1
|
Abadie V, Han AS, Jabri B, Sollid LM. New Insights on Genes, Gluten, and Immunopathogenesis of Celiac Disease. Gastroenterology 2024; 167:4-22. [PMID: 38670280 PMCID: PMC11283582 DOI: 10.1053/j.gastro.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois.
| | - Arnold S Han
- Columbia Center for Translational Immunology, Columbia University, New York, New York; Department of Microbiology and Immunology, Columbia University, New York, New York; Department of Medicine, Digestive and Liver Diseases, Columbia University, New York, New York
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois; Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
2
|
Ahmadi N, Zareinejad M, Ameri M, Mahmoudi Maymand E, Nooreddin Faraji S, Ghaderi A, Ramezani A. Enhancing cancer immunotherapy with Anti-NKG2D/IL-15(N72D)/Sushi fusion protein: Targeting cytotoxic immune cells and boosting IL-15 efficacy. Cytokine 2024; 176:156505. [PMID: 38301357 DOI: 10.1016/j.cyto.2024.156505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND There are a number of distinct challenges and complexities associated with administering IL-15 for cancer immunotherapy that must be taken into consideration. OBJECTIVE The purpose of this study was to design a fusion protein for targeting cytotoxic immune cells and enhance IL-15 efficiency. METHODS A fusokine that contains IL-15(N72D), a Sushi domain, and anti-NKG2D scFv was designed. The fusion protein was in-silico modeled using the Swiss model server, followed by docking and molecular dynamics simulations. The in-vitro purified fusokine was evaluated using dot blot and Western blot. Then, flow cytometry was employed to evaluate biological properties such as proliferation, cytotoxicity, and degranulation. RESULTS Fusokine and IL-15(N72D)/Sushi, which had molecular weights of about 52 kDa and 26 kDa, respectively, were expressed in CHO-K1 cells. The fusokine binds 69.6 % of the CHO-NKG2D+ cells that express 83.1 % NKG2D. Both the fusokine and the IL-15(N72D)/Sushi significantly stimulate the proliferation of lymphocytes. After 14 days of growth, the vitality of untreated cells decreased to about 17.5 %, but 82.2 % and 56.6 % of cells were still alive when fusokine and IL-15(N72D)/Sushi were present. Furthermore, administration of fusokine was associated with the highest rates of target tumor cell cytotoxicity. Additionally, although it was not statistically significant, fusokine increased the expression of CD107a and granzyme B by 1.25 times and 2.4 times, respectively. CONCLUSION The fusokine possesses the capability to stimulate the survival and multiplication of lymphocytes, as well as their ability to eliminate tumors. These characteristics have led to its consideration as a potential treatment for immunotherapy.
Collapse
Affiliation(s)
- Nahid Ahmadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadrasul Zareinejad
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Ameri
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Mahmoudi Maymand
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Besser HA, Khosla C. Celiac disease: mechanisms and emerging therapeutics. Trends Pharmacol Sci 2023; 44:949-962. [PMID: 37839914 PMCID: PMC10843302 DOI: 10.1016/j.tips.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Celiac disease (CeD) is a widespread, gluten-induced, autoimmune disorder that lacks any medicinal therapy. Towards the goal of developing non-dietary treatments for CeD, research has focused on elucidating its molecular and cellular etiology. A model of pathogenesis has emerged centered on interactions between three molecular families: specific class II MHC proteins on antigen-presenting cells (APCs), deamidated gluten-derived peptides, and T cell receptors (TCRs) on inflammatory CD4+ T cells. Growing evidence suggests that this pathogenic axis can be pharmacologically targeted to protect patients from some of the adverse effects of dietary gluten. Further studies have revealed the existence of additional host and environmental contributors to disease initiation and tissue damage. This review summarizes our current understanding of CeD pathogenesis and how it is being harnessed for therapeutic design and development.
Collapse
Affiliation(s)
- Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H (Chemistry, Engineering and Medicine for Human Health), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Amnuaycheewa P, Abdelmoteleb M, Wise J, Bohle B, Ferreira F, Tetteh AO, Taylor SL, Goodman RE. Development of a Sequence Searchable Database of Celiac Disease-Associated Peptides and Proteins for Risk Assessment of Novel Food Proteins. FRONTIERS IN ALLERGY 2022; 3:900573. [PMID: 35769554 PMCID: PMC9234867 DOI: 10.3389/falgy.2022.900573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/15/2022] [Indexed: 12/29/2022] Open
Abstract
Celiac disease (CeD) is an autoimmune enteropathy induced by prolamin and glutelin proteins in wheat, barley, rye, and triticale recognized by genetically restricted major histocompatibility (MHC) receptors. Patients with CeD must avoid consuming these proteins. Regulators in Europe and the United States expect an evaluation of CeD risks from proteins in genetically modified (GM) crops or novel foods for wheat-related proteins. Our database includes evidence-based causative peptides and proteins and two amino acid sequence comparison tools for CeD risk assessment. Sequence entries are based on the review of published studies of specific gluten-reactive T cell activation or intestinal epithelial toxicity. The initial database in 2012 was updated in 2018 and 2022. The current database holds 1,041 causative peptides and 76 representative proteins. The FASTA sequence comparison of 76 representative CeD proteins provides an insurance for possible unreported epitopes. Validation was conducted using protein homologs from Pooideae and non-Pooideae monocots, dicots, and non-plant proteins. Criteria for minimum percent identity and maximum E-scores are guidelines. Exact matches to any of the 1,041 peptides suggest risks, while FASTA alignment to the 76 CeD proteins suggests possible risks. Matched proteins should be tested further by CeD-specific CD4/8+ T cell assays or in vivo challenges before their use in foods.
Collapse
Affiliation(s)
- Plaimein Amnuaycheewa
- Department of Agro-Industrial, Food, and Environmental Technology, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | | | - John Wise
- Food Allergy Research and Resource Program (FARRP), Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Barbara Bohle
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Steve L. Taylor
- Food Allergy Research and Resource Program (FARRP), Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
| | - Richard E. Goodman
- Food Allergy Research and Resource Program (FARRP), Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States
- *Correspondence: Richard E. Goodman
| |
Collapse
|
5
|
Artru F, McPhail MJW, Triantafyllou E, Trovato FM. Lipids in Liver Failure Syndromes: A Focus on Eicosanoids, Specialized Pro-Resolving Lipid Mediators and Lysophospholipids. Front Immunol 2022; 13:867261. [PMID: 35432367 PMCID: PMC9008479 DOI: 10.3389/fimmu.2022.867261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022] Open
Abstract
Lipids are organic compounds insoluble in water with a variety of metabolic and non-metabolic functions. They not only represent an efficient energy substrate but can also act as key inflammatory and anti-inflammatory molecules as part of a network of soluble mediators at the interface of metabolism and the immune system. The role of endogenous bioactive lipid mediators has been demonstrated in several inflammatory diseases (rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, cancer). The liver is unique in providing balanced immunotolerance to the exposure of bacterial components from the gut transiting through the portal vein and the lymphatic system. This balance is abruptly deranged in liver failure syndromes such as acute liver failure and acute-on-chronic liver failure. In these syndromes, researchers have recently focused on bioactive lipid mediators by global metabonomic profiling and uncovered the pivotal role of these mediators in the immune dysfunction observed in liver failure syndromes explaining the high occurrence of sepsis and subsequent organ failure. Among endogenous bioactive lipids, the mechanistic actions of three classes (eicosanoids, pro-resolving lipid mediators and lysophospholipids) in the pathophysiological modulation of liver failure syndromes will be the topic of this narrative review. Furthermore, the therapeutic potential of lipid-immune pathways will be described.
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Mark J W McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | |
Collapse
|
6
|
Casas J, Balsinde J, Balboa MA. Phosphorylation of cPLA 2α at Ser 505 Is Necessary for Its Translocation to PtdInsP 2-Enriched Membranes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072347. [PMID: 35408744 PMCID: PMC9000823 DOI: 10.3390/molecules27072347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
Group IVA cytosolic phospholipase A2α (cPLA2α) is a key enzyme in physiology and pathophysiology because it constitutes a rate-limiting step in the pathway for the generation of pro- and anti-inflammatory eicosanoid lipid mediators. cPLA2α activity is tightly regulated by multiple factors, including the intracellular Ca2+ concentration, phosphorylation reactions, and cellular phosphatidylinositol (4,5) bisphosphate levels (PtdInsP2). In the present work, we demonstrate that phosphorylation of the enzyme at Ser505 is an important step for the translocation of the enzyme to PtdInsP2–enriched membranes in human cells. Constructs of eGFP-cPLA2 mutated in Ser505 to Ala (S505A) exhibit a delayed translocation in response to elevated intracellular Ca2+, and also in response to increases in intracellular PtdInsP2 levels. Conversely, translocation of a phosphorylation mimic mutant (S505E) is fully observed in response to cellular increases in PtdInsP2 levels. Collectively, these results suggest that phosphorylation of cPLA2α at Ser505 is necessary for the enzyme to translocate to internal membranes and mobilize arachidonic acid for eicosanoid synthesis.
Collapse
Affiliation(s)
- Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain;
- Correspondence: (J.C.); (J.B.); Tel.: +34-983-423-062 (J.B.)
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (J.C.); (J.B.); Tel.: +34-983-423-062 (J.B.)
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|
7
|
Abstract
Celiac disease is a chronic, immune-mediated enteropathy driven by dietary gluten found in genetically susceptible hosts. It has a worldwide distribution, is one of the most common autoimmune disorders globally, and is the only autoimmune condition for which the trigger is known. Despite advances in characterizing mechanisms of disease, gaps in understanding of celiac disease pathogenesis remain. A "frontier" concept is considering what moves an HLA-DQ2 or DQ8-positive individual from asymptomatic gluten tolerance to celiac disease manifestation. In this arena, environmental triggers, including age at the time of initial gluten exposure, the occurrence of usual childhood viral infections, and microbiome alterations have emerged as key events in triggering the symptomatic disease. Pathologists play a major role in frontier aspects of celiac disease. This includes the discovery that duodenal mucosal histology in follow-up biopsies does not correlate with ongoing patient symptoms, antitissue transglutaminase antibody titers and diet adherence in celiac disease patients. Further, in light of recent evidence that the detection of monoclonal T-cell populations in formalin-fixed biopsies is not specific for type II refractory celiac disease, pathologists should resist performing such analyses until common causes of "apparent" refractoriness are excluded. The promise of therapies in celiac disease has led to clinical trials targeting many steps in the inflammatory cascade, which depend upon a pathologist's confirmation of the initial diagnosis and evaluation of responses to therapies. As pathologists continue to be active participants in celiac disease research, partnering with other stakeholders, we will continue to impact this important autoimmune disease.
Collapse
Affiliation(s)
- Natalie Patel
- El Camino Pathology Medical Group, Mountain View, CA
| | - Marie E Robert
- Department of Pathology and Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
8
|
Hervier B, Ribon M, Tarantino N, Mussard J, Breckler M, Vieillard V, Amoura Z, Steinle A, Klein R, Kötter I, Decker P. Increased Concentrations of Circulating Soluble MHC Class I-Related Chain A (sMICA) and sMICB and Modulation of Plasma Membrane MICA Expression: Potential Mechanisms and Correlation With Natural Killer Cell Activity in Systemic Lupus Erythematosus. Front Immunol 2021; 12:633658. [PMID: 34012432 PMCID: PMC8126610 DOI: 10.3389/fimmu.2021.633658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/01/2021] [Indexed: 02/02/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease of unknown etiology. The major histocompatibility complex (MHC) class I-related chain A (MICA) and B (MICB) are stress-inducible cell surface molecules. MICA and MICB label malfunctioning cells for their recognition by cytotoxic lymphocytes such as natural killer (NK) cells. Alterations in this recognition have been found in SLE. MICA/MICB can be shed from the cell surface, subsequently acting either as a soluble decoy receptor (sMICA/sMICB) or in CD4+ T-cell expansion. Conversely, NK cells are frequently defective in SLE and lower NK cell numbers have been reported in patients with active SLE. However, these cells are also thought to exert regulatory functions and to prevent autoimmunity. We therefore investigated whether, and how, plasma membrane and soluble MICA/B are modulated in SLE and whether they influence NK cell activity, in order to better understand how MICA/B may participate in disease development. We report significantly elevated concentrations of circulating sMICA/B in SLE patients compared with healthy individuals or a control patient group. In SLE patients, sMICA concentrations were significantly higher in patients positive for anti-SSB and anti-RNP autoantibodies. In order to study the mechanism and the potential source of sMICA, we analyzed circulating sMICA concentration in Behcet patients before and after interferon (IFN)-α therapy: no modulation was observed, suggesting that IFN-α is not intrinsically crucial for sMICA release in vivo. We also show that monocytes and neutrophils stimulated in vitro with cytokines or extracellular chromatin up-regulate plasma membrane MICA expression, without releasing sMICA. Importantly, in peripheral blood mononuclear cells from healthy individuals stimulated in vitro by cell-free chromatin, NK cells up-regulate CD69 and CD107 in a monocyte-dependent manner and at least partly via MICA-NKG2D interaction, whereas NK cells were exhausted in SLE patients. In conclusion, sMICA concentrations are elevated in SLE patients, whereas plasma membrane MICA is up-regulated in response to some lupus stimuli and triggers NK cell activation. Those results suggest the requirement for a tight control in vivo and highlight the complex role of the MICA/sMICA system in SLE.
Collapse
Affiliation(s)
- Baptiste Hervier
- INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Paris, France.,Service de Médecine Interne-Maladies Systémiques, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Matthieu Ribon
- Li2P, University Sorbonne Paris Nord, Bobigny, France.,INSERM UMR 1125, Bobigny, France
| | - Nadine Tarantino
- INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Paris, France
| | - Julie Mussard
- Li2P, University Sorbonne Paris Nord, Bobigny, France.,INSERM UMR 1125, Bobigny, France
| | - Magali Breckler
- Li2P, University Sorbonne Paris Nord, Bobigny, France.,INSERM UMR 1125, Bobigny, France
| | - Vincent Vieillard
- INSERM U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Paris, France
| | - Zahir Amoura
- Hôpital de la Pitié-Salpêtrière, Service de Médecine Interne 2, Centre National de Référence Maladies Systémiques Rares, Lupus et Syndrome des Anticorps Antiphospholipides, Centre National de Référence Histiocytoses, Sorbonne Université, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Ina Kötter
- Division of Rheumatology and Systemic Inflammatory Diseases, University Hospital Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Patrice Decker
- Li2P, University Sorbonne Paris Nord, Bobigny, France.,INSERM UMR 1125, Bobigny, France
| |
Collapse
|
9
|
Kalvandi G, Shahramian I, Farmany A, Yadegari S, Parooie F. Serological study of celiac disease in children with dental caries. Hum Antibodies 2021; 29:237-241. [PMID: 34092626 DOI: 10.3233/hab-210445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Celiac disease is a common gastrointestinal autoimmune disorder. Studies have shown that the prevalence of tooth decay is high in patients with celiac disease. This study was performed to evaluate the serology of celiac disease in children with dental caries. METHODS Children aged 3 to 12 years who referred to the dental clinic with enamel caries were included in the study. Celiac disease was assessed by measuring serum IgA levels and anti-TTG (Anti TTG (IgA)) antibodies. Then, by analyzing the collected data, the prevalence of celiac disease in children with dental caries and its relationship with various variables were investigated. RESULTS 120 children, 56 girls (46.7%) and 64 boys (53.3%) with dental caries were involved in this study. The positive celiac serology rate of studied population was 14 (11.6%). Based on the results of this study, a significant relationship was obtained between maternal education, sex and place of residence and celiac disease (p< 0.05). There were no significant relationships between celiac positive serology in children with dental caries, the number of decayed teeth, and breastfeeding (p> 0.05). CONCLUSION The present study showed that dental caries, might be a red flag indicating possible celiac disease and prevent its complications. On the other hand, pediatricians and dentists should be aware of the oral symptoms of celiac disease. Further studies are needed to plan screening for children with celiac disease.
Collapse
Affiliation(s)
| | - Iraj Shahramian
- Pediatric Gastroenterology and Hepatology Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Abbas Farmany
- Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Fateme Parooie
- Pediatric Gastroenterology and Hepatology Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
10
|
Vandereyken M, James OJ, Swamy M. Mechanisms of activation of innate-like intraepithelial T lymphocytes. Mucosal Immunol 2020; 13:721-731. [PMID: 32415229 PMCID: PMC7434593 DOI: 10.1038/s41385-020-0294-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Intraepithelial T lymphocytes (T-IEL) contain subsets of innate-like T cells that evoke innate and adaptive immune responses to provide rapid protection at epithelial barrier sites. In the intestine, T-IEL express variable T cell antigen receptors (TCR), with unknown antigen specificities. Intriguingly, they also express multiple inhibitory receptors, many of which are normally found on exhausted or antigen-experienced T cells. This pattern suggests that T-IEL are antigen-experienced, yet it is not clear where, and in what context, T-IEL encounter TCR ligands. We review recent evidence indicating TCR antigens for intestinal innate-like T-IEL are found on thymic or intestinal epithelium, driving agonist selection of T-IEL. We explore the contributions of the TCR and various co-stimulatory and co-inhibitory receptors in activating T-IEL effector functions. The balance between inhibitory and activating signals may be key to keeping these highly cytotoxic, rapidly activated cells in check, and key to harnessing their immune surveillance potential.
Collapse
Affiliation(s)
- Maud Vandereyken
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
11
|
Novais FO, Nguyen BT, Scott P. Granzyme B Inhibition by Tofacitinib Blocks the Pathology Induced by CD8 T Cells in Cutaneous Leishmaniasis. J Invest Dermatol 2020; 141:575-585. [PMID: 32738245 DOI: 10.1016/j.jid.2020.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
In cutaneous leishmaniasis, the immune response is not only protective but also mediates immunopathology. We previously found that cytolytic CD8 T cells promote inflammatory responses that are difficult to treat with conventional therapies that target the parasite. Therefore, we hypothesized that inhibiting CD8 T-cell cytotoxicity would reduce disease severity in patients. IL-15 is a potential target for such a treatment because it is highly expressed in human patients with cutaneous leishmaniasis lesions and promotes granzyme B‒dependent CD8 T-cell cytotoxicity. Here we tested whether tofacitinib, which inhibits IL-15 signaling by blocking Jak3, might decrease CD8-dependent pathology. We found that tofacitinib reduced the expression of granzyme B by CD8 T cells in vitro and in vivo systemic and topical treatment, with tofacitinib protecting mice from developing severe cutaneous leishmaniasis lesions. Importantly, tofacitinib treatment did not alter T helper type 1 responses or parasite control. Collectively, our results suggest that host-directed therapies do not need to be limited to autoimmune disorders and that topical tofacitinib application should be considered a strategy for the treatment of cutaneous leishmaniasis disease in combination with antiparasitic drugs.
Collapse
Affiliation(s)
- Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Current address: Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| | - Ba T Nguyen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
12
|
Caio G, Volta U, Sapone A, Leffler DA, De Giorgio R, Catassi C, Fasano A. Celiac disease: a comprehensive current review. BMC Med 2019; 17:142. [PMID: 31331324 PMCID: PMC6647104 DOI: 10.1186/s12916-019-1380-z] [Citation(s) in RCA: 517] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Celiac disease remains a challenging condition because of a steady increase in knowledge tackling its pathophysiology, diagnosis, management, and possible therapeutic options. MAIN BODY A major milestone in the history of celiac disease was the identification of tissue transglutaminase as the autoantigen, thereby confirming the autoimmune nature of this disorder. A genetic background (HLA-DQ2/DQ8 positivity and non-HLA genes) is a mandatory determinant of the development of the disease, which occurs with the contribution of environmental factors (e.g., viral infections and dysbiosis of gut microbiota). Its prevalence in the general population is of approximately 1%, with female predominance. The disease can occur at any age, with a variety of symptoms/manifestations. This multifaceted clinical presentation leads to several phenotypes, i.e., gastrointestinal, extraintestinal, subclinical, potential, seronegative, non-responsive, and refractory. Although small intestinal biopsy remains the diagnostic 'gold standard', highly sensitive and specific serological tests, such as tissue transglutaminase, endomysial and deamidated gliadin peptide antibodies, have become gradually more important in the diagnostic work-up of celiac disease. Currently, the only treatment for celiac disease is a life-long, strict gluten-free diet leading to improvement in quality of life, ameliorating symptoms, and preventing the occurrence of refractory celiac disease, ulcerative jejunoileitis, and small intestinal adenocarcinoma and lymphoma. CONCLUSIONS The present review is timely and provides a thorough appraisal of various aspects characterizing celiac disease. Remaining challenges include obtaining a better understanding of still-unclear phenotypes such as slow-responsive, potential (minimal lesions) and seronegative celiac disease. The identification of alternative or complementary treatments to the gluten-free diet brings hope for patients unavoidably burdened by diet restrictions.
Collapse
Affiliation(s)
- Giacomo Caio
- Department of Medical Sciences, University of Ferrara, Via Aldo Moro 8, Cona, 44124 Ferrara, Italy
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Umberto Volta
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Anna Sapone
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, MA 02114 USA
- Takeda Pharmaceuticals International Co, Cambridge, MA 02139 USA
| | - Daniel A. Leffler
- Takeda Pharmaceuticals International Co, Cambridge, MA 02139 USA
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02115 USA
| | - Roberto De Giorgio
- Department of Medical Sciences, University of Ferrara, Via Aldo Moro 8, Cona, 44124 Ferrara, Italy
| | - Carlo Catassi
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, MA 02114 USA
- Department of Pediatrics, Center for Celiac Research, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Alessio Fasano
- Center for Celiac Research and Treatment, Massachusetts General Hospital, Boston, MA 02114 USA
| |
Collapse
|
13
|
Valitutti F, Fasano A. Breaking Down Barriers: How Understanding Celiac Disease Pathogenesis Informed the Development of Novel Treatments. Dig Dis Sci 2019; 64:1748-1758. [PMID: 31076989 PMCID: PMC6586517 DOI: 10.1007/s10620-019-05646-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For decades, the pathogenesis of a variety of human diseases has been attributed to increased intestinal paracellular permeability even though scientific evidence supporting this hypothesis has been tenuous. Nevertheless, during the past decade, there have been a growing number of publications focused on human genetics, the gut microbiome, and proteomics, suggesting that loss of mucosal barrier function, particularly in the gastrointestinal tract, may substantially affect antigen trafficking, ultimately causing chronic inflammation, including autoimmunity, in genetically predisposed individuals. The gut mucosa works as a semipermeable barrier in that it permits nutrient absorption and also regulates immune surveillance while retaining potentially harmful microbes and environmental antigens within the intestinal lumen. Celiac disease (CD), a systemic, immune-mediated disorder triggered by gluten in genetically susceptible individuals, is associated with altered gut permeability. Pre-clinical and clinical studies have shown that gliadin, a prolamine component of gluten that is implicated in CD pathogenesis, is capable to disassembling intercellular junctional proteins by upregulating the zonulin pathway, which can be inhibited by the zonulin antagonist larazotide acetate. In this review, we will focus on CD as a paradigm of chronic inflammatory diseases in order to outline the contribution of gut paracellular permeability toward disease pathogenesis; moreover, we will summarize current evidence derived from available clinical trials of larazotide acetate in CD.
Collapse
Affiliation(s)
- Francesco Valitutti
- Pediatric Gastroenterology and Liver Unit, Department of "Maternal-and-Child Health" and Urology, Sapienza University of Rome, Rome, Italy
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Center for Celiac Research and Treatment and Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, 175 Cambridge Street, CPZS - 574, Boston, MA, 02114, USA.
- European Biomedical Research Institute of Salerno, Salerno, Italy.
| |
Collapse
|
14
|
Trotter A, Anstadt E, Clark RB, Nichols F, Dwivedi A, Aung K, Cervantes JL. The role of phospholipase A2 in multiple Sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2018; 27:206-213. [PMID: 30412818 DOI: 10.1016/j.msard.2018.10.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 01/25/2023]
Abstract
Phospholipases A2 (PLA2) are a diverse group of enzymes that cleave the fatty acids of membrane phospholipids. They play critical roles in pathogenesis of neurodegenerative diseases such as multiple sclerosis by enhancing oxidative stress and initiating inflammation. The levels of PLA2 activity in MS patients compared to controls and role of inhibiting PLA2 activity on severity scores in different experimental models are not comprehensively assessed in the light of varying evidence from published studies. The objective of this systematic review is to determine the association between PLA2 activity and multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). We performed a systematic review of six studies that assessed PLA2 activity in MS patients compared to controls and nine studies that assessed PLA2 activity in EAE. sPLA2 nor Lp-PLA2 activity were not increased in MS compared to controls in five of those six studies. A difference in sPLA2 activity was only found in a study that measured the enzyme activity in urine. However, inhibiting cPLA2 or sPLA2 led to lower clinical severity or no signs of EAE in mice, and a lower incidence of EAE lesions compared to animals without cPLA2 inhibition. These findings indicate that PLA2 appears to play a role in the pathogenesis of EAE.
Collapse
Affiliation(s)
- Austin Trotter
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Emily Anstadt
- Department of Immunology, and Department of Medicine, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, and Department of Medicine, Farmington, CT, USA; University of Connecticut School of Medicine, Farmington, CT, USA
| | - Frank Nichols
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Alok Dwivedi
- Department of Biomedical Sciences, Division of Biostatistics and Epidemiology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Koko Aung
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jorge L Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; Department of Medical Education, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
15
|
Lutter L, Hoytema van Konijnenburg DP, Brand EC, Oldenburg B, van Wijk F. The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nat Rev Gastroenterol Hepatol 2018; 15:637-649. [PMID: 29973676 DOI: 10.1038/s41575-018-0039-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The epithelial barrier of the gastrointestinal tract is home to numerous intraepithelial T cells (IETs). IETs are functionally adapted to the mucosal environment and are among the first adaptive immune cells to encounter microbial and dietary antigens. They possess hallmark features of tissue-resident T cells: they are long-lived nonmigratory cells capable of rapidly responding to antigen challenges independent of T cell recruitment from the periphery. Gut-resident T cells have been implicated in the relapsing and remitting course and persisting low-grade inflammation of chronic gastrointestinal diseases, including IBD and coeliac disease. So far, most data IETs have been derived from experimental animal models; however, IETs and the environmental makeup differ between mice and humans. With advances in techniques, the number of human studies has grown exponentially in the past 5 years. Here, we review the literature on the involvement of human IETs in gut homeostasis and inflammation, and how these cells are influenced by the microbiota and dietary antigens. Finally, targeting of IETs in therapeutic interventions is discussed. Broad insight into the function and role of human IETs in gut homeostasis and inflammation is essential to identify future diagnostic, prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lisanne Lutter
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - David P Hoytema van Konijnenburg
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Eelco C Brand
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
16
|
Son CY, Haines BB, Luch A, Ryu CJ. Identification of the transgenic integration site in 2C T cell receptor transgenic mice. Transgenic Res 2018; 27:441-450. [PMID: 30132177 DOI: 10.1007/s11248-018-0090-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/14/2018] [Indexed: 01/31/2023]
Abstract
2C T cell receptor (TCR) transgenic mice have been long used to study the molecular basis of TCR binding to peptide/major compatibility complexes and the cytotoxicity mechanism of cytotoxic T lymphocytes (CTLs). To study the role of variable gene promoters in allelic exclusion, we previously constructed mutant mice in which the Vβ13 promoter was deleted (P13 mice). Introduction of 2C transgene into P13 mice accelerated the onset of systemic CD8 T cell lymphoma between 14 and 27 weeks of age, although parental P13 mice appeared to be normal. This observation suggests that the lymphoma development may be linked to features of 2C transgene. To identify the integration site of 2C transgene, Southern blotting identified a 2C-specific DNA fragment by 3' region probe of 2C TCR α transgene, and digestion-circularization-polymerase chain reaction (DC-PCR) amplified the 2C-specific DNA fragment with inverse primers specific to the southern probe. Sequence analysis revealed that DC-PCR product contained the probe sequences and the junction sequences of integration site, indicating that 2C TCR α transgene is integrated into chromosome 1. Further genomic analysis revealed cytosolic phospholipase A2 group IVA (cPLA2) as the nearest gene to the integration site. cPLA2 expression was upregulated in the normal thymi and T cell lymphomas from 2C transgenic mice, although it was not altered in the lymph nodes of 2C transgenic mice. The result is the first report demonstrating the integration site of 2C TCR transgene, and will facilitate the proper use of 2C transgenic mice in studies of CTLs.
Collapse
Affiliation(s)
- Chae-Yeon Son
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Brian B Haines
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Merck Research Laboratory, 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Andreas Luch
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea.
| |
Collapse
|
17
|
Montalban-Arques A, Chaparro M, Gisbert JP, Bernardo D. The Innate Immune System in the Gastrointestinal Tract: Role of Intraepithelial Lymphocytes and Lamina Propria Innate Lymphoid Cells in Intestinal Inflammation. Inflamm Bowel Dis 2018; 24:1649-1659. [PMID: 29788271 DOI: 10.1093/ibd/izy177] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The gastrointestinal tract harbors the largest microbiota load in the human body, hence maintaining a delicate balance between immunity against invading pathogens and tolerance toward commensal. Such immune equilibrium, or intestinal homeostasis, is conducted by a tight regulation and cooperation of the different branches of the immune system, including the innate and the adaptive immune system. However, several factors affect this delicate equilibrium, ultimately leading to gastrointestinal disorders including inflammatory bowel disease. Therefore, here we decided to review the currently available information about innate immunity lymphocyte subsets playing a role in intestinal inflammation. RESULTS Intestinal innate lymphocytes are composed of intraepithelial lymphocytes (IELs) and lamina propria innate lymphoid cells (ILCs). While IELs can be divided into natural or induced, ILCs can be classified into type 1, 2, or 3, resembling, respectively, the properties of TH1, TH2, or TH17 adaptive lymphocytes. Noteworthy, the phenotype and function of both IELs and ILCs are disrupted under inflammatory conditions, where they help to exacerbate intestinal immune responses. CONCLUSIONS The modulation of both IELs and ILCs to control intestinal inflammatory responses represents a major challenge, as they provide tight regulation among the epithelium, the microbiota, and the adaptive immune system. An improved understanding of the innate immunity mechanisms involved in gastrointestinal inflammation would therefore aid in the diagnosis and further treatment of gastrointestinal inflammatory disorders.
Collapse
Affiliation(s)
- A Montalban-Arques
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - M Chaparro
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier P Gisbert
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - D Bernardo
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
18
|
|
19
|
Stojanovic A, Correia MP, Cerwenka A. The NKG2D/NKG2DL Axis in the Crosstalk Between Lymphoid and Myeloid Cells in Health and Disease. Front Immunol 2018; 9:827. [PMID: 29740438 PMCID: PMC5924773 DOI: 10.3389/fimmu.2018.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a type II transmembrane protein expressed by both innate and adaptive immune cells, including natural killer (NK) cells, CD8+ T cells, invariant NKT cells, γδ T cells, and some CD4+ T cells under certain pathological conditions. NKG2D is an activating NK receptor that induces cytotoxicity and production of cytokines by effector cells and supports their proliferation and survival upon engagement with its ligands. In both innate and T cell populations, NKG2D can costimulate responses induced by other receptors, such as TCR in T cells or NKp46 in NK cells. NKG2D ligands (NKG2DLs) are remarkably diverse. Initially, NKG2DL expression was typically attributed to stressed, infected, or transformed cells, thus signaling “dysregulated-self.” However, many reports indicated their expression under homeostatic conditions, usually in the context of cell activation and/or proliferation. Myeloid cells, including macrophages and dendritic cells (DCs), are among the first cells sensing and responding to pathogens and tissue damage. By secreting a plethora of soluble mediators, by presenting antigens to T cells and by expressing costimulatory molecules, myeloid cells play vital roles in inducing and supporting responses of other immune cells in lymphoid organs and tissues. When activated, both macrophages and DCs upregulate NKG2DLs, thereby enabling them with additional mechanisms for regulating lymphocyte responses. In this review, we will focus on the expression of NKG2D by innate and adaptive lymphocytes, the regulation of NKG2DL expression on myeloid cells, and the contribution of the NKG2D/NKG2DL axis to the crosstalk of myeloid cells with NKG2D-expressing lymphocytes. In addition, we will highlight pathophysiological conditions associated with NKG2D/NKG2DL dysregulation and discuss the putative involvement of the NKG2D/NKG2DL axis in the lymphocyte/myeloid cell crosstalk in these diseases.
Collapse
Affiliation(s)
- Ana Stojanovic
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Margareta P Correia
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adelheid Cerwenka
- Innate Immunity (D080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
20
|
Genetics, environment, and asthma associated with celiac disease in the extended family of an affected child. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2018. [DOI: 10.1016/j.rgmxen.2018.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Prajapati K, Perez C, Rojas LBP, Burke B, Guevara-Patino JA. Functions of NKG2D in CD8 + T cells: an opportunity for immunotherapy. Cell Mol Immunol 2018; 15:470-479. [PMID: 29400704 DOI: 10.1038/cmi.2017.161] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
Natural killer group 2 member D (NKG2D) is a type II transmembrane receptor. NKG2D is present on NK cells in both mice and humans, whereas it is constitutively expressed on CD8+ T cells in humans but only expressed upon T-cell activation in mice. NKG2D is a promiscuous receptor that recognizes stress-induced surface ligands. In NK cells, NKG2D signaling is sufficient to unleash the killing response; in CD8+ T cells, this requires concurrent activation of the T-cell receptor (TCR). In this case, the function of NKG2D is to authenticate the recognition of a stressed target and enhance TCR signaling. CD28 has been established as an archetype provider of costimulation during T-cell priming. It has become apparent, however, that signals from other costimulatory receptors, such as NKG2D, are required for optimal T-cell function outside the priming phase. This review will focus on the similarities and differences between NKG2D and CD28; less well-described characteristics of NKG2D, such as the potential role of NKG2D in CD8+ T-cell memory formation, cancer immunity and autoimmunity; and the opportunities for targeting NKG2D in immunotherapy.
Collapse
Affiliation(s)
- Kushal Prajapati
- Loyola University Chicago, Oncology Institute, 60153, Maywood, IL, USA
| | - Cynthia Perez
- Loyola University Chicago, Oncology Institute, 60153, Maywood, IL, USA
| | | | - Brianna Burke
- Loyola University Chicago, Oncology Institute, 60153, Maywood, IL, USA
| | | |
Collapse
|
22
|
Patel B, Wi CI, Hasassri ME, Divekar R, Absah I, Almallouhi E, Ryu E, King K, Juhn YJ. Heterogeneity of asthma and the risk of celiac disease in children. Allergy Asthma Proc 2018; 39:51-58. [PMID: 29279060 DOI: 10.2500/aap.2018.39.4100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Although human leukocyte antigen (HLA)-DR and HLA-DQ genes and gluten play crucial roles in developing celiac disease (CD), most patients with these risk factors still do not develop CD, which indicates additional unrecognized risk factors. OBJECTIVE To determine the association between asthma and the risk of CD in children. METHODS We conducted a population-based retrospective case-control study in children who resided in Olmsted County, Minnesota. We identified children with CD (cases) between January 1, 1997, and December 31, 2014, and compared these with children without CD (controls) (1:2 matching). Asthma status was ascertained by using the predetermined asthma criteria (PAC) and the asthma predictive index (API). Data analysis included conditional logistic regression models and an unsupervised network analysis by using an independent phenome-wide association scan (PheWAS) data set. RESULTS Although asthma status as determined by using PAC was not associated with the risk of CD (odds ratio [OR] 1.4 [95% confidence interval {CI}, 0.8-2.5]; p = 0.2), asthma status by using the API was significantly associated (OR 2.8 [95% CI, 1.3-6.0]; p = 0.008). A subgroup analysis indicated that children with both asthma as determined by using PAC and a family history of asthma had an increased risk of CD compared with those without asthma (OR 2.28 [95% CI, 1.11-4.67]; p = 0.024). PheWAS data showed a cluster of asthma single nucleotide polymorphisms and patients with CD. CONCLUSION A subgroup of children with asthma who also had a family history of asthma seemed to be at an increased risk of CD, and, thus, the third factor that underlies the risk of CD might be related to genetic factors for asthma. Heterogeneity of asthma plays a role in determining the risk of asthma-related comorbidity.
Collapse
|
23
|
Genetics, environment, and asthma associated with celiac disease in the extended family of an affected child. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2017; 83:79-85. [PMID: 29162372 DOI: 10.1016/j.rgmx.2017.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Celiac disease (CD) is an autoimmune enteropathy associated with gluten ingestion. In extended families of celiac patients that live in close proximity of one another, shared genetic and environmental factors can predispose them to CD. AIM The aim of this study was to provide evidence about the genetic and environmental factors involved in the development of CD in the extended family of a pediatric patient. METHODS The medical history, environmental conditions, and participant weight, height, and peripheral blood samples were evaluated. The HLA-DQ2/DQ8 haplotypes were genotyped through qPCR testing and the IgA anti-gliadin and anti-transglutaminase antibodies were quantified using the ELISA test. RESULTS Twelve close-living maternal relatives of the index case participated in the study. Eight of them presented with the HLA-DQ2 haplotype, inherited from the grandfather, and 7/12 and 9/12 were positive for IgA anti-gliadin and IgA anti-transglutaminase antibodies, respectively. The main intestinal symptoms stated by the participants were abdominal bloating, excess flatulence, constipation, and gastroesophageal reflux. The most frequent extra-intestinal symptoms were fatigue, stress, and anxiety. In addition, 6/13 participants had bronchial asthma. CONCLUSION The extended family living in close proximity of one another shared a genetic predisposition, environmental conditions, and asthma, which could have predisposed them to celiac disease.
Collapse
|
24
|
Hoytema van Konijnenburg DP, Reis BS, Pedicord VA, Farache J, Victora GD, Mucida D. Intestinal Epithelial and Intraepithelial T Cell Crosstalk Mediates a Dynamic Response to Infection. Cell 2017; 171:783-794.e13. [PMID: 28942917 DOI: 10.1016/j.cell.2017.08.046] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/02/2017] [Accepted: 08/25/2017] [Indexed: 02/07/2023]
Abstract
Intestinal intraepithelial lymphocytes (IELs) are located at the critical interface between the intestinal lumen, which is chronically exposed to food and microbes, and the core of the body. Using high-resolution microscopy techniques and intersectional genetic tools, we investigated the nature of IEL responses to luminal microbes. We observed that TCRγδ IELs exhibit unique microbiota-dependent location and movement patterns in the epithelial compartment. This behavioral pattern quickly changes upon exposure to different enteric pathogens, resulting in increased interepithelial cell (EC) scanning, expression of antimicrobial genes, and glycolysis. Both dynamic and metabolic changes to γδ IEL depend on pathogen sensing by ECs. Direct modulation of glycolysis is sufficient to change γδ IEL behavior and susceptibility to early pathogen invasion. Our results uncover a coordinated EC-IEL response to enteric infections that modulates lymphocyte energy utilization and dynamics and supports maintenance of the intestinal epithelial barrier. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- David P Hoytema van Konijnenburg
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Virginia A Pedicord
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Julia Farache
- Departments of Orofacial Sciences and Pediatrics, Institute of Human Genetics and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
25
|
Jabri B, Sollid LM. T Cells in Celiac Disease. THE JOURNAL OF IMMUNOLOGY 2017; 198:3005-3014. [PMID: 28373482 DOI: 10.4049/jimmunol.1601693] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/30/2017] [Indexed: 12/30/2022]
Abstract
Celiac disease is a human T cell-mediated autoimmune-like disorder caused by exposure to dietary gluten in genetically predisposed individuals. This review will discuss how CD4 T cell responses directed against an exogenous Ag can cause an autoreactive B cell response and participate in the licensing of intraepithelial lymphocytes to kill intestinal epithelial cells. Furthermore, this review will examine the mechanisms by which intraepithelial cytotoxic T cells mediate tissue destruction in celiac disease.
Collapse
Affiliation(s)
- Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637; .,Department of Pathology, University of Chicago, Chicago, IL 60637.,Department of Pediatrics, University of Chicago, Chicago, IL 60637; and
| | - Ludvig M Sollid
- Department of Immunology, Centre for Immune Regulation, K.G. Jebsen Coeliac Disease Research Centre, University of Oslo and Oslo University Hospital-Rikshospitalet, N-0372 Oslo, Norway
| |
Collapse
|
26
|
Faria AMC, Reis BS, Mucida D. Tissue adaptation: Implications for gut immunity and tolerance. J Exp Med 2017; 214:1211-1226. [PMID: 28432200 PMCID: PMC5413340 DOI: 10.1084/jem.20162014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
Faria et al. discuss the concept that immune cells undergo specialized adaptation to tissue-specific conditions and its potential implications for tolerance and immunity. Tissue adaptation is an intrinsic component of immune cell development, influencing both resistance to pathogens and tolerance. Chronically stimulated surfaces of the body, in particular the gut mucosa, are the major sites where immune cells traffic and reside. Their adaptation to these environments requires constant discrimination between natural stimulation coming from harmless microbiota and food, and pathogens that need to be cleared. This review will focus on the adaptation of lymphocytes to the gut mucosa, a highly specialized environment that can help us understand the plasticity of leukocytes arriving at various tissue sites and how tissue-related factors operate to shape immune cell fate and function.
Collapse
Affiliation(s)
- Ana M C Faria
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065 .,Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
27
|
Escudero-Hernández C, Peña AS, Bernardo D. Immunogenetic Pathogenesis of Celiac Disease and Non-celiac Gluten Sensitivity. Curr Gastroenterol Rep 2017; 18:36. [PMID: 27216895 DOI: 10.1007/s11894-016-0512-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Celiac disease is the most common oral intolerance in Western countries. It results from an immune response towards gluten proteins from certain cereals in genetically predisposed individuals (HLA-DQ2 and/or HLA-DQ8). Its pathogenesis involves the adaptive (HLA molecules, transglutaminase 2, dendritic cells, and CD4(+) T-cells) and the innate immunity with an IL-15-mediated response elicited in the intraepithelial compartment. At present, the only treatment is a permanent strict gluten-free diet (GFD). Multidisciplinary studies have provided a deeper insight of the genetic and immunological factors and their interaction with the microbiota in the pathogenesis of the disease. Similarly, a better understanding of the composition of the toxic gluten peptides has improved the ways to detect them in food and drinks and how to monitor GFD compliance via non-invasive approaches. This review, therefore, addresses the major findings obtained in the last few years including the re-discovery of non-celiac gluten sensitivity.
Collapse
Affiliation(s)
- Celia Escudero-Hernández
- Mucosal Immunology Laboratory, IBGM, Facultad de Medicina, Dpto. Pediatría e Inmunología, University of Valladolid-Consejo Superior de Investigaciones Científicas, (4th floor) Av. Ramón y Cajal 7, 47005, Valladolid, Spain
| | - Amado Salvador Peña
- VU Medical Center Amsterdam, Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108 Room 10E65, 1081 HZ, Amsterdam, The Netherlands
| | - David Bernardo
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, 28006, Spain.
| |
Collapse
|
28
|
Michel JJ, Griffin P, Vallejo AN. Functionally Diverse NK-Like T Cells Are Effectors and Predictors of Successful Aging. Front Immunol 2016; 7:530. [PMID: 27933066 PMCID: PMC5121286 DOI: 10.3389/fimmu.2016.00530] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
The fundamental challenge of aging and long-term survivorship is maintenance of functional independence and compression of morbidity despite a life history of disease. Inasmuch as immunity is a determinant of individual health and fitness, unraveling novel mechanisms of immune homeostasis in late life is of paramount interest. Comparative studies of young and old persons have documented age-related atrophy of the thymus, the contraction of diversity of the T cell receptor (TCR) repertoire, and the intrinsic inefficiency of classical TCR signaling in aged T cells. However, the elderly have highly heterogeneous health phenotypes. Studies of defined populations of persons aged 75 and older have led to the recognition of successful aging, a distinct physiologic construct characterized by high physical and cognitive functioning without measurable disability. Significantly, successful agers have a unique T cell repertoire; namely, the dominance of highly oligoclonal αβT cells expressing a diverse array of receptors normally expressed by NK cells. Despite their properties of cell senescence, these unusual NK-like T cells are functionally active effectors that do not require engagement of their clonotypic TCR. Thus, NK-like T cells represent a beneficial remodeling of the immune repertoire with advancing age, consistent with the concept of immune plasticity. Significantly, certain subsets are predictors of physical/cognitive performance among older adults. Further understanding of the roles of these NK-like T cells to host defense, and how they integrate with other physiologic domains of function are new frontiers for investigation in Aging Biology. Such pursuits will require a research paradigm shift from the usual young-versus-old comparison to the analysis of defined elderly populations. These endeavors may also pave way to age-appropriate, group-targeted immune interventions for the growing elderly population.
Collapse
Affiliation(s)
- Joshua J Michel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patricia Griffin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abbe N Vallejo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Claude Pepper Older Americans Independence Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Saco TV, Glaum MC, Ledford DK, Lockey RF. Onset of psoriatic arthritis associated with multiple wasp stings. Ann Allergy Asthma Immunol 2016; 118:227-228. [PMID: 27881293 DOI: 10.1016/j.anai.2016.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/23/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Tara Vinyette Saco
- University of South Florida Morsani College of Medicine, James A. Haley Veterans Hospital, Tampa, Florida.
| | - Mark C Glaum
- University of South Florida Morsani College of Medicine, James A. Haley Veterans Hospital, Tampa, Florida
| | - Dennis K Ledford
- University of South Florida Morsani College of Medicine, James A. Haley Veterans Hospital, Tampa, Florida
| | - Richard F Lockey
- University of South Florida Morsani College of Medicine, James A. Haley Veterans Hospital, Tampa, Florida
| |
Collapse
|
30
|
Yun B, Lee H, Jayaraja S, Suram S, Murphy RC, Leslie CC. Prostaglandins from Cytosolic Phospholipase A2α/Cyclooxygenase-1 Pathway and Mitogen-activated Protein Kinases Regulate Gene Expression in Candida albicans-infected Macrophages. J Biol Chem 2016; 291:7070-86. [PMID: 26841868 PMCID: PMC4807289 DOI: 10.1074/jbc.m116.714873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
In Candida albicans-infected resident peritoneal macrophages, activation of group IVA cytosolic phospholipase A2(cPLA2α) by calcium- and mitogen-activated protein kinases triggers the rapid production of prostaglandins I2 and E2 through cyclooxygenase (COX)-1 and regulates gene expression by increasing cAMP. InC. albicans-infected cPLA2α(-/-)or COX-1(-/-)macrophages, expression ofI l10,Nr4a2, and Ptgs2 was lower, and expression ofTnfα was higher, than in wild type macrophages. Expression was reconstituted with 8-bromo-cAMP, the PKA activator 6-benzoyl-cAMP, and agonists for prostaglandin receptors IP, EP2, and EP4 in infected but not uninfected cPLA2α(-/-)or COX-1(-/-)macrophages. InC. albicans-infected cPLA2α(+/+)macrophages, COX-2 expression was blocked by IP, EP2, and EP4 receptor antagonists, indicating a role for both prostaglandin I2 and E2 Activation of ERKs and p38, but not JNKs, by C. albicansacted synergistically with prostaglandins to induce expression of Il10,Nr4a2, and Ptgs2. Tnfα expression required activation of ERKs and p38 but was suppressed by cAMP. Results using cAMP analogues that activate PKA or Epacs suggested that cAMP regulates gene expression through PKA. However, phosphorylation of cAMP-response element-binding protein (CREB), the cAMP-regulated transcription factor involved inIl10,Nr4a2,Ptgs2, andTnfα expression, was not mediated by cAMP/PKA because it was similar inC. albicans-infected wild type and cPLA2α(-/-)or COX-1(-/-)macrophages. CREB phosphorylation was blocked by p38 inhibitors and induced by the p38 activator anisomycin but not by the PKA activator 6-benzoyl-cAMP. Therefore, MAPK activation inC. albicans-infected macrophages plays a dual role by promoting the cPLA2α/prostaglandin/cAMP/PKA pathway and CREB phosphorylation that coordinately regulate immediate early gene expression.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Animals
- Candida albicans/physiology
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/metabolism
- Cyclic AMP/pharmacology
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/immunology
- Cyclooxygenase 1/deficiency
- Cyclooxygenase 1/genetics
- Cyclooxygenase 1/immunology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/immunology
- Dinoprostone/biosynthesis
- Epoprostenol/biosynthesis
- Gene Expression Regulation
- Group IV Phospholipases A2/deficiency
- Group IV Phospholipases A2/genetics
- Group IV Phospholipases A2/immunology
- Host-Pathogen Interactions
- Interleukin-10/genetics
- Interleukin-10/immunology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/microbiology
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/immunology
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/immunology
- Primary Cell Culture
- Protein Kinase Inhibitors/pharmacology
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/immunology
- Signal Transduction
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/immunology
Collapse
Affiliation(s)
- Bogeon Yun
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206 and
| | - HeeJung Lee
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206 and
| | - Sabarirajan Jayaraja
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206 and
| | - Saritha Suram
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206 and
| | | | - Christina C Leslie
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206 and the Departments of Pharmacology and Pathology, University of Colorado Denver, Aurora, Colorado 80045
| |
Collapse
|
31
|
Abstract
NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California.
| |
Collapse
|
32
|
Jabri B, Abadie V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat Rev Immunol 2015; 15:771-83. [PMID: 26567920 PMCID: PMC5079184 DOI: 10.1038/nri3919] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this Opinion article, we discuss the function of tissues as a crucial checkpoint for the regulation of effector T cell responses, and the notion that interleukin-15 (IL-15) functions as a danger molecule that communicates to the immune system that the tissue is under attack and poises it to mediate tissue destruction. More specifically, we propose that expression of IL-15 in tissues promotes T helper 1 cell-mediated immunity and provides co-stimulatory signals to effector cytotoxic T cells to exert their effector functions and drive tissue destruction. Therefore, we think that IL-15 contributes to tissue protection by promoting the elimination of infected cells but that when its expression is chronically dysregulated, it can promote the development of complex T cell-mediated disorders associated with tissue destruction, such as coeliac disease and type 1 diabetes.
Collapse
Affiliation(s)
- Bana Jabri
- Departments of Medicine, Pathology and Pediatrics, University of Chicago, Knapp Center for Biomedical Discovery (KCBD), Chicago, Illinois 60637, USA
| | - Valérie Abadie
- Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, and the Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
33
|
Abstract
Celiac disease is a multisystem immune based disorder that is triggered by the ingestion of gluten in genetically susceptible individuals. The prevalence of celiac disease has risen in recent decades and is currently about 1% in most Western populations. The reason for this rise is unknown, although environmental factors related to the hygiene hypothesis are suspected. The pathophysiology of celiac disease involves both the innate and adaptive immune response to dietary gluten. Clinical features are diverse and include gastrointestinal symptoms, metabolic bone disease, infertility, and many other manifestations. Although a gluten-free diet is effective in most patients, this diet can be burdensome and can limit quality of life; consequently, non-dietary therapies are at various stages of development. This review also covers non-celiac gluten sensitivity. The pathophysiology of this clinical phenotype is poorly understood, but it is a cause of increasing interest in gluten-free diets in the general population.
Collapse
Affiliation(s)
- Benjamin Lebwohl
- Celiac Disease Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA Department of Medical Epidemiology and Biostatistics, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden Department of Pediatrics, Örebro University Hospital, Sweden
| | - Peter H R Green
- Celiac Disease Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
34
|
Verdu EF, Galipeau HJ, Jabri B. Novel players in coeliac disease pathogenesis: role of the gut microbiota. Nat Rev Gastroenterol Hepatol 2015; 12:497-506. [PMID: 26055247 PMCID: PMC5102016 DOI: 10.1038/nrgastro.2015.90] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several studies point towards alteration in gut microbiota composition and function in coeliac disease, some of which can precede the onset of disease and/or persist when patients are on a gluten-free diet. Evidence also exists that the gut microbiota might promote or reduce coeliac-disease-associated immunopathology. However, additional studies are required in humans and in mice (using gnotobiotic technology) to determine cause-effect relationships and to identify agents for modulating the gut microbiota as a therapeutic or preventative approach for coeliac disease. In this Review, we summarize the current evidence for altered gut microbiota composition in coeliac disease and discuss how the interplay between host genetics, environmental factors and the intestinal microbiota might contribute to its pathogenesis. Moreover, we highlight the importance of utilizing animal models and long-term clinical studies to gain insight into the mechanisms through which host-microbial interactions can influence host responses to gluten.
Collapse
|
35
|
Setty M, Discepolo V, Abadie V, Kamhawi S, Mayassi T, Kent A, Ciszewski C, Maglio M, Kistner E, Bhagat G, Semrad C, Kupfer SS, Green PH, Guandalini S, Troncone R, Murray JA, Turner JR, Jabri B. Distinct and Synergistic Contributions of Epithelial Stress and Adaptive Immunity to Functions of Intraepithelial Killer Cells and Active Celiac Disease. Gastroenterology 2015; 149:681-91.e10. [PMID: 26001928 PMCID: PMC4550536 DOI: 10.1053/j.gastro.2015.05.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The mechanisms of tissue destruction during progression of celiac disease are poorly defined. It is not clear how tissue stress and adaptive immunity contribute to the activation of intraepithelial cytotoxic T cells and the development of villous atrophy. We analyzed epithelial cells and intraepithelial cytotoxic T cells in family members of patients with celiac disease, who were without any signs of adaptive antigluten immunity, and in potential celiac disease patients, who have antibodies against tissue transglutaminase 2 in the absence of villous atrophy. METHODS We collected blood and intestinal biopsy specimens from 268 patients at tertiary medical centers in the United States and Italy from 2004 to 2012. All subjects had normal small intestinal histology. Study groups included healthy individuals with no family history of celiac disease or antibodies against tissue transglutaminase 2 (controls), healthy family members of patients with celiac disease, and potential celiac disease patients. Intraepithelial cytotoxic T cells were isolated and levels of inhibitory and activating natural killer (NK) cells were measured by flow cytometry. Levels of heat shock protein (HSP) and interleukin 15 were measured by immunohistochemistry, and ultrastructural alterations in intestinal epithelial cells (IECs) were assessed by electron microscopy. RESULTS IECs from subjects with a family history of celiac disease, but not from subjects who already had immunity to gluten, expressed higher levels of HS27, HSP70, and interleukin-15 than controls; their IECs also had ultrastructural alterations. Intraepithelial cytotoxic T cells from relatives of patients with celiac disease expressed higher levels of activating NK receptors than cells from controls, although at lower levels than patients with active celiac disease, and without loss of inhibitory receptors for NK cells. Intraepithelial cytotoxic T cells from potential celiac disease patients failed to up-regulate activating NK receptors. CONCLUSIONS A significant subset of healthy family members of patients with celiac disease with normal intestinal architecture had epithelial alterations, detectable by immunohistochemistry and electron microscopy. The adaptive immune response to gluten appears to act in synergy with epithelial stress to allow intraepithelial cytotoxic T cells to kill epithelial cells and induce villous atrophy in patients with active celiac disease.
Collapse
Affiliation(s)
- Mala Setty
- Section of Gastroenterology, Department of Pediatrics and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Valentina Discepolo
- Section of Gastroenterology, Department of Pediatrics and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA,European Laboratory for the Investigation of Food-Induced Disorders (ELFID), Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II. Naples, Italy,Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA,CEINGE-Biotecnologie Avanzate, via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Sarah Kamhawi
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Toufic Mayassi
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Andrew Kent
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Cezary Ciszewski
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Maria Maglio
- European Laboratory for the Investigation of Food-Induced Disorders (ELFID), Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II. Naples, Italy
| | - Emily Kistner
- Department of Health Studies, University of Chicago, Chicago (IL), USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Carol Semrad
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Sonia S Kupfer
- Section of Gastroenterology, Department of Medicine and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Peter H Green
- Department of Medicine, Celiac Disease Center, Columbia University Medical Center, New York, New York, USA
| | - Stefano Guandalini
- Section of Gastroenterology, Department of Pediatrics and University of Chicago Celiac Disease Center, University of Chicago, Chicago (IL), USA
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food-Induced Disorders (ELFID), Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II. Naples, Italy
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jerrold R Turner
- Department of Medicine, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois.
| | - Bana Jabri
- Department of Pediatrics, University of Chicago, Chicago, Illinois; Department of Medicine, University of Chicago, Chicago, Illinois.
| |
Collapse
|
36
|
Tang F, Sally B, Lesko K, Discepolo V, Abadie V, Ciszewski C, Semrad C, Guandalini S, Kupfer SS, Jabri B. Cysteinyl leukotrienes mediate lymphokine killer activity induced by NKG2D and IL-15 in cytotoxic T cells during celiac disease. ACTA ACUST UNITED AC 2015; 212:1487-95. [PMID: 26304964 PMCID: PMC4577841 DOI: 10.1084/jem.20150303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/06/2015] [Indexed: 11/21/2022]
Abstract
Tang et al. show that cytotoxic effector cells produce and respond to cysteinyl leukotrienes to allow target cell killing dependent on NKG2D and IL-15. They further demonstrate a role for cysteinyl leukotrienes in celiac disease pathogenesis. Eicosanoids are inflammatory mediators that play a key but incompletely understood role in linking the innate and adaptive immune systems. Here, we show that cytotoxic effector T cells (CTLs) are capable of both producing and responding to cysteinyl leukotrienes (CystLTs), allowing for the killing of target cells in a T cell receptor–independent manner. This process is dependent on the natural killer receptor NKG2D and exposure to IL-15, a cytokine induced in distressed tissues. IL-15 and NKG2D signaling drives the up-regulation of key enzymes implicated in the synthesis of CystLTs, as well as the expression of CystLT receptors, suggesting a positive feedback loop. Finally, although the CystLT pathway has been previously linked to various allergic disorders, we provide unexpected evidence for its involvement in the pathogenesis of celiac disease (CD), a T helper 1 cell–mediated enteropathy induced by gluten. These findings provide new insights into the cytolytic signaling pathway of NKG2D and the pathogenesis of organ-specific immune disorders. Furthermore, they suggest that the blockade of CystLT receptors may represent a potent therapeutic target for CD or potentially other autoimmune disorders in which NKG2D has been implicated.
Collapse
Affiliation(s)
- Fangming Tang
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Benjamin Sally
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Kathryn Lesko
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Valentina Discepolo
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 European Laboratory for the Investigation of Food-Induced Disorders (ELFID), Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Italy
| | - Valerie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Cezary Ciszewski
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Carol Semrad
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Stefano Guandalini
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Sonia S Kupfer
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| | - Bana Jabri
- Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637 Department of Medicine, University of Chicago Celiac Disease Center, and Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
37
|
Nata T, Basheer A, Cocchi F, van Besien R, Massoud R, Jacobson S, Azimi N, Tagaya Y. Targeting the binding interface on a shared receptor subunit of a cytokine family enables the inhibition of multiple member cytokines with selectable target spectrum. J Biol Chem 2015; 290:22338-51. [PMID: 26183780 DOI: 10.1074/jbc.m115.661074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 02/04/2023] Open
Abstract
The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases.
Collapse
Affiliation(s)
- Toshie Nata
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | | - Fiorenza Cocchi
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard van Besien
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Raya Massoud
- the Section of Neuroimmunology, NINDS, National Institutes of Health, Bethesda, Maryland 20890
| | - Steven Jacobson
- the Section of Neuroimmunology, NINDS, National Institutes of Health, Bethesda, Maryland 20890
| | | | - Yutaka Tagaya
- From the Cell Biology Laboratory, Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201,
| |
Collapse
|
38
|
Kim SM, Mayassi T, Jabri B. Innate immunity: actuating the gears of celiac disease pathogenesis. Best Pract Res Clin Gastroenterol 2015; 29:425-35. [PMID: 26060107 PMCID: PMC4465077 DOI: 10.1016/j.bpg.2015.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 01/31/2023]
Abstract
Celiac disease is a T cell mediated immune disorder characterized by the loss of oral tolerance to dietary gluten and the licensing of intraepithelial lymphocytes to kill intestinal epithelial cells, leading to villous atrophy. Innate immunity plays a critical role in both of these processes and cytokines such as interleukin-15 and interferon-α can modulate innate processes such as polarization of dendritic cells as well as intraepithelial lymphocyte function. These cytokines can be modulated by host microbiota, which can also influence dendritic cell function and intraepithelial lymphocyte homeostasis. We will elaborate on the role of interleukin-15, interferon-α, and the microbiota in modulating the processes that lead to loss of tolerance to gluten and tissue destruction in celiac disease.
Collapse
Affiliation(s)
- Sangman Michael Kim
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Toufic Mayassi
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
The Interaction among Microbiota, Immunity, and Genetic and Dietary Factors Is the Condicio Sine Qua Non Celiac Disease Can Develop. J Immunol Res 2015; 2015:123653. [PMID: 26090475 PMCID: PMC4451297 DOI: 10.1155/2015/123653] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/14/2014] [Indexed: 12/24/2022] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy, triggered by dietary wheat gluten and similar proteins of barley and rye in genetically susceptible individuals. This is a complex disorder involving both environmental and immune-genetic factors. The major genetic risk factor for CD is determined by HLA-DQ genes. Dysfunction of the innate and adaptive immune systems can conceivably cause impairment of mucosal barrier function and development of localized or systemic inflammatory and autoimmune processes. Exposure to gluten is the main environmental trigger responsible for the signs and symptoms of the disease, but exposure to gluten does not fully explain the manifestation of CD. Thus, both genetic determination and environmental exposure to gluten are necessary for the full manifestation of CD; neither of them is sufficient alone. Epidemiological and clinical data suggest that other environmental factors, including infections, alterations in the intestinal microbiota composition, and early feeding practices, might also play a role in disease development. Thus, this interaction is the condicio sine qua non celiac disease can develop. The breakdown of the interaction among microbiota, innate immunity, and genetic and dietary factors leads to disruption of homeostasis and inflammation; and tissue damage occurs. Focusing attention on this interaction and its breakdown may allow a better understanding of the CD pathogenesis and lead to novel translational avenues for preventing and treating this widespread disease.
Collapse
|
40
|
Zhang Q, Liu XY, Zhang T, Zhang XF, Zhao L, Long F, Liu ZK, Wang EH. The dual-functional capability of cytokine-induced killer cells and application in tumor immunology. Hum Immunol 2015; 76:385-91. [DOI: 10.1016/j.humimm.2014.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 01/18/2023]
|
41
|
Abstract
Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regard to the main immunological processes involved in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | |
Collapse
|
42
|
Abadie V, Jabri B. Immunopathology of Celiac Disease. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Reis BS, Hoytema van Konijnenburg DP, Grivennikov SI, Mucida D. Transcription factor T-bet regulates intraepithelial lymphocyte functional maturation. Immunity 2014; 41:244-56. [PMID: 25148025 PMCID: PMC4287410 DOI: 10.1016/j.immuni.2014.06.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/26/2014] [Indexed: 02/07/2023]
Abstract
The intestinal epithelium harbors large populations of activated and memory lymphocytes, yet these cells do not cause tissue damage in the steady state. We investigated how intestinal T cell effector differentiation is regulated upon migration to the intestinal epithelium. Using gene loss- and gain-of-function strategies, as well as reporter approaches, we showed that cooperation between the transcription factors T-bet and Runx3 resulted in suppression of conventional CD4(+) T helper functions and induction of an intraepithelial lymphocyte (IEL) program that included expression of IEL markers such as CD8αα homodimers. Interferon-γ sensing and T-bet expression by CD4(+) T cells were both required for this program, which was distinct from conventional T helper differentiation but shared by other IEL populations, including TCRαβ(+)CD8αα(+) IELs. We conclude that the gut environment provides cues for IEL maturation through the interplay between T-bet and Runx3, allowing tissue-specific adaptation of mature T lymphocytes.
Collapse
MESH Headings
- Animals
- CD8 Antigens/biosynthesis
- Cell Differentiation/immunology
- Cells, Cultured
- Colitis/genetics
- Colitis/immunology
- Core Binding Factor Alpha 3 Subunit/immunology
- DNA-Binding Proteins/immunology
- Interferon-gamma/immunology
- Interleukins/immunology
- Intestinal Mucosa/cytology
- Intestinal Mucosa/immunology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Cytokine/genetics
- Receptors, Interferon/genetics
- Receptors, Interleukin
- Signal Transduction/immunology
- T-Box Domain Proteins/biosynthesis
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- Transcription Factors/immunology
- Tretinoin
- Up-Regulation
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Sergei I Grivennikov
- Fox Chase Cancer Center, Cancer Prevention & Control Program, Philadelphia, PA 19111, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
44
|
Chatterjee S, Dey PK, Roy P, Sinha MK. Celiac disease with pure red cell aplasia: an unusual hematologic association in pediatric age group. Indian J Hematol Blood Transfus 2014; 30:383-5. [PMID: 25332626 DOI: 10.1007/s12288-014-0425-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 06/10/2014] [Indexed: 11/28/2022] Open
Abstract
Anemia in Celiac disease (CD) is usually hypoproliferative, reflecting impaired absorption of essential nutrients like iron and various vitamins. We report a 2-year-old boy with Celiac disease and severe anemia due to pure red cell aplasia, diagnosed by bone marrow biopsy. This rare, unexplained extra digestive manifestation responded to gluten free diet.
Collapse
Affiliation(s)
- Sitangshu Chatterjee
- Department of Pediatrics, Medical College Hospital, Govt. Housing Estate, Block-B, Flat-6, 82 Belgachia Road, Kolkata, 700037 West Bengal India
| | - Pranab Kumar Dey
- Department of Pediatrics, Medical College Hospital, Govt. Housing Estate, Block-B, Flat-6, 82 Belgachia Road, Kolkata, 700037 West Bengal India
| | - Pratyay Roy
- Department of Pediatrics, Medical College Hospital, Govt. Housing Estate, Block-B, Flat-6, 82 Belgachia Road, Kolkata, 700037 West Bengal India
| | - Malay Kumar Sinha
- Department of Pediatrics, Medical College Hospital, Govt. Housing Estate, Block-B, Flat-6, 82 Belgachia Road, Kolkata, 700037 West Bengal India
| |
Collapse
|
45
|
Abstract
Interleukin-15 (IL-15) exerts many biological functions essential for the maintenance and function of multiple cell types. Although its expression is tightly regulated, IL-15 upregulation has been reported in many organ-specific autoimmune disorders. In celiac disease, an intestinal inflammatory disorder driven by gluten exposure, the upregulation of IL-15 expression in the intestinal mucosa has become a hallmark of the disease. Interestingly, because it is overexpressed both in the gut epithelium and in the lamina propria, IL-15 acts on distinct cell types and impacts distinct immune components and pathways to disrupt intestinal immune homeostasis. In this article, we review our current knowledge of the multifaceted roles of IL-15 with regard to the main immunological processes involved in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Valérie Abadie
- Sainte-Justine Hospital Research Center, Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | | |
Collapse
|
46
|
Wang X, Yu W, Li H, Yu J, Zhang X, Ren X, Cao S. Can the dual-functional capability of CIK cells be used to improve antitumor effects? Cell Immunol 2014; 287:18-22. [DOI: 10.1016/j.cellimm.2013.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
|
47
|
Abstract
Intestinal epithelial cells were once thought to be inert, non-responsive cells that simply acted as a physical barrier that prevents the contents of the intestinal lumen from accessing the underlying tissue. However, it is now clear that these cells express a full repertoire of Toll- and Nod-like receptors, and that their activation by components of the microbiota is vital for the development of a functional epithelium, maintenance of barrier integrity, and defense against pathogenic organisms. Additionally, mounting evidence suggests that epithelial sensing of bacteria plays a significant role in the management of the numbers and types of microbes present in the gut microbiota via the production of antimicrobial peptides and other microbe-modulatory products. This is a critical process, as it is now becoming apparent that alterations in the composition of the microbiota can predispose an individual to a wide variety of chronic diseases. In this review, we will discuss the bacterial pattern recognition receptors that are known to be expressed by the intestinal epithelium, and how each of them individually contributes to these vital protective functions. Moreover, we will review what is known about the communication between epithelial cells and various classes of underlying leukocytes, and discuss how they interact with the microbiota to form a three-part relationship that maintains homeostasis in the gut.
Collapse
|
48
|
Interleukin 15 primes natural killer cells to kill via NKG2D and cPLA2 and this pathway is active in psoriatic arthritis. PLoS One 2013; 8:e76292. [PMID: 24086722 PMCID: PMC3783406 DOI: 10.1371/journal.pone.0076292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/17/2013] [Indexed: 01/09/2023] Open
Abstract
NK cells are large granular lymphocytes that form a critical component of the innate immune system, whose functions include the killing of cells expressing stress-induced molecules. It is increasingly accepted that despite being considered prototypical effector cells, NK cells require signals to reach their full cytotoxic potential. We previously showed that IL-15 is capable of arming CD8 effector T cells to kill independently of their TCR via NKG2D in a cPLA2-dependent process. As NK cells also express NKG2D, we wanted to investigate whether this pathway functioned in an analogous manner and if resting NK cells could be primed to the effector phase by IL-15. Furthermore, to establish relevance to human disease we studied a possible role for this pathway in the pathogenesis of psoriatic arthritis, since there are aspects of this disease that suggest a potential effector role for the innate immune system. We found that PsA patients had upregulated IL-15 and MIC in their affected synovial tissues, and that this unique inflammatory environment enabled NK cell activation and killing via NKG2D and cPLA2. Moreover, we were able to reproduce the phenotype of joint NK cells from blood NK cells by incubating them with IL-15. Altogether, these findings suggest a destructive role for NK cells when activated by environmental stress signals during the pathogenesis of PsA and demonstrate that IL-15 is capable of priming resting NK cells in tissues to the effector phase.
Collapse
|
49
|
Abstract
Celiac disease (CD) is an autoimmune condition affecting the small intestine, triggered by the ingestion of gluten, the protein fraction of wheat, barley, and rye. There is a strong linkage between CD and HLA-DQ2 and HLA-DQ8 haplotypes. Multiple case reports and small series suggest concordance between CD and other autoimmune disorders. This paper provides a brief overview of the pathogenesis of CD and reviews the literature regarding associations between CD and other autoimmune diseases, including the potential effects of gluten-free diet therapy on the prevention or amelioration of associated diseases.
Collapse
Affiliation(s)
- Jolanda M Denham
- Nationwide Children's Hospital, The Ohio State University School of Medicine, 700 Children's Drive, Columbus, OH 43205, USA.
| | | |
Collapse
|
50
|
Vörös P, Sziksz E, Himer L, Onody A, Pap D, Frivolt K, Szebeni B, Lippai R, Győrffy H, Fekete A, Brandt F, Molnár K, Veres G, Arató A, Tulassay T, Vannay A. Expression of PARK7 is increased in celiac disease. Virchows Arch 2013; 463:401-8. [PMID: 23832581 DOI: 10.1007/s00428-013-1443-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/14/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
Recently, it has been suggested that the gene called Parkinson's disease 7 (PARK7) might be an upstream activator of hypoxia-inducible factor (HIF)-1α, which plays a major role in sustaining intestinal barrier integrity. Furthermore, PARK7 has been proposed to participate in the Toll-like receptor (TLR)-dependent regulation of the innate immune system. Our aim was to investigate the involvement of PARK7 in the pathogenesis of coeliac disease (CD). Duodenal biopsy specimens were collected from 19 children with untreated CD, five children with treated CD (maintained on gluten-free diet), and ten children with histologically normal duodenal biopsies. PARK7 mRNA expression and protein level were determined by real-time polymerase chain reaction (PCR) and Western blot, respectively. Localization of PARK7 was visualized by immunofluorescence staining. Protein level of PARK7 increased in the duodenal mucosa of children with untreated CD compared to children with treated CD or to control biopsies (p <0.03). We detected intensive PARK7 staining in the epithelial cells and lamina propria of the duodenal mucosa of children with untreated CD compared with that in control biopsies. Our finding that mucosal expression of PARK7 is increased suggests that PARK7 is involved in the pathogenesis of gastrointestinal diseases, notably CD. Our results suggest that PARK7 may alter processes mediated by HIF-1α and TLR4, which supports a role for PARK7 in the maintenance of epithelial barrier integrity, immune homeostasis, or apoptosis.
Collapse
Affiliation(s)
- Péter Vörös
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|