1
|
Saadh MJ, Hamid JA, Malathi H, Kazmi SW, Omar TM, Sharma A, Kumar MR, Aggarwal T, Sead FF. SNHG family lncRNAs: Key players in the breast cancer progression and immune cell's modulation. Exp Cell Res 2025; 447:114531. [PMID: 40118265 DOI: 10.1016/j.yexcr.2025.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Breast cancer, a highly prevalent form of cancer worldwide, has observed a steady increase in its prevalence over the past few decades. This rise can be attributed to the complex nature of the disease, characterized by its heterogeneity, ability to metastasize, and resistance to various treatment. In the field of cancer research, long non-coding RNAs (lncRNAs) are of special interest, which play an important role in the development and progression of various tumors, including breast cancer. LncRNAs affect the tumor microenvironment by attracting diverse immunosuppressive factors and controlling the differentiation of immune cells, often referred to as myeloid and lymphoid cells, which contributes to immune escape of tumor cells. Among the lncRNA families, the small nucleolar RNA host gene (SNHG) family has been found to be dysregulated in breast cancer. These SNHGs have been implicated in crucial cellular processes such as cell proliferation, invasion, migration, resistance to therapies, apoptosis, as well as immune cell regulation and differentiation. Consequently, they have great potential as diagnostic and prognostic biomarkers as well as potential therapeutic targets for breast cancer. In this comprehensive review, we aim to summarize the recent advances in the study of SNHGs in breast cancer pathogenesis and their role in regulating the activity of immune cells in the tumor microenvironment through affecting SNHGs/miRNA/mRNA pathways, with the aim of providing new insights into the treatment of breast cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Nineveh, Iraq
| | - Ashish Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Tushar Aggarwal
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Fadhil Feez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Wang X, Zhao M, Wang Q, Wang J, Wang T. Dynamic alterations in M2 macrophage subtypes enhance flap expansion efficiency and tissue regeneration. Cell Biochem Biophys 2024; 82:859-871. [PMID: 38441826 DOI: 10.1007/s12013-024-01237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 08/25/2024]
Abstract
Dilatation of soft skin tissue is a common surgical procedure in plastic surgery. M2 macrophages play a critical role in reducing inflammation, promoting epithelial and vascular endothelial cell proliferation, enhancing collagen synthesis in fibroblasts, and orchestrating extracellular matrix remodelling by promoting angiogenesis, epithelialisation, and fibrosis. Macrophages improve flap survival by promoting microangiogenesis and collagen remodelling. However, the role of macrophages in flap expansion has not yet been investigated. Improving the expansion efficiency of dilatation flaps and promoting flap vascularisation are the pressing problems in the fields of plastic and reconstruction surgery. In the present study, we used a mouse model to assess the effects of macrophage activation on skin expansion, thickness, ultrastructure, intradermal angiogenesis, and collagen and cytokine levels. Our findings revealed dynamic changes in the macrophage content and subtypes within the expansion flaps. The enrichment of M2 macrophages significantly enhanced the efficiency of flap expansion, vascularisation, and collagen synthesis. Our findings underline the pivotal role of M2 macrophages in tissue regeneration at the molecular and biochemical levels. These findings provide a basis for improving flap expansion efficiency using M2 macrophages.
Collapse
Affiliation(s)
- Xiangyue Wang
- The Department of Facial and Neck Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Mingyu Zhao
- The Department of Facial and Neck Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Qianwen Wang
- The Department of Facial and Neck Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Jiaqi Wang
- The Department of Facial and Neck Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Tailing Wang
- The Department of Facial and Neck Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China.
| |
Collapse
|
3
|
Kong XY, Lauritzen KH, Dahl TB, Holm S, Olsen MB, Skjelland M, Nielsen C, Michelsen AE, Ueland T, Aukrust P, Halvorsen B, Sandanger Ø. CD38 deficient mice are not protected from atherosclerosis. Biochem Biophys Res Commun 2024; 705:149734. [PMID: 38430607 DOI: 10.1016/j.bbrc.2024.149734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
CD38 is a multifunctional enzyme implicated in chemotaxis of myeloid cells and lymphocyte activation, but also expressed by resident cells such as endothelial and smooth muscle cells. CD38 is important for host defense against microbes. However, CD38's role in the pathogenesis of atherosclerosis is controversial with seemingly conflicting results reported so far. To clarify the discrepancy of current literature on the effect of CD38 ablation on atherosclerosis development, we implanted a shear stress modifier around the right carotid artery in CD38-/- and WT mice. Hypercholesterolemia was induced by human gain-of-function PCSK9 (D374Y), introduced using AAV vector (serotype 9), combined with an atherogenic diet for a total of 9 weeks. Atherosclerosis was assessed at the aortic root, aortic arch and the right carotid artery. The findings can be summarized as follows: i) CD38-/- and WT mice had a similar atherosclerotic burden in all three locations, ii) No significant differences in monocyte infiltration or macrophage content could be seen in the plaques, and iii) The amount of collagen deposition in the plaques were also similar between CD38-/- and WT mice. In conclusion, our data suggest that CD38-/- mice are neither protected against nor prone to atherosclerosis compared to WT mice.
Collapse
Affiliation(s)
- Xiang Yi Kong
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | - Knut H Lauritzen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mona Skjelland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Christopher Nielsen
- Department of Chronic Diseases, Norwegian Institute of Public Health, Oslo, Norway; Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
4
|
Kou T, Kang L, Zhang B, Li J, Zhao B, Zeng W, Hu X. RBP-J regulates homeostasis and function of circulating Ly6C lo monocytes. eLife 2024; 12:RP88135. [PMID: 38407952 PMCID: PMC10942619 DOI: 10.7554/elife.88135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Notch-RBP-J signaling plays an essential role in the maintenance of myeloid homeostasis. However, its role in monocyte cell fate decisions is not fully understood. Here, we showed that conditional deletion of transcription factor RBP-J in myeloid cells resulted in marked accumulation of blood Ly6Clo monocytes that highly expressed chemokine receptor CCR2. Bone marrow transplantation and parabiosis experiments revealed a cell-intrinsic requirement of RBP-J for controlling blood Ly6CloCCR2hi monocytes. RBP-J-deficient Ly6Clo monocytes exhibited enhanced capacity competing with wildtype counterparts in blood circulation. In accordance with alterations of circulating monocytes, RBP-J deficiency led to markedly increased population of lung tissues with Ly6Clo monocytes and CD16.2+ interstitial macrophages. Furthermore, RBP-J deficiency-associated phenotypes could be genetically corrected by further deleting Ccr2 in myeloid cells. These results demonstrate that RBP-J functions as a crucial regulator of blood Ly6Clo monocytes and thus derived lung-resident myeloid populations, at least in part through regulation of CCR2.
Collapse
Affiliation(s)
- Tiantian Kou
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Lan Kang
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Jiaqi Li
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life Sciences, Tsinghua UniversityBeijingChina
- Beijing Key Laboratory for Immunological Research on Chronic DiseasesBeijingChina
| |
Collapse
|
5
|
He Y, Heng Y, Qin Z, Wei X, Wu Z, Qu J. Intravital microscopy of satellite cell dynamics and their interaction with myeloid cells during skeletal muscle regeneration. SCIENCE ADVANCES 2023; 9:eadi1891. [PMID: 37851799 PMCID: PMC10584350 DOI: 10.1126/sciadv.adi1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
Skeletal muscle regeneration requires the highly coordinated cooperation of muscle satellite cells (MuSCs) with other cellular components. Upon injury, myeloid cells populate the wound site, concomitant with MuSC activation. However, detailed analysis of MuSC-myeloid cell interaction is hindered by the lack of suitable live animal imaging technology. Here, we developed a dual-laser multimodal nonlinear optical microscope platform to study the dynamics of MuSCs and their interaction with nonmyogenic cells during muscle regeneration. Using three-dimensional time-lapse imaging on live reporter mice and taking advantages of the autofluorescence of reduced nicotinamide adenine dinucleotide (NADH), we studied the spatiotemporal interaction between nonmyogenic cells and muscle stem/progenitor cells during MuSC activation and proliferation. We discovered that their cell-cell contact was transient in nature. Moreover, MuSCs could activate with notably reduced infiltration of neutrophils and macrophages, and their proliferation, although dependent on macrophages, did not require constant contact with them. These findings provide a fresh perspective on myeloid cells' role during muscle regeneration.
Collapse
Affiliation(s)
- Yingzhu He
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Youshan Heng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhongya Qin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Xiuqing Wei
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhenguo Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jianan Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
6
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
7
|
Fu Y, Pajulas A, Wang J, Zhou B, Cannon A, Cheung CCL, Zhang J, Zhou H, Fisher AJ, Omstead DT, Khan S, Han L, Renauld JC, Paczesny S, Gao H, Liu Y, Yang L, Tighe RM, Licona-Limón P, Flavell RA, Takatsuka S, Kitamura D, Sun J, Bilgicer B, Sears CR, Yang K, Kaplan MH. Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9. Nat Commun 2022; 13:3811. [PMID: 35778404 PMCID: PMC9249769 DOI: 10.1038/s41467-022-31596-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Although IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4+ T cell-derived IL-9 promotes the expansion of both CD11c+ and CD11c- interstitial macrophage populations in lung tumor models. Mechanistically, the IL-9/macrophage axis requires arginase 1 (Arg1) to mediate tumor growth. Indeed, adoptive transfer of Arg1+ but not Arg1- lung macrophages to Il9r-/- mice promotes tumor growth. Moreover, targeting IL-9 signaling using macrophage-specific nanoparticles restricts lung tumor growth in mice. Lastly, elevated expression of IL-9R and Arg1 in tumor lesions is associated with poor prognosis in lung cancer patients. Thus, our study suggests the IL-9/macrophage/Arg1 axis is a potential therapeutic target for lung cancer therapy.
Collapse
Affiliation(s)
- Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baohua Zhou
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Cherry Cheuk Lam Cheung
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Huaxin Zhou
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine/Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amanda Jo Fisher
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine/Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David T Omstead
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sabrina Khan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lei Han
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Experimental Medicine Unit, Université Catholique de Louvain, Brussels, 1200, Belgium
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lei Yang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert M Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Paula Licona-Limón
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Shogo Takatsuka
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Catherine R Sears
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine/Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kai Yang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Ansari A, Sachan S, Jit BP, Sharma A, Coshic P, Sette A, Weiskopf D, Gupta N. An efficient immunoassay for the B cell help function of SARS-CoV-2-specific memory CD4 + T cells. CELL REPORTS METHODS 2022; 2:100224. [PMID: 35571764 PMCID: PMC9085463 DOI: 10.1016/j.crmeth.2022.100224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/27/2021] [Accepted: 04/28/2022] [Indexed: 04/30/2023]
Abstract
The B cell "help" function of CD4+ T cells is an important mechanism of adaptive immunity. Here, we describe improved antigen-specific T-B cocultures for quantitative measurement of T cell-dependent B cell responses, with as few as ∼90 T cells. Utilizing M. tuberculosis (Mtb), we show that early priming and activation of CD4+ T cells is important for productive interaction between T and B cells and that similar effects are achieved by supplementing cocultures with monocytes. We find that monocytes promote survivability of B cells via BAFF and stem cell growth factor (SCGF)/C-type lectin domain family 11 member A (CLEC11A), but this alone does not fully recapitulate the effects of monocyte supplementation. Importantly, we demonstrate improved activation and immunological output of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory CD4+ T-B cell cocultures with the inclusion of monocytes. This method may therefore provide a more sensitive assay to evaluate the B cell help quality of memory CD4+ T cells, for example, after vaccination or natural infection.
Collapse
Affiliation(s)
- Asgar Ansari
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Shilpa Sachan
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Poonam Coshic
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
9
|
Silberberg E, Filep JG, Ariel A. Weathering the Storm: Harnessing the Resolution of Inflammation to Limit COVID-19 Pathogenesis. Front Immunol 2022; 13:863449. [PMID: 35615359 PMCID: PMC9124752 DOI: 10.3389/fimmu.2022.863449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
The resolution of inflammation is a temporally and spatially coordinated process that in its innate manifestations, primarily involves neutrophils and macrophages. The shutdown of infection or injury-induced acute inflammation requires termination of neutrophil accumulation within the affected sites, neutrophil demise, and clearance by phagocytes (efferocytosis), such as tissue-resident and monocyte-derived macrophages. This must be followed by macrophage reprogramming from the inflammatory to reparative and consequently resolution-promoting phenotypes and the production of resolution-promoting lipid and protein mediators that limit responses in various cell types and promote tissue repair and return to homeostatic architecture and function. Recent studies suggest that these events, and macrophage reprogramming to pro-resolving phenotypes in particular, are not only important in the acute setting, but might be paramount in limiting chronic inflammation, autoimmunity, and various uncontrolled cytokine-driven pathologies. The SARS-CoV-2 (COVID-19) pandemic has caused a worldwide health and economic crisis. Severe COVID-19 cases that lead to high morbidity are tightly associated with an exuberant cytokine storm that seems to trigger shock-like pathologies, leading to vascular and multiorgan failures. In other cases, the cytokine storm can lead to diffuse alveolar damage that results in acute respiratory distress syndrome (ARDS) and lung failure. Here, we address recent advances on effectors in the resolution of inflammation and discuss how pro-resolution mechanisms with particular emphasis on macrophage reprogramming, might be harnessed to limit the universal COVID-19 health threat.
Collapse
Affiliation(s)
- Esther Silberberg
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
| | - János G. Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
- *Correspondence: Amiram Ariel, ; János G. Filep,
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, Israel
- *Correspondence: Amiram Ariel, ; János G. Filep,
| |
Collapse
|
10
|
Wemyss K, Konkel JE. Gingival monocytes: Lessons from other barriers. Int J Biochem Cell Biol 2022; 145:106194. [PMID: 35276370 DOI: 10.1016/j.biocel.2022.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Abstract
Unlike other non-lymphoid tissues monocytes comprise a large proportion of mononuclear phagocytes present within the gingiva. Their functions and fate remain poorly understood. The oral mucosa faces challenges common to all barrier surfaces, including constant exposure to antigens and the resident commensal bacteria, but also experiences ongoing mechanical damage from mastication. Gingiva monocytes may therefore possess both myeloid functions observed at other barrier sites, such as hypo-responsiveness to bacterial stimulation, and distinctive functions tailored by their unique environment. In this review, we discuss the establishment and function of monocytes and macrophages at several mucosal tissues, and posit potential functions of monocytes within the gingiva tissue.
Collapse
Affiliation(s)
- Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK; Division of infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9PT, UK
| | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK; Division of infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
11
|
Exosomal non-coding RNAs: Emerging roles in bilateral communication between cancer cells and macrophages. Mol Ther 2022; 30:1036-1053. [PMID: 34864204 PMCID: PMC8899606 DOI: 10.1016/j.ymthe.2021.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a dynamic network of cellular organization that comprises diverse cell types and significantly contributes to cancer development. As pivotal immune stromal cells in the TME, macrophages are extensively heterogeneous and exert both antitumor and protumor functions. Exosomes are nanosized extracellular membranous vesicles with diameters between 30 and 150 nm. By transferring multiple bioactive substances such as proteins, lipids, and nucleic acids, exosomes play an important role in the communication between cells. Recently, growing evidence has demonstrated that non-coding RNAs (ncRNAs) are enriched in exosomes and that exosomal ncRNAs are involved in the crosstalk between cancer cells and macrophages. Furthermore, circulating exosomal ncRNAs can be detected in biofluids, serving as promising noninvasive biomarkers for the early diagnosis and prognostic prediction of cancer. Exosome-based therapies are emerging as potent strategies that can be utilized to alleviate tumor progression. Herein, the present knowledge of exosomal ncRNAs and their vital roles in regulating the interplay between cancer cells and macrophages, as well as their clinical applications are summarized.
Collapse
|
12
|
Fu Y, Wang J, Zhou B, Pajulas A, Gao H, Ramdas B, Koh B, Ulrich BJ, Yang S, Kapur R, Renauld JC, Paczesny S, Liu Y, Tighe RM, Licona-Limón P, Flavell RA, Takatsuka S, Kitamura D, Tepper RS, Sun J, Kaplan MH. An IL-9-pulmonary macrophage axis defines the allergic lung inflammatory environment. Sci Immunol 2022; 7:eabi9768. [PMID: 35179949 PMCID: PMC8991419 DOI: 10.1126/sciimmunol.abi9768] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.
Collapse
Affiliation(s)
- Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baohua Zhou
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baskar Ramdas
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Byunghee Koh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shuangshuang Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Reuben Kapur
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Experimental Medicine Unit, Université Catholique de Louvain, Brussels, 1200 Belgium
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert M Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Paula Licona-Limón
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shogo Takatsuka
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Robert S. Tepper
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
13
|
Snarski P, Sukhanov S, Yoshida T, Higashi Y, Danchuk S, Chandrasekar B, Tian D, Rivera-Lopez V, Delafontaine P. Macrophage-Specific IGF-1 Overexpression Reduces CXCL12 Chemokine Levels and Suppresses Atherosclerotic Burden in Apoe-Deficient Mice. Arterioscler Thromb Vasc Biol 2022; 42:113-126. [PMID: 34852642 PMCID: PMC8792341 DOI: 10.1161/atvbaha.121.316090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE IGF-1 (insulin-like growth factor 1) exerts pleiotropic effects including promotion of cellular growth, differentiation, survival, and anabolism. We have shown that systemic IGF-1 administration reduced atherosclerosis in Apoe-/- (apolipoprotein E deficient) mice, and this effect was associated with a reduction in lesional macrophages and a decreased number of foam cells in the plaque. Almost all cell types secrete IGF-1, but the effect of macrophage-derived IGF-1 on the pathogenesis of atherosclerosis is poorly understood. We hypothesized that macrophage-derived IGF-1 will reduce atherosclerosis. Approach and Results: We created macrophage-specific IGF-1 overexpressing mice on an Apoe-/- background. Macrophage-specific IGF-1 overexpression reduced plaque macrophages, foam cells, and atherosclerotic burden and promoted features of stable atherosclerotic plaque. Macrophage-specific IGF1 mice had a reduction in monocyte infiltration into plaque, decreased expression of CXCL12 (CXC chemokine ligand 12), and upregulation of ABCA1 (ATP-binding cassette transporter 1), a cholesterol efflux regulator, in atherosclerotic plaque and in peritoneal macrophages. IGF-1 prevented oxidized lipid-induced CXCL12 upregulation and foam cell formation in cultured THP-1 macrophages and increased lipid efflux. We also found an increase in cholesterol efflux in macrophage-specific IGF1-derived peritoneal macrophages. CONCLUSIONS Macrophage IGF-1 overexpression reduced atherosclerotic burden and increased features of plaque stability, likely via a reduction in CXCL12-mediated monocyte recruitment and an increase in ABCA1-dependent macrophage lipid efflux.
Collapse
Affiliation(s)
- Patricia Snarski
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Sergiy Sukhanov
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Tadashi Yoshida
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Yusuke Higashi
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Svitlana Danchuk
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA
| | - Bysani Chandrasekar
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Di Tian
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA
| | | | - Patrick Delafontaine
- Section of Cardiology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA,Department of Physiology, Tulane University School of Medicine, New Orleans, LA,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
14
|
Role of NR4A family members in myeloid cells and leukemia. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:23-36. [PMID: 35496823 PMCID: PMC9040138 DOI: 10.1016/j.crimmu.2022.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 11/24/2022] Open
Abstract
The myeloid cellular compartment comprises monocytes, dendritic cells (DCs), macrophages and granulocytes. As diverse as this group of cells may be, they are all an important part of the innate immune system and are therefore linked by the necessity to be acutely sensitive to their environment and to rapidly and appropriately respond to any changes that may occur. The nuclear orphan receptors NR4A1, NR4A2 and NR4A3 are encoded by immediate early genes as their expression is rapidly induced in response to various signals. It is perhaps because of this characteristic that this family of transcription factors has many known roles in myeloid cells. In this review, we will regroup and discuss the diverse roles NR4As have in different myeloid cell subsets, including in differentiation, migration, activation, and metabolism. We will also highlight the importance these molecules have in the development of myeloid leukemia. NR4A1-3 have important roles in the different cells of the myeloid compartment. These orphan receptors homeostasis, differentiation, and activation. NR4A family is important in suppressing the development of myeloid leukemias. NR4As have been linked to several diseases and could be pharmacological targets.
Collapse
|
15
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
16
|
Ulfig A, Bader V, Varatnitskaya M, Lupilov N, Winklhofer KF, Leichert LI. Hypochlorous acid-modified human serum albumin suppresses MHC class II - dependent antigen presentation in pro-inflammatory macrophages. Redox Biol 2021; 43:101981. [PMID: 33940547 PMCID: PMC8105673 DOI: 10.1016/j.redox.2021.101981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages are innate immune cells that internalize and present exogenous antigens to T cells via MHC class II proteins. They operate at sites of infection in a highly inflammatory environment, generated in part by reactive oxygen species, in particular the strong oxidant hypochlorous acid (HOCl) produced in the neutrophil respiratory burst. HOCl effectively kills a broad range of pathogens but can also contribute to host tissue damage at sites of inflammation. To prevent tissue injury, HOCl is scavenged by human serum albumin (HSA) and other plasma proteins in interstitial fluids, leading to the formation of variously modified advanced oxidation products (AOPPs) with pro-inflammatory properties. Previously, we showed that HOCl-mediated N-chlorination converts HSA and other plasma proteins into efficient activators of the phagocyte respiratory burst, but the role of these AOPPs in antigen presentation by macrophages remained unclear. Here, we show that physiologically relevant amounts of N-chlorinated HSA can strongly impair the capacity of THP-1-derived macrophages to present antigens to antigen-specific T cells via MHC class II proteins at multiple stages. Initially, N-chlorinated HSA inhibits antigen internalization by converting antigens into scavenger receptor (SR) ligands and competing with the modified antigens for binding to SR CD36. Later steps of antigen presentation, such as intracellular antigen processing and MHC class II expression are negatively affected, as well. We propose that impaired processing of pathogens or exogenous antigens by immune cells at an initial stage of infection prevents antigen presentation in an environment potentially hostile to cells of the adaptive immune response, possibly shifting it towards locations removed from the actual insult, like the lymph nodes. On the flip side, excessive retardation or complete inhibition of antigen presentation by N-chlorinated plasma proteins could contribute to chronic infection and inflammation.
Collapse
Affiliation(s)
- Agnes Ulfig
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Verian Bader
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry - Molecular Cell Biology, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Marharyta Varatnitskaya
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Natalie Lupilov
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Konstanze F Winklhofer
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry - Molecular Cell Biology, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry - Microbial Biochemistry, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
17
|
Mohapatra S, Pioppini C, Ozpolat B, Calin GA. Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer 2021; 20:24. [PMID: 33522932 PMCID: PMC7849140 DOI: 10.1186/s12943-021-01313-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Noncoding RNA (ncRNA) transcripts that did not code proteins but regulate their functions were extensively studied for the last two decades and the plethora of discoveries have instigated scientists to investigate their dynamic roles in several diseases especially in cancer. However, there is much more to learn about the role of ncRNAs as drivers of malignant cell evolution in relation to macrophage polarization in the tumor microenvironment. At the initial stage of tumor development, macrophages have an important role in directing Go/No-go decisions to the promotion of tumor growth, immunosuppression, and angiogenesis. Tumor-associated macrophages behave differently as they are predominantly induced to be polarized into M2, a pro-tumorigenic type when recruited with the tumor tissue and thereby favoring the tumorigenesis. Polarization of macrophages into M1 or M2 subtypes plays a vital role in regulating tumor progression, metastasis, and clinical outcome, highlighting the importance of studying the factors driving this process. A substantial number of studies have demonstrated that ncRNAs are involved in the macrophage polarization based on their ability to drive M1 or M2 polarization and in this review we have described their functions and categorized them into oncogenes, tumor suppressors, Juggling tumor suppressors, and Juggling oncogenes.
Collapse
Affiliation(s)
- Swati Mohapatra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA
| | - Carlotta Pioppini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Life Science Plaza, Suite: LSP9.3012, 2130 W, Holcombe Blvd, Ste. 910, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Guth AM, Hafeman SD, Dow SW. Depletion of phagocytic myeloid cells triggers spontaneous T cell- and NK cell-dependent antitumor activity. Oncoimmunology 2021; 1:1248-1257. [PMID: 23243588 PMCID: PMC3518497 DOI: 10.4161/onci.21317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Depletion of tumor associated macrophages and inhibition of tumor angiogenesis have been invoked as the principle mechanisms underlying the antitumor activity of liposomal clodronate (LC). However, previous studies have not examined the effects of LC on systemic antitumor immunity. Here, we used mouse tumor models to elucidate the role of T and NK cells in the antitumor activity elicited by the systemic administration of LC. Strikingly, we found that the antitumor activity of LC is completely abolished in immunodeficient Rag1−/− mice. Moreover, both Cd4−/− and Cd8−/− mice as well as mice depleted of NK cells manifested a significant impaired ability to control tumor growth following LC administration. Treatment with LC did not result in an overall increase in T- or NK-cell numbers in tumors or lymphoid organs, nor was tumor infiltration with T or NK cells altered. However, T and NK cells isolated from the spleen of LC-treated mice exhibited significant increased tumor-specific secretion of interferon γ and interleukin 17 and greater cytolytic activity. We concluded that the antitumor effects of LC are largely dependent on the generation of systemic T-cell and NK- cell activity, most likely owing to the depletion of immune suppressive myeloid cell populations in lymphoid tissues. These findings suggest that the systemic administration of LC may constitute an effective means for non-specifically augmenting the antitumor activity of T and NK cells.
Collapse
Affiliation(s)
- Amanda M Guth
- Animal Cancer Center; Dept of Clinical Sciences; Colorado State University; Ft. Collins, CO USA
| | | | | |
Collapse
|
19
|
Evren E, Ringqvist E, Tripathi KP, Sleiers N, Rives IC, Alisjahbana A, Gao Y, Sarhan D, Halle T, Sorini C, Lepzien R, Marquardt N, Michaëlsson J, Smed-Sörensen A, Botling J, Karlsson MCI, Villablanca EJ, Willinger T. Distinct developmental pathways from blood monocytes generate human lung macrophage diversity. Immunity 2020; 54:259-275.e7. [PMID: 33382972 DOI: 10.1016/j.immuni.2020.12.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
The study of human macrophages and their ontogeny is an important unresolved issue. Here, we use a humanized mouse model expressing human cytokines to dissect the development of lung macrophages from human hematopoiesis in vivo. Human CD34+ hematopoietic stem and progenitor cells (HSPCs) generated three macrophage populations, occupying separate anatomical niches in the lung. Intravascular cell labeling, cell transplantation, and fate-mapping studies established that classical CD14+ blood monocytes derived from HSPCs migrated into lung tissue and gave rise to human interstitial and alveolar macrophages. In contrast, non-classical CD16+ blood monocytes preferentially generated macrophages resident in the lung vasculature (pulmonary intravascular macrophages). Finally, single-cell RNA sequencing defined intermediate differentiation stages in human lung macrophage development from blood monocytes. This study identifies distinct developmental pathways from circulating monocytes to lung macrophages and reveals how cellular origin contributes to human macrophage identity, diversity, and localization in vivo.
Collapse
Affiliation(s)
- Elza Evren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Emma Ringqvist
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Kumar Parijat Tripathi
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Natalie Sleiers
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Inés Có Rives
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Arlisa Alisjahbana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Tor Halle
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Chiara Sorini
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Rico Lepzien
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Nicole Marquardt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Tim Willinger
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 52 Stockholm, Sweden.
| |
Collapse
|
20
|
Khosa S, Bravo Araya M, Griebel P, Arsic N, Tikoo SK. Bovine Adenovirus-3 Tropism for Bovine Leukocyte Sub-Populations. Viruses 2020; 12:E1431. [PMID: 33322850 PMCID: PMC7763465 DOI: 10.3390/v12121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022] Open
Abstract
A number of characteristics including lack of virulence and the ability to grow to high titers, have made bovine adenovirus-3 (BAdV-3) a vector of choice for further development as a vaccine-delivery vehicle for cattle. Despite the importance of blood leukocytes, including dendritic cells (DC), in the induction of protective immune responses, little is known about the interaction between BAdV-3 and bovine blood leukocytes. Here, we demonstrate that compared to other leukocytes, bovine blood monocytes and neutrophils are significantly transduced by BAdV404a (BAdV-3, expressing enhanced yellow green fluorescent protein [EYFP]) at a MOI of 1-5 without a significant difference in the mean fluorescence of EYFP expression. Moreover, though expression of some BAdV-3-specific proteins was observed, no progeny virions were detected in the transduced monocytes or neutrophils. Interestingly, addition of the "RGD" motif at the C-terminus of BAdV-3 minor capsid protein pIX (BAV888) enhanced the ability of the virus to enter the monocytes without altering the tropism of BAdV-3. The increased uptake of BAV888 by monocytes was associated with a significant increase in viral genome copies and the abundance of EYFP and BAdV-3 19K transcripts compared to BAdV404a-transduced monocytes. Our results suggest that BAdV-3 efficiently transduces monocytes and neutrophils in the absence of viral replication. Moreover, RGD-modified capsid significantly increases vector uptake without affecting the initial interaction with monocytes.
Collapse
Affiliation(s)
- Sugandhika Khosa
- VIDO-InterVac., 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.K.); (M.B.A.); (P.G.); (N.A.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Maria Bravo Araya
- VIDO-InterVac., 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.K.); (M.B.A.); (P.G.); (N.A.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Philip Griebel
- VIDO-InterVac., 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.K.); (M.B.A.); (P.G.); (N.A.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Natasa Arsic
- VIDO-InterVac., 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.K.); (M.B.A.); (P.G.); (N.A.)
| | - Suresh K. Tikoo
- VIDO-InterVac., 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (S.K.); (M.B.A.); (P.G.); (N.A.)
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
21
|
The Antidiabetic Agent Acarbose Improves Anti-PD-1 and Rapamycin Efficacy in Preclinical Renal Cancer. Cancers (Basel) 2020; 12:cancers12102872. [PMID: 33036247 PMCID: PMC7601245 DOI: 10.3390/cancers12102872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immune-stimulatory and targeted therapies benefit many patients with metastatic kidney cancer, a sizeable proportion of patients fail to respond. Recent studies in mice demonstrate that nutrient-limiting dietary interventions can improve responses to chemotherapy. However, these studies did not investigate effects on metastasis, and the impact of these interventions on the response to immunotherapy or targeted therapies in kidney cancer is unknown. We therefore studied the effects of a glucose-limiting drug called acarbose, which is used to treat type 2 diabetes, in a spontaneously-metastasizing mouse model of kidney cancer. We found that acarbose slowed kidney cancer growth and promoted protective immune responses. In combination with either an immunotherapy or a targeted therapy used clinically to treat kidney cancer, acarbose led to improved treatment outcomes and reduced lung metastases. Our findings contribute to the emerging idea of using nutrition-based interventions to enhance responses to cancer treatments. Abstract Although immune checkpoint inhibitors and targeted therapeutics have changed the landscape of treatment for renal cell carcinoma (RCC), most patients do not experience significant clinical benefits. Emerging preclinical studies report that nutrition-based interventions and glucose-regulating agents can improve therapeutic efficacy. However, the impact of such agents on therapeutic efficacy in metastatic kidney cancer remains unclear. Here, we examined acarbose, an alpha-glucosidase inhibitor and antidiabetic agent, in a preclinical model of metastatic kidney cancer. We found that acarbose blunted postprandial blood glucose elevations in lean, nondiabetic mice and impeded the growth of orthotopic renal tumors, an outcome that was reversed by exogenous glucose administration. Delayed renal tumor outgrowth in mice on acarbose occurred in a CD8 T cell-dependent manner. Tumors from these mice exhibited increased frequencies of CD8 T cells that retained production of IFNγ, TNFα, perforin, and granzyme B. Combining acarbose with either anti-PD-1 or the mammalian target of rapamycin inhibitor, rapamycin, significantly reduced lung metastases relative to control mice on the same therapies. Our findings in mice suggest that combining acarbose with current RCC therapeutics may improve outcomes, warranting further study to determine whether acarbose can achieve similar responses in advanced RCC patients in a safe and likely cost-effective manner.
Collapse
|
22
|
Mohamedaly S, Alkhani A, Nijagal A. The relative abundance of monocyte subsets determines susceptibility to perinatal hepatic inflammation. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2020; 11:602. [PMID: 36304699 PMCID: PMC9603689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The devastating consequences of perinatal liver inflammation contribute to a pressing need to develop therapeutics for the diseases that underly this condition. Biliary atresia (BA) is a perinatal inflammatory disease of the liver that results in obliterative cholangiopathy and rapidly progresses to liver failure, requiring transplantation. The ability to develop targeted therapies requires an understanding of the immune mechanisms that mitigate perinatal liver inflammation. This article reviews our recent findings demonstrating that in a murine model of perinatal hepatic inflammation, Ly6cLo non-classical monocytes express a pro-reparative transcriptomic profile and that the relative abundance of Ly6cLo monocytes promotes resolution of perinatal liver inflammation, rendering neonatal pups resistant to disease. We also examine the lineage relationship between monocyte subsets, reviewing data that suggests classical monocytes are a precursor for non-classical monocytes, and the alternative possibility that separate progenitors exist for each subset. Although a precursor-product relationship between classical and non-classical monocytes might exist in certain environments, we argue that they may also arise from separate progenitors, which is evident by sustained Ly6cLo non-classical monocyte expansion when Ly6cHi monocytes are absent. An improved understanding of monocyte subsets and their developmental trajectories during perinatal hepatic inflammation will provide insight into how therapies directed at controlling monocyte function may help alleviate the devastating consequences of diseases like BA.
Collapse
Affiliation(s)
| | | | - Amar Nijagal
- ‡ Corresponding Author: Amar Nijagal, MD, Assistant Professor of Surgery, Division of Pediatric Surgery, 513 Parnassus Avenue, HSW 1652, Campus Box 0570, University of CA, San Francisco, San Francisco, CA 94143-0570, Office: 415-476-4086; Fax: 415-476-2314,
| |
Collapse
|
23
|
Mechanisms of HBV immune evasion. Antiviral Res 2020; 179:104816. [PMID: 32387476 DOI: 10.1016/j.antiviral.2020.104816] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The concept of immune evasion is a longstanding topic of debate during chronic Hepatitis B Virus infection. The 292 million individuals chronically infected by HBV are clear evidence that the virus avoids elimination by the immune system. The exact mechanisms of immune evasion remain undefined and are distinct, but likely interconnected, between innate and adaptive immunity. There is a significant body of evidence that supports peripheral tolerance and exhaustion of adaptive immunity but our understanding of the role that central tolerance plays is still developing. Innate immunity instructs the adaptive immune response and subversion of its functionality will impact both T and B cell responses. However, literature around the interaction of HBV with innate immunity is inconsistent, with reports suggesting that HBV avoids innate recognition, suppresses innate recognition, or activates innate immunity. This complexity has led to confusion and controversy. This review will discuss the mechanisms of central and peripheral tolerance/exhaustion of adaptive immunity in the context of chronic HBV infection. We also cover the interaction of HBV with cells of the innate immune system and propose concepts for the heterogeneity of responses in chronically infected patients.
Collapse
|
24
|
Modulation of TAP-dependent antigen compartmentalization during human monocyte-to-DC differentiation. Blood Adv 2020; 3:839-850. [PMID: 30867143 DOI: 10.1182/bloodadvances.2018027268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/13/2019] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) take up antigen in the periphery, migrate to secondary lymphoid organs, and present processed antigen fragments to adaptive immune cells and thus prime antigen-specific immunity. During local inflammation, recirculating monocytes are recruited from blood to the inflamed tissue, where they differentiate to macrophages and DCs. In this study, we found that monocytes showed high transporter associated with antigen processing (TAP)-dependent peptide compartmentalization and that after antigen pulsing, they were not able to efficiently stimulate antigen-specific T lymphocytes. Nevertheless, upon in vitro differentiation to monocyte-derived DCs, TAP-dependent peptide compartmentalization as well as surface major histocompatibility complex I turnover decreased and the cells efficiently restimulated T lymphocytes. Although TAP-dependent peptide compartmentalization decreased during DC differentiation, TAP expression levels increased. Furthermore, TAP relocated from early endosomes in monocytes to the endoplasmic reticulum (ER) and lysosomal compartments in DCs. Collectively, these data are compatible with the model that during monocyte-to-DC differentiation, the subcellular relocation of TAP and the regulation of its activity assure spatiotemporal separation of local antigen uptake and processing by monocytes and efficient T-lymphocyte stimulation by DCs.
Collapse
|
25
|
Shim J, Lee H, Park D, Won Lee J, Bae B, Chang Y, Kim J, Kim HY, Kang H. Aggravation of asthmatic inflammation by chlorine exposure via innate lymphoid cells and CD11c intermediate macrophages. Allergy 2020; 75:381-391. [PMID: 31402462 DOI: 10.1111/all.14017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Chlorine is widely used in daily life as disinfectant. However, chronic exposure to chlorine products aggravates allergic TH 2 inflammation and airway hyperresponsiveness (AHR). Innate lymphoid cells (ILCs) in airways contribute to the inception of asthma in association with virus infection, pollution, and excess of nutrient, but it is not known whether chronic chlorine exposure can activate innate immune cells. The aim of this study was to evaluate the impact of chlorine inhalation on the innate immunity such as ILCs and macrophages in relation with the development of asthma by using murine ovalbumin (OVA) sensitization/challenge model. METHODS Six-week-old female BALB/c mice were sensitized and challenged with OVA in the presence and absence of chronic low-dose chlorine exposure by inhalation of naturally vaporized gas of 5% sodium hypochlorite solution. AHR, airway inflammatory cells, from BALF and the population of ILCs and macrophages in the lung were evaluated. RESULTS The mice exposed to chlorine with OVA (Cl + OVA group) showed enhanced AHR and eosinophilic inflammation compared to OVA-treated mice (OVA group). The population of TH 2 cells, ILC2s, and ILC3s increased in Cl + OVA group compared with OVA group. CD11cint macrophages also remarkably increased in Cl + OVA group compared with OVA group. The deletion of macrophages by clodronate resulted in reduction of ILC2s and ILC3s population which was restored by adoptive transfer of CD11cint macrophages. CONCLUSIONS Chronic chlorine inhalation contributes to the exacerbation of airway inflammation in asthmatic airway by mobilizing pro-inflammatory macrophage into the lung as well as stimulating group 2 and 3 ILCs.
Collapse
Affiliation(s)
- Ji‐Su Shim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine Seoul National University College of Medicine Seoul Korea
- Department of Internal Medicine Ewha Womans University College of Medicine Seoul Korea
| | - Hyun‐Seung Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
| | - Da‐Eun Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
| | - Ji Won Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
| | - Yuna Chang
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences Seoul National University College of Medicine Seoul Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences Seoul National University College of Medicine Seoul Korea
| | - Hye Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences Seoul National University College of Medicine Seoul Korea
| | - Hye‐Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine Seoul National University College of Medicine Seoul Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center Seoul National University College of Medicine Seoul Korea
| |
Collapse
|
26
|
Mossanen JC, Jansen TU, Pracht J, Liepelt A, Buendgens L, Stoppe C, Goetzenich A, Simon TP, Autschbach R, Marx G, Tacke F. Elevated circulating CD14 ++CD16 + intermediate monocytes are independently associated with extracardiac complications after cardiac surgery. Sci Rep 2020; 10:947. [PMID: 31969629 PMCID: PMC6976615 DOI: 10.1038/s41598-020-57700-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
Elective cardiac surgery has low procedural complications. However, about 40% of patients develop extracardiac complications including delirium and acute kidney injury. We hypothesized that inflammatory processes and immune cell activation might be associated with these complications. We therefore prospectively included 104 patients undergoing cardiac surgery in our study. We assessed peripheral blood leukocyte populations by flow cytometry and circulating cytokines before operation, after surgery and at days one and four post-operatively. Patients undergoing cardiac surgery showed significantly elevated leukocytes and neutrophils after surgery. On the contrary, monocytes decreased after surgery and significantly increased at days 1 and 4, particularly classical (Mon1,CD14++CD16-) and intermediate (Mon2,CD14++CD16+) monocytes. While peripheral leukocyte subsets were unaltered in patients with infectious (n = 15) or cardiac complications (n = 31), post-operative leukocytes (p = 0.0016), neutrophils (p = 0.0061) and Mon2 (p = 0.0007) were clearly raised in patients developing extracardiac complications (n = 35). Using multiple logistic regression analyses, patient's age, ICU days, number of blood transfusions and elevated post-surgery Mon2 independently predicted extracardiac complications. Our findings demonstrate that elevated Mon2 after cardiac surgery are associated with an increased risk for extracardiac complications. These findings might improve the risk estimation after cardiac operations and the role of Mon2 for inflammation in cardiac surgery.
Collapse
Affiliation(s)
- Jana C Mossanen
- Department of Medicine III, University Hospital Aachen, Aachen, Germany.
- Department of Intensive and Intermediate Care, University Hospital Aachen, Aachen, Germany.
| | - Tobias U Jansen
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Jessica Pracht
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
- Department of Intensive and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Anke Liepelt
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Lukas Buendgens
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Christian Stoppe
- Department of Intensive and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Andreas Goetzenich
- Department of Thoracic and Cardiovascular Surgery, University Hospital Aachen, Aachen, Germany
| | - Tim-Philipp Simon
- Department of Intensive and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Rüdiger Autschbach
- Department of Thoracic and Cardiovascular Surgery, University Hospital Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
- Department of Hepatology & Gastroenterology, Charité University Medical Center, Berlin, Germany
| |
Collapse
|
27
|
O'Dea KP, Tan YY, Shah S, V Patel B, C Tatham K, Wilson MR, Soni S, Takata M. Monocytes mediate homing of circulating microvesicles to the pulmonary vasculature during low-grade systemic inflammation. J Extracell Vesicles 2020; 9:1706708. [PMID: 32002170 PMCID: PMC6968433 DOI: 10.1080/20013078.2019.1706708] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023] Open
Abstract
Microvesicles (MVs), a plasma membrane-derived subclass of extracellular vesicles, are produced and released into the circulation during systemic inflammation, yet little is known of cell/tissue-specific uptake of MVs under these conditions. We hypothesized that monocytes contribute to uptake of circulating MVs and that their increased margination to the pulmonary circulation and functional priming during systemic inflammation produces substantive changes to the systemic MV homing profile. Cellular uptake of i.v.-injected, fluorescently labelled MVs (J774.1 macrophage-derived) in vivo was quantified by flow cytometry in vascular cell populations of the lungs, liver and spleen of C57BL6 mice. Under normal conditions, both Ly6Chigh and Ly6Clow monocytes contributed to MV uptake but liver Kupffer cells were the dominant target cell population. Following induction of sub-clinical endotoxemia with low-dose i.v. LPS, MV uptake by lung-marginated Ly6Chigh monocytes increased markedly, both at the individual cell level (~2.5-fold) and through substantive expansion of their numbers (~8-fold), whereas uptake by splenic macrophages was unchanged and uptake by Kupffer cells actually decreased (~50%). Further analysis of MV uptake within the pulmonary vasculature using a combined model approach of in vivo macrophage depletion, ex vivo isolated perfused lungs and in vitro lung perfusate cell-based assays, indicated that Ly6Chigh monocytes possess a high MV uptake capacity (equivalent to Kupffer cells), that is enhanced directly by endotoxemia and ablated in the presence of phosphatidylserine (PS)-enriched liposomes and β3 integrin receptor blocking peptide. Accordingly, i.v.-injected PS-enriched liposomes underwent a redistribution of cellular uptake during endotoxemia similar to MVs, with enhanced uptake by Ly6Chigh monocytes and reduced uptake by Kupffer cells. These findings indicate that monocytes, particularly lung-marginated Ly6Chigh subset monocytes, become a dominant target cell population for MVs during systemic inflammation, with significant implications for the function and targeting of endogenous and therapeutically administered MVs, lending novel insights into the pathophysiology of pulmonary vascular inflammation.
Collapse
Affiliation(s)
- Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Ying Ying Tan
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Sneh Shah
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Brijesh V Patel
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Kate C Tatham
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Mike R Wilson
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Sanooj Soni
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
28
|
RifeMagalis B, Strickland SL, Shank SD, Autissier P, Schuetz A, Sithinamsuwan P, Lerdlum S, Fletcher JLK, de Souza M, Ananworanich J, Valcour V, The Search007 Study Group, Williams KC, Kosakovsky Pond SL, RattoKim S, Salemi M. Phyloanatomic characterization of the distinct T cell and monocyte contributions to the peripheral blood HIV population within the host. Virus Evol 2020; 6:veaa005. [PMID: 32355568 PMCID: PMC7185683 DOI: 10.1093/ve/veaa005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus (HIV) is a rapidly evolving virus, allowing its genetic sequence to act as a fingerprint for epidemiological processes among, as well as within, individual infected hosts. Though primarily infecting the CD4+ T-cell population, HIV can also be found in monocytes, an immune cell population that differs in several aspects from the canonical T-cell viral target. Using single genome viral sequencing and statistical phylogenetic inference, we investigated the viral RNA diversity and relative contribution of each of these immune cell types to the viral population within the peripheral blood. Results provide evidence of an increased prevalence of circulating monocytes harboring virus in individuals with high viral load in the absence of suppressive antiretroviral therapy. Bayesian phyloanatomic analysis of three of these individuals demonstrated a measurable role for these cells, but not the circulating T-cell population, as a source of cell-free virus in the plasma, supporting the hypothesis that these cells can act as an additional conduit of virus spread.
Collapse
Affiliation(s)
- Brittany RifeMagalis
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
| | - Samantha L Strickland
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | | | - Alexandra Schuetz
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences - United States Component, Bangkok 10400, Thailand
- SEARCH, Thai Red Cross AIDS Research Center, Bangkok 10330, Thailand
| | - Pasiri Sithinamsuwan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Rockville, MD 20850, USA
| | - Sukalaya Lerdlum
- Division of Neurology, Department of Medicine, Phramongkutklao Hospital, Bangkok 10400, Thailand
| | - James L K Fletcher
- Faculty of Medicine, Department of Radiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mark de Souza
- Faculty of Medicine, Department of Radiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jintanat Ananworanich
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences - United States Component, Bangkok 10400, Thailand
- SEARCH, Thai Red Cross AIDS Research Center, Bangkok 10330, Thailand
- Faculty of Medicine, Department of Radiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Victor Valcour
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | - Silvia RattoKim
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences - United States Component, Bangkok 10400, Thailand
- SEARCH, Thai Red Cross AIDS Research Center, Bangkok 10330, Thailand
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
29
|
Chang H, Zou Z, Wang Q, Li J, Jin H, Yin Q, Xing D. Targeting and Specific Activation of Antigen-Presenting Cells by Endogenous Antigen-Loaded Nanoparticles Elicits Tumor-Specific Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900069. [PMID: 31921548 PMCID: PMC6947714 DOI: 10.1002/advs.201900069] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/03/2019] [Indexed: 05/19/2023]
Abstract
Immunotherapy has shown tremendous promise for improving cancer treatment. Unfortunately, antigen-presenting cells (APCs) in cancer patients cannot effectively recognize and process tumor antigens to activate host immune responses. In this study, an approach is developed to improve cancer immunotherapy that utilizes endogenous antigen-carrying nanoparticles (EAC-NPs), which encompasses a set of antigens isolated from solid tumors and adjuvants. The EAC-NPs specifically target APCs and subsequently result in enhanced T cell responses and improved antitumor efficacy. Mechanistic studies reveal that the EAC-NPs enhance and prolong the presence of immune compounds in APCs, which ensure persistent antigen loading and stimulation, induce a rapid proliferation of CD4+ and CD8+ T cells, and significantly increase the ratios of intratumoral CD4+ T/Treg and CD8+ T/Treg. The work using nanotechnology provides a promising strategy in improving antitumor immunity by enhancing the immunogenicity and presentation of tumor self-antigens for cancer immunotherapy.
Collapse
Affiliation(s)
- Hao‐Cai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Zheng‐Zhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Qiu‐Hong Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Jie Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Qian‐Xia Yin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| |
Collapse
|
30
|
Cherepanova OA, Srikakulapu P, Greene ES, Chaklader M, Haskins RM, McCanna ME, Bandyopadhyay S, Ban B, Leitinger N, McNamara CA, Owens GK. Novel Autoimmune IgM Antibody Attenuates Atherosclerosis in IgM Deficient Low-Fat Diet-Fed, but Not Western Diet-Fed Apoe-/- Mice. Arterioscler Thromb Vasc Biol 2020; 40:206-219. [PMID: 31645128 PMCID: PMC7006879 DOI: 10.1161/atvbaha.119.312771] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Oxidized phospholipids (OxPL), such as the oxidized derivatives of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine, and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine, have been shown to be the principal biologically active components of minimally oxidized LDL (low-density lipoprotein). The role of OxPL in cardiovascular diseases is well recognized, including activation of inflammation within vascular cells. Atherosclerotic Apoe-/- mice fed a high-fat diet develop antibodies to OxPL, and hybridoma B-cell lines producing natural anti-OxPL autoantibodies have been successfully generated and characterized. However, as yet, no studies have been reported demonstrating that treatment with OxPL neutralizing antibodies can be used to prevent or reverse advanced atherosclerosis. Approach and Results: Here, using a screening against 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine/1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine, we generated a novel IgM autoantibody, 10C12, from the spleens of Apoe-/- mice fed a long-term Western diet, that demonstrated potent OxPL neutralizing activity in vitro and the ability to inhibit macrophage accumulation within arteries of Apoe-/- mice fed a Western diet for 4 weeks. Of interest, 10C12 failed to inhibit atherosclerosis progression in Apoe-/- mice treated between 18 and 26 weeks of Western diet feeding likely due at least in part to high levels of endogenous anti-OxPL antibodies. However, 10C12 treatment caused a 40% decrease in lipid accumulation within aortas of secreted IgM deficient, sIgM-/-Apoe-/-, mice fed a low-fat diet, when the antibody was administrated between 32-40 weeks of age. CONCLUSIONS Taken together, these results provide direct evidence showing that treatment with a single autoimmune anti-OxPL IgM antibody during advanced disease stages can have an atheroprotective outcome.
Collapse
Affiliation(s)
- Olga A. Cherepanova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, USA
| | - Prasad Srikakulapu
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth S. Greene
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Malay Chaklader
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, USA
| | - Ryan M. Haskins
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Mary E. McCanna
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Smarajit Bandyopadhyay
- Molecular Biotechnology Core, Research Core Services, Lerner Research Institute, Cleveland Clinic, USA
| | - Bhupal Ban
- Antibody Engineering and Technology Core, University of Virginia, USA
- Department of Cell Biology, University of Virginia, USA
- Indiana Biosciences Research Institute, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
31
|
Polyacrylic acid-coated iron oxide nanoparticles could be a useful tool for tracking inflammatory monocytes. Future Sci OA 2019; 5:FSO423. [PMID: 31827892 PMCID: PMC6900970 DOI: 10.2144/fsoa-2019-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To establish the effect of poly(acrylic acid)-coated iron oxide nanoparticles (PAC-IONs) and later exposure to a magnetic field on the differentiation of mononuclear phagocytes into macrophages. Methods: By flow cytometry, cell death was evaluated with DIOC6 and PI, Poly (ADP-ribose) Polymerases (PARP) fragmentation, H2AX phosphorylation and TUNEL assay. Cytokines by Cytokine bead array and the intracellular amount of iron by atomic absorption spectrometry. Results: PAC-IONs did not induce apoptosis, modify the cell membrane integrity or alter the mitochondrial membrane potential. They did not affect the cell morphology, the pattern of cytokine accumulation or the activating role of differentiation of mononuclear phagocytes into macrophages on the proliferation of autologous T cells. Conclusion: This evidence indicates that the PAC-IONs are safe and biocompatible. Moreover, the selectivity of the PAC-IONs for mononuclear phagocytes, as well as their increased uptake by non-classical monocytes, warrant future research with a view to their use as a contrast agent, a useful tool for in vivo tracking of tissue-infiltrating mononuclear phagocytes. In the search for materials that allow the study of inflammatory processes when biopsies are not feasible, magnetic nanoparticles have become an alternative tool for use in MRI. This article examined whether supermagnetic iron nanoparticles can affect the basic function of phagocytic cells, with a view to their use in clinical imaging applications.
Collapse
|
32
|
Shin KS, Jeon I, Kim BS, Kim IK, Park YJ, Koh CH, Song B, Lee JM, Lim J, Bae EA, Seo H, Ban YH, Ha SJ, Kang CY. Monocyte-Derived Dendritic Cells Dictate the Memory Differentiation of CD8 + T Cells During Acute Infection. Front Immunol 2019; 10:1887. [PMID: 31474983 PMCID: PMC6706816 DOI: 10.3389/fimmu.2019.01887] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022] Open
Abstract
Monocyte-derived dendritic cells (moDCs) have been shown to robustly expand during infection; however, their roles in anti-infectious immunity remain unclear. Here, we found that moDCs were dramatically increased in the secondary lymphoid organs during acute LCMV infection in an interferon-γ (IFN-γ)-dependent manner. We also found that priming by moDCs enhanced the differentiation of memory CD8+ T cells compared to differentiation primed by conventional dendritic cells (cDCs) through upregulation of Eomesodermin (Eomes) and T cell factor-1 (TCF-1) expression in CD8+ T cells. Consequently, impaired memory formation of CD8+ T cells in mice that had reduced numbers of moDCs led to defective clearance of pathogens upon rechallenge. Mechanistically, attenuated interleukin-2 (IL-2) signaling in CD8+ T cells primed by moDCs was responsible for the enhanced memory programming of CD8+ T cells. Therefore, our findings unveil a specialization of the antigen-presenting cell subsets in the fate determination of CD8+ T cells during infection and pave the way for the development of a novel therapeutic intervention on infection.
Collapse
Affiliation(s)
- Kwang-Soo Shin
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Insu Jeon
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Jun Park
- Laboratory of Immune Regulation, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Choong-Hyun Koh
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Boyeong Song
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Jeong-Mi Lee
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jiyoung Lim
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Young Ho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea.,Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
33
|
Angireddy R, Kazmi HR, Srinivasan S, Sun L, Iqbal J, Fuchs SY, Guha M, Kijima T, Yuen T, Zaidi M, Avadhani NG. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages. FASEB J 2019; 33:9167-9181. [PMID: 31063702 PMCID: PMC6662975 DOI: 10.1096/fj.201900010rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
The mitochondria-to-nucleus retrograde signaling (MtRS) pathway aids in cellular adaptation to stress. We earlier reported that the Ca2+- and calcineurin-dependent MtRS induces macrophage differentiation to bone-resorbing osteoclasts. However, mechanisms through which macrophages sense and respond to cellular stress remain unclear. Here, we induced mitochondrial stress in macrophages by knockdown (KD) of subunits IVi1 or Vb of cytochrome c oxidase (CcO). Whereas both IVi1 and Vb KD impair CcO activity, IVi1 KD cells produced higher levels of cellular and mitochondrial reactive oxygen species with increased glycolysis. Additionally, IVi1 KD induced the activation of MtRS factors NF-κB, NFAT2, and C/EBPδ as well as inflammatory cytokines, NOS 2, increased phagocytic activity, and a greater osteoclast differentiation potential at suboptimal RANK-L concentrations. The osteoclastogenesis in IVi1 KD cells was reversed fully with an IL-6 inhibitor LMT-28, whereas there was minimal rescue of the enhanced phagocytosis in these cells. In agreement with our findings in cultured macrophages, primary bone marrow-derived macrophages from MPV17-/- mice, a model for mitochondrial dysfunction, also showed higher propensity for osteoclast formation. This is the first report showing that CcO dysfunction affects inflammatory pathways, phagocytic function, and osteoclastogenesis.-Angireddy, R., Kazmi, H. R., Srinivasan, S., Sun, L., Iqbal, J., Fuchs, S. Y., Guha, M., Kijima, T., Yuen, T., Zaidi, M., Avadhani, N. G. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages.
Collapse
Affiliation(s)
- Rajesh Angireddy
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hasan Raza Kazmi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manti Guha
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Takashi Kijima
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Narayan G. Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, Blin-Wakkach C. Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Front Immunol 2019; 10:1408. [PMID: 31275328 PMCID: PMC6594198 DOI: 10.3389/fimmu.2019.01408] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts (OCLs) are key players in controlling bone remodeling. Modifications in their differentiation or bone resorbing activity are associated with a number of pathologies ranging from osteopetrosis to osteoporosis, chronic inflammation and cancer, that are all characterized by immunological alterations. Therefore, the 2000s were marked by the emergence of osteoimmunology and by a growing number of studies focused on the control of OCL differentiation and function by the immune system. At the same time, it was discovered that OCLs are much more than bone resorbing cells. As monocytic lineage-derived cells, they belong to a family of cells that displays a wide heterogeneity and plasticity and that is involved in phagocytosis and innate immune responses. However, while OCLs have been extensively studied for their bone resorption capacity, their implication as immune cells was neglected for a long time. In recent years, new evidence pointed out that OCLs play important roles in the modulation of immune responses toward immune suppression or inflammation. They unlocked their capacity to modulate T cell activation, to efficiently process and present antigens as well as their ability to activate T cell responses in an antigen-dependent manner. Moreover, similar to other monocytic lineage cells such as macrophages, monocytes and dendritic cells, OCLs display a phenotypic and functional plasticity participating to their anti-inflammatory or pro-inflammatory effect depending on their cell origin and environment. This review will address this novel vision of the OCL, not only as a phagocyte specialized in bone resorption, but also as innate immune cell participating in the control of immune responses.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, València, Spain
| | - Abdelilah Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Teun J de Vries
- Department of Periodontology, Academic Centre of Dentistry Amsterdam, University of Amsterdam and Vrije Univeristeit, Amsterdam, Netherlands
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Claudine Blin-Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| |
Collapse
|
35
|
Stromnes IM, Burrack AL, Hulbert A, Bonson P, Black C, Brockenbrough JS, Raynor JF, Spartz EJ, Pierce RH, Greenberg PD, Hingorani SR. Differential Effects of Depleting versus Programming Tumor-Associated Macrophages on Engineered T Cells in Pancreatic Ductal Adenocarcinoma. Cancer Immunol Res 2019; 7:977-989. [PMID: 31028033 PMCID: PMC6548612 DOI: 10.1158/2326-6066.cir-18-0448] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/05/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy resistant to therapies, including immune-checkpoint blockade. We investigated two distinct strategies to modulate tumor-associated macrophages (TAM) to enhance cellular therapy targeting mesothelin in an autochthonous PDA mouse model. Administration of an antibody to colony-stimulating factor (anti-Csf1R) depleted Ly6Clow protumorigenic TAMs and significantly enhanced endogenous T-cell intratumoral accumulation. Despite increasing the number of endogenous T cells at the tumor site, as previously reported, TAM depletion had only minimal impact on intratumoral accumulation and persistence of T cells engineered to express a murine mesothelin-specific T-cell receptor (TCR). TAM depletion interfered with the antitumor activity of the infused T cells in PDA, evidenced by reduced tumor cell apoptosis. In contrast, TAM programming with agonistic anti-CD40 increased both Ly6Chigh TAMs and the intratumoral accumulation and longevity of TCR-engineered T cells. Anti-CD40 significantly increased the frequency and number of proliferating and granzyme B+ engineered T cells, and increased tumor cell apoptosis. However, anti-CD40 failed to rescue intratumoral engineered T-cell IFNγ production. Thus, although functional modulation, rather than TAM depletion, enhanced the longevity of engineered T cells and increased tumor cell apoptosis, ultimately, anti-CD40 modulation was insufficient to rescue key effector defects in tumor-reactive T cells. This study highlights critical distinctions between how endogenous T cells that evolve in vivo, and engineered T cells with previously acquired effector activity, respond to modifications of the tumor microenvironment.
Collapse
Affiliation(s)
- Ingunn M Stromnes
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota.
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Adam L Burrack
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ayaka Hulbert
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Patrick Bonson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Cheryl Black
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - J Scott Brockenbrough
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jackson F Raynor
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ellen J Spartz
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Robert H Pierce
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Philip D Greenberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
36
|
Hossain M, Kubes P. Innate immune cells orchestrate the repair of sterile injury in the liver and beyond. Eur J Immunol 2019; 49:831-841. [DOI: 10.1002/eji.201847485] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Mokarram Hossain
- Department of Physiology and PharmacologyUniversity of Calgary Calgary Alberta T2N 4N1 Canada
- Calvin, Phoebe, and Joan Snyder Institute for Chronic DiseasesUniversity of Calgary Calgary Alberta T2N 4N1 Canada
| | - Paul Kubes
- Department of Physiology and PharmacologyUniversity of Calgary Calgary Alberta T2N 4N1 Canada
- Calvin, Phoebe, and Joan Snyder Institute for Chronic DiseasesUniversity of Calgary Calgary Alberta T2N 4N1 Canada
- Department of Microbiology and Infectious DiseasesUniversity of Calgary Calgary Alberta T2N 4N1 Canada
| |
Collapse
|
37
|
Narasimhan PB, Marcovecchio P, Hamers AA, Hedrick CC. Nonclassical Monocytes in Health and Disease. Annu Rev Immunol 2019; 37:439-456. [DOI: 10.1146/annurev-immunol-042617-053119] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monocytes are innate blood cells that maintain vascular homeostasis and are early responders to pathogens in acute infections. There are three well-characterized classes of monocytes: classical (CD14+CD16−in humans and Ly6Chiin mice), intermediate (CD14+CD16+in humans and Ly6C+Treml4+in mice), and nonclassical (CD14−CD16+in humans and Ly6Cloin mice). Classical monocytes are critical for the initial inflammatory response. Classical monocytes can differentiate into macrophages in tissue and can contribute to chronic disease. Nonclassical monocytes have been widely viewed as anti-inflammatory, as they maintain vascular homeostasis. They are a first line of defense in recognition and clearance of pathogens. However, their roles in chronic disease are less clear. They have been shown to be protective as well as positively associated with disease burden. This review focuses on the state of the monocyte biology field and the functions of monocytes, particularly nonclassical monocytes, in health and disease.
Collapse
Affiliation(s)
- Prakash Babu Narasimhan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Paola Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Anouk A.J. Hamers
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Catherine C. Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| |
Collapse
|
38
|
Ergen C, Niemietz PM, Heymann F, Baues M, Gremse F, Pola R, van Bloois L, Storm G, Kiessling F, Trautwein C, Luedde T, Lammers T, Tacke F. Liver fibrosis affects the targeting properties of drug delivery systems to macrophage subsets in vivo. Biomaterials 2019; 206:49-60. [PMID: 30925288 DOI: 10.1016/j.biomaterials.2019.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
Myeloid immune cells promote inflammation and fibrosis in chronic liver diseases. Drug delivery systems, such as polymers, liposomes and microbubbles, efficiently target myeloid cells in healthy liver, but their targeting properties in hepatic fibrosis remain elusive. We therefore studied the biodistribution of three intravenously injected carrier material, i.e. 10 nm poly(N-(2-hydroxypropyl)methacrylamide) polymers, 100 nm PEGylated liposomes and 2000 nm poly(butyl cyanoacrylate) microbubbles, in two fibrosis models in immunocompetent mice. While whole-body imaging confirmed preferential hepatic uptake even after induction of liver fibrosis, flow cytometry and immunofluorescence analysis revealed markedly decreased carrier uptake by liver macrophage subsets in fibrosis, particularly for microbubbles and polymers. Importantly, carrier uptake co-localized with immune infiltrates in fibrotic livers, corroborating the intrinsic ability of the carriers to target myeloid cells in areas of inflammation. Of the tested carrier systems liposomes had the highest uptake efficiency among hepatic myeloid cells, but the lowest specificity for cellular subsets. Hepatic fibrosis affected carrier uptake in liver and partially in spleen, but not in other tissues (blood, bone marrow, lung, kidney). In conclusion, while drug carrier systems target distinct myeloid cell populations in diseased and healthy livers, hepatic fibrosis profoundly affects their targeting efficiency, supporting the need to adapt nanomedicine-based approaches in chronic liver disease.
Collapse
Affiliation(s)
- Can Ergen
- Department of Medicine I, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | | | - Felix Heymann
- Department of Medicine III, University Hospital Aachen, Aachen, Germany; Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Maike Baues
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Felix Gremse
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Robert Pola
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Louis van Bloois
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Tom Luedde
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Twan Lammers
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany; Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
39
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
40
|
Guilliams M, Mildner A, Yona S. Developmental and Functional Heterogeneity of Monocytes. Immunity 2018; 49:595-613. [DOI: 10.1016/j.immuni.2018.10.005] [Citation(s) in RCA: 632] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
|
41
|
Gomez D, Baylis RA, Durgin BG, Newman AAC, Alencar GF, Mahan S, St Hilaire C, Müller W, Waisman A, Francis SE, Pinteaux E, Randolph GJ, Gram H, Owens GK. Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nat Med 2018; 24:1418-1429. [PMID: 30038218 PMCID: PMC6130822 DOI: 10.1038/s41591-018-0124-5] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/30/2018] [Indexed: 11/09/2022]
Abstract
Despite decades of research, our understanding of the processes controlling late-stage atherosclerotic plaque stability remains poor. A prevailing hypothesis is that reducing inflammation may improve advanced plaque stability, as recently tested in the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial, in which post-myocardial infarction subjects were treated with an IL-1β antibody. Here, we performed intervention studies in which smooth muscle cell (SMC) lineage-tracing Apoe-/- mice with advanced atherosclerosis were treated with anti-IL-1β or IgG control antibodies. Surprisingly, we found that IL-1β antibody treatment between 18 and 26 weeks of Western diet feeding induced a marked reduction in SMC and collagen content, but increased macrophage numbers in the fibrous cap. Moreover, although IL-1β antibody treatment had no effect on lesion size, it completely inhibited beneficial outward remodeling. We also found that SMC-specific knockout of Il1r1 (encoding IL-1 receptor type 1) resulted in smaller lesions nearly devoid of SMCs and lacking a fibrous cap, whereas macrophage-selective loss of IL-1R1 had no effect on lesion size or composition. Taken together, these results show that IL-1β has multiple beneficial effects in late-stage murine atherosclerosis, including promotion of outward remodeling and formation and maintenance of an SMC- and collagen-rich fibrous cap.
Collapse
Affiliation(s)
- Delphine Gomez
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Richard A Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Brittany G Durgin
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Alexandra A C Newman
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Sidney Mahan
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia St Hilaire
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Sheila E Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hermann Gram
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
42
|
Qian G, Jiang W, Zou B, Feng J, Cheng X, Gu J, Chu T, Niu C, He R, Chu Y, Lu M. LPS inactivation by a host lipase allows lung epithelial cell sensitization for allergic asthma. J Exp Med 2018; 215:2397-2412. [PMID: 30021797 PMCID: PMC6122967 DOI: 10.1084/jem.20172225] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/16/2018] [Accepted: 07/06/2018] [Indexed: 01/17/2023] Open
Abstract
This study provides strong evidence that intestinal commensal LPS desensitizes lung epithelial cells and therefore diminishes allergic responses to inhaled allergens. A host lipase, acyloxyacyl hydrolase (AOAH), prevents the desensitization by inactivating commensal LPS. Allergic asthma is a chronic inflammatory disease primarily mediated by Th2 immune mechanisms. Numerous studies have suggested that early life exposure to lipopolysaccharide (LPS) is negatively associated with allergic asthma. One proposed mechanism invokes desensitization of lung epithelial cells by LPS. We report here that acyloxyacyl hydrolase (AOAH), a host lipase that degrades and inactivates LPS, renders mice more susceptible to house dust mite (HDM)–induced allergic asthma. Lung epithelial cells from Aoah−/− mice are refractory to HDM stimulation, decreasing dendritic cell activation and Th2 responses. Antibiotic treatment that diminished commensal LPS-producing bacteria normalized Aoah−/− responses to HDM, while giving LPS intrarectally ameliorated asthma. Aoah−/− mouse feces, plasma, and lungs contained more bioactive LPS than did those of Aoah+/+ mice. By inactivating commensal LPS, AOAH thus prevents desensitization of lung epithelial cells. An enzyme that prevents severe lung inflammation/injury in Gram-negative bacterial pneumonia has the seemingly paradoxical effect of predisposing to a Th2-mediated airway disease.
Collapse
Affiliation(s)
- Guojun Qian
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Jiang
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Benkun Zou
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jintao Feng
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofang Cheng
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianqing Chu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Niu
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rui He
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingfang Lu
- Department of Immunology, MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Cignarella A, Tedesco S, Cappellari R, Fadini GP. The continuum of monocyte phenotypes: Experimental evidence and prognostic utility in assessing cardiovascular risk. J Leukoc Biol 2018; 103:1021-1028. [PMID: 29603382 DOI: 10.1002/jlb.5ru1217-477rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022] Open
Abstract
The monocyte-macrophage cell lineage represents a major player in innate immunity, and is involved in many physiologic and pathologic conditions. Particularly, monocyte-macrophages play a very important role in atherosclerosis and cardiovascular disease. Monocyte heterogeneity is well recognized but the biologic and clinical meaning of the various monocyte subtypes is not entirely understood. Traditionally, monocytes can be divided in classical, intermediate, and nonclassical based on expression of the surface antigens CD14 and CD16. While macrophage diversity is now well recognized to organize as a continuum, monocyte subsets have long been considered as separated entities. However, mounting evidence obtained by tracking the ontology of human monocytes help clarifying that monocytes mature from classical to nonclassical ones, through an intermediate phenotype. This concept is therefore best depicted as a continuum, whereas the subdivision into discrete CD14/CD16 subsets appears an oversimplification. In this review, we discuss the evidence supporting the existence of a monocyte continuum along with the technical challenges of monocyte characterization. In particular, we describe the advantage of considering monocytes along a continuous distribution for the evaluation of cardiovascular risk. We make the point that small transition along the monocyte continuum better reflects cardiovascular risk than a simplified analysis of discrete monocyte subsets. Recognizing the monocyte continuum can be helpful to model other pathophysiologic conditions where these cells are involved.
Collapse
Affiliation(s)
| | | | | | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
44
|
Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med 2018; 215:1135-1152. [PMID: 29500179 PMCID: PMC5881470 DOI: 10.1084/jem.20172020] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/18/2018] [Accepted: 02/16/2018] [Indexed: 12/24/2022] Open
Abstract
This study by Huang et al. demonstrates that lung macrophages of differing ontogeny respond divergently to Mycobacterium tuberculosis infection in vivo. Alveolar macrophages and interstitial macrophages adopt different metabolic states that promote or control M. tuberculosis growth, respectively. To understand how infection by Mycobacterium tuberculosis (Mtb) is modulated by host cell phenotype, we characterized those host phagocytes that controlled or supported bacterial growth during early infection, focusing on the ontologically distinct alveolar macrophage (AM) and interstitial macrophage (IM) lineages. Using fluorescent Mtb reporter strains, we found that bacilli in AM exhibited lower stress and higher bacterial replication than those in IM. Interestingly, depletion of AM reduced bacterial burden, whereas depletion of IM increased bacterial burden. Transcriptomic analysis revealed that IMs were glycolytically active, whereas AMs were committed to fatty acid oxidation. Intoxication of infected mice with the glycolytic inhibitor, 2-deoxyglucose, decreased the number of IMs yet increased the bacterial burden in the lung. Furthermore, in in vitro macrophage infections, 2-deoxyglucose treatment increased bacterial growth, whereas the fatty acid oxidation inhibitor etomoxir constrained bacterial growth. We hypothesize that different macrophage lineages respond divergently to Mtb infection, with IMs exhibiting nutritional restriction and controlling bacterial growth and AMs representing a more nutritionally permissive environment.
Collapse
Affiliation(s)
- Lu Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Yancheng Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
45
|
Faure F, Jouve M, Lebhar-Peguillet I, Sadaka C, Sepulveda F, Lantz O, Berre S, Gaudin R, Sánchez-Ramón S, Amigorena S. Blood monocytes sample MelanA/MART1 antigen for long-lasting cross-presentation to CD8 + T cells after differentiation into dendritic cells. Int J Cancer 2018; 142:133-144. [PMID: 28884480 DOI: 10.1002/ijc.31037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/27/2017] [Indexed: 12/26/2022]
Abstract
Human blood monocytes are very potent to take up antigens. Like macrophages in tissue, they efficiently degrade exogenous protein and are less efficient than dendritic cells (DCs) at cross-presenting antigens to CD8+ T cells. Although it is generally accepted that DCs take up tissue antigens and then migrate to lymph nodes to prime T cells, the mechanisms of presentation of antigens taken up by monocytes are poorly documented so far. In the present work, we show that monocytes loaded in vitro with MelanA long peptides retain the capacity to stimulate antigen-specific CD8+ T cell clones after 5 days of differentiation into monocytes-derived dendritic cells (MoDCs). Tagged-long peptides can be visualized in electron-dense endocytic compartments distinct from lysosomes, suggesting that antigens can be protected from degradation for extended periods of time. To address the pathophysiological relevance of these findings, we screened blood monocytes from 18 metastatic melanoma patients and found that CD14+ monocytes from two patients effectively activate a MelanA-specific CD8 T cell clone after in vitro differentiation into MoDCs. This in vivo sampling of tumor antigen by circulating monocytes might alter the tumor-specific immune response and should be taken into account for cancer immunotherapy.
Collapse
Affiliation(s)
- Florence Faure
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Mabel Jouve
- Institut Curie, PSL Research University, CNRS UMR3215, Paris, 75005, France
| | | | - Charlotte Sadaka
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Fernando Sepulveda
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Olivier Lantz
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Stefano Berre
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Raphael Gaudin
- Institut Curie, PSL Research University, INSERM U932, Paris, 75005, France
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology Hospital Universitario Clínico San Carlos, Madrid, Spain
| | | |
Collapse
|
46
|
Arora S, Dev K, Agarwal B, Das P, Syed MA. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology 2017; 223:383-396. [PMID: 29146235 PMCID: PMC7114886 DOI: 10.1016/j.imbio.2017.11.001] [Citation(s) in RCA: 437] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023]
Abstract
Macrophages, circulating in the blood or concatenated into different organs and tissues constitute the first barrier against any disease. They are foremost controllers of both innate and acquired immunity, healthy tissue homeostasis, vasculogenesis and congenital metabolism. Two hallmarks of macrophages are diversity and plasticity due to which they acquire a wobbling array of phenotypes. These phenotypes are appropriately synchronized responses to a variety of different stimuli from either the tissue microenvironment or - microbes or their products. Based on the phenotype, macrophages are classified into classically activated/(M1) and alternatively activated/(M2) which are further sub-categorized into M2a, M2b, M2c and M2d based upon gene expression profiles. Macrophage phenotype metamorphosis is the regulating factor in initiation, progression, and termination of numerous inflammatory diseases. Several transcriptional factors and other factors controlling gene expression such as miRNAs contribute to the transformation of macrophages at different points in different diseases. Understanding the mechanisms of macrophage polarization and modulation of their phenotypes to adjust to the micro environmental conditions might provide us a great prospective for designing novel therapeutic strategy. In view of the above, this review summarises the activation of macrophages, the factors intricated in activation along with benefaction of macrophage polarization in response to microbial infections, pulmonary toxicity, lung injury and other inflammatory diseases such as chronic obstructive pulmonary dysplasia (COPD), bronchopulmonary dysplasia (BPD), asthma and sepsis, along with the existing efforts to develop therapies targeting this facet of macrophage biology.
Collapse
Affiliation(s)
- Shweta Arora
- Translational Research Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Kapil Dev
- Translational Research Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| | - Beamon Agarwal
- Department of Hematopathology, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467-2401, United States.
| | - Pragnya Das
- Drexel University College of Medicine, Philadelphia, PA 19134, United States.
| | - Mansoor Ali Syed
- Translational Research Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
47
|
Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity 2017; 47:323-338.e6. [PMID: 28813661 DOI: 10.1016/j.immuni.2017.07.014] [Citation(s) in RCA: 482] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 06/04/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Tumor-associated macrophages (TAMs) are essential components of the cancer microenvironment and play critical roles in the regulation of tumor progression. Optimal therapeutic intervention requires in-depth understanding of the sources that sustain macrophages in malignant tissues. In this study, we investigated the ontogeny of TAMs in murine pancreatic ductal adenocarcinoma (PDAC) models. We identified both inflammatory monocytes and tissue-resident macrophages as sources of TAMs. Unexpectedly, significant portions of pancreas-resident macrophages originated from embryonic development and expanded through in situ proliferation during tumor progression. Whereas monocyte-derived TAMs played more potent roles in antigen presentation, embryonically derived TAMs exhibited a pro-fibrotic transcriptional profile, indicative of their role in producing and remodeling molecules in the extracellular matrix. Collectively, these findings uncover the heterogeneity of TAM origin and functions and could provide therapeutic insight for PDAC treatment.
Collapse
|
48
|
Saito T, Hara M, Kumamaru H, Kobayakawa K, Yokota K, Kijima K, Yoshizaki S, Harimaya K, Matsumoto Y, Kawaguchi K, Hayashida M, Inagaki Y, Shiba K, Nakashima Y, Okada S. Macrophage Infiltration Is a Causative Factor for Ligamentum Flavum Hypertrophy through the Activation of Collagen Production in Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2831-2840. [PMID: 28935572 DOI: 10.1016/j.ajpath.2017.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 12/22/2022]
Abstract
Ligamentum flavum (LF) hypertrophy causes lumbar spinal canal stenosis, leading to leg pain and disability in activities of daily living in elderly individuals. Although previous studies have been performed on LF hypertrophy, its pathomechanisms have not been fully elucidated. In this study, we demonstrated that infiltrating macrophages were a causative factor for LF hypertrophy. Induction of macrophages into the mouse LF by applying a microinjury resulted in LF hypertrophy along with collagen accumulation and fibroblasts proliferation at the injured site, which were very similar to the characteristics observed in the severely hypertrophied LF of human. However, we found that macrophage depletion by injecting clodronate-containing liposomes counteracted LF hypertrophy even with microinjury. For identification of fibroblasts in the LF, we used collagen type I α2 linked to green fluorescent protein transgenic mice and selectively isolated green fluorescent protein-positive fibroblasts from the microinjured LF using laser microdissection. A quantitative RT-PCR on laser microdissection samples revealed that the gene expression of collagen markedly increased in the fibroblasts at the injured site with infiltrating macrophages compared with the uninjured location. These results suggested that macrophage infiltration was crucial for LF hypertrophy by stimulating collagen production in fibroblasts, providing better understanding of the pathophysiology of LF hypertrophy.
Collapse
Affiliation(s)
- Takeyuki Saito
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Hara
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiromi Kumamaru
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Yokota
- Department of Orthopaedic Surgery, Spinal Injuries Center, Fukuoka, Japan
| | - Ken Kijima
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Yoshizaki
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Harimaya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kawaguchi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsumasa Hayashida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan; Department of Regenerative Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Keiichiro Shiba
- Department of Orthopaedic Surgery, Spinal Injuries Center, Fukuoka, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
49
|
Ma B, Whiteford JR, Nourshargh S, Woodfin A. Underlying chronic inflammation alters the profile and mechanisms of acute neutrophil recruitment. J Pathol 2017; 240:291-303. [PMID: 27477524 PMCID: PMC5082550 DOI: 10.1002/path.4776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 01/15/2023]
Abstract
Chronically inflamed tissues show altered characteristics that include persistent populations of inflammatory leukocytes and remodelling of the vascular network. As the majority of studies on leukocyte recruitment have been carried out in normal healthy tissues, the impact of underlying chronic inflammation on ongoing leukocyte recruitment is largely unknown. Here, we investigate the profile and mechanisms of acute inflammatory responses in chronically inflamed and angiogenic tissues, and consider the implications for chronic inflammatory disorders. We have developed a novel model of chronic ischaemia of the mouse cremaster muscle that is characterized by a persistent population of monocyte‐derived cells (MDCs), and capillary angiogenesis. These tissues also show elevated acute neutrophil recruitment in response to locally administered inflammatory stimuli. We determined that Gr1lowMDCs, which are widely considered to have anti‐inflammatory and reparative functions, amplified acute inflammatory reactions via the generation of additional proinflammatory signals, changing both the profile and magnitude of the tissue response. Similar vascular and inflammatory responses, including activation of MDCs by transient ischaemia–reperfusion, were observed in mouse hindlimbs subjected to chronic ischaemia. This response demonstrates the relevance of the findings to peripheral arterial disease, in which patients experience transient exercise‐induced ischaemia known as claudication.These findings demonstrate that chronically inflamed tissues show an altered profile and altered mechanisms of acute inflammatory responses, and identify tissue‐resident MDCs as potential therapeutic targets. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bin Ma
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Cardiovascular Division, King's College London, London, UK
| | - James R Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Abigail Woodfin
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK. .,Cardiovascular Division, King's College London, London, UK.
| |
Collapse
|
50
|
Jong E, Strunk T, Burgner D, Lavoie PM, Currie A. The phenotype and function of preterm infant monocytes: implications for susceptibility to infection. J Leukoc Biol 2017. [DOI: 10.1189/jlb.4ru0317-111r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Emma Jong
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | - Tobias Strunk
- School of Paediatrics and Child Health, University of Western Australia, Crawley, Australia
- Neonatal Clinical Care Unit, King Edward Memorial and Princess Margaret Hospitals, Subiaco, Australia
| | - David Burgner
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Paediatrics, Monash University, Clayton, Australia; and
| | - Pascal M. Lavoie
- Department of Paediatrics, University of British Columbia, Vancouver, Canada
| | - Andrew Currie
- School of Paediatrics and Child Health, University of Western Australia, Crawley, Australia
| |
Collapse
|