL-12 and IFN-γ, samples were activated by BCG plus recombinant human IFN-γ or recombinant human IL-12. Immunological assessments and genetic analysis were also done for the patients. RESULTS Eight patients affected as a result of parental first-cousin marriages. Seven patients originated from multiplex kindred with positive history of death because of tuberculosis or finding the MSMD-related gene mutations. Two patients died due to mycobacterial disease at the ages of 8 months and 3.7 years. The remaining patients were alive at the last follow-up and were aged between 2 and 13 years. Patients suffered from infections including chronic mucocutaneous candidiasis (n = 10), salmonellosis (n = 2), and Leishmania (responsible for visceral form) (n = 2). Thirteen patients presented with autosomal recessive (AR) IL-12Rβ1 deficiency, meaning their cells produced low levels of IFN-γ. Bi-allelic IL12RB1 mutations were detected in nine of patients. Three patients with AR IL-12p40 deficiency (bi-allelic IL12B mutations) produced low levels of both IL-12 and IFN-γ. Overall, we found five mutations in the IL12RB1 gene and three mutations in the IL12B gene. Except one mutation in exon 5 (c.510C>A) of IL12B, all others were previously reported to be loss-of-function mutations. CONCLUSIONS We found low levels of IFN-γ production and failure to respond to IL12 in 13 Iranian MSMD patients. Due to complicated clinical manifestations in affected children, early cellular and molecular diagnostics is crucial in susceptible patients.
Collapse
|
38
|
Al-Kzayer LFY, Yassin AK, Salih KH, Shigemura T, Sano K, Al-Simaani RBY, Tanaka M, Nakazawa Y, Okuno Y. A Syrian Refugee in Iraq Diagnosed as a Case of IL12RB1 Deficiency in Japan Using Dried Blood Spots. Front Immunol 2019; 10:58. [PMID: 30740107 PMCID: PMC6355664 DOI: 10.3389/fimmu.2019.00058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare condition of primary immunodeficiency disorder. Interleukin-12 receptor β1 (IL12RB1) deficiency, is the most common genetic etiology of MSMD, which is characterized by the selective predisposition to clinical disease caused by weakly-virulent mycobacteria, such as Bacillus Calmette-Guérin (BCG) vaccines, and environmental non-tuberculous mycobacteria (NTM). To the best of our knowledge, this is the first case of IL12RB1 deficiency to be reported from Iraq. Our case is an 8-year-old Syrian girl, for first-cousin parents, with a refugee-status in the North of Iraq. She had a history of disseminated BCG infection 2 months after receiving BCG vaccine, in addition to repeated episodes of mild or severe illnesses, such as maculopapular skin rash, lymphadenopathy, gastroenteritis, meningitis, and clinically diagnosed tuberculosis (TB) based on local TB-prevalence setting. Because of limited medical facilities in the war-torn countries; in Syria and Iraq, no diagnosis could be reached. We used Flinders Technology Associates (FTA) cards to transfer her bone marrow aspirate to Japan. A homozygous IL12RB1 mutation was detected by whole exome sequencing in Japan, using genomic-DNA extracted from dried bone marrow sample spots on FTA filter paper. In conclusion, diagnosis of MSMD due to IL12RB1 deficiency was possible by transferring the FTA sample of the patient for genetic evaluation in Japan. Our report recalls the need of pediatricians in countries with TB-prevalence and high parental consanguinity, to consider IL12RB1 deficiency in the differential diagnosis of a child with clinical evidence of TB, especially with the history of disseminated BCG disease.
Collapse
Affiliation(s)
| | - Ahmed K Yassin
- Department of Medicine, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Khalid Hama Salih
- Department of Pediatrics, College of Medicine, Sulaymaniyah Medical University, Sulaymaniyah, Iraq
| | - Tomonari Shigemura
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenji Sano
- Department of Pathology, Iida Municipal Hospital, Iida, Japan
| | | | - Miyuki Tanaka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
39
|
Zhai W, Wu F, Zhang Y, Fu Y, Liu Z. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci 2019; 20:E340. [PMID: 30650615 PMCID: PMC6359177 DOI: 10.3390/ijms20020340] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
Epidemiological data from the Center of Disease Control (CDC) and the World Health Organization (WHO) statistics in 2017 show that 10.0 million people around the world became sick with tuberculosis. Mycobacterium tuberculosis (MTB) is an intracellular parasite that mainly attacks macrophages and inhibits their apoptosis. It can become a long-term infection in humans, causing a series of pathological changes and clinical manifestations. In this review, we summarize innate immunity including the inhibition of antioxidants, the maturation and acidification of phagolysosomes and especially the apoptosis and autophagy of macrophages. Besides, we also elaborate on the adaptive immune response and the formation of granulomas. A thorough understanding of these escape mechanisms is of major importance for the prevention, diagnosis and treatment of tuberculosis.
Collapse
Affiliation(s)
- Weijie Zhai
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Fengjuan Wu
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Yiyuan Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Yurong Fu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China.
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
40
|
Martínez-Barricarte R, Markle JG, Ma CS, Deenick EK, Ramírez-Alejo N, Mele F, Latorre D, Mahdaviani SA, Aytekin C, Mansouri D, Bryant VL, Jabot-Hanin F, Deswarte C, Nieto-Patlán A, Surace L, Kerner G, Itan Y, Jovic S, Avery DT, Wong N, Rao G, Patin E, Okada S, Bigio B, Boisson B, Rapaport F, Seeleuthner Y, Schmidt M, Ikinciogullari A, Dogu F, Tanir G, Tabarsi P, Bloursaz MR, Joseph JK, Heer A, Kong XF, Migaud M, Lazarov T, Geissmann F, Fleckenstein B, Arlehamn CL, Sette A, Puel A, Emile JF, van de Vosse E, Quintana-Murci L, Di Santo JP, Abel L, Boisson-Dupuis S, Bustamante J, Tangye SG, Sallusto F, Casanova JL. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol 2018; 3:eaau6759. [PMID: 30578351 PMCID: PMC6380365 DOI: 10.1126/sciimmunol.aau6759] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Hundreds of patients with autosomal recessive, complete IL-12p40 or IL-12Rβ1 deficiency have been diagnosed over the last 20 years. They typically suffer from invasive mycobacteriosis and, occasionally, from mucocutaneous candidiasis. Susceptibility to these infections is thought to be due to impairments of IL-12-dependent IFN-γ immunity and IL-23-dependent IL-17A/IL-17F immunity, respectively. We report here patients with autosomal recessive, complete IL-12Rβ2 or IL-23R deficiency, lacking responses to IL-12 or IL-23 only, all of whom, unexpectedly, display mycobacteriosis without candidiasis. We show that αβ T, γδ T, B, NK, ILC1, and ILC2 cells from healthy donors preferentially produce IFN-γ in response to IL-12, whereas NKT cells and MAIT cells preferentially produce IFN-γ in response to IL-23. We also show that the development of IFN-γ-producing CD4+ T cells, including, in particular, mycobacterium-specific TH1* cells (CD45RA-CCR6+), is dependent on both IL-12 and IL-23. Last, we show that IL12RB1, IL12RB2, and IL23R have similar frequencies of deleterious variants in the general population. The comparative rarity of symptomatic patients with IL-12Rβ2 or IL-23R deficiency, relative to IL-12Rβ1 deficiency, is, therefore, due to lower clinical penetrance. There are fewer symptomatic IL-23R- and IL-12Rβ2-deficient than IL-12Rβ1-deficient patients, not because these genetic disorders are rarer, but because the isolated absence of IL-12 or IL-23 is, in part, compensated by the other cytokine for the production of IFN-γ, thereby providing some protection against mycobacteria. These experiments of nature show that human IL-12 and IL-23 are both required for optimal IFN-γ-dependent immunity to mycobacteria, both individually and much more so cooperatively.
Collapse
Affiliation(s)
- Rubén Martínez-Barricarte
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Janet G Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Noé Ramírez-Alejo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federico Mele
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
| | - Daniela Latorre
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Davood Mansouri
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vanessa L Bryant
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Laura Surace
- Innate Immunity Unit, Pasteur Institute, INSERM U1223, Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, and the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Jovic
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
| | - Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Natalie Wong
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Geetha Rao
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Pasteur Institute, Paris, France
- Centre National de la Recherche Scientifique, UMR 2000, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Monika Schmidt
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg,Erlangen, Germany
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University School of Medicine, Ankara, Turkey
| | - Gonul Tanir
- Department of Pediatric Infectious Diseases, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Payam Tabarsi
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammed Reza Bloursaz
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Julia K Joseph
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Avneet Heer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Tomi Lazarov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frédéric Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Centre for Molecular and Cellular Biology of Inflammation, King's College London, London, UK
| | - Bernhard Fleckenstein
- Institute for Clinical and Molecular Virology, University Erlangen-Nuremberg,Erlangen, Germany
| | | | - Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-François Emile
- EA4340 and Pathology Department, Ambroise Paré Hospital AP-HP, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Boulogne, France
| | - Esther van de Vosse
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Department of Genomes and Genetics, Pasteur Institute, Paris, France
- Centre National de la Recherche Scientifique, UMR 2000, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Pasteur Institute, INSERM U1223, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Study Center of Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research and St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, New South Wales, Australia
| | - Federica Sallusto
- Center of Medical Immunology, Institute for Research in Biomedicine, Faculty of Biomedical Sciences, University of italian Switzerland (USI), Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Switzerland
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children AP-HP, Paris, France
| |
Collapse
|
41
|
Nekooie-Marnany N, Deswarte C, Ostadi V, Bagherpour B, Taleby E, Ganjalikhani-Hakemi M, Le Voyer T, Rahimi H, Rosain J, Pourmoghadas Z, Sheikhbahaei S, Khoshnevisan R, Petersheim D, Kotlarz D, Klein C, Boisson-Dupuis S, Casanova JL, Bustamante J, Sherkat R. Impaired IL-12- and IL-23-Mediated Immunity Due to IL-12Rβ1 Deficiency in Iranian Patients with Mendelian Susceptibility to Mycobacterial Disease. J Clin Immunol 2018; 38:787-793. [PMID: 30255293 DOI: 10.1007/s10875-018-0548-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Inborn errors of IFN-γ-mediated immunity underlie Mendelian Susceptibility to Mycobacterial Disease (MSMD), which is characterized by an increased susceptibility to severe and recurrent infections caused by weakly virulent mycobacteria, such as Bacillus Calmette-Guérin (BCG) vaccines and environmental, nontuberculous mycobacteria (NTM). METHODS In this study, we investigated four patients from four unrelated consanguineous families from Isfahan, Iran, with disseminated BCG disease. We evaluated the patients' whole blood cell response to IL-12 and IFN-γ, IL-12Rβ1 expression on T cell blasts, and sequenced candidate genes. RESULTS We report four patients from Isfahan, Iran, ranging from 3 months to 26 years old, with impaired IL-12 signaling. All patients suffered from BCG disease. One of them presented mycobacterial osteomyelitis. By Sanger sequencing, we identified three different types of homozygous mutations in IL12RB1. Expression of IL-12Rβ1 was completely abolished in the four patients with IL12RB1 mutations. CONCLUSIONS IL-12Rβ1 deficiency was found in the four MSMD Iranian families tested. It is the first report of an Iranian case with S321* mutant IL-12Rβ1 protein. Mycobacterial osteomyelitis is another type of location of BCG infection in an IL-12Rβ1-deficient patient, notified for the first time in this study.
Collapse
Affiliation(s)
- Nioosha Nekooie-Marnany
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France
| | - Vajiheh Ostadi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Bagherpour
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elaheh Taleby
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France
| | - Hamid Rahimi
- Department of Pediatrics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France.,Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, EU, France
| | - Zahra Pourmoghadas
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Sheikhbahaei
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razieh Khoshnevisan
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daniel Petersheim
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, EU, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, EU, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, EU, Germany
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA.,Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, EU, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Paris, EU, France.,Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris AP-HP, Necker Hospital for Sick Children, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
42
|
Rosain J, Oleaga-Quintas C, Deswarte C, Verdin H, Marot S, Syridou G, Mansouri M, Mahdaviani SA, Venegas-Montoya E, Tsolia M, Mesdaghi M, Chernyshova L, Stepanovskiy Y, Parvaneh N, Mansouri D, Pedraza-Sánchez S, Bondarenko A, Espinosa-Padilla SE, Yamazaki-Nakashimada MA, Nieto-Patlán A, Kerner G, Lambert N, Jacques C, Corvilain E, Migaud M, Grandin V, Herrera MT, Jabot-Hanin F, Boisson-Dupuis S, Picard C, Nitschke P, Puel A, Tores F, Abel L, Blancas-Galicia L, De Baere E, Bole-Feysot C, Casanova JL, Bustamante J. A Variety of Alu-Mediated Copy Number Variations Can Underlie IL-12Rβ1 Deficiency. J Clin Immunol 2018; 38:617-627. [PMID: 29995221 DOI: 10.1007/s10875-018-0527-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Autosomal recessive complete IL-12Rβ1 deficiency is the most frequent genetic etiology of MSMD. Only two of the 84 known mutations are copy number variations (CNVs), identified in two of the 213 IL-12Rβ1-deficient patients and two of the 164 kindreds reported. These two CNVs are large deletions found in the heterozygous or homozygous state. We searched for novel families with IL-12Rβ1 deficiency due to CNVs. METHODS We studied six MSMD patients from five unrelated kindreds displaying adverse reactions to BCG vaccination. Three of the patients also presented systemic salmonellosis, two had mucocutaneous candidiasis, and one had disseminated histoplasmosis. We searched for CNVs and other variations by IL12RB1-targeted next-generation sequencing (NGS). RESULTS We identified six new IL-12Rβ1-deficient patients with a complete loss of IL-12Rβ1 expression on phytohemagglutinin-activated T cells and/or EBV-transformed B cells. The cells of these patients did not respond to IL-12 and IL-23. Five different CNVs encompassing IL12RB1 (four deletions and one duplication) were identified in these patients by NGS coverage analysis, either in the homozygous state (n = 1) or in trans (n = 4) with a single-nucleotide variation (n = 3) or a small indel (n = 1). Seven of the nine mutations are novel. Interestingly, four of the five CNVs were predicted to be driven by nearby Alu elements, as well as the two previously reported large deletions. The IL12RB1 locus is actually enriched in Alu elements (44.7%), when compared with the rest of the genome (10.5%). CONCLUSION The IL12RB1 locus is Alu-enriched and therefore prone to rearrangements at various positions. CNVs should be considered in the genetic diagnosis of IL-12Rβ1 deficiency.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Stéphane Marot
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | | | - Mahboubeh Mansouri
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Edna Venegas-Montoya
- The Immunodeficiencies Research Unit, National Institute of Pediatrics, Mexico City, Mexico
| | - Maria Tsolia
- Second Department of Pediatrics, P. and A. Kyriakou Children's Hospital, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Mehrnaz Mesdaghi
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Liudmyla Chernyshova
- Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Yuriy Stepanovskiy
- Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Department of Internal Medicine, Division of Infectious Disease and Clinical Immunology, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, NRITLD, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sigifredo Pedraza-Sánchez
- Unit of Biochemistry, National Institute for Medical Sciences and Nutrition Salvador Zubiran (INCMNSZ), Mexico City, Mexico
| | - Anastasia Bondarenko
- Department of Pediatric Infectious Diseases and Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | | | | | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Corinne Jacques
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Emilie Corvilain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,Free University of Brussels, Brussels, Belgium
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Virginie Grandin
- Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - María T Herrera
- Department of Microbiology Research, National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Capucine Picard
- Imagine Institute, Paris Descartes University, Paris, France.,Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France.,Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Patrick Nitschke
- Bioinformatics Core Facility, Imagine Institute, SFR-Necker, INSERM UMR1163 and INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Frederic Tores
- Bioinformatics Core Facility, Imagine Institute, SFR-Necker, INSERM UMR1163 and INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | | | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Christine Bole-Feysot
- Genomic Core Facility, INSERM UMR1163, SFR-Necker, Imagine Institute, Paris, France.,INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.,Imagine Institute, Paris Descartes University, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.,Pediatric Hematology-Immunology Unit, AP-HP, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France. .,Imagine Institute, Paris Descartes University, Paris, France. .,Study Center for Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| |
Collapse
|
43
|
Hiyoshi H, Tiffany CR, Bronner DN, Bäumler AJ. Typhoidal Salmonella serovars: ecological opportunity and the evolution of a new pathovar. FEMS Microbiol Rev 2018; 42:527-541. [DOI: 10.1093/femsre/fuy024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/19/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hirotaka Hiyoshi
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Denise N Bronner
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
44
|
Reeme AE, Claeys TA, Aggarwal P, Turner AJ, Routes JM, Broeckel U, Robinson RT. Human IL12RB1 expression is allele-biased and produces a novel IL12 response regulator. Genes Immun 2018; 20:181-197. [PMID: 29599514 PMCID: PMC6165718 DOI: 10.1038/s41435-018-0023-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/30/2022]
Abstract
Human IL12RB1 is an autosomal gene that is essential for mycobacterial disease resistance and T cell differentiation. Using primary human tissue and PBMCs, we demonstrate that lung and T cell IL12RB1 expression is allele-biased, and the extent to which cells express one IL12RB1 allele is unaffected by activation. Furthermore, following its expression the IL12RB1 pre-mRNA is processed into either IL12RB1 Isoform 1 (IL12Rβ1, a positive regulator of IL12-responsiveness) or IL12RB1 Isoform 2 (a protein of heretofore unknown function). T cells’ choice to process pre-mRNA into Isoform 1 or Isoform 2 is controlled by intragenic competition of IL12RB1 exon 9-10 splicing with IL12RB1 exon 9b splicing, as well as an IL12RB1 exon 9b-associated polyadenylation site. Heterogeneous nuclear ribonucleoprotein H (hnRNP H) binds near the regulated polyadenylation site, but is not required for exon 9b polyadenylation. Finally, microRNA-mediated knockdown experiments demonstrated that IL12RB1 Isoform 2 promotes T cell IL12 responses. Collectively, our data support a model wherein tissue expression of human IL12RB1 is allele-biased and produces an hnRNP H bound pre-mRNA, the processing of which generates a novel IL12 response regulator.
Collapse
Affiliation(s)
- Allison E Reeme
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Tiffany A Claeys
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Praful Aggarwal
- Department of Pediatrics, Section of Genomic Pediatrics and Children's Research Institute, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Amy J Turner
- Department of Pediatrics, Section of Genomic Pediatrics and Children's Research Institute, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John M Routes
- Department of Pediatrics, Section of Asthma, Allergy and Clinical Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ulrich Broeckel
- Department of Pediatrics, Section of Genomic Pediatrics and Children's Research Institute, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard T Robinson
- Department of Microbiology and Immunology, The Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
45
|
Susceptibility to mycobacterial disease due to mutations in IL-12Rβ1 in three Iranian patients. Immunogenetics 2017; 70:373-379. [PMID: 29256176 PMCID: PMC5943370 DOI: 10.1007/s00251-017-1041-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/26/2017] [Indexed: 10/31/2022]
Abstract
In the last decade, autosomal recessive interleukin-12 receptor β1 (IL-12Rβ1) deficiency, the most common cause of Mendelian susceptibility to mycobacterial disease (MSMD), has been diagnosed in a few children and adults with severe tuberculosis in Iran. Here, we report three cases referred to the Immunology, Asthma and Allergy ward at the National Research Institute of Tuberculosis and Lung Diseases (NRITLD) at Masih Daneshvari Hospital from 2012 to 2017 with Mycobacterium tuberculosis and non-tuberculous mycobacteria infections due to defects in IL-12Rβ1 but with different clinical manifestations. All three were homozygous for either an IL-12Rβ1 missense or nonsense mutation that caused the IL-12Rβ1 protein not to be expressed on the cell membrane and completely abolished the cellular response to recombinant IL-12. Our findings suggest that the presence of IL-12Rβ1 deficiency should be determined in children with mycobacterial infections at least in countries with a high prevalence of parental consanguinity and in areas endemic for TB like Iran.
Collapse
|
46
|
Nia JK, Hashim PW, Kimmel G, Aleisa A, Farahani AC, Lebwohl MG. Update on Ustekinumab for Psoriasis. CURRENT DERMATOLOGY REPORTS 2017. [DOI: 10.1007/s13671-017-0167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Goswami R, Kaplan M. STAT Transcription Factors in T Cell Control of Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:123-180. [DOI: 10.1016/bs.ircmb.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A 2016; 113:E8277-E8285. [PMID: 27930337 DOI: 10.1073/pnas.1618300114] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is defined as recurrent or persistent infection of the skin, nails, and/or mucosae with commensal Candida species. The first genetic etiology of isolated CMC-autosomal recessive (AR) IL-17 receptor A (IL-17RA) deficiency-was reported in 2011, in a single patient. We report here 21 patients with complete AR IL-17RA deficiency, including this first patient. Each patient is homozygous for 1 of 12 different IL-17RA alleles, 8 of which create a premature stop codon upstream from the transmembrane domain and have been predicted and/or shown to prevent expression of the receptor on the surface of circulating leukocytes and dermal fibroblasts. Three other mutant alleles create a premature stop codon downstream from the transmembrane domain, one of which encodes a surface-expressed receptor. Finally, the only known missense allele (p.D387N) also encodes a surface-expressed receptor. All of the alleles tested abolish cellular responses to IL-17A and -17F homodimers and heterodimers in fibroblasts and to IL-17E/IL-25 in leukocytes. The patients are currently aged from 2 to 35 y and originate from 12 unrelated kindreds. All had their first CMC episode by 6 mo of age. Fourteen patients presented various forms of staphylococcal skin disease. Eight were also prone to various bacterial infections of the respiratory tract. Human IL-17RA is, thus, essential for mucocutaneous immunity to Candida and Staphylococcus, but otherwise largely redundant. A diagnosis of AR IL-17RA deficiency should be considered in children or adults with CMC, cutaneous staphylococcal disease, or both, even if IL-17RA is detected on the cell surface.
Collapse
|
49
|
Wang X, van de Veerdonk FL, Netea MG. Basic Genetics and Immunology of Candida Infections. Infect Dis Clin North Am 2016; 30:85-102. [PMID: 26897063 DOI: 10.1016/j.idc.2015.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Candida infections can cause superficial and invasive disease. Several essential mechanisms underlying the pathogenesis of these infections were known for some time, such as neutropenia predisposing to invasive disease, and CD4 lymphopenia causing increased susceptibility to mucosal candidiasis. However, the development of novel genetic screening techniques has led to several new insights in the genetics and immunology of candida infections. This article highlights novel insights in the pathogenesis of mucocutaneous and invasive candidiasis that have been identified in recent years.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Department of Dermatology, Peking University First Hospital, Xishiku Street 8, Xicheng District, Beijing 10034, China
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands; Radboud Center for Infectious Diseases (RCI), Geert Grooteplein Zuid 8, Nijmegen, 6525 GA, The Netherlands.
| |
Collapse
|
50
|
Kellen R, Silverberg NB, Lebwohl M. Efficacy and safety of ustekinumab in adolescents. Pediatric Health Med Ther 2016; 7:109-120. [PMID: 29388600 PMCID: PMC5683279 DOI: 10.2147/phmt.s75836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The biologic agent ustekinumab is a human monoclonal antibody that binds to the p40 subunit shared by interleukins (ILs) 12 and 23. The antibody is able to prevent binding of cytokines to the IL-12Rβ1 cell surface receptor and therefore may prevent IL-23 driven activation of the IL-23/Th 17 axis of inflammation. The anti-inflammatory activity has been beneficial in adult psoriasis. Ustekinumab has been approved in the United States for the treatment of adults with psoriasis and psoriatic arthritis. Approval in children and adolescents has not been granted by the US Food and Drug Administration. Subcutaneous injections of ustekinumab are administered at baseline, week 4 and every 12 weeks thereafter, a regimen that is particularly appealing to young patients who do not like more frequent injections at home. The product is attractive because, although it works through an immune system mechanism, the selective activity is such that the drug has not been associated with many of the side effects attributed to other immunosuppressive medications. Case reports of ustekinumab for pediatric psoriasis have shown promising results, and the recent Phase III CADMUS trial tested the agent in adolescents aged 12-17 years with psoriasis, using standard dose 0.75 mg/kg (≤60 kg), 45 mg (>60-≤100 kg), and 90 mg (>100 kg) or half-standard dosing 0.375 mg/kg (≤60 kg), 22.5 mg (>60-≤100 kg), and 45 mg (>100 kg) with a loading dosage at week 0 and week 4. Psoriasis area and severity index-75 was achieved in more than three-quarters of patients in full and half dosing by 12 weeks, and psoriasis area and severity index-90 in 54.1% and 61.1% of half and full dosage by 12 weeks, respectively. Ustekinumab was generally well tolerated in adolescents, with some patients developing antibodies, and nasopharyngitis being the major adverse event. Ustekinumab is a promising agent in adolescent psoriasis that appears to be well tolerated. The best monitoring plan and usage in younger patients still remain to be defined.
Collapse
Affiliation(s)
- Roselyn Kellen
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nanette B Silverberg
- Department of Dermatology, Mount Sinai St Luke’s-Roosevelt Hospital, New York, NY, USA
- Beth Israel Medical Centers, New York, NY, USA
| | - Mark Lebwohl
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|