1
|
Zhang S, Gao H, You G, Cao H, Wang Y, Gao L, Zheng SJ. A novel role of ETV6 as a pro-viral factor in host response by inhibiting TBK1 phosphorylation. Int J Biol Macromol 2024; 279:135525. [PMID: 39260650 DOI: 10.1016/j.ijbiomac.2024.135525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
E26-transforming specific (ETS) variant 6 (ETV6) is a transcription factor regulating the expression of interferon stimulating genes (ISGs) and involved in the embryonic development and hematopoietic regulation, but the role of ETV6 in host response to virus infection is not clear. In this study, we show that ETV6 was upregulated in DF-1 cells with poly(I:C) stimulation or IBDV, AIV and ARV infection via engagement of dsRNA by MDA5. Overexpression of ETV6 in DF-1 cells markedly inhibited IBDV-induced type I interferon (IFN-I) and ISGs expressions. In contrast, knockdown, or knockout of ETV6 remarkably inhibited IBDV replication via promoting IFN-I response. Furthermore, our data show that ETV6 negatively regulated host antiviral response to IBDV infection by interaction with TANK binding kinase 1 (TBK1) and subsequently inhibited its phosphorylation. These results uncovered a novel role of ETV6 as a pro-viral factor in host response by inhibiting TBK1 phosphorylation, furthering our understandings of RNA virus immunosuppression and providing a valuable clue to the development of antiviral reagents for the control of avian RNA virus infection.
Collapse
Affiliation(s)
- Shujun Zhang
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Gao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guangju You
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Hong Cao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Li Gao
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security, China; Animal Epidemiology of the Ministry of Agriculture, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Parker ME, Mehta NU, Liao TC, Tomaszewski WH, Snyder SA, Busch J, Ciofani M. Restriction of innate Tγδ17 cell plasticity by an AP-1 regulatory axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618522. [PMID: 39463970 PMCID: PMC11507935 DOI: 10.1101/2024.10.15.618522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
IL-17-producing γδ T (Tγδ17) cells are innate-like mediators of intestinal barrier immunity. While Th17 cell and ILC3 plasticity have been extensively studied, the mechanisms governing Tγδ17 cell effector flexibility remain undefined. Here, we combined type 3 fate-mapping with single cell ATAC/RNA-seq multiome profiling to define the cellular features and regulatory networks underlying Tγδ17 cell plasticity. During homeostasis, Tγδ17 cell effector identity was stable across tissues, including for intestinal T-bet+ Tγδ17 cells that restrained IFNγ production. However, S. typhimurium infection induced intestinal Vγ6+ Tγδ17 cell conversion into type 1 effectors, with loss of IL-17A production and partial RORγt downregulation. Multiome analysis revealed a trajectory along Vγ6+ Tγδ17 effector conversion, with TIM-3 marking ex-Tγδ17 cells with enhanced type 1 functionality. Lastly, we characterized and validated a critical AP-1 regulatory axis centered around JunB and Fosl2 that controls Vγ6+ Tγδ17 cell plasticity by stabilizing type 3 identity and restricting type 1 effector conversion.
Collapse
Affiliation(s)
- Morgan E Parker
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Naren U Mehta
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - William H Tomaszewski
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie A Snyder
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Julia Busch
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Maria Ciofani
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Hu H, Tang L, Zhao Y, Cheng J, Huang M, You Y, Zou P, Lei Q, Zhu X, Guo AY. Single-cell analysis of the survival mechanisms of fratricidal CAR-T targeting of T cell malignancies. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102225. [PMID: 38948332 PMCID: PMC11214519 DOI: 10.1016/j.omtn.2024.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/16/2024] [Indexed: 07/02/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy targeting T cell tumors still faces many challenges, one of which is its fratricide due to the target gene expressed on CAR-T cells. Despite this, these CAR-T cells can be expanded in vitro by extending the culture time and effectively eliminating malignant T cells. However, the mechanisms underlying CAR-T cell survival in cell subpopulations, the molecules involved, and their regulation are still unknown. We performed single-cell transcriptome profiling to investigate the fratricidal CAR-T products (CD26 CAR-Ts and CD44v6 CAR-Ts) targeting T cells, taking CD19 CAR-Ts targeting B cells from the same donor as a control. Compared with CD19 CAR-Ts, fratricidal CAR-T cells exhibit no unique cell subpopulation, but have more exhausted T cells, fewer cytotoxic T cells, and more T cell receptor (TCR) clonal amplification. Furthermore, we observed that fratricidal CAR-T cell survival was accompanied by target gene expression. Gene expression results suggest that fratricidal CAR-T cells may downregulate their human leukocyte antigen (HLA) molecules to evade T cell recognition. Single-cell regulatory network analysis and suppression experiments revealed that exhaustion mediated by critical regulatory factors may contribute to fratricidal CAR-T cell survival. Together, these data provide valuable and first-time insights into the survival of fratricidal CAR-T cells.
Collapse
Affiliation(s)
- Hui Hu
- Department of Hematology, West China Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Tang
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuyan Zhao
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiali Cheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mei Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Lei
- Department of Hematology, West China Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An-Yuan Guo
- Department of Hematology, West China Biomedical Big Data Center, West China Hospital, Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
4
|
Garrett-Sinha LA. An update on the roles of transcription factor Ets1 in autoimmune diseases. WIREs Mech Dis 2023; 15:e1627. [PMID: 37565573 PMCID: PMC10842644 DOI: 10.1002/wsbm.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Transcription factors are crucial to regulate gene expression in immune cells and in other cell types. In lymphocytes, there are a large number of different transcription factors that are known to contribute to cell differentiation and the balance between quiescence and activation. One such transcription factor is E26 oncogene homolog 1 (Ets1). Ets1 expression is high in quiescent B and T lymphocytes and its levels are decreased upon activation. The human ETS1 gene has been identified as a susceptibility locus for many autoimmune and inflammatory diseases. In accord with this, gene knockout of Ets1 in mice leads to development of a lupus-like autoimmune disease, with enhanced activation and differentiation of both B cells and T cells. Prior reviews have summarized functional roles for Ets1 based on studies of Ets1 knockout mice. In recent years, numerous additional studies have been published that further validate ETS1 as a susceptibility locus for human diseases where immune dysregulation plays a causative role. In this update, new information that further links Ets1 to human autoimmune diseases is organized and collated to serve as a resource. This update also describes recent studies that seek to understand molecularly how Ets1 regulates immune cell activation, either using human cells and tissues or mouse models. This resource is expected to be useful to investigators seeking to understand how Ets1 may regulate the human immune response, particularly in terms of its roles in autoimmunity and inflammation. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, USA
| |
Collapse
|
5
|
Yan K, Zhang F, Ren J, Huang Q, Yawalkar N, Han L. MicroRNA-125a-5p regulates the effect of Tregs on Th1 and Th17 through targeting ETS-1/STAT3 in psoriasis. J Transl Med 2023; 21:678. [PMID: 37773129 PMCID: PMC10543306 DOI: 10.1186/s12967-023-04427-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Psoriasis is an inflammatory disease mediated by helper T (Th)17 and Th1 cells. MicroRNA-125a (miR-125a) is reduced in the lesional skin of psoriatic patients. However, the mechanism by which miR-125a participates in psoriasis remains unclear. METHODS The levels of miR-125a-5p and its downstream targets (ETS-1, IFN-γ, and STAT3) were detected in CD4+ T cells of healthy controls and psoriatic patients by quantitative real-time PCR (qRT-PCR). In vitro, transfection of miR-125a-5p mimics was used to analyze the effect of miR-125a-5p on the differentiation of Th17 cells by flow cytometry. Imiquimod (IMQ)-induced mouse model was used to evaluate the role of upregulating miR-125a-5p by intradermal injection of agomir-125a-5p in vivo. RESULTS miR-125a-5p was downregulated in peripheral blood CD4+ T cells of psoriatic patients, which was positively associated with the proportion of regulatory T cells (Tregs) and negatively correlated with the Psoriasis Area and Severity Index (PASI) score. Moreover, the miR-125a-5p mimics promoted the differentiation of Tregs and downregulated the messenger RNA (mRNA) levels of ETS-1, IFN-γ, and STAT3 in murine CD4+ T cells. Furthermore, agomir-125a-5p alleviated psoriasis-like inflammation in an IMQ-induced mouse model by downregulating the proportion of Th17 cells. CONCLUSIONS miR-125a-5p may have therapeutic potential in psoriasis by restoring the suppressive function of Tregs on Th17 cells through targeting STAT3, and on Th1 cells indirectly through targeting ETS-1 and IFN-γ.
Collapse
Affiliation(s)
- Kexiang Yan
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Fuxin Zhang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Jie Ren
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ling Han
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
6
|
Wong P, Foltz JA, Chang L, Neal CC, Yao T, Cubitt CC, Tran J, Kersting-Schadek S, Palakurty S, Jaeger N, Russler-Germain DA, Marin ND, Gang M, Wagner JA, Zhou AY, Jacobs MT, Foster M, Schappe T, Marsala L, McClain E, Pence P, Becker-Hapak M, Fisk B, Petti AA, Griffith OL, Griffith M, Berrien-Elliott MM, Fehniger TA. T-BET and EOMES sustain mature human NK cell identity and antitumor function. J Clin Invest 2023; 133:e162530. [PMID: 37279078 PMCID: PMC10313375 DOI: 10.1172/jci162530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells. Mechanistically, T-BET and EOMES were required for normal NK cell proliferation and persistence in vivo. NK cells lacking T-BET and EOMES also exhibited defective responses to cytokine stimulation. Single-cell RNA-Seq revealed a specific T-box transcriptional program in human NK cells, which was rapidly lost following T-BET and EOMES deletion. Further, T-BET- and EOMES-deleted CD56bright NK cells acquired an innate lymphoid cell precursor-like (ILCP-like) profile with increased expression of the ILC-3-associated TFs RORC and AHR, revealing a role for T-box TFs in maintaining mature NK cell phenotypes and an unexpected role of suppressing alternative ILC lineages. Our study reveals the critical importance of sustained EOMES and T-BET expression to orchestrate mature NK cell function and identity.
Collapse
Affiliation(s)
- Pamela Wong
- Department of Medicine, Division of Oncology
| | | | - Lily Chang
- Department of Medicine, Division of Oncology
| | | | - Tony Yao
- Department of Medicine, Division of Oncology
| | | | | | | | | | | | | | | | | | | | | | | | - Mark Foster
- Department of Medicine, Division of Oncology
| | | | | | | | | | | | - Bryan Fisk
- Department of Medicine, Division of Oncology
| | | | | | | | | | - Todd A. Fehniger
- Department of Medicine, Division of Oncology
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Pham D, Silberger DJ, Nguyen KN, Gao M, Weaver CT, Hatton RD. Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J 2023; 42:e109803. [PMID: 36917143 PMCID: PMC10106990 DOI: 10.15252/embj.2021109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
Collapse
Affiliation(s)
- Duy Pham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel J Silberger
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kim N Nguyen
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Min Gao
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamALUSA
| | - Casey T Weaver
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Robin D Hatton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
8
|
Chen J, Xiang X, Nie L, Guo X, Zhang F, Wen C, Xia Y, Mao L. The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front Immunol 2023; 13:1079668. [PMID: 36685487 PMCID: PMC9849744 DOI: 10.3389/fimmu.2022.1079668] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease of the large and medium-sized artery walls. The molecular mechanisms regulating the onset and progression of atherosclerosis remain unclear. T cells, one of the most common immune cell types in atherosclerotic plaques, are increasingly recognized as a key mediator in the pathogenesis of atherosclerosis. Th1 cells are a subset of CD4+ T helper cells of the adaptive immune system, characterized by the expression of the transcription factor T-bet and secretion of cytokines such as IFN-γ. Converging evidence shows that Th1 cells play a key role in the onset and progression of atherosclerosis. Besides, Th1 is the central mediator to orchestrate the adaptive immune system. In this review, we aim to summarize the complex role of Th1 cells in atherosclerosis and propose novel preventative and therapeutic approaches targeting Th1 cell-associated specific cytokines and receptors to prevent atherogenesis.
Collapse
Affiliation(s)
| | | | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
9
|
Trachsel T, Prader S, Steindl K, Pachlopnik Schmid J. Case report: ETS1 gene deletion associated with a low number of recent thymic emigrants in three patients with Jacobsen syndrome. Front Immunol 2022; 13:867206. [PMID: 36341443 PMCID: PMC9634179 DOI: 10.3389/fimmu.2022.867206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Jacobsen syndrome is a rare genetic disorder associated with a terminal deletion in chromosome 11. The clinical presentation is variable. Although immunodeficiency has been described in patients with Jacobsen syndrome, a clear genotype-phenotype correlation has not yet been established. Here, we report on the immunologic phenotypes of four patients with Jacobsen syndrome. All four patients showed one or more atypical immunologic features. One patient suffered from recurrent viral infections, two patients had experienced a severe bacterial infection and one had received antibiotic prophylaxis since early childhood. One patient had experienced severe, transient immune dysregulation. Hypogammaglobulinemia and low B cell counts were found in two patients, while the number of recent thymic emigrants (CD31+CD45RA+ CD4 cells) was abnormally low in three. When considering the six immune-related genes located within the affected part of chromosome 11 (ETS1, TIRAP, FLI1, NFRKB, THYN1, and SNX19), only the ETS1 gene was found be deleted in the three patients with low numbers of recent thymic emigrants and non-switched memory B cells. Our findings support the hypothesis whereby Jacobsen syndrome is associated with a combined immunodeficiency with variable presentation. Further investigations of potential genotype-phenotype correlations are warranted and might help to personalize patient management in individuals lacking immune-related genes. In addition, we recommend immunologic follow-up for all patients with Jacobsen syndrome, as immune abnormalities may develop over time.
Collapse
Affiliation(s)
- Tina Trachsel
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Seraina Prader
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Pediatric Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Jana Pachlopnik Schmid,
| |
Collapse
|
10
|
ETS-1 facilitates Th1 cell-mediated mucosal inflammation in inflammatory bowel diseases through upregulating CIRBP. J Autoimmun 2022; 132:102872. [DOI: 10.1016/j.jaut.2022.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
|
11
|
Pawlak M, DeTomaso D, Schnell A, Meyer Zu Horste G, Lee Y, Nyman J, Dionne D, Regan BML, Singh V, Delorey T, Schramm MA, Wang C, Wallrapp A, Burkett PR, Riesenfeld SJ, Anderson AC, Regev A, Xavier RJ, Yosef N, Kuchroo VK. Induction of a colitogenic phenotype in Th1-like cells depends on interleukin-23 receptor signaling. Immunity 2022; 55:1663-1679.e6. [PMID: 36070768 PMCID: PMC9808605 DOI: 10.1016/j.immuni.2022.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/19/2022] [Accepted: 08/11/2022] [Indexed: 01/14/2023]
Abstract
Interleukin-23 receptor plays a critical role in inducing inflammation and autoimmunity. Here, we report that Th1-like cells differentiated in vitro with IL-12 + IL-21 showed similar IL-23R expression to that of pathogenic Th17 cells using eGFP reporter mice. Fate mapping established that these cells did not transition through a Th17 cell state prior to becoming Th1-like cells, and we observed their emergence in vivo in the T cell adoptive transfer colitis model. Using IL-23R-deficient Th1-like cells, we demonstrated that IL-23R was required for the development of a highly colitogenic phenotype. Single-cell RNA sequencing analysis of intestinal T cells identified IL-23R-dependent genes in Th1-like cells that differed from those expressed in Th17 cells. The perturbation of one of these regulators (CD160) in Th1-like cells inhibited the induction of colitis. We thus uncouple IL-23R as a purely Th17 cell-specific factor and implicate IL-23R signaling as a pathogenic driver in Th1-like cells inducing tissue inflammation.
Collapse
Affiliation(s)
- Mathias Pawlak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David DeTomaso
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gerd Meyer Zu Horste
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Youjin Lee
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jackson Nyman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brianna M L Regan
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vasundhara Singh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Toni Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Markus A Schramm
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Chao Wang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrick R Burkett
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samantha J Riesenfeld
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ramnik J Xavier
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, MGH, Boston, MA 02114, USA.
| | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, UC Berkeley, Berkeley, CA 94720, USA; Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
Rijvers L, van Langelaar J, Bogers L, Melief MJ, Koetzier SC, Blok KM, Wierenga-Wolf AF, de Vries HE, Rip J, Corneth OB, Hendriks RW, Grenningloh R, Boschert U, Smolders J, van Luijn MM. Human T-bet+ B cell development is associated with BTK activity and suppressed by evobrutinib. JCI Insight 2022; 7:160909. [PMID: 35852869 PMCID: PMC9462504 DOI: 10.1172/jci.insight.160909] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Recent clinical trials have shown promising results for the next-generation Bruton’s tyrosine kinase (BTK) inhibitor evobrutinib in the treatment of multiple sclerosis (MS). BTK has a central role in signaling pathways that govern the development of B cells. Whether and how BTK activity shapes B cells as key drivers of MS is currently unclear. Compared with levels of BTK protein, we found higher levels of phospho-BTK in ex vivo blood memory B cells from patients with relapsing-remitting MS and secondary progressive MS compared with controls. In these MS groups, BTK activity was induced to a lesser extent after anti-IgM stimulation. BTK positively correlated with CXCR3 expression, both of which were increased in blood B cells from clinical responders to natalizumab (anti–VLA-4 antibody) treatment. Under in vitro T follicular helper–like conditions, BTK phosphorylation was enhanced by T-bet–inducing stimuli, IFN-γ and CpG-ODN, while the expression of T-bet and T-bet–associated molecules CXCR3, CD21, and CD11c was affected by evobrutinib. Furthermore, evobrutinib interfered with in vitro class switching, as well as memory recall responses, and disturbed CXCL10-mediated migration of CXCR3+ switched B cells through human brain endothelial monolayers. These findings demonstrate a functional link between BTK activity and disease-relevant B cells and offer valuable insights into how next-generation BTK inhibitors could modulate the clinical course of patients with MS.
Collapse
Affiliation(s)
| | | | | | | | | | - Katelijn M. Blok
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | | | - Odilia B.J. Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Ursula Boschert
- Ares Trading SA, Eysins, Switzerland (an affiliate of Merck KGaA, Darmstadt, Germany)
| | - Joost Smolders
- Department of Immunology and
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
13
|
Rundquist O, Nestor CE, Jenmalm MC, Hellberg S, Gustafsson M. Progesterone Inhibits the Establishment of Activation-Associated Chromatin During T H1 Differentiation. Front Immunol 2022; 13:835625. [PMID: 35185927 PMCID: PMC8848251 DOI: 10.3389/fimmu.2022.835625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
TH1-mediated diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA) improve during pregnancy, coinciding with increasing levels of the pregnancy hormone progesterone (P4), highlighting P4 as a potential mediator of this immunomodulation. Here, we performed detailed characterization of how P4 affects the chromatin and transcriptomic landscape during early human TH1 differentiation, utilizing both ATAC-seq and RNA-seq. Time series analysis of the earlier events (0.5-24 hrs) during TH1 differentiation revealed that P4 counteracted many of the changes induced during normal differentiation, mainly by downregulating key regulatory genes and their upstream transcription factors (TFs) involved in the initial T-cell activation. Members of the AP-1 complex such as FOSL1, FOSL2, JUN and JUNB were particularly affected, in both in promoters and in distal regulatory elements. Moreover, the changes induced by P4 were significantly enriched for disease-associated changes related to both MS and RA, revealing several shared upstream TFs, where again JUN was highlighted to be of central importance. Our findings support an immune regulatory role for P4 during pregnancy by impeding T-cell activation, a crucial checkpoint during pregnancy and in T-cell mediated diseases, and a central event prior to T-cell lineage commitment. Indeed, P4 is emerging as a likely candidate involved in disease modulation during pregnancy and further studies evaluating P4 as a potential treatment option are needed.
Collapse
Affiliation(s)
- Olof Rundquist
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Colm E. Nestor
- Crown Princess Victoria Children’s Hospital, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ets1 Promotes the Differentiation of Post-Selected iNKT Cells through Regulation of the Expression of Vα14Jα18 T Cell Receptor and PLZF. Int J Mol Sci 2021; 22:ijms222212199. [PMID: 34830080 PMCID: PMC8621504 DOI: 10.3390/ijms222212199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Ets1 is essential for the development/differentiation of invariant Natural Killer T (iNKT) cells at multiple stages. However, its mechanisms of action and target genes in iNKT cells are still elusive. Here, we show that Ets1 is required for the optimal expression of the Vα14Jα18 T cell receptor (TCR) in post-selected thymic iNKT cells and their immediate differentiation. Ets1 is also critical for maintaining the peripheral homeostasis of iNKT cells, which is a role independent of the expression of the Vα14Jα18 TCR. Genome-wide transcriptomic analyses of post-selected iNKT cells further reveal that Ets1 controls leukocytes activation, proliferation differentiation, and leukocyte-mediated immunity. In addition, Ets1 regulates the expression of ICOS and PLZF in iNKT cells. More importantly, restoring the expression of PLZF and the Vα14Jα18 TCR partially rescues the differentiation of iNKT cells in the absence of Ets1. Taken together, our results establish a detailed molecular picture of how Ets1 regulates the stepwise differentiation of iNKT cells.
Collapse
|
16
|
Kiekens L, Van Loocke W, Taveirne S, Wahlen S, Persyn E, Van Ammel E, De Vos Z, Matthys P, Van Nieuwerburgh F, Taghon T, Van Vlierberghe P, Vandekerckhove B, Leclercq G. T-BET and EOMES Accelerate and Enhance Functional Differentiation of Human Natural Killer Cells. Front Immunol 2021; 12:732511. [PMID: 34630413 PMCID: PMC8497824 DOI: 10.3389/fimmu.2021.732511] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary. Here, we ectopically expressed either T-BET or EOMES in human hematopoietic progenitor cells. Combined transcriptome, chromatin accessibility and protein expression analyses revealed that T-BET or EOMES epigenetically represses hematopoietic stem cell quiescence and non-NK lineage differentiation genes, while activating an NK cell-specific transcriptome and thereby drastically accelerating NK cell differentiation. In this model, the effects of T-BET and EOMES are largely overlapping, yet EOMES shows a superior role in early NK cell maturation and induces faster NK receptor and enhanced CD16 expression. T-BET particularly controls transcription of terminal maturation markers and epigenetically controls strong induction of KIR expression. Finally, NK cells generated upon T-BET or EOMES overexpression display improved functionality, including increased IFN-γ production and killing, and especially EOMES overexpression NK cells have enhanced antibody-dependent cellular cytotoxicity. Our findings reveal novel insights on the regulatory role of T-BET and EOMES in human NK cell maturation and function, which is essential to further understand human NK cell biology and to optimize adoptive NK cell therapies.
Collapse
Affiliation(s)
- Laura Kiekens
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wouter Van Loocke
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sylvie Taveirne
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sigrid Wahlen
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Eva Persyn
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Els Van Ammel
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Zenzi De Vos
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, K.U. Leuven, Leuven, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
17
|
Solé P, Santamaria P. Re-Programming Autoreactive T Cells Into T-Regulatory Type 1 Cells for the Treatment of Autoimmunity. Front Immunol 2021; 12:684240. [PMID: 34335585 PMCID: PMC8320845 DOI: 10.3389/fimmu.2021.684240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic delivery of peptide-major histocompatibility complex (pMHC) class II-based nanomedicines can re-program cognate autoantigen-experienced CD4+ T cells into disease-suppressing T-regulatory type 1 (TR1)-like cells. In turn, these TR1-like cells trigger the formation of complex regulatory cell networks that can effectively suppress organ-specific autoimmunity without impairing normal immunity. In this review, we summarize our current understanding of the transcriptional, phenotypic and functional make up of TR1-like cells as described in the literature. The true identity and direct precursors of these cells remain unclear, in particular whether TR1-like cells comprise a single terminally-differentiated lymphocyte population with distinct transcriptional and epigenetic features, or a collection of phenotypically different subsets sharing key regulatory properties. We propose that detailed transcriptional and epigenetic characterization of homogeneous pools of TR1-like cells will unravel this conundrum.
Collapse
Affiliation(s)
- Patricia Solé
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Pere Santamaria
- Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Zhao Y, Liu Z, Qin L, Wang T, Bai O. Insights into the mechanisms of Th17 differentiation and the Yin-Yang of Th17 cells in human diseases. Mol Immunol 2021; 134:109-117. [PMID: 33756352 DOI: 10.1016/j.molimm.2021.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Th17 cells are a lineage of CD4+ T helper cells with Th17-specific transcription factors RORγt and RoRα. Since its discovery in 2005, research on Th17 has been in rapid progress, and increasing cytokines or transcription factors have been uncovered in the activation and differentiation of Th17 cells. Furthermore, growing evidence proves there are two different subsets of Th17 cells, namely non-pathogenic Th17 (non-pTh17) and pathogenic Th17 (pTh17), both of which play important roles in adaptive immunity, especially in host defenses, autoimmune diseases, and cancer. In this review, we summarize and discuss the mechanisms of Th17 cells differentiation, and their roles in immunity and diseases.
Collapse
Affiliation(s)
- Yangzhi Zhao
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| | - Zhongshan Liu
- Department of Radiation Oncology, the Second Affiliated Hospital of Jilin University, Changchun, China.
| | - Lei Qin
- Institute for Immunology, Tsinghua University, Beijing, China.
| | - Tiejun Wang
- Department of Radiation Oncology, the Second Affiliated Hospital of Jilin University, Changchun, China.
| | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
19
|
van der Graaf A, Zorro MM, Claringbould A, Võsa U, Aguirre-Gamboa R, Li C, Mooiweer J, Ricaño-Ponce I, Borek Z, Koning F, Kooy-Winkelaar Y, Sollid LM, Qiao SW, Kumar V, Li Y, Franke L, Withoff S, Wijmenga C, Sanna S, Jonkers I. Systematic Prioritization of Candidate Genes in Disease Loci Identifies TRAFD1 as a Master Regulator of IFNγ Signaling in Celiac Disease. Front Genet 2021; 11:562434. [PMID: 33569077 PMCID: PMC7868554 DOI: 10.3389/fgene.2020.562434] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Celiac disease (CeD) is a complex T cell-mediated enteropathy induced by gluten. Although genome-wide association studies have identified numerous genomic regions associated with CeD, it is difficult to accurately pinpoint which genes in these loci are most likely to cause CeD. We used four different in silico approaches-Mendelian randomization inverse variance weighting, COLOC, LD overlap, and DEPICT-to integrate information gathered from a large transcriptomics dataset. This identified 118 prioritized genes across 50 CeD-associated regions. Co-expression and pathway analysis of these genes indicated an association with adaptive and innate cytokine signaling and T cell activation pathways. Fifty-one of these genes are targets of known drug compounds or likely druggable genes, suggesting that our methods can be used to pinpoint potential therapeutic targets. In addition, we detected 172 gene combinations that were affected by our CeD-prioritized genes in trans. Notably, 41 of these trans-mediated genes appear to be under control of one master regulator, TRAF-type zinc finger domain containing 1 (TRAFD1), and were found to be involved in interferon (IFN)γ signaling and MHC I antigen processing/presentation. Finally, we performed in vitro experiments in a human monocytic cell line that validated the role of TRAFD1 as an immune regulator acting in trans. Our strategy confirmed the role of adaptive immunity in CeD and revealed a genetic link between CeD and IFNγ signaling as well as with MHC I antigen processing, both major players of immune activation and CeD pathogenesis.
Collapse
Affiliation(s)
- Adriaan van der Graaf
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maria M. Zorro
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Annique Claringbould
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Urmo Võsa
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Raúl Aguirre-Gamboa
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Chan Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Immunology, K. G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Joram Mooiweer
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Isis Ricaño-Ponce
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Zuzanna Borek
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Frits Koning
- Department of Immunology, Leiden University, Leiden, Netherlands
| | | | - Ludvig M. Sollid
- Department of Immunology, K. G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Department of Immunology, K. G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover Medical School, Hanover, Germany
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Immunology, K. G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Serena Sanna
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Istituto di Ricerca Genetica e Biomedica (IRGB) del Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Iris Jonkers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Immunology, K. G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | | |
Collapse
|
20
|
Treveil A, Sudhakar P, Matthews ZJ, Wrzesiński T, Jones EJ, Brooks J, Ölbei M, Hautefort I, Hall LJ, Carding SR, Mayer U, Powell PP, Wileman T, Di Palma F, Haerty W, Korcsmáros T. Regulatory network analysis of Paneth cell and goblet cell enriched gut organoids using transcriptomics approaches. Mol Omics 2021; 16:39-58. [PMID: 31819932 DOI: 10.1039/c9mo00130a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epithelial lining of the small intestine consists of multiple cell types, including Paneth cells and goblet cells, that work in cohort to maintain gut health. 3D in vitro cultures of human primary epithelial cells, called organoids, have become a key model to study the functions of Paneth cells and goblet cells in normal and diseased conditions. Advances in these models include the ability to skew differentiation to particular lineages, providing a useful tool to study cell type specific function/dysfunction in the context of the epithelium. Here, we use comprehensive profiling of mRNA, microRNA and long non-coding RNA expression to confirm that Paneth cell and goblet cell enrichment of murine small intestinal organoids (enteroids) establishes a physiologically accurate model. We employ network analysis to infer the regulatory landscape altered by skewing differentiation, and using knowledge of cell type specific markers, we predict key regulators of cell type specific functions: Cebpa, Jun, Nr1d1 and Rxra specific to Paneth cells, Gfi1b and Myc specific for goblet cells and Ets1, Nr3c1 and Vdr shared between them. Links identified between these regulators and cellular phenotypes of inflammatory bowel disease (IBD) suggest that global regulatory rewiring during or after differentiation of Paneth cells and goblet cells could contribute to IBD aetiology. Future application of cell type enriched enteroids combined with the presented computational workflow can be used to disentangle multifactorial mechanisms of these cell types and propose regulators whose pharmacological targeting could be advantageous in treating IBD patients with Crohn's disease or ulcerative colitis.
Collapse
Affiliation(s)
- A Treveil
- Earlham Institute, Norwich Research Park, Norwich, Norfolk NR4 7UZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bevington SL, Fiancette R, Gajdasik DW, Keane P, Soley JK, Willis CM, Coleman DJL, Withers DR, Cockerill PN. Stable Epigenetic Programming of Effector and Central Memory CD4 T Cells Occurs Within 7 Days of Antigen Exposure In Vivo. Front Immunol 2021; 12:642807. [PMID: 34108962 PMCID: PMC8181421 DOI: 10.3389/fimmu.2021.642807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
T cell immunological memory is established within days of an infection, but little is known about the in vivo changes in gene regulatory networks accounting for their ability to respond more efficiently to secondary infections. To decipher the timing and nature of immunological memory we performed genome-wide analyses of epigenetic and transcriptional changes in a mouse model generating antigen-specific T cells. Epigenetic reprogramming for Th differentiation and memory T cell formation was already established by the peak of the T cell response after 7 days. The Th memory T cell program was associated with a gain of open chromatin regions, enriched for RUNX, ETS and T-bet motifs, which remained stable for 56 days. The epigenetic programs for both effector memory, associated with T-bet, and central memory, associated with TCF-1, were established in parallel. Memory T cell-specific regulatory elements were associated with greatly enhanced inducible Th1-biased responses during secondary exposures to antigen. Furthermore, memory T cells responded in vivo to re-exposure to antigen by rapidly reprograming the entire ETS factor gene regulatory network, by suppressing Ets1 and activating Etv6 expression. These data show that gene regulatory networks are epigenetically reprogrammed towards memory during infection, and undergo substantial changes upon re-stimulation.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Remi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dominika W Gajdasik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jake K Soley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claire M Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Gharanei S, Shabir K, Brown JE, Weickert MO, Barber TM, Kyrou I, Randeva HS. Regulatory microRNAs in Brown, Brite and White Adipose Tissue. Cells 2020; 9:cells9112489. [PMID: 33207733 PMCID: PMC7696849 DOI: 10.3390/cells9112489] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes). Indeed, an increasing number of miRNAs has been identified to regulate key signaling pathways of adipogenesis in BAT, brite AT, and WAT by acting on transcription factors that promote or inhibit adipocyte differentiation. For example, MiR-328, MiR-378, MiR-30b/c, MiR-455, MiR-32, and MiR-193b-365 activate brown adipogenesis, whereas MiR-34a, MiR-133, MiR-155, and MiR-27b are brown adipogenesis inhibitors. Given that WAT mainly stores energy as lipids, whilst BAT mainly dissipates energy as heat, clarifying the effects of miRNAs in different types of AT has recently attracted significant research interest, aiming to also develop novel miRNA-based therapies against obesity, diabetes, and other obesity-related diseases. Therefore, this review presents an up-to-date comprehensive overview of the role of key regulatory miRNAs in BAT, brite AT, and WAT.
Collapse
Affiliation(s)
- Seley Gharanei
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kiran Shabir
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - James E. Brown
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (S.G.); (M.O.W.); (T.M.B.); (I.K.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (K.S.); (J.E.B.)
- Correspondence:
| |
Collapse
|
23
|
Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci 2020; 21:E8011. [PMID: 33126494 PMCID: PMC7663252 DOI: 10.3390/ijms21218011] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a critical role in protecting hosts from the invasion of organisms. CD4 T cells, as a key component of the immune system, are central in orchestrating adaptive immune responses. After decades of investigation, five major CD4 T helper cell (Th) subsets have been identified: Th1, Th2, Th17, Treg (T regulatory), and Tfh (follicular T helper) cells. Th1 cells, defined by the expression of lineage cytokine interferon (IFN)-γ and the master transcription factor T-bet, participate in type 1 immune responses to intracellular pathogens such as mycobacterial species and viruses; Th2 cells, defined by the expression of lineage cytokines interleukin (IL)-4/IL-5/IL-13 and the master transcription factor GAΤA3, participate in type 2 immune responses to larger extracellular pathogens such as helminths; Th17 cells, defined by the expression of lineage cytokines IL-17/IL-22 and the master transcription factor RORγt, participate in type 3 immune responses to extracellular pathogens including some bacteria and fungi; Tfh cells, by producing IL-21 and expressing Bcl6, help B cells produce corresponding antibodies; whereas Foxp3-expressing Treg cells, unlike Th1/Th2/Th17/Tfh exerting their effector functions, regulate immune responses to maintain immune cell homeostasis and prevent immunopathology. Interestingly, innate lymphoid cells (ILCs) have been found to mimic the functions of three major effector CD4 T helper subsets (Th1, Th2, and Th17) and thus can also be divided into three major subsets: ILC1s, ILC2s, and ILC3s. In this review, we will discuss the differentiation and functions of each CD4 T helper cell subset in the context of ILCs and human diseases associated with the dysregulation of these lymphocyte subsets particularly caused by monogenic mutations.
Collapse
Affiliation(s)
- Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Corridoni D, Antanaviciute A, Gupta T, Fawkner-Corbett D, Aulicino A, Jagielowicz M, Parikh K, Repapi E, Taylor S, Ishikawa D, Hatano R, Yamada T, Xin W, Slawinski H, Bowden R, Napolitani G, Brain O, Morimoto C, Koohy H, Simmons A. Single-cell atlas of colonic CD8 + T cells in ulcerative colitis. Nat Med 2020; 26:1480-1490. [PMID: 32747828 DOI: 10.1038/s41591-020-1003-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Colonic antigen-experienced lymphocytes such as tissue-resident memory CD8+ T cells can respond rapidly to repeated antigen exposure. However, their cellular phenotypes and the mechanisms by which they drive immune regulation and inflammation remain unclear. Here we compiled an unbiased atlas of human colonic CD8+ T cells in health and ulcerative colitis (UC) using single-cell transcriptomics with T-cell receptor repertoire analysis and mass cytometry. We reveal extensive heterogeneity in CD8+ T-cell composition, including expanded effector and post-effector terminally differentiated CD8+ T cells. While UC-associated CD8+ effector T cells can trigger tissue destruction and produce tumor necrosis factor (TNF)-α, post-effector cells acquire innate signatures to adopt regulatory functions that may mitigate excessive inflammation. Thus, we identify colonic CD8+ T-cell phenotypes in health and UC, define their clonal relationships and characterize terminally differentiated dysfunctional UC CD8+ T cells expressing IL-26, which attenuate acute colitis in a humanized IL-26 transgenic mouse model.
Collapse
Affiliation(s)
- Daniele Corridoni
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- MRC WIMM Centre For Computational Biology, MRC WIMM, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Tarun Gupta
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David Fawkner-Corbett
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Anna Aulicino
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Marta Jagielowicz
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kaushal Parikh
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Steve Taylor
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Dai Ishikawa
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryo Hatano
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Juntendo University, Tokyo, Japan
| | - Taketo Yamada
- Department of Pathology, Saitama Medical University, Saitama, Japan
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hubert Slawinski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Giorgio Napolitani
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Oliver Brain
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Juntendo University, Tokyo, Japan
| | - Hashem Koohy
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK.
- MRC WIMM Centre For Computational Biology, MRC WIMM, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Fang LW, Kao YH, Chuang YT, Huang HL, Tai TS. Ets-1 enhances tumor migration through regulation of CCR7 expression. BMB Rep 2020. [PMID: 31072446 PMCID: PMC6774420 DOI: 10.5483/bmbrep.2019.52.9.232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ets-1 is a prototype of the ETS protein family. Members of the ETS protein family contain a unique ETS domain. Ets-1 is associated with cancer progression and metastasis in many types of cancer. Many studies have shown a link between elevated expression of Ets-1 in cancer biopsies and poor survival. CCR7 is a chemokine that binds to specific ligand CCL21/CCL19. CCR7 expression is associated with tumor metastasis and infiltration into lymph nodes. The objective of this study was to test whether Ets-1 could regulate CCR7 expression and enhance tumor metastasis. Our data showed that CCR7 expression was downregulated in Ets-1-deficient T cells upon T-cell stimulation. Overexpression of Ets-1 increased CCR7 expression in breast cancer cell lines. In contrast, knockdown of Ets-1 reduced CCR7 expression. Ets-1 could directly bind to CCR7 promoter and mediate CCR7 expression in luciferase reporter assays and chromatin immunoprecipitation assays. Transactivation activity of Ets-1 was independent of the Pointed domain of Ets-1. Ets-1 could also enhance NF-κB and CBP transactivation of CCR7 promoter. Our results also showed that Ets-1 could modulate cancer cell transmigration by altering CCR7 expression in transwell assay and wound healing assay. Taken together, our data suggest that Ets-1 can enhance CCR7 expression and contribute to tumor cell migration.
Collapse
Affiliation(s)
- Li-Wen Fang
- Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ya-Ting Chuang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Huey-Lan Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Tzong-Shyuan Tai
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
26
|
Abstract
Interleukin (IL)-10 is an essential anti-inflammatory cytokine and functions as a negative regulator of immune responses to microbial antigens. IL-10 is particularly important in maintaining the intestinal microbe-immune homeostasis. Loss of IL-10 promotes the development of inflammatory bowel disease (IBD) as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions more generally to prevent excessive inflammation during the course of infection. Although IL-10 can be produced by virtually all cells of the innate and adaptive immune system, T cells constitute a non-redundant source for IL-10 in many cases. The various roles of T cell-derived IL-10 will be discussed in this review. Given that IL-10 is at the center of maintaining the delicate balance between effective immunity and tissue protection, it is not surprising that IL-10 expression is highly dynamic and tightly regulated. We summarize the environmental signals and molecular pathways that regulate IL-10 expression. While numerous studies have provided us with a deep understanding of IL-10 biology, the majority of findings have been made in murine models, prompting us to highlight gaps in our knowledge about T cell-derived IL-10 in the human system.
Collapse
|
27
|
Zhang H, Kuchroo V. Epigenetic and transcriptional mechanisms for the regulation of IL-10. Semin Immunol 2019; 44:101324. [PMID: 31676122 DOI: 10.1016/j.smim.2019.101324] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
IL-10 is a critical immunoregulatory cytokine expressed in virtually all immune cell types. Maintaining a delicate balance between effective immune response and tolerance requires meticulous and dynamic control of IL-10 expression both epigenetically and transcriptionally. In this Review, we describe the epigenetic mechanisms controlling IL-10 expression, including chromatin remodeling, 3D chromatin loops, histone modification and DNA methylation. We discuss the role of transcription factors in directing chromatin modifications, with a special highlight on the emerging concept of pioneer transcription factors in setting up the chromatin landscape in T helper cells for IL-10 induction. Besides summarizing the recent progress on transcriptional regulation in specialized IL-10 producers such as type 1 regulatory T cells, regulatory B cells and regulatory innate lymphoid cells, we also discuss common transcriptional mechanisms for IL-10 regulation that are shared with other IL-10 producing cells.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Vijay Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
28
|
Sunshine A, Goich D, Stith A, Sortino K, Dalton J, Metcalfe S, Svensson EC, Garrett-Sinha LA. Ets1 Controls the Development of B Cell Autoimmune Responses in a Cell-Intrinsic Manner. Immunohorizons 2019; 3:331-340. [PMID: 31356162 PMCID: PMC7008956 DOI: 10.4049/immunohorizons.1900033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Ets1 is emerging as a key transcription factor that is required to prevent autoimmunity in mice and humans. Ets1 is expressed in both B and T cells, and mice lacking Ets1 are characterized by excess B and T cell activation, leading to enhanced formation of Ab-secreting cells and high titers of autoantibodies. In humans, genome-wide association studies have detected associations of single nucleotide polymorphisms in the human ETS1 gene with autoimmune diseases, including lupus. An increased fraction of CD4+ T cells from Ets1−/− mice have an activated effector-memory phenotype, and there are aberrations in differentiation that contribute to the autoimmune phenotype. In vitro studies of B cells suggest that Ets1 may have B cell–intrinsic effects as well. To confirm B cell–intrinsic roles for Ets1, we crossed CD19-Cre mice to mice with a floxed allele of Ets1. Mice with a B cell–specific deletion of Ets1 show increases in B cell activation, numbers of Ab-secreting cells, and levels of autoantibodies, despite the fact that T cells are normal. However, when compared with conventional Ets1 knockout mice, mice with B cell–specific loss of Ets1 have a significantly milder phenotype. These results demonstrate that Ets1 is required in B cells to prevent autoimmune responses but that loss of Ets1 activity in other cell types is required for maximal autoimmune phenotypes.
Collapse
Affiliation(s)
- Alex Sunshine
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - David Goich
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Alifa Stith
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Katherine Sortino
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Justin Dalton
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Sarah Metcalfe
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Eric C Svensson
- Division of Cardiology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203; and
| |
Collapse
|
29
|
MicroRNA-125a suppresses intestinal mucosal inflammation through targeting ETS-1 in patients with inflammatory bowel diseases. J Autoimmun 2019; 101:109-120. [DOI: 10.1016/j.jaut.2019.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
|
30
|
Kim CJ, Lee CG, Jung JY, Ghosh A, Hasan SN, Hwang SM, Kang H, Lee C, Kim GC, Rudra D, Suh CH, Im SH. The Transcription Factor Ets1 Suppresses T Follicular Helper Type 2 Cell Differentiation to Halt the Onset of Systemic Lupus Erythematosus. Immunity 2019; 49:1034-1048.e8. [PMID: 30566881 DOI: 10.1016/j.immuni.2018.10.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 12/12/2022]
Abstract
Single-nucleotide polymorphisms in ETS1 are associated with systemic lupus erythematosus (SLE). Ets1-/- mice develop SLE-like symptoms, suggesting that dysregulation of this transcription factor is important to the onset or progression of SLE. We used conditional deletion approaches to examine the impact of Ets1 expression in different immune cell types. Ets1 deletion on CD4+ T cells, but not B cells or dendritic cells, resulted in the SLE autoimmunity, and this was associated with the spontaneous expansion of T follicular helper type 2 (Tfh2) cells. Ets1-/- Tfh2 cells exhibited increased expression of GATA-3 and interleukin-4 (IL-4), which induced IgE isotype switching in B cells. Neutralization of IL-4 reduced Tfh2 cell frequencies and ameliorated disease parameters. Mechanistically, Ets1 suppressed signature Tfh and Th2 cell genes, including Cxcr5, Bcl6, and Il4ra, thus curbing the terminal Tfh2 cell differentiation process. Tfh2 cell frequencies in SLE patients correlated with disease parameters, providing evidence for the relevance of these findings to human disease.
Collapse
Affiliation(s)
- Chan Johng Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Choong-Gu Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Ambarnil Ghosh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Syed Nurul Hasan
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sung-Min Hwang
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyeji Kang
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Changhon Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gi-Cheon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Gyeongbuk 37673, Republic of Korea; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
31
|
Lee CG, Kwon HK, Kang H, Kim Y, Nam JH, Won YH, Park S, Kim T, Kang K, Rudra D, Jun CD, Park ZY, Im SH. Ets1 suppresses atopic dermatitis by suppressing pathogenic T cell responses. JCI Insight 2019; 4:124202. [PMID: 30843878 DOI: 10.1172/jci.insight.124202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/29/2019] [Indexed: 01/03/2023] Open
Abstract
Atopic dermatitis (AD) is a complex inflammatory skin disease mediated by immune cells of both adaptive and innate types. Among them, CD4+ Th cells are one of major players of AD pathogenesis. Although the pathogenic role of Th2 cells has been well characterized, Th17/Th22 cells are also implicated in the pathogenesis of AD. However, the molecular mechanisms underlying pathogenic immune responses in AD remain unclear. We sought to investigate how the defect in the AD susceptibility gene, Ets1, is involved in AD pathogenesis in human and mice and its clinical relevance in disease severity by identifying Ets1 target genes and binding partners. Consistent with the decrease in ETS1 levels in severe AD patients and the experimental AD-like skin inflammation model, T cell-specific Ets1-deficient mice (Ets1ΔdLck) developed severe AD-like symptoms with increased pathogenic Th cell responses. A T cell-intrinsic increase of gp130 expression upon Ets1 deficiency promotes the gp130-mediated IL-6 signaling pathway, thereby leading to the development of severe AD-like symptoms. Functional blocking of gp130 by selective inhibitor SC144 ameliorated the disease pathogenesis by reducing pathogenic Th cell responses. Our results reveal a protective role of Ets1 in restricting pathogenic Th cell responses and suggest a potential therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung, South Korea.,Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, South Korea
| | - Ho-Keun Kwon
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Hyeji Kang
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, South Korea
| | - Young Kim
- Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | | | - Young Ho Won
- Department of Dermatology, Chonnam National University Medical School, Gwangju, South Korea
| | - Sunhee Park
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, South Korea
| | - Taemook Kim
- Department of Microbiology, Dankook University, Cheonan, South Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, South Korea
| | - Dipayan Rudra
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, South Korea.,Division of Integrative Biosciences and Biotechnology (IBB), Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Zee Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, South Korea.,Division of Integrative Biosciences and Biotechnology (IBB), Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| |
Collapse
|
32
|
MiR-532-5p suppresses renal cancer cell proliferation by disrupting the ETS1-mediated positive feedback loop with the KRAS-NAP1L1/P-ERK axis. Br J Cancer 2018; 119:591-604. [PMID: 30082686 PMCID: PMC6162242 DOI: 10.1038/s41416-018-0196-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/16/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Background Despite the fact that miRNAs play pivotal roles in various human malignancies, their molecular mechanisms influencing RCC are poorly understood. Methods The expression of miRNAs from RCC and paired normal renal specimens was analysed by a combined computational and experimental approach using two published datasets and qRT-PCR assays. The functional role of these miRNAs was further identified by overexpression and inhibition assays in vivo and in vitro. Western blots, luciferase assays, and chromatin immunoprecipitation were performed to investigate the potential mechanisms of these miRNAs. Results Bioinformatics analysis and qRT-PCR revealed that miR-532-5p was one of the most heavily downregulated miRNAs. Overexpression of miR-532-5p inhibited RCC cell proliferation, while knockdown of miR-532-5p promoted cell proliferation. Mechanistic analyses indicated that miR-532-5p directly targets KRAS and NAP1L1. Interestingly, ETS1 suppressed the transcription of miR-532-5p by directly binding a special region of its promoter. Moreover, high levels of ETS1, as an oncogene in RCC, were significantly associated with poor survival in a large cohort of RCC specimens. Conclusions Our work presents a road map for the prediction and validation of a miR-532-5p/KRAS-NAP1L1/P-ERK/ETS1 axis feedback loop regulating cell proliferation, which could potentially provide better therapeutic avenues for treating RCC.
Collapse
|
33
|
Chen S, Wen X, Li L, Li J, Li Y, Wang Q, Yuan H, Zhang F, Li Y. Single nucleotide polymorphisms in the ETS1 gene are associated with idiopathic inflammatory myopathies in a northern Chinese Han population. Sci Rep 2017; 7:13128. [PMID: 29030598 PMCID: PMC5640673 DOI: 10.1038/s41598-017-13385-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/22/2017] [Indexed: 11/28/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) in the ETS1 gene are associated with several auto-inflammatory diseases. In this study, we determined whether ETS1 gene polymorphisms confer susceptibility to idiopathic inflammatory myopathies (IIMs) in a northern Chinese Han population. DNA samples were collected from 1017 IIM patients: 363 PM cases and 654 DM cases. The results were compared with those of 1280 healthy controls. Five SNPs in the ETS1 region (rs7117932, rs6590330, rs4937362, rs10893845 and rs1128334) were assessed and genotyped using the Sequenom platform. Our data indicated that the rs7117932 alleles and genotypes are associated with DM and IIMs (Pc = 6.0 × 10−3 and Pc = 0.029; Pc = 0.013 and Pc = 0.019, respectively). We found a significantly greater percentage of DM and IIM patients with an A allele of rs6590330 than that in the control population (Pc = 0.033 and Pc = 0.013). Additionally, the rs6590330 genotype was associated with IIMs (Pc = 0.020). The percentages of rs7117932 and rs6590330 SNPs were significantly greater in DM and IIM patients with interstitial lung disease (ILD) (all Pc < 0.05). This is the first study to reveal that ETS1 polymorphisms are associated with IIMs alone and IIMs with ILD in a northern Chinese Han population.
Collapse
Affiliation(s)
- Si Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.,Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoting Wen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Liubing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yuan Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Hui Yuan
- Department of Clinical Laboratory, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yongzhe Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| |
Collapse
|
34
|
Abstract
Foxp3+ regulatory T cells (Tregs) play an indispensable role in controlling tolerance and immunity against self- and foreign antigens. The failure of Tregs to properly function is the direct cause of systemic and chronic inflammation as well as immune suppression. It is now evident that Tregs are highly heterogeneous populations depending on the surface phenotypes, cytokine profiles, and anatomical locations. Yet, our understanding of the cellular and molecular pathways underlying such heterogeneity is very limited. Furthermore, some Tregs lose the phenotype (and suppressive functions) and instead acquire pathogenicity. Since utilizing Tregs as a tool for immunotherapy is being implemented in many clinical settings, it is of utmost importance to understand the precise mechanisms by which the loss of Treg phenotype (and function) is prevented. In this review, both cellular and molecular factors involved in Treg heterogeneity and stability are discussed.
Collapse
Affiliation(s)
- Booki Min
- Department of Immunology/NB30, Lerner Research Institute , Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
35
|
Abstract
The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.
Collapse
Affiliation(s)
- Gregory M K Poon
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA.,b Center for Diagnostics and Therapeutics, Georgia State University , Atlanta , GA , USA
| | - Hye Mi Kim
- a Department of Chemistry , Georgia State University , Atlanta , GA , USA
| |
Collapse
|
36
|
The Expression of T Cell FOXP3 and T-Bet Is Upregulated in Severe but Not Euthyroid Hashimoto's Thyroiditis. Mediators Inflamm 2016; 2016:3687420. [PMID: 27478306 PMCID: PMC4949338 DOI: 10.1155/2016/3687420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022] Open
Abstract
Hashimoto's thyroiditis (HT) is an organ-specific autoimmune disorder characterized by progressive thyroid failure. Th1 and Treg subset of CD4+ cells have been implicated in the pathogenesis; however, less is known about their respective roles across the spectrum of HT clinical presentations. To shed more light on CD4+ subsets role in HT, we investigated the mRNA expression levels of several Th1/Treg-associated transcription factors (T-bet/ETS1, HIF1α/BLIMP1/FOXP3) in peripheral blood T cells of 10 hypothyroid, untreated HT patients, 10 hypothyroid patients undergoing hormone replacement therapy, 12 euthyroid HT subjects, and 11 healthy controls by the qRT-PCR. Compared to euthyroid HT patients and controls, both hypothyroid (2.34-fold difference versus controls, P < 0.01) and thyroxine-supplemented patients (2.5-fold, P < 0.001) showed an increased FOXP3 mRNA expression in T cells. Similarly, mRNA expression levels of T-bet were upregulated in severely affected but not in euthyroid HT subjects (2.37-fold and 3.2-fold, hypothyroid and thyroxine-supplemented HT patients versus controls, resp., P < 0.01). By contrast, no differences in mRNA expression levels of ETS1, BLIMP1, and HIF1α were observed across the study groups. In summary, severe but not euthyroid HT was associated with robust upregulation of T-bet and FOXP3 mRNA in peripheral T cells, independent of the thyroid hormone status but proportional to disease activity.
Collapse
|
37
|
Transcriptional regulator Bhlhe40 works as a cofactor of T-bet in the regulation of IFN-γ production in iNKT cells. Proc Natl Acad Sci U S A 2016; 113:E3394-402. [PMID: 27226296 DOI: 10.1073/pnas.1604178113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a subset of innate-like T cells that act as important mediators of immune responses. In particular, iNKT cells have the ability to immediately produce large amounts of IFN-γ upon activation and thus initiate immune responses in various pathological conditions. However, molecular mechanisms that control IFN-γ production in iNKT cells are not fully understood. Here, we report that basic helix-loop-helix transcription factor family, member e40 (Bhlhe40), is an important regulator for IFN-γ production in iNKT cells. Bhlhe40 is highly expressed in stage 3 thymic iNKT cells and iNKT1 subsets, and the level of Bhlhe40 mRNA expression is correlated with Ifng mRNA expression in the resting state. Although Bhlhe40-deficient mice show normal iNKT cell development, Bhlhe40-deficient iNKT cells show significant impairment of IFN-γ production and antitumor effects. Bhlhe40 alone shows no significant effects on Ifng promoter activities but contributes to enhance T-box transcription factor Tbx21 (T-bet)-mediated Ifng promoter activation. Chromatin immunoprecipitation analysis revealed that Bhlhe40 accumulates in the T-box region of the Ifng locus and contributes to histone H3-lysine 9 acetylation of the Ifng locus, which is impaired without T-bet conditions. These results indicate that Bhlhe40 works as a cofactor of T-bet for enhancing IFN-γ production in iNKT cells.
Collapse
|
38
|
Pandey RK, Sundar S, Prajapati VK. Differential Expression of miRNA Regulates T Cell Differentiation and Plasticity During Visceral Leishmaniasis Infection. Front Microbiol 2016; 7:206. [PMID: 26941729 PMCID: PMC4766295 DOI: 10.3389/fmicb.2016.00206] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/08/2016] [Indexed: 01/15/2023] Open
Abstract
Visceral leishmaniasis (VL) is a tropical neglected disease caused by Leishmania donovani, results in significant mortality in the Indian subcontinent. The plasticity of T cell proliferation and differentiation depends on microRNA mediated gene regulation which leads Th1/Th2 or Th17/Treg type of immune response during human VL. This study depicts the identification of target immune signaling molecule and transcription factors, which play a role in T-cell proliferation and differentiation followed by the identification of miRNA controlling their gene expression using three web servers’ viz., TargetScan, miRPath and miRDB. This study provides the bioinformatics evidences that seed region present in the miRNAs miR-29-b, miR-29a, have the putative binding site in the 3′-untranslated region (UTR) of TBX21 transcription factor of CD4+ T helper (Th1), which may suppress the Th1 specific protective immune response. Development of Th2 type specific immune response can be suppressed by binding of miR-135 and miR-126 miRNAs over the 3′-UTR region of GATA-3 transcription factor of Th2 specific CD4+ T helper cells. MiRNA identified against Th2/Treg immune cells are important and their over expression or administration can be used for developing the Th1/Th17 type of protective immune response during VL infection. This study indicates that miRNAs have the capacity to regulate immune signaling, cytokine production and immune cell migration to control the VL infection in human. This observation warrants further investigation for the development of miRNA based therapy controlling T cell differentiation in human VL.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan Kishangarh, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University Varanasi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan Kishangarh, India
| |
Collapse
|
39
|
Kim K, Kim N, Lee GR. Transcription Factors Oct-1 and GATA-3 Cooperatively Regulate Th2 Cytokine Gene Expression via the RHS5 within the Th2 Locus Control Region. PLoS One 2016; 11:e0148576. [PMID: 26840450 PMCID: PMC4740509 DOI: 10.1371/journal.pone.0148576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
The T helper type 2 (Th2) locus control region (LCR) regulates Th2 cell differentiation. Several transcription factors bind to the LCR to modulate the expression of Th2 cytokine genes, but the molecular mechanisms behind Th2 cytokine gene regulation are incompletely understood. Here, we used database analysis and an oligonucleotide competition/electrophoretic mobility shift assays to search for transcription factors binding to RHS5, a DNase I hypersensitive site (DHS) within the Th2 LCR. Consequently, we demonstrated that GATA-binding protein-3 (GATA-3), E26 transformation-specific protein 1 (Ets-1), octamer transcription factor-1 (Oct-1), and Oct-2 selectively associate with RHS5. Furthermore, chromatin immunoprecipitation and luciferase reporter assays showed that Oct-1 and Oct-2 bound within the Il4 promoter region and the Th2 LCR, and that Oct-1 and GATA-3 or Oct-2 synergistically triggered the transactivational activity of the Il4 promoter through RHS5. These results suggest that Oct-1 and GATA-3/Oct-2 direct Th2 cytokine gene expression in a cooperative manner.
Collapse
Affiliation(s)
- Kiwan Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Najung Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
40
|
Garrett-Sinha LA, Kearly A, Satterthwaite AB. The Role of the Transcription Factor Ets1 in Lupus and Other Autoimmune Diseases. Crit Rev Immunol 2016; 36:485-510. [PMID: 28845756 DOI: 10.1615/critrevimmunol.2017020284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by excess B- and T-cell activation, the development of autoantibodies against self-antigens including nuclear antigens, and immune complex deposition in target organs, which triggers an inflammatory response and tissue damage. The genetic and environmental factors that contribute to the development of SLE have been studied extensively in both humans and mouse models of the disease. One of the important genetic contributions to SLE development is an alteration in the expression of the transcription factor Ets1, which regulates the functional differentiation of lymphocytes. Here, we review the genetic, biochemical, and immunological studies that have linked low levels of Ets1 to aberrant lymphocyte differentiation and to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203
| | - Alyssa Kearly
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14203
| | - Anne B Satterthwaite
- Department of Internal Medicine, Rheumatic Diseases Division; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
41
|
Cauchy P, Maqbool MA, Zacarias-Cabeza J, Vanhille L, Koch F, Fenouil R, Gut M, Gut I, Santana MA, Griffon A, Imbert J, Moraes-Cabé C, Bories JC, Ferrier P, Spicuglia S, Andrau JC. Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation. Nucleic Acids Res 2015; 44:3567-85. [PMID: 26673693 PMCID: PMC4856961 DOI: 10.1093/nar/gkv1475] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
Ets1 is a sequence-specific transcription factor that plays an important role during hematopoiesis, and is essential for the transition of CD4−/CD8− double negative (DN) to CD4+/CD8+ double positive (DP) thymocytes. Using genome-wide and functional approaches, we investigated the binding properties, transcriptional role and chromatin environment of Ets1 during this transition. We found that while Ets1 binding at distal sites was associated with active genes at both DN and DP stages, its enhancer activity was attained at the DP stage, as reflected by levels of the core transcriptional hallmarks H3K4me1/3, RNA Polymerase II and eRNA. This dual, stage-specific ability reflected a switch from non-T hematopoietic toward T-cell specific gene expression programs during the DN-to-DP transition, as indicated by transcriptome analyses of Ets1−/− thymic cells. Coincidentally, Ets1 associates more specifically with Runx1 in DN and with TCF1 in DP cells. We also provide evidence that Ets1 predominantly binds distal nucleosome-occupied regions in DN and nucleosome-depleted regions in DP. Finally and importantly, we demonstrate that Ets1 induces chromatin remodeling by displacing H3K4me1-marked nucleosomes. Our results thus provide an original model whereby the ability of a transcription factor to bind nucleosomal DNA changes during differentiation with consequences on its cognate enhancer activity.
Collapse
Affiliation(s)
- Pierre Cauchy
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Muhammad A Maqbool
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, 1919 Route de Mende, Montpellier F-34293, France
| | - Joaquin Zacarias-Cabeza
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Laurent Vanhille
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Frederic Koch
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Romain Fenouil
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Marta Gut
- Centre Nacional D'Anàlisi Genòmica, Parc Científic de Barcelona, Baldiri i Reixac 4, Barcelona ES-08028, Spain
| | - Ivo Gut
- Centre Nacional D'Anàlisi Genòmica, Parc Científic de Barcelona, Baldiri i Reixac 4, Barcelona ES-08028, Spain
| | - Maria A Santana
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Aurélien Griffon
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Jean Imbert
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Carolina Moraes-Cabé
- INSERM UMR 1126 Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris F-75475, France
| | - Jean-Christophe Bories
- INSERM UMR 1126 Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris F-75475, France
| | - Pierre Ferrier
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Salvatore Spicuglia
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, 1919 Route de Mende, Montpellier F-34293, France
| |
Collapse
|
42
|
Guan X, Yi Y, Huang Y, Hu Y, Li X, Wang X, Fan H, Wang G, Wang D. Revealing potential molecular targets bridging colitis and colorectal cancer based on multidimensional integration strategy. Oncotarget 2015; 6:37600-12. [PMID: 26461477 PMCID: PMC4741951 DOI: 10.18632/oncotarget.6067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 09/24/2015] [Indexed: 02/05/2023] Open
Abstract
Chronic inflammation may play a vital role in the pathogenesis of inflammation-associated tumors. However, the underlying mechanisms bridging ulcerative colitis (UC) and colorectal cancer (CRC) remain unclear. Here, we integrated multidimensional interaction resources, including gene expression profiling, protein-protein interactions (PPIs), transcriptional and post-transcriptional regulation data, and virus-host interactions, to tentatively explore potential molecular targets that functionally link UC and CRC at a systematic level. In this work, by deciphering the overlapping genes, crosstalking genes and pivotal regulators of both UC- and CRC-associated functional module pairs, we revealed a variety of genes (including FOS and DUSP1, etc.), transcription factors (including SMAD3 and ETS1, etc.) and miRNAs (including miR-155 and miR-196b, etc.) that may have the potential to complete the connections between UC and CRC. Interestingly, further analyses of the virus-host interaction network demonstrated that several virus proteins (including EBNA-LP of EBV and protein E7 of HPV) frequently inter-connected to UC- and CRC-associated module pairs with their validated targets significantly enriched in both modules of the host. Together, our results suggested that multidimensional integration strategy provides a novel approach to discover potential molecular targets that bridge the connections between UC and CRC, which could also be extensively applied to studies on other inflammation-related cancers.
Collapse
Affiliation(s)
- Xu Guan
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Yi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yan Huang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongfei Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xishan Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huihui Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, China
| |
Collapse
|
43
|
Dissecting the Potential Interplay of DEK Functions in Inflammation and Cancer. JOURNAL OF ONCOLOGY 2015; 2015:106517. [PMID: 26425120 PMCID: PMC4575739 DOI: 10.1155/2015/106517] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
There is a long-standing correlation between inflammation, inflammatory cell signaling pathways, and tumor formation. Understanding the mechanisms behind inflammation-driven tumorigenesis is of great research and clinical importance. Although not entirely understood, these mechanisms include a complex interaction between the immune system and the damaged epithelium that is mediated by an array of molecular signals of inflammation—including reactive oxygen species (ROS), cytokines, and NFκB signaling—that are also oncogenic. Here, we discuss the association of the unique DEK protein with these processes. Specifically, we address the role of DEK in chronic inflammation via viral infections and autoimmune diseases, the overexpression and oncogenic activity of DEK in cancers, and DEK-mediated regulation of NFκB signaling. Combined, evidence suggests that DEK may play a complex, multidimensional role in chronic inflammation and subsequent tumorigenesis.
Collapse
|
44
|
Liu M, Gao W, van Velkinburgh JC, Wu Y, Ni B, Tian Y. Role of Ets Proteins in Development, Differentiation, and Function of T-Cell Subsets. Med Res Rev 2015; 36:193-220. [PMID: 26301869 DOI: 10.1002/med.21361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 07/12/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
Through positive selection, double-positive cells in the thymus differentiate into CD4(+) or CD8(+) T single-positive cells that subsequently develop into different types of effective T cells, such as T-helper and cytotoxic T lymphocyte cells, that play distinctive roles in the immune system. Development, differentiation, and function of thymocytes and CD4(+) and CD8(+) T cells are controlled by a multitude of secreted and intracellular factors, ranging from cytokine signaling modules to transcription factors and epigenetic modifiers. Members of the E26 transformation specific (Ets) family of transcription factors, in particular, are potent regulators of these CD4(+) or CD8(+) T-cell processes. In this review, we summarize and discuss the functions and underlying mechanisms of the Ets family members that have been characterized as involved in these processes. Ongoing research of these factors is expected to identify practical applications for the Ets family members as novel therapeutic targets for inflammation-related diseases.
Collapse
Affiliation(s)
- Mian Liu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China.,Battalion 10 of Cadet Brigade, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Weiwu Gao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | | | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Bing Ni
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| |
Collapse
|
45
|
Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2015; 381:125-72. [PMID: 24839135 DOI: 10.1007/82_2014_372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+) T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4(+) T cells differentiate into at least four subsets, Th1Th1 , Th2Th2 , Th17Th17 , and inducible regulatory T cellsregulatory T cells , each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factorstranscription factors . In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Darah Christie
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
46
|
Collier SP, Henderson MA, Tossberg JT, Aune TM. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. THE JOURNAL OF IMMUNOLOGY 2014; 193:3959-65. [PMID: 25225667 DOI: 10.4049/jimmunol.1401099] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs), critical regulators of protein-coding genes, are likely to be coexpressed with neighboring protein-coding genes in the genome. How the genome integrates signals to achieve coexpression of lncRNA genes and neighboring protein-coding genes is not well understood. The lncRNA Tmevpg1 (NeST, Ifng-AS1) is critical for Th1-lineage-specific expression of Ifng and is coexpressed with Ifng. In this study, we show that T-bet guides epigenetic remodeling of Tmevpg1 proximal and distal enhancers, leading to recruitment of stimulus-inducible transcription factors, NF-κB and Ets-1, to the locus. Activities of Tmevpg1-specific enhancers and Tmevpg1 transcription are dependent upon NF-κB. Thus, we propose that T-bet stimulates epigenetic remodeling of Tmevpg1-specific enhancers and Ifng-specific enhancers to achieve Th1-lineage-specific expression of Ifng.
Collapse
Affiliation(s)
- Sarah P Collier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Melodie A Henderson
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John T Tossberg
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thomas M Aune
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
47
|
E26 transformation-specific-1 (ETS1) and WDFY family member 4 (WDFY4) polymorphisms in Chinese patients with rheumatoid arthritis. Int J Mol Sci 2014; 15:2712-21. [PMID: 24549174 PMCID: PMC3958877 DOI: 10.3390/ijms15022712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 12/29/2022] Open
Abstract
E26 transformation-specific-1 (ETS1) and WDFY family member 4 (WDFY4) are closely related with systemic lupus erythematosus. We hypothesized that ETS1 and WDFY4 polymorphisms may contribute to rheumatoid arthritis (RA) susceptibility. We studied ETS1 rs1128334 G/A and WDFY4 rs7097397 A/G gene polymorphisms in 329 patients with RA and 697 controls in a Chinese population. Genotyping was done using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. When the WDFY4 rs7097397 AA homozygote genotype was used as the reference group, the AG genotype was associated with a significantly increased risk for RA. In the dominant model, when the WDFY4 rs7097397 AA homozygote genotype was used as the reference group, the AG/GG genotypes were associated with a significant increased susceptibility to RA. In stratification analyses, a significantly increased risk for RA associated with the WDFY4 rs7097397 AG genotype was evident among female patients, younger patients, C-reactive protein (CRP) negative patients and both anti-cyclic citrullinated peptide antibody (ACPA) positive patients and negative patients compared with the WDFY4 rs7097397 AA genotype. These findings suggested that WDFY4 rs7097397 A/G may be associated with the risk of RA, especially among younger, female patients, CRP-negative patients and both ACPA positive and negative patients. However, our results were obtained from a moderate-sized sample, and therefore this is a preliminary conclusion. To confirm these findings, validation by a larger study from a more diverse ethnic population is needed.
Collapse
|
48
|
Gabryšová L, Howes A, Saraiva M, O'Garra A. The regulation of IL-10 expression. Curr Top Microbiol Immunol 2014; 380:157-90. [PMID: 25004818 DOI: 10.1007/978-3-662-43492-5_8] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-10 is an important immunoregulatory cytokine and an understanding of how IL-10 expression is controlled is critical in the design of immune intervention strategies. IL-10 is produced by almost all cell types within the innate (including macrophages, monocytes, dendritic cells (DCs), mast cells, neutrophils, eosinophils and natural killer cells) and adaptive (including CD4(+) T cells, CD8(+) T cells and B cells) immune systems. The mechanisms of IL-10 regulation operate at several stages including chromatin remodelling at the Il10 locus, transcriptional regulation of Il10 expression and post-transcriptional regulation of Il10 mRNA. In addition, whereas some aspects of Il10 gene regulation are conserved between different immune cell types, several are cell type- or stimulus-specific. Here, we outline the complexity of IL-10 production by discussing what is known about its regulation in macrophages, monocytes, DCs and CD4(+) T helper cells.
Collapse
Affiliation(s)
- Leona Gabryšová
- Division of Immunoregulation, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | |
Collapse
|
49
|
Zhang Y, Zhang Y, Gu W, Sun B. TH1/TH2 cell differentiation and molecular signals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:15-44. [PMID: 25261203 DOI: 10.1007/978-94-017-9487-9_2] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The distinctive differentiated states of the CD4+ T helper cells are determined by the set of transcription factors and the genes transcribed by the transcription factors. In vitro induction models, the major determinants of the cytokines present during the T-cell receptor (TCR)-mediated activation process. IL-12 and IFN-γ make Naive CD4+ T cells highly express T-bet and STAT4 and differentiate to TH1 cells, while IL-4 make Naive CD4+ T cells highly express STAT6 and GATA3 and differentiated to TH2 cells. Even through T-bet and GATA3 are master regulators for TH1/TH2 cells differentiation. There are many other transcription factors, such as RUNX family proteins, IRF4, Dec2, Gfi1, Hlx, and JunB that can impair TH1/TH2 cells differentiation. In recent years, noncoding RNAs (microRNA and long noncoding RNA) join in the crowd. The leukocytes should migrate to the right place to show their impact. There are some successful strategies, which are revealed to targeting chemokines and their receptors, that have been developed to treat human immune-related diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | | | | | | |
Collapse
|
50
|
Lee PH, Puppi M, Schluns KS, Yu-Lee LY, Dong C, Lacorazza HD. The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4+ T cells to the Th17 lineage. THE JOURNAL OF IMMUNOLOGY 2013; 192:178-88. [PMID: 24259505 DOI: 10.4049/jimmunol.1301372] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The differentiation of CD4(+) T cells into different Th lineages is driven by cytokine milieu in the priming site and the underlying transcriptional circuitry. Even though many positive regulators have been identified, it is not clear how this process is inhibited at transcriptional level. In this study, we report that the E-twenty six (ETS) transcription factor E74-like factor 4 (ELF4) suppresses the differentiation of Th17 cells both in vitro and in vivo. Culture of naive Elf4(-/-) CD4(+) T cells in the presence of IL-6 and TGF-β (or IL-6, IL-23, and IL-1β) resulted in increased numbers of IL-17A-positive cells compared with wild-type controls. In contrast, the differentiation to Th1, Th2, or regulatory T cells was largely unaffected by loss of ELF4. The increased expression of genes involved in Th17 differentiation observed in Elf4(-/-) CD4(+) T cells suggested that ELF4 controls their programming into the Th17 lineage rather than only IL-17A gene expression. Despite normal proliferation of naive CD4(+) T cells, loss of ELF4 lowered the requirement of IL-6 and TGF-β signaling for IL-17A induction in each cell division. ELF4 did not inhibit Th17 differentiation by promoting IL-2 production as proposed for another ETS transcription factor, ETS1. Elf4(-/-) mice showed increased numbers of Th17 cells in the lamina propria at steady state, in lymph nodes after immunization, and, most importantly, in the CNS following experimental autoimmune encephalomyelitis induction, contributing to the increased disease severity. Collectively, our findings suggest that ELF4 restrains Th17 differentiation in dividing CD4(+) T cells by regulating commitment to the Th17 differentiation program.
Collapse
Affiliation(s)
- Ping-Hsien Lee
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | | |
Collapse
|