1
|
Huber A, Baas FS, van der Ven AJAM, Dos Santos JC. Innate Immune Cell Functions Contribute to Spontaneous HIV Control. Curr HIV/AIDS Rep 2024; 22:6. [PMID: 39614998 PMCID: PMC11608392 DOI: 10.1007/s11904-024-00713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW To review the role of innate immune cells in shaping the viral reservoir and maintenance of long-term viral control of spontaneous Elite and Viremic HIV controllers. RECENT FINDINGS HIV controllers exhibit a smaller and transcriptionally suppressed viral reservoir. Different studies report that early responses from innate cells play a pivotal role in this reservoir configuration. NK cells, particularly those with cytotoxic activity and polyfunctional monocytes, have been linked to viral control, and DCs may contribute through early viral sensing and activation of adaptive responses. In some cases, cytotoxic NK cells appeared before HIV-specific CD8 + T cells, underscoring their importance in early viral suppression. Innate immune cells, including NK cells, monocytes, DCs, and γδ T-cells, are crucial in shaping the viral reservoir in HIV controllers. Early, robust innate responses may help to maintain long-term viral suppression and offer insights into potential therapeutic approaches.
Collapse
Affiliation(s)
- Alisa Huber
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Floor S Baas
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Andre J A M van der Ven
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands
| | - Jéssica C Dos Santos
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Kokiçi J, Preechanukul A, Arellano-Ballestero H, Gorou F, Peppa D. Emerging Insights into Memory Natural Killer Cells and Clinical Applications. Viruses 2024; 16:1746. [PMID: 39599860 PMCID: PMC11599065 DOI: 10.3390/v16111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that can rapidly mount a response to their targets by employing diverse mechanisms. Due to their functional attributes, NK cells have been implicated in anti-viral and anti-tumour immune responses. Although traditionally known to mount non-specific, rapid immune responses, in recent years, the notion of memory NK cells with adaptive features has gained more recognition. Memory NK cells emerge in response to different stimuli, such as viral antigens and specific cytokine combinations. They form distinct populations, accompanied by transcriptional, epigenetic and metabolic reprogramming, resulting in unique phenotypic and functional attributes. Several clinical trials are testing the efficacy of memory NK cells due to their enhanced functionality, bioenergetic profile and persistence in vivo. The therapeutic potential of NK cells is being harnessed in viral infections, with wider applications in the cancer field. In this review, we summarise the current state of research on the generation of memory NK cells, along with their clinical applications in viral infection and cancer.
Collapse
Affiliation(s)
- Jonida Kokiçi
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Anucha Preechanukul
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | | | - Frances Gorou
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London NW3 2PP, UK
| |
Collapse
|
3
|
Dokhanchi M, Javaherdehi AP, Raad M, Khalilollah S, Mahdavi P, Razizadeh MH, Zafarani A. Natural Killer Cells in Cancers of Respiratory System and Their Applications in Therapeutic Approaches. Immun Inflamm Dis 2024; 12:e70079. [PMID: 39588940 PMCID: PMC11590036 DOI: 10.1002/iid3.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Cancer is still regarded as a major worldwide health issue due to its high health and socioeconomic burden. Currently, lung cancer is the most common cause of cancer-related fatalities globally. Additionally, mesotheliomas and other cancers of the respiratory system, including those of the trachea, larynx, and bronchi, are also posing a significant health threat. Natural killer (NK) cells are lymphocytes of the innate immune system involved in response against cancer. OBJECTIVE This review discussed recent findings in the context of NK cell activity in the immune surveillance of respiratory system cancers and NK cell-based treatments to combat those malignancies. RESULTS The presence of natural killer cells in the tumor microenvironment is shown to be associated with a higher survival rate in patients with various malignancies. However, cancerous cells benefit from several mechanisms to evade natural killer cell-mediated cytotoxicity, including reduced major histocompatibility complex I expression, shedding of ligands, upregulation of inhibitory receptors, and release of soluble factors. Using NK cells to design therapeutic approaches may enhance antitumor immunity and improve clinical outcomes. Clinical trials investigating the use of natural killer cells in combination with cytokine stimulation or immune checkpoint inhibitors have exhibited promising results in various respiratory system malignancies. CONCLUSION Respiratory system cancers present significant health challenges worldwide, and while NK cells play a crucial role in tumor surveillance, tumors often evade NK cell responses through various mechanisms. Advances in NK cell-based therapies, including CAR-NK cells, immune checkpoint inhibitors, and cytokine stimulation, have shown promising outcomes in tackling these tactics. However, challenges such as the immunosuppressive tumor microenvironment persist. Ongoing research is crucial to improve NK cell therapies by targeting autophagy, modulating miRNAs, and developing combinatorial approaches to enhance treatment efficacy for respiratory cancers.
Collapse
Affiliation(s)
- Maryam Dokhanchi
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | | | - Mohammad Raad
- Department of Molecular, Cellular and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
| | - Shayan Khalilollah
- School of Medicine, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Pooya Mahdavi
- College of Public HealthUniversity of South FloridaTampaFloridaUSA
| | - Mohammad Hossein Razizadeh
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious DiseasesIran University of Medical SciencesTehranIran
| | - Alireza Zafarani
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Hematology & Blood Banking, School of Allied MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Lenart M, Rutkowska-Zapała M, Siedlar M. NK-cell receptor modulation in viral infections. Clin Exp Immunol 2024; 217:151-158. [PMID: 38767592 PMCID: PMC11239562 DOI: 10.1093/cei/uxae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in controlling viral infections. The ability to kill infected cells without prior immunization, yet being tolerant to self, healthy cells, depends on the balance of germ-line encoded surface receptors. NK-cell receptors are divided into either activating, leading to activation of NK cell and its cytotoxic and pro-inflammatory activity, or inhibitory, providing tolerance for a target cell. The signals from inhibitory receptors dominate and NK-cell activation requires stimulation of activating receptors. In viral infections, NK-cell interaction with infected cells can result in activation, memory-like NK-cell differentiation, or NK-cell exhaustion, which constitutes one of the viral immune evasion mechanisms. All of these states are associated with the modulation of NK-cell receptor expression. In this review, we summarize the current knowledge of NK-cell receptors and their role in viral infection control, as well as the alterations of their expression observed in acute or chronic infections. We present recently discovered SARS-CoV-2-mediated modulation of NK-cell receptor expression and compare them with other human viral infections. Finally, since modulation of NK-cell receptor activation gives a promising addition to currently used antiviral therapies, we briefly discuss the clinical significance and future perspective of the application of agonists or antagonists of activating and inhibitory receptors, respectively. In sum, our review shows that although much is known about NK-cell receptor biology, a deeper understanding of NK-cell receptors role in viral infections is still needed.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka, Krakow, Poland
| |
Collapse
|
5
|
García M, Carrasco García A, Weigel W, Christ W, Lira-Junior R, Wirth L, Tauriainen J, Maleki K, Vanoni G, Vaheri A, Mäkelä S, Mustonen J, Nordgren J, Smed-Sörensen A, Strandin T, Mjösberg J, Klingström J. Innate lymphoid cells are activated in HFRS, and their function can be modulated by hantavirus-induced type I interferons. PLoS Pathog 2024; 20:e1012390. [PMID: 39038044 PMCID: PMC11293681 DOI: 10.1371/journal.ppat.1012390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/01/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
Hantaviruses cause the acute zoonotic diseases hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Infected patients show strong systemic inflammation and immune cell activation. NK cells are highly activated in HFRS, suggesting that also other innate lymphoid cells (ILCs) might be responding to infection. Here, we characterized peripheral ILC responses, and measured plasma levels of soluble factors and plasma viral load, in 17 Puumala virus (PUUV)-infected HFRS patients. This revealed an increased frequency of ILC2 in patients, in particular the ILC2 lineage-committed c-Kitlo ILC2 subset. Patients' ILCs showed an activated profile with increased proliferation and displayed altered expression of several homing markers. How ILCs are activated during viral infection is largely unknown. When analyzing PUUV-mediated activation of ILCs in vitro we observed that this was dependent on type I interferons, suggesting a role for type I interferons-produced in response to virus infection-in the activation of ILCs. Further, stimulation of naïve ILC2s with IFN-β affected ILC2 cytokine responses in vitro, causing decreased IL-5 and IL-13, and increased IL-10, CXCL10, and GM-CSF secretion. These results show that ILCs are activated in HFRS patients and suggest that the classical antiviral type I IFNs are involved in shaping ILC functions.
Collapse
Affiliation(s)
- Marina García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anna Carrasco García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ronaldo Lira-Junior
- Section of Oral Diagnostics and Surgery, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lorenz Wirth
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Johanna Tauriainen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Kimia Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Vanoni
- Institut Curie, PSL University, Inserm, Immunity and Cancer, Paris, France
| | - Antti Vaheri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Mäkelä
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jukka Mustonen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
7
|
You J, Wang S, Zhu Y, Zhang Z, Wang J, Lou Y, Yao Y, Hao Y, Liu P. Natural Killer Cells Reprogram Myeloid-Derived Suppressor Cells to Induce TNF-α Release via NKG2D-Ligand Interaction after Cryo-Thermal Therapy. Int J Mol Sci 2024; 25:5151. [PMID: 38791188 PMCID: PMC11121051 DOI: 10.3390/ijms25105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In our previous studies, a novel cryothermal therapy (CTT) was developed to induce systemic long-term anti-tumor immunity. Natural killer (NK) cells were found to play an important role in CTT-induced long-term immune-mediated tumor control at the late stage after CTT, but the underlying mechanism is unclear. Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that have potent immunosuppressive effects on T cells and weaken the long-term benefits of immunotherapy. Consequently, overcoming MDSC immunosuppression is essential for maintaining the long-term efficacy of immunotherapy. In this study, we revealed that NK cells considerably diminish MDSC accumulation at the late stage after CTT, boost T cell production, increase T cell activation, and promote MDSC maturation, culminating in Th1-dominant CD4+ T cell differentiation and enhancing NK and CD8+ T cell cytotoxicity. Additionally, NK cells activate ERK signaling in MDSCs through NKG2D-ligand interaction to increase the activity of tumor necrosis factor (TNF)-α converting enzyme (TACE)-cleaved membrane TNF-α. Furthermore, Increased TACE activity releases more soluble TNF-α from MDSCs to promote MDSC maturation. In our studies, we propose a novel mechanism by which NK cells can overcome MDSC-induced immunosuppression and maintain CTT-induced persistent anti-tumor immunity, providing a prospective therapeutic option to improve the performance of cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China; (J.Y.); (S.W.); (Y.Z.); (Z.Z.); (J.W.); (Y.L.); (Y.Y.); (Y.H.)
| |
Collapse
|
8
|
Vuscan P, Kischkel B, Joosten LAB, Netea MG. Trained immunity: General and emerging concepts. Immunol Rev 2024; 323:164-185. [PMID: 38551324 DOI: 10.1111/imr.13326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024]
Abstract
Over the past decade, compelling evidence has unveiled previously overlooked adaptive characteristics of innate immune cells. Beyond their traditional role in providing short, non-specific protection against pathogens, innate immune cells can acquire antigen-agnostic memory, exhibiting increased responsiveness to secondary stimulation. This long-term de-facto innate immune memory, also termed trained immunity, is mediated through extensive metabolic rewiring and epigenetic modifications. While the upregulation of trained immunity proves advantageous in countering immune paralysis, its overactivation contributes to the pathogenesis of autoinflammatory and autoimmune disorders. In this review, we present the latest advancements in the field of innate immune memory followed by a description of the fundamental mechanisms underpinning trained immunity generation and different cell types that mediate it. Furthermore, we explore its implications for various diseases and examine current limitations and its potential therapeutic targeting in immune-related disorders.
Collapse
Affiliation(s)
- Patricia Vuscan
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Petrov S, Taskov H, Murdjeva M. Guardians of immunity: NK cell-mediated defense in COVID-19 and post-COVID scenarios. Folia Med (Plovdiv) 2024; 66:12-18. [PMID: 38426460 DOI: 10.3897/folmed.66.e113356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/10/2023] [Indexed: 03/02/2024] Open
Abstract
The COVID-19 pandemic has left a lasting impact on global health, challenging communities, healthcare systems, and researchers worldwide. As we navigate this unprecedented crisis, this paper embarks on a multifaceted exploration of the pivotal role played by natural killer (NK) cells in the context of COVID-19. A significant portion of this paper is devoted to dissecting the nuanced role that NK cells assume in the context of COVID-19. From the initial acute infection to post-recovery immunity, NK cells emerge as critical players. We scrutinize the activation and dysregulation of NK cells during SARS-CoV-2 infection, shedding light on their potential contribution to disease severity. Moreover, we explore the fascinating landscape of post-COVID immunity, where NK cells are known to interact with adaptive immune responses, providing a foundation for long-term protection. In light of their central role, we investigate therapeutic strategies targeting NK cells in COVID-19 management, presenting an overview of current research efforts and their promise in mitigating disease progression. Lastly, we draw attention to research gaps, emphasizing the need for further investigation into NK cell dynamics during COVID-19. These gaps represent opportunities for advancing our understanding of NK cell biology and, by extension, enhancing our strategies for combating this global health crisis. This comprehensive exploration not only highlights the intricate interplay between NK cells and the COVID-19 pandemic but also underscores the importance of these innate immune warriors in shaping both the acute response and long-term immunity, ultimately contributing to the broader discourse surrounding the pandemic's pathophysiology and therapeutic approaches.
Collapse
|
10
|
Fernández-Soto D, García-Jiménez ÁF, Casasnovas JM, Valés-Gómez M, Reyburn HT. Elevated levels of cell-free NKG2D-ligands modulate NKG2D surface expression and compromise NK cell function in severe COVID-19 disease. Front Immunol 2024; 15:1273942. [PMID: 38410511 PMCID: PMC10895954 DOI: 10.3389/fimmu.2024.1273942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction It is now clear that coronavirus disease 19 (COVID-19) severity is associated with a dysregulated immune response, but the relative contributions of different immune cells is still not fully understood. SARS CoV-2 infection triggers marked changes in NK cell populations, but there are contradictory reports as to whether these effector lymphocytes play a protective or pathogenic role in immunity to SARS-CoV-2. Methods To address this question we have analysed differences in the phenotype and function of NK cells in SARS-CoV-2 infected individuals who developed either very mild, or life-threatening COVID-19 disease. Results Although NK cells from patients with severe disease appeared more activated and the frequency of adaptive NK cells was increased, they were less potent mediators of ADCC than NK cells from patients with mild disease. Further analysis of peripheral blood NK cells in these patients revealed that a population of NK cells that had lost expression of the activating receptor NKG2D were a feature of patients with severe disease and this correlated with elevated levels of cell free NKG2D ligands, especially ULBP2 and ULBP3 in the plasma of critically ill patients. In vitro, culture in NKG2DL containing patient sera reduced the ADCC function of healthy donor NK cells and this could be blocked by NKG2DL-specific antibodies. Discussion These observations of reduced NK function in severe disease are consistent with the hypothesis that defects in immune surveillance by NK cells permit higher levels of viral replication, rather than that aberrant NK cell function contributes to immune system dysregulation and immunopathogenicity.
Collapse
Affiliation(s)
- Daniel Fernández-Soto
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Álvaro F. García-Jiménez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Hugh T. Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Shekarkar Azgomi M, Badami GD, Lo Pizzo M, Tamburini B, Dieli C, La Manna MP, Dieli F, Caccamo N. Integrated Analysis of Single-Cell and Bulk RNA Sequencing Data Reveals Memory-like NK Cell Subset Associated with Mycobacterium tuberculosis Latency. Cells 2024; 13:293. [PMID: 38391906 PMCID: PMC10886487 DOI: 10.3390/cells13040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Natural killer (NK) cells are innate-like lymphocytes that belong to the family of type-1 innate lymphoid cells and rapidly respond to virus-infected and tumor cells. In this study, we have combined scRNA-seq data and bulk RNA-seq data to define the phenotypic and molecular characteristics of peripheral blood NK cells. While the role of NK cells in immune surveillance against virus infections and tumors has been well established, their contribution to protective responses to other intracellular microorganisms, such as Mycobacterium tuberculosis (Mtb), is still poorly understood. In this study, we have combined scRNA-seq data and bulk RNA-seq data to illuminate the molecular characteristics of circulating NK cells in patients with active tuberculosis (TB) disease and subjects with latent Mtb infection (LTBI) and compared these characteristics with those of healthy donors (HDs) and patients with non-TB other pulmonary infectious diseases (ODs). We show here that the NK cell cluster was significantly increased in LTBI subjects, as compared to patients with active TB or other non-TB pulmonary diseases and HD, and this was mostly attributable to the expansion of an NK cell population expressing KLRC2, CD52, CCL5 and HLA-DRB1, which most likely corresponds to memory-like NK2.1 cells. These data were validated by flow cytometry analysis in a small cohort of samples, showing that LTBI subjects have a significant expansion of NK cells characterized by the prevalence of memory-like CD52+ NKG2C+ NK cells. Altogether, our results provide some new information on the role of NK cells in protective immune responses to Mtb.
Collapse
Affiliation(s)
- Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
| | - Marianna Lo Pizzo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, University of Palermo, 90129 Palermo, Italy
| | - Costanza Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), Azienda Ospedaliera Universitaria Policlinico (AOUP) Paolo Giaccone, University of Palermo, 90127 Palermo, Italy; (M.S.A.); (G.D.B.); (M.L.P.); (B.T.); (C.D.); (M.P.L.M.); (N.C.)
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
12
|
Doğan K, Büyüktuna SA. IL-36 signaling pathway dysregulation in Crimean-Congo hemorrhagic fever virus patients: A potential therapeutic avenue. J Med Virol 2024; 96:e29347. [PMID: 38152020 DOI: 10.1002/jmv.29347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a severe viral disease. The scientific literature is growing, emphasizing the significance of the interleukin (IL)-36 family in the proinflammatory signaling pathway. However, to date, no research has explored the potential of IL-36 family members as biomarkers in CCHF. This study aims to bridge this gap by evaluating IL-36α, IL-36β, and IL-36γ levels in CCHF patients and healthy controls and investigating their association with disease severity and prognosis. Sixty confirmed CCHF patients and 29 healthy controls were enrolled in this case-control study. Serum levels of IL-36α, IL-36β, and IL-36γ were measured using enzyme-linked immunosorbent assays. Significantly higher levels of IL-36α and IL-36β were observed in CCHF patients compared to healthy controls (p < 0.05). However, no statistically significant changes were found in IL-36γ levels between the two groups. Among the CCHF patients, those who did not survive exhibited significantly elevated IL-36α and IL-36γ levels compared to survivors (p < 0.01). Positive correlations were identified between IL-36α and IL-36γ levels with activated partial thromboplastin time, and D-dimer (p < 0.01). Conversely, platelet levels showed a negative correlation with IL-36α and IL-36γ levels (p < 0.01). The increased levels of IL-36α, IL-36β, and IL-36γ in patients indicate their participation in proinflammatory reactions in CCHF patients. Understanding the role of IL-36 family members in CCHF pathogenesis could offer valuable insights into disease progression and facilitate the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Kübra Doğan
- Department of Biochemistry, Sivas Numune Hospital, Sivas, Turkey
| | - Seyit A Büyüktuna
- Department of Infectious Diseases and Clinic Microbiology, School of Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| |
Collapse
|
13
|
Creegan M, Degler J, Paquin-Proulx D, Eller MA, Machmach K. OMIP-098: A 26 parameter, 24 color flow cytometry panel for human memory NK cell phenotyping. Cytometry A 2023; 103:941-946. [PMID: 37807668 PMCID: PMC10872854 DOI: 10.1002/cyto.a.24802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
This 26-parameter flow cytometry panel has been developed and optimized to analyze NK cell phenotype, using cryopreserved peripheral blood mononuclear cells (PBMCs) from people living with and without human immunodeficiency virus (PLWH, PWOH). Our panel is designed for the analysis of several parameters of total NK cells and memory NK cell subsets including markers of maturation, activation, and proliferation, as well as activating and inhibitory receptors. Other tissues have not been tested (Table 1 ).
Collapse
Affiliation(s)
- Matthew Creegan
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Justin Degler
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Dominic Paquin-Proulx
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| | - Michael A. Eller
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
- Present address: Vaccine Research Program, Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), MD, USA
| | - Kawthar Machmach
- The US Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, MD, USA
| |
Collapse
|
14
|
Grassmann S, Santosa EK, Mujal AM, Kim H, Fan SX, Owyong M, Lau CM, Sun JC. Early antigen receptor signaling in natural killer cells alters STAT4-dependent fate decisions via epigenetic remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565992. [PMID: 37986752 PMCID: PMC10659287 DOI: 10.1101/2023.11.07.565992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Natural Killer (NK) cells are innate cytotoxic lymphocytes that possess features of adaptive immunity, including antigen specificity and clonal expansion. NK cells rapidly respond to cytokines released during the innate phase of viral infection and are thought to migrate from circulation into infected organs to execute their early effector functions. However, recent evidence suggests that tissue-resident NK cells are among the first responders to viral infection. In this study, we observe that antigen receptor signaling precedes substantial proinflammatory cytokine signaling in a population of NK cells during mouse cytomegalovirus infection. Early antigen receptor signals epigenetically prime NK cells for optimal expansion during the later adaptive phase of the antiviral response. Mechanistically, receptor signaling increases chromatin accessibility at STAT4-binding genomic sites within differentiating NK cells. To promote adaptive programming of NK cells during infection, activating receptor-dependent epigenetic remodeling antagonizes IL-12 driven terminal maturation, poises NK cells for proliferation via sustained CDK6 expression, and antagonizes early apoptosis of short-lived effector cells via suppression of Bim. Thus, antigen receptor signaling alters an IL-12 dependent fate decision during the innate-to-adaptive transition of antiviral NK cells.
Collapse
|
15
|
Afzal S, Ali L, Batool A, Afzal M, Kanwal N, Hassan M, Safdar M, Ahmad A, Yang J. Hantavirus: an overview and advancements in therapeutic approaches for infection. Front Microbiol 2023; 14:1233433. [PMID: 37901807 PMCID: PMC10601933 DOI: 10.3389/fmicb.2023.1233433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Hantaviruses are a significant and emerging global public health threat, impacting more than 200,000 individuals worldwide each year. The single-stranded RNA viruses belong to the Hantaviridae family and are responsible for causing two acute febrile diseases in humans: Hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). Currently, there are no licensed treatments or vaccines available globally for HTNV infection. Various candidate drugs have shown efficacy in increasing survival rates during the early stages of HTNV infection. Some of these drugs include lactoferrin, ribavirin, ETAR, favipiravir and vandetanib. Immunotherapy utilizing neutralizing antibodies (NAbs) generated from Hantavirus convalescent patients show efficacy against HTNV. Monoclonal antibodies such as MIB22 and JL16 have demonstrated effectiveness in protecting against HTNV infection. The development of vaccines and antivirals, used independently and/or in combination, is critical for elucidating hantaviral infections and the impact on public health. RNA interference (RNAi) arised as an emerging antiviral therapy, is a highly specific degrades RNA, with post-transcriptional mechanism using eukaryotic cells platform. That has demonstrated efficacy against a wide range of viruses, both in vitro and in vivo. Recent antiviral methods involve using small interfering RNA (siRNA) and other, immune-based therapies to target specific gene segments (S, M, or L) of the Hantavirus. This therapeutic approach enhances viral RNA clearance through the RNA interference process in Vero E6 cells or human lung microvascular endothelial cells. However, the use of siRNAs faces challenges due to their low biological stability and limited in vivo targeting ability. Despite their successful inhibition of Hantavirus replication in host cells, their antiviral efficacy may be hindered. In the current review, we focus on advances in therapeutic strategies, as antiviral medications, immune-based therapies and vaccine candidates aimed at enhancing the body's ability to control the progression of Hantavirus infections, with the potential to reduce the risk of severe disease.
Collapse
Affiliation(s)
- Samia Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Anum Batool
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Momina Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Nida Kanwal
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | | | - Atif Ahmad
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Jing Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| |
Collapse
|
16
|
Zhao HD, Sun JJ, Yu TB, Liu HL. Predictive value of CD4 +CD8 + double positive T cells for the severity of hemorrhagic fever with renal syndrome. Clin Biochem 2023; 120:110643. [PMID: 37652222 DOI: 10.1016/j.clinbiochem.2023.110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
PURPOSES We aimed to investigate the levels of CD4+CD8+ double positive (DP) T cells in patients with various severities of hemorrhagic fever with renal syndrome (HFRS), and the predictive capacity of DP T cells for the severity of this disorder. METHODS The levels of DP T cells in 213 patients and 48 healthy donors were measured by flow cytometry, as were the levels of CD4+ T cells, CD8+ T cells, B lymphocytes, and natural killer (NK) cells. In each type of HFRS patient, we tested the basic clinical reference values for leukocytes, platelets, creatinine (Cr), uric acid (UA), and urea, and the values for activated partial thromboplastin time, prothrombin time, and fibrinogen, using conventional methods. The colloidal gold method was used to measure HFRS antibody levels in the patients. RESULTS The frequency of DP T cells increased with disease severity and peaked in patients with critical disease. Furthermore, the level of DP T cells proportionally correlated with the levels of Cr, UA, and urea in the serum. In contrast, there was an inverse correlation between DP T cells and platelets. Interestingly, the pattern of change in DP T cell frequency was similar to those of CD8+ T cells, B cells, and NK cells, but an inverse tendency was observed for CD4+ T cells. DP T cells demonstrated significant predictive value for the severity of HFRS. CONCLUSIONS The level of DP T cells is associated with HFRS severity, suggesting that it may be a potent indicator for the course of this disorder.
Collapse
Affiliation(s)
- Han-Dong Zhao
- Central Laboratory of Virology, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ju-Jun Sun
- Clinical Laboratory Center, XD Group Hospital, Xi'an 710077, China
| | - Tong-Bo Yu
- Clinical Laboratory Center, Shaanxi Provincial Hospital of Infectious Diseases, The Eighth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hong-Li Liu
- Clinical Laboratory Center, Xi'an People's Hospital (Xi'an Fourth Hospital) Guang-Ren Hospital Affiliated to Xi'an Jiaotong University Health Science Center, Xi'an 710004, China.
| |
Collapse
|
17
|
Seheult JN, Otteson GE, Jevremovic D, Horna P, Timm MM, Yuan J, Morice WG, Olteanu H, Shi M. Establishing NK-Cell Receptor Restriction by Flow Cytometry and Detecting Potential NK-Cell Clones of Uncertain Significance. Mod Pathol 2023; 36:100255. [PMID: 37385341 DOI: 10.1016/j.modpat.2023.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Natural killer (NK) cells develop a complex inhibitory and/or activating NK-cell receptor system, including killer cell immunoglobulin-like receptors (KIRs or CD158) and CD94/NKG2 dimers, which are variably combined to generate the individual's NK-cell receptor repertoire. Establishing NK-cell receptor restriction by flow cytometric immunophenotyping is an important step in diagnosing NK-cell neoplasms, but reference interval (RI) data for interpreting these studies are lacking. Specimens from 145 donors and 63 patients with NK-cell neoplasms were used to identify discriminatory rules based on 95% and 99% nonparametric RIs for CD158a+, CD158b+, CD158e+, KIR-negative, and NKG2A+ NK-cell populations to establish NK-cell receptor restriction. These 99% upper RI limits (NKG2a >88% or CD158a >53% or CD158b >72% or CD158e >54% or KIR-negative >72%) provided optimal discrimination between NK-cell neoplasm cases and healthy donor controls with an accuracy of 100% compared with the clinicopathologic diagnosis. The selected rules were applied to 62 consecutive samples received in our flow cytometry laboratory that were reflexed to an NK-cell panel due to an expanded NK-cell percentage (exceeding 40% of total lymphocytes). Twenty-two (35%) of 62 samples were found to harbor a very small NK-cell population with restricted NK-cell receptor expression based on the rule combination, suggestive of NK-cell clonality. A thorough clinicopathologic evaluation for the 62 patients did not reveal diagnostic features of NK-cell neoplasms; therefore, these potential clonal populations of NK cells were designated as NK-cell clones of uncertain significance (NK-CUS). In this study, we established decision rules for NK-cell receptor restriction from the largest published cohorts of healthy donors and NK-cell neoplasms. The presence of small NK-cell populations with restricted NK-cell receptors does not appear to be an uncommon finding, and its significance requires further exploration.
Collapse
Affiliation(s)
- Jansen N Seheult
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Gregory E Otteson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Dragan Jevremovic
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Pedro Horna
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael M Timm
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ji Yuan
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - William G Morice
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Horatiu Olteanu
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Min Shi
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
18
|
Basílio-Queirós D, Mischak-Weissinger E. Natural killer cells- from innate cells to the discovery of adaptability. Front Immunol 2023; 14:1172437. [PMID: 37275911 PMCID: PMC10232812 DOI: 10.3389/fimmu.2023.1172437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Natural Killer (NK) cells have come a long way since their first description in the 1970's. The most recent reports of their adaptive-like behavior changed the way the immune system dichotomy is described. Adaptive NK cells present characteristics of both the innate and adaptive immune system. This NK cell subpopulation undergoes a clonal-like expansion in response to an antigen and secondary encounters with the same antigen result in an increased cytotoxic response. These characteristics can be of extreme importance in the clinical setting, especially as adoptive immunotherapies, since NK cells present several advantages compared other cell types. This review will focus on the discovery and the path to the current knowledge of the adaptive NK cell population.
Collapse
|
19
|
Cocker ATH, Guethlein LA, Parham P. The CD56-CD16+ NK cell subset in chronic infections. Biochem Soc Trans 2023:233017. [PMID: 37140380 DOI: 10.1042/bst20221374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Long-term human diseases can shape the immune system, and natural killer (NK) cells have been documented to differentiate into distinct subsets specifically associated with chronic virus infections. One of these subsets found in large frequencies in HIV-1 are the CD56-CD16+ NK cells, and this population's association with chronic virus infections is the subject of this review. Human NK cells are classically defined by CD56 expression, yet increasing evidence supports the NK cell status of the CD56-CD16+ subset which we discuss herein. We then discuss the evidence linking CD56-CD16+ NK cells to chronic virus infections, and the potential immunological pathways that are altered by long-term infection that could be inducing the population's differentiation. An important aspect of NK cell regulation is their interaction with human leukocyte antigen (HLA) class-I molecules, and we highlight work that indicates both virus and genetic-mediated variations in HLA expression that have been linked to CD56-CD16+ NK cell frequencies. Finally, we offer a perspective on CD56-CD16+ NK cell function, taking into account recent work that implies the subset is comparable to CD56+CD16+ NK cell functionality in antibody-dependent cell cytotoxicity response, and the definition of CD56-CD16+ NK cell subpopulations with varying degranulation capacity against target cells.
Collapse
Affiliation(s)
- Alexander T H Cocker
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| |
Collapse
|
20
|
Cimpean M, Cooper MA. Metabolic regulation of NK cell antiviral functions during cytomegalovirus infection. J Leukoc Biol 2023; 113:525-534. [PMID: 36843434 PMCID: PMC11262056 DOI: 10.1093/jleuko/qiad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/28/2023] Open
Abstract
Natural killer (NK) cells quickly mount cytotoxic responses, produce cytokines, and proliferate in response to infected or transformed cells. Moreover, they can develop memory, with enhanced effector responses following activation, in some cases with antigen specificity. To optimally execute these functions, NK cells undergo metabolic reprogramming. Here, we discuss the interplay between metabolism and NK cell function in the context of viral infections. We review findings supporting metabolic regulation of NK cell effector functions, with a focus on NK cell antiviral infection in the context of cytomegalovirus in the mouse (MCMV) and human (HCMV).
Collapse
Affiliation(s)
- Maria Cimpean
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, USA
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, USA
| |
Collapse
|
21
|
Krebs P, Peng H, Duhan V. Editorial: Natural killer cell plasticity and diversity in antiviral immunity. Front Immunol 2023; 14:1175111. [PMID: 36999011 PMCID: PMC10043422 DOI: 10.3389/fimmu.2023.1175111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/15/2023] Open
Affiliation(s)
- Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Hui Peng
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Vikas Duhan
- Tumor Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
22
|
Siemaszko J, Marzec-Przyszlak A, Bogunia-Kubik K. Activating NKG2C Receptor: Functional Characteristics and Current Strategies in Clinical Applications. Arch Immunol Ther Exp (Warsz) 2023; 71:9. [PMID: 36899273 PMCID: PMC10004456 DOI: 10.1007/s00005-023-00674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/01/2023] [Indexed: 03/12/2023]
Abstract
The interest in NK cells and their cytotoxic activity against tumour, infected or transformed cells continuously increases as they become a new efficient and off-the-shelf agents in immunotherapies. Their actions are balanced by a wide set of activating and inhibitory receptors, recognizing their complementary ligands on target cells. One of the most studied receptors is the activating CD94/NKG2C molecule, which is a member of the C-type lectin-like family. This review is intended to summarise latest research findings on the clinical relevance of NKG2C receptor and to examine its contribution to current and potential therapeutic strategies. It outlines functional characteristics and molecular features of CD94/NKG2C, its interactions with HLA-E molecule and presented antigens, pointing out a key role of this receptor in immunosurveillance, especially in the human cytomegalovirus infection. Additionally, the authors attempt to shed some light on receptor's unique interaction with its ligand which is shared with another receptor (CD94/NKG2A) with rather opposite properties.
Collapse
Affiliation(s)
- Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Aleksandra Marzec-Przyszlak
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
23
|
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines 2023; 11:766. [PMID: 36979747 PMCID: PMC10045728 DOI: 10.3390/biomedicines11030766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections-tolerance, or contribute to the progression of the inflammatory disorder-trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, D-07745 Jena, Germany
| | - Sotirios G. Zarogiannis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Thessaly, GR-41500 Larissa, Greece
| | - Esra Lajqi
- Department of Radiation Oncology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Valdrina Ajeti
- Department of Pharmacy, Alma Mater Europaea—Campus College Rezonanca, XK-10000 Pristina, Kosovo
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Ardian Demaj
- Faculty of Medical Sciences, University of Tetovo, MK-1200 Tetova, North Macedonia
| | - Janine Hebel
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
24
|
Abarca-Zabalía J, González-Jiménez A, Calle-Rubio M, López-Pastor AR, Fariña T, Ramos-Acosta C, Anguita E, Urcelay E, Espino-Paisán L. Alterations in the immune system persist after one year of convalescence in severe COVID-19 patients. Front Immunol 2023; 14:1127352. [PMID: 36860856 PMCID: PMC9969554 DOI: 10.3389/fimmu.2023.1127352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Severe COVID-19 originates a myriad of alterations in the immune system during active disease, especially in the T and NK cell compartments, but several studies in the last year have unveiled some alterations that persist in convalescence. Although most of the studies follow the participants for a short recovery time, studies following patients up to three or six months still find alterations. We aimed at evaluating changes in the NK, T and B cell compartments after severe COVID-19 in participants with a median recovery time of eleven months. Methods Eighteen convalescent of severe COVID-19 (CSC), 14 convalescent of mild COVID-19 (CMC) and nine controls were recruited. NKG2A, NKG2C, NKG2D and the activating receptor NKp44 were evaluated in NKbright, NKdim and NKT subpopulations. In addition, CD3 and CD19 were measured and a basic biochemistry with IL-6 levels was obtained. Results CSC participants showed lower NKbright/NKdim ratio, higher NKp44 expression in NKbright subpopulations, higher levels of serum IL-6, lower levels of NKG2A+ T lymphocytes and a trend to a lower expression of CD19 in B lymphocytes compared to controls. CMC participants showed no significant alterations in the immune system compared to controls. Conclusions These results are concordant with previous studies, which find alterations in CSC weeks or months after resolution of the symptoms, and point to the possibility of these alterations lasting one year or more after COVID-19 resolution.
Collapse
Affiliation(s)
- Judith Abarca-Zabalía
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Adela González-Jiménez
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Myriam Calle-Rubio
- Department of Pneumology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Andrea R. López-Pastor
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain,*Correspondence: Andrea R. López-Pastor,
| | - Tomás Fariña
- Intensive Care Unit, Hospital Clínico San Carlos, Madrid, Spain
| | - Carlos Ramos-Acosta
- Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain,Hematology Department, Instituto de Medicina de Laboratorio, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Eduardo Anguita
- Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain,Hematology Department, Instituto de Medicina de Laboratorio, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Elena Urcelay
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Laura Espino-Paisán
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
25
|
Anderko RR, Mailliard RB. Mapping the interplay between NK cells and HIV: therapeutic implications. J Leukoc Biol 2023; 113:109-138. [PMID: 36822173 PMCID: PMC10043732 DOI: 10.1093/jleuko/qiac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Although highly effective at durably suppressing plasma HIV-1 viremia, combination antiretroviral therapy (ART) treatment regimens do not eradicate the virus, which persists in long-lived CD4+ T cells. This latent viral reservoir serves as a source of plasma viral rebound following treatment interruption, thus requiring lifelong adherence to ART. Additionally, challenges remain related not only to access to therapy but also to a higher prevalence of comorbidities with an inflammatory etiology in treated HIV-1+ individuals, underscoring the need to explore therapeutic alternatives that achieve sustained virologic remission in the absence of ART. Natural killer (NK) cells are uniquely positioned to positively impact antiviral immunity, in part due to the pleiotropic nature of their effector functions, including the acquisition of memory-like features, and, therefore, hold great promise for transforming HIV-1 therapeutic modalities. In addition to defining the ability of NK cells to contribute to HIV-1 control, this review provides a basic immunologic understanding of the impact of HIV-1 infection and ART on the phenotypic and functional character of NK cells. We further delineate the qualities of "memory" NK cell populations, as well as the impact of HCMV on their induction and subsequent expansion in HIV-1 infection. We conclude by highlighting promising avenues for optimizing NK cell responses to improve HIV-1 control and effect a functional cure, including blockade of inhibitory NK receptors, TLR agonists to promote latency reversal and NK cell activation, CAR NK cells, BiKEs/TriKEs, and the role of HIV-1-specific bNAbs in NK cell-mediated ADCC activity against HIV-1-infected cells.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
26
|
Mace EM. Human natural killer cells: Form, function, and development. J Allergy Clin Immunol 2023; 151:371-385. [PMID: 36195172 PMCID: PMC9905317 DOI: 10.1016/j.jaci.2022.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Human natural killer (NK) cells are innate lymphoid cells that mediate important effector functions in the control of viral infection and malignancy. Their ability to distinguish "self" from "nonself" and lyse virally infected and tumorigenic cells through germline-encoded receptors makes them important players in maintaining human health and a powerful tool for immunotherapeutic applications and fighting disease. This review introduces our current understanding of NK cell biology, including key facets of NK cell differentiation and the acquisition and execution of NK cell effector function. Further, it addresses the clinical relevance of NK cells in both primary immunodeficiency and immunotherapy. It is intended to provide an up-to-date and comprehensive overview of this important and interesting innate immune effector cell subset.
Collapse
Affiliation(s)
- Emily M Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York.
| |
Collapse
|
27
|
Alomar S, Alkhuriji A, Alkhulaifi FM, Mansour L, Al-Jurayyan A, Aldossari GS, Albalawi AE, Alanazi AD. Relationship between KIR genotypes and HLA-ligands with SARS-CoV-2 infection in the Saudi population. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102416. [PMID: 36338940 PMCID: PMC9622466 DOI: 10.1016/j.jksus.2022.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 05/28/2023]
Abstract
Aim To ascertain whether killer cell immunoglobulin-like receptors (KIR) genes polymorphisms and HLA-I ligands are associated with COVID-19 in Saudi Arabia. Methods Eighty-seven COVID-19 patients who tested positive for SARS-CoV-2 and one hundred and fourteen healthy controls were enrolled in this study for genotyping of the 16 KIR genes, HLA-C1 and -C2 allotypes and HLA-G 14-bp indels polymorphisms using the sequence specific primer polymerase chain reaction (SSP-PCR) method. KIR genotype frequency differences and combination KIR-HLA-C ligand were tested for significance. Results Framework genes KIR2DL4, KIR3DL2, KIR3DL3, and KIR3DP2 were present in all individuals. The frequencies of KIR2DL2 and KIR2D4 were higher in COVID-19 positive patients than in healthy individuals. The frequencies of the combination KIR2DL2-HLA-C2 was also significantly higher in patients affected by COVID-19 compared with healthy controls. Conclusion It was found that the inhibitory KIR2DL2 gene in isolation or combined with its HLA-C2 ligand could be associated with susceptibility to COVID-19 in the Saudi population.
Collapse
Affiliation(s)
- Suliman Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, PO. Box: 2455, Riyadh 11451, Saudi Arabia
- Zoology Department, College of Sciences, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - Afrah Alkhuriji
- Zoology Department, College of Sciences, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - Fadwa M Alkhulaifi
- Biology Department, College of Science, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | - Lamjed Mansour
- Zoology Department, College of Sciences, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Jurayyan
- Immunology and HLA Section, Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ghadeer S Aldossari
- Serology, Immunology and HLA, Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Aishah Eid Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47912, Saudi Arabia
| | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| |
Collapse
|
28
|
Alhajjat AM, Redden CR, Langereis M, Papastefan ST, Ito JA, Ott KC, Turner LE, Kang HK, Shaaban AF. CD4 and IL-2 mediated NK cell responses after COVID-19 infection and mRNA vaccination in adults. Immunobiology 2023; 228:152304. [PMID: 36508885 PMCID: PMC9683520 DOI: 10.1016/j.imbio.2022.152304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
A detailed understanding of protective immunity against SARS-CoV-2 is incredibly important in fighting the pandemic. Central to protective immunity is the ability of the immune system to recall previous exposures. Although antibody and T cell immunity have gained considerable attention, the contribution of the NK cell compartment to immune recall and protection from SARS-CoV-2 has not been explored. In this study, we investigate the NK cell responses to stimulation with SARS-CoV-2 in previously exposed and non-exposed individuals. We show that NK cells demonstrate an enhanced CD4+ T cell dependent response when re-exposed to SARS-CoV-2 antigen. The enhanced response is dependent on T cells and correlates with the number of SARS-CoV-2 specific CD4 T cells. We find that IL-2 is a critical mediator of NK cell function. These findings suggest that NK cells contribute to the protective responses against SARS-CoV-2 through a cooperation with antigen-specific CD4 T cells and have significant implications on our understanding of protective immunity in SARS-CoV-2.
Collapse
|
29
|
López-Botet M, De Maria A, Muntasell A, Della Chiesa M, Vilches C. Adaptive NK cell response to human cytomegalovirus: Facts and open issues. Semin Immunol 2023; 65:101706. [PMID: 36542944 DOI: 10.1016/j.smim.2022.101706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Human cytomegalovirus (HCMV) infection exerts broad effects on the immune system. These include the differentiation and persistent expansion of a mature NK cell subset which displays a characteristic phenotypic and functional profile hallmarked by expression of the HLA-E-specific CD94/NKG2C activating receptor. Based on our experience and recent advances in the field, we overview the adaptive features of the NKG2C+ NK cell response, discussing observations and open questions on: (a) the mechanisms and influence of viral and host factors; (b) the existence of other NKG2C- NK cell subsets sharing adaptive features; (c) the development and role of adaptive NKG2C+ NK cells in the response to HCMV in hematopoietic and solid organ transplant patients; (d) their relation with other viral infections, mainly HIV-1; and (e) current perspectives for their use in adoptive immunotherapy of cancer.
Collapse
Affiliation(s)
- Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Department of Medicine and Life Sciences. Univ. Pompeu Fabra. Barcelona, Spain.
| | - Andrea De Maria
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy.
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM). Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERonc), Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | - Carlos Vilches
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Majadahonda, Madrid, Spain.
| |
Collapse
|
30
|
Melsen JE, van Ostaijen-ten Dam MM, Schoorl DJA, Schol PJ, van den Homberg DAL, Lankester AC, Lugthart G, Schilham MW. Single-cell transcriptomics in bone marrow delineates CD56 dimGranzymeK + subset as intermediate stage in NK cell differentiation. Front Immunol 2022; 13:1044398. [PMID: 36505452 PMCID: PMC9730327 DOI: 10.3389/fimmu.2022.1044398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Human natural killer (NK) cells in lymphoid tissues can be categorized into three subsets: CD56brightCD16+, CD56dimCD16+ and CD69+CXCR6+ lymphoid tissue-resident (lt)NK cells. How the three subsets are functionally and developmentally related is currently unknown. Therefore, we performed single-cell RNA sequencing combined with oligonucleotide-conjugated antibodies against CD56, CXCR6, CD117 and CD34 on fresh bone marrow NK cells. A minor CD56dimGzmK+ subset was identified that shared features with CD56bright and CD56dimGzmK- NK cells based on transcriptome, phenotype (NKG2AhighCD16lowKLRG1highTIGIThigh) and functional analysis in bone marrow and blood, supportive for an intermediate subset. Pseudotime analysis positioned CD56bright, CD56dimGzmK+ and CD56dimGzmK- cells in one differentiation trajectory, while ltNK cells were developmentally separated. Integrative analysis with bone marrow cells from the Human Cell Atlas did not demonstrate a developmental connection between CD34+ progenitor and NK cells, suggesting absence of early NK cell stages in bone marrow. In conclusion, single-cell transcriptomics provide new insights on development and differentiation of human NK cells.
Collapse
|
31
|
Trained Immunity as a Prospective Tool against Emerging Respiratory Pathogens. Vaccines (Basel) 2022; 10:vaccines10111932. [DOI: 10.3390/vaccines10111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Although parental vaccines offer long-term protection against homologous strains, they rely exclusively on adaptive immune memory to produce neutralizing antibodies that are ineffective against emerging viral variants. Growing evidence highlights the multifaceted functions of trained immunity to elicit a rapid and enhanced innate response against unrelated stimuli or pathogens to subsequent triggers. This review discusses the protective role of trained immunity against respiratory pathogens and the experimental models essential for evaluating novel inducers of trained immunity. The review further elaborates on the potential of trained immunity to leverage protection against pathogens via the molecular patterns of antigens by pathogen recognition receptors (PPRs) on innate immune cells. The review also focuses on integrating trained innate memory with adaptive memory to shape next-generation vaccines by coupling each one’s unique characteristics.
Collapse
|
32
|
Cocker ATH, Liu F, Djaoud Z, Guethlein LA, Parham P. CD56-negative NK cells: Frequency in peripheral blood, expansion during HIV-1 infection, functional capacity, and KIR expression. Front Immunol 2022; 13:992723. [PMID: 36211403 PMCID: PMC9539804 DOI: 10.3389/fimmu.2022.992723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Human NK cells are usually defined as CD3-CD56+ lymphocytes. However, a CD56-CD16+ (CD56neg) lymphocyte population that displays NK-associated markers expands during chronic viral infections such as HIV-1 and HCV, and, to lesser extent, in herpesvirus infections. This CD56neg NK cell subset has been understudied because it requires the exclusion of other lymphocytes to accurately identify its presence. Many questions remain regarding the origin, development, phenotype, and function of the CD56neg NK cell population. Our objective was to determine the frequency of this NK subset in healthy controls and its alteration in viral infections by performing a meta-analysis. In addition to this, we analyzed deposited CyTOF and scRNAseq datasets to define the phenotype and subsets of the CD56neg NK cell population, as well as their functional variation. We found in 757 individuals, from a combined 28 studies and 6 datasets, that the CD56neg subset constitutes 5.67% of NK cells in healthy peripheral blood, while HIV-1 infection increases this population by a mean difference of 10.69%. Meta-analysis of surface marker expression between NK subsets showed no evidence of increased exhaustion or decreased proliferation within the CD56neg subset. CD56neg NK cells have a distinctive pattern of KIR expression, implying they have a unique potential for KIR-mediated education. A perforin-CD94-NKG2C-NKp30- CD56neg population exhibited different gene expression and degranulation responses against K562 cells compared to other CD56neg cells. This analysis distinguishes two functionally distinct subsets of CD56neg NK cells. They are phenotypically diverse and have differing capacity for education by HLA class-I interactions with KIRs.
Collapse
Affiliation(s)
- Alexander T. H. Cocker
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Alexander T. H. Cocker,
| | - Fuguo Liu
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- Laboratory Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Zakia Djaoud
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Lisbeth A. Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
33
|
Radandish M, Esmaeil N, Khorvash F, Andalib A. Diagnostic Value of Natural Killer Cells, CD56+ CD16+ Natural Killer Cells, NLRP3, and Lactate Dehydrogenase in Severe/Critical COVID-19: A Prospective Longitudinal Study According to the Severe/Critical COVID-19 Definitions. Viral Immunol 2022; 35:616-628. [PMID: 36099205 DOI: 10.1089/vim.2022.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Innate immunity, as the first line of defense of our immune system, plays a crucial role in defending against SARS-CoV-2 infection and also its immunopathogenesis. We aim to investigate the immune status of natural killer (NK) cells, natural killer T (NKT) cells, and NLRP3 gene expression in COVID-19 patient blood samples. The immunophenotype of NK cell subsets and NKT cells was detected by flow cytometry and the expression of NLRP3 gene assessed by reverse transcriptase real-time polymerase chain reaction in 44 COVID-19 patients and 20 healthy individuals. The percentage of most of NK cell subpopulation and NKT cells was significantly decreased in COVID-19 patients. The percentage of CD56dim CD16- NK cell subsets, and NLRP3 gene expression increased. The percentage of total NK cells, CD56+ CD16+ NK cells, and NLRP3 gene expression had acceptable sensitivity and specificity for assisting diagnosis of severe/critical COVID-19. O2 saturation% and lactate dehydrogenase levels showed valuable diagnostic value to identify critical cases. The declined NK and NKT cells in COVID-19 patients and enhanced NLRP3 gene expression were associated with disease severity. Total NK cells, CD56+ CD16+ NK cells, and NLRP3 gene expression might be used as meaningful indicators for assisting diagnosis of severe/critical COVID-19.
Collapse
Affiliation(s)
- Maedeh Radandish
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzin Khorvash
- Department of Infectious Diseases, Faculty of Medicine, Nosocomial Infections Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Andalib
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
Srivastava R, Dhanushkodi N, Prakash S, Coulon PG, Vahed H, Zayou L, Quadiri A, BenMohamed L. High Frequencies of Phenotypically and Functionally Senescent and Exhausted CD56 +CD57 +PD-1 + Natural Killer Cells, SARS-CoV-2-Specific Memory CD4 + and CD8 + T cells Associated with Severe Disease in Unvaccinated COVID-19 Patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.26.501655. [PMID: 35923316 PMCID: PMC9347283 DOI: 10.1101/2022.07.26.501655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Unvaccinated COVID-19 patients display a large spectrum of symptoms, ranging from asymptomatic to severe symptoms, the latter even causing death. Distinct Natural killer (NK) and CD4+ and CD8+ T cells immune responses are generated in COVID-19 patients. However, the phenotype and functional characteristics of NK cells and T-cells associated with COVID-19 pathogenesis versus protection remain to be elucidated. In this study, we compared the phenotype and function of NK cells SARS-CoV-2-specific CD4+ and CD8+ T cells in unvaccinated symptomatic (SYMP) and unvaccinated asymptomatic (ASYMP) COVID-19 patients. The expression of senescent CD57 marker, CD45RA/CCR7differentiation status, exhaustion PD-1 marker, activation of HLA-DR, and CD38 markers were assessed on NK and T cells from SARS-CoV-2 positive SYMP patients, ASYMP patients, and Healthy Donors (HD) using multicolor flow cytometry. We detected significant increases in the expression levels of both exhaustion and senescence markers on NK and T cells from SYMP patients compared to ASYMP patients and HD controls. In SYMP COVID-19 patients, the T cell compartment displays several alterations involving naive, central memory, effector memory, and terminally differentiated T cells. The senescence CD57 marker was highly expressed on CD8+ TEM cells and CD8+ TEMRA cells. Moreover, we detected significant increases in the levels of pro-inflammatory TNF-α, IFN-γ, IL-6, IL-8, and IL-17 cytokines from SYMP COVID-19 patients, compared to ASYMP COVID-19 patients and HD controls. The findings suggest exhaustion and senescence in both NK and T cell compartment is associated with severe disease in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Nisha Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Pierre Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660-7913
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology & Biochemistry, TechImmune, LLC, University Lab Partners, Irvine, CA 92660-7913
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660-7913
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
35
|
Csordas BG, de Sousa Palmeira PH, Peixoto RF, Comberlang FCQDDS, de Medeiros IA, Azevedo FLAAD, Veras RC, Janebro DI, Amaral IPG, Barbosa-Filho JM, Keesen TSL. Is IFN expression by NK cells a hallmark of severe COVID-19? Cytokine 2022; 157:155971. [PMID: 35908408 PMCID: PMC9304336 DOI: 10.1016/j.cyto.2022.155971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
Natural Killer cells (NK) are crucial in host defense against viruses. There are many unanswered questions about the immune system in COVID-19, especially the mechanisms that contribute to the development of mild or severe forms of the disease. Although NK cells may have an essential role in the pathogenesis of COVID-19, the mechanisms involved in this process are not yet fully elucidated. Here, we demonstrate that CD3-CD56+ NK cells frequency in the volunteers who recovered from mild COVID-19 (Mild CoV) presented a significant increase compared to the healthy control (HC) and individuals recovering from severe COVID-19 (Severe CoV) groups. Furthermore, distinct IFN profiles in recovered COVID-19 patients with mild or severe clinical forms of the disease were observed in the total NK cells (CD3-CD56+). In the first group, NK cells express increased levels of IFN-α compared to the severe CoV, while higher production of IFN-γ in severe CoV was found. Moreover, NK cells in mild CoV express more cytolytic granules depicted by granzyme B and perforin. Compared to HC, PBMCs from mild CoV presented higher Ki-67 and TIM-3 production after Pool CoV-2 and Pool Spike CoV-2 peptides stimulus. In addition, non-stimulated PBMCs in the mild CoV group had higher NK TIM-3+ frequency than severe CoV. In the mild CoV group, Pool Spike CoV-2 and Pool CoV-2 peptides stimuli elicited higher granzyme B and perforin coexpression and IFN-α production by PBMCs. However, in severe CoV, Pool Spike CoV-2 reduced the coexpression of granzyme B, perforin, and CD107a suggesting a decrease in the cytotoxic activity of NK cells. Therefore, our study shows that NK cells may have a crucial role in COVID-19 with the involvement of IFN-α and cytotoxic properties that aid in developing qualified immune responses. Furthermore, the data suggest that higher amounts of IFN-γ may be linked to the severity of this disease.
Collapse
Affiliation(s)
- Bárbara Guimarães Csordas
- Postgraduate Program in Natural and Synthetic Bioactive Products, Immunology Laboratory of Infectious Diseases, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Pedro Henrique de Sousa Palmeira
- Postgraduate Program in Physiology Science, Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Rephany Fonseca Peixoto
- Postgraduate Program in Physiology Science, Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Isac Almeida de Medeiros
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | | | - Robson Cavalcante Veras
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Daniele Idalino Janebro
- Research Institute for Drugs and Medicines, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Ian P G Amaral
- Biotechnology Graduation Program, Immunology Laboratory of Infectious Diseases, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - José Maria Barbosa-Filho
- Pharmaceutical Sciences Department, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil
| | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Paraíba 58051-900, Brazil.
| |
Collapse
|
36
|
Carbonnel M, Daclin C, Tarantino N, Groiseau O, Morin V, Rousseau A, Vasse M, Hertig A, Kennel T, Ayoubi JM, Vieillard V. Plasticity of natural killer cells in pregnant patients infected with SARS-CoV-2 and their neonates during childbirth. Front Immunol 2022; 13:893450. [PMID: 35911747 PMCID: PMC9335005 DOI: 10.3389/fimmu.2022.893450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
The COVID-19 pandemic has occurred due to infection caused by the SARS-CoV-2 coronavirus, which impacts gestation and pregnancy. In SARS-CoV-2 infection, only very rare cases of vertical transmission have been reported, suggesting that fetal immune imprinting due to a maternal infection is probably a result of changes in maternal immunity. Natural killer (NK) cells are the leading maternal immune cells that act as a natural defense system to fight infections. They also play a pivotal role in the establishment and maintenance of pregnancy. While peripheral NK cells display specific features in patients infected with SARS-CoV-2 in the general population, information remains elusive in pregnant mothers and neonates. In the present study, we analyzed the characteristics of NK cells isolated from both neonatal umbilical cord blood and maternal peripheral blood close to the time of delivery. Phenotype and functions were compared in 18 healthy pregnant women and 34 COVID-19 patients during pregnancy within an ongoing infection (PCR+; N = 15) or after recovery (IgG+PCR-; N = 19). The frequency of NK cells from infected women and their neonates was correlated with the production of inflammatory cytokines in the serum. The expression of NKG2A and NKp30, as well as degranulation of NK cells in pregnant women with ongoing infection, were both negatively correlated to estradiol level. Furthermore, NK cells from the neonates born to infected women were significantly decreased and also correlated to estradiol level. This study highlights the relationship between NK cells, inflammation, and estradiol in patients with ongoing infection, providing new insights into the impact of maternal SARS-CoV-2 infection on the neonate.
Collapse
Affiliation(s)
- Marie Carbonnel
- Department of Obstetrics and Gynecology, Hôpital Foch, Suresnes, France
- University of Versailles, Versailles, France
| | - Camille Daclin
- Department of Obstetrics and Gynecology, Hôpital Foch, Suresnes, France
- University of Versailles, Versailles, France
| | - Nadine Tarantino
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivia Groiseau
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Véronique Morin
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Alice Rousseau
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Marc Vasse
- Department of Clinical Biology, Hôpital Foch, Suresnes, France
- INSERM UMRS-1176, University Paris-Sud, Orsay, France
| | - Alexandre Hertig
- Nephrology and Renal Transplantation Department, Hôpital Foch, Suresnes, France
| | - Titouan Kennel
- Department of Clinic Research, Hôpital Foch, Suresnes, France
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology, Hôpital Foch, Suresnes, France
- University of Versailles, Versailles, France
| | - Vincent Vieillard
- Sorbonne Université, Inserm U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
37
|
Vollmers S, Lobermeyer A, Niehrs A, Fittje P, Indenbirken D, Nakel J, Virdi S, Brias S, Trenkner T, Sauer G, Peine S, Behrens GM, Lehmann C, Meurer A, Pauli R, Postel N, Roider J, Scholten S, Spinner CD, Stephan C, Wolf E, Wyen C, Richert L, Norman PJ, Sauter J, Schmidt AH, Hoelzemer A, Altfeld M, Körner C. Host KIR/HLA-C Genotypes Determine HIV-Mediated Changes of the NK Cell Repertoire and Are Associated With Vpu Sequence Variations Impacting Downmodulation of HLA-C. Front Immunol 2022; 13:922252. [PMID: 35911762 PMCID: PMC9334850 DOI: 10.3389/fimmu.2022.922252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
NK cells play a pivotal role in viral immunity, utilizing a large array of activating and inhibitory receptors to identify and eliminate virus-infected cells. Killer-cell immunoglobulin-like receptors (KIRs) represent a highly polymorphic receptor family, regulating NK cell activity and determining the ability to recognize target cells. Human leukocyte antigen (HLA) class I molecules serve as the primary ligand for KIRs. Herein, HLA-C stands out as being the dominant ligand for the majority of KIRs. Accumulating evidence indicated that interactions between HLA-C and its inhibitory KIR2DL receptors (KIR2DL1/L2/L3) can drive HIV-1-mediated immune evasion and thus may contribute to the intrinsic control of HIV-1 infection. Of particular interest in this context is the recent observation that HIV-1 is able to adapt to host HLA-C genotypes through Vpu-mediated downmodulation of HLA-C. However, our understanding of the complex interplay between KIR/HLA immunogenetics, NK cell-mediated immune pressure and HIV-1 immune escape is still limited. Therefore, we investigated the impact of specific KIR/HLA-C combinations on the NK cell receptor repertoire and HIV-1 Vpu protein sequence variations of 122 viremic, untreated HIV-1+ individuals. Compared to 60 HIV-1- controls, HIV-1 infection was associated with significant changes within the NK cell receptor repertoire, including reduced percentages of NK cells expressing NKG2A, CD8, and KIR2DS4. In contrast, the NKG2C+ and KIR3DL2+ NK cell sub-populations from HIV-1+ individuals was enlarged compared to HIV-1- controls. Stratification along KIR/HLA-C genotypes revealed a genotype-dependent expansion of KIR2DL1+ NK cells that was ultimately associated with increased binding affinities between KIR2DL1 and HLA-C allotypes. Lastly, our data hinted to a preferential selection of Vpu sequence variants that were associated with HLA-C downmodulation in individuals with high KIR2DL/HLA-C binding affinities. Altogether, our study provides evidence that HIV-1-associated changes in the KIR repertoire of NK cells are to some extent predetermined by host KIR2DL/HLA-C genotypes. Furthermore, analysis of Vpu sequence polymorphisms indicates that differential KIR2DL/HLA-C binding affinities may serve as an additional mechanism how host genetics impact immune evasion by HIV-1.
Collapse
Affiliation(s)
| | | | | | - Pia Fittje
- Leibniz Institute of Virology, Hamburg, Germany
| | | | | | | | - Sebastien Brias
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Gabriel Sauer
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg M.N. Behrens
- Department for Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
| | - Clara Lehmann
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anja Meurer
- Center for Internal Medicine and Infectiology, Munich, Germany
| | - Ramona Pauli
- Medizinisches Versorgungszentrum (MVZ) am Isartor, Munich, Germany
| | - Nils Postel
- Prinzmed, Practice for Infectious Diseases, Munich, Germany
| | - Julia Roider
- Department of Internal Medicine IV, Department of Infectious Diseases, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | | | - Christoph D. Spinner
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Technical University of Munich, School of Medicine, University Hospital rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Christoph Stephan
- Infectious Diseases Unit, Goethe-University Hospital Frankfurt, Frankfurt, Germany
| | | | - Christoph Wyen
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | - Laura Richert
- University of Bordeaux, Inserm U1219 Bordeaux Population Health, Inria Sistm, Bordeaux, France
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | | | | | - Angelique Hoelzemer
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christian Körner
- Leibniz Institute of Virology, Hamburg, Germany
- *Correspondence: Christian Körner,
| |
Collapse
|
38
|
Medjouel Khlifi H, Guia S, Vivier E, Narni-Mancinelli E. Role of the ITAM-Bearing Receptors Expressed by Natural Killer Cells in Cancer. Front Immunol 2022; 13:898745. [PMID: 35757695 PMCID: PMC9231431 DOI: 10.3389/fimmu.2022.898745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphoid cells (ILCs) capable of recognizing and directly killing tumor cells. They also secrete cytokines and chemokines, which participate in the shaping of the adaptive response. NK cells identify tumor cells and are activated through a net positive signal from inhibitory and activating receptors. Several activating NK cell receptors are coupled to adaptor molecules containing an immunoreceptor tyrosine-based activation motif (ITAM). These receptors include CD16 and the natural cytotoxic receptors NKp46, NKp44, NKp30 in humans. The powerful antitumor NK cell response triggered by these activating receptors has made them attractive targets for exploitation in immunotherapy. In this review, we will discuss the different activating receptors associated with ITAM-bearing cell surface receptors expressed on NK cells, their modulations in the tumor context and the various therapeutic tools developed to boost NK cell responses in cancer patients.
Collapse
Affiliation(s)
- Hakim Medjouel Khlifi
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Sophie Guia
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Eric Vivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.,Innate Pharma Research Laboratories, Marseille, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
39
|
Abstract
At the end of 2019, an outbreak of a severe respiratory disease occurred in Wuhan China, and an increase in cases of unknown pneumonia was alerted. In January 2020, a new coronavirus named SARS-CoV-2 was identified as the cause. The virus spreads primarily through the respiratory tract, and lymphopenia and cytokine storms have been observed in severely ill patients. This suggests the existence of an immune dysregulation as an accompanying event during a serious illness caused by this virus. Natural killer (NK) cells are innate immune responders, critical for virus shedding and immunomodulation. Despite its importance in viral infections, the contribution of NK cells in the fight against SARS-CoV-2 has yet to be deciphered. Different studies in patients with COVID-19 suggest a significant reduction in the number and function of NK cells due to their exhaustion. In this review, we summarize the current understanding of how NK cells respond to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Janet Gallardo-Zapata
- Laboratorio de investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gomez, Mexico City, Mexico.,Posgrado de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gomez, Mexico City, Mexico
| |
Collapse
|
40
|
Immunocyte Populations Observed from Birth to Weaning in Blood, Spleen and Mesenteric Lymph Nodes of Piglets. Animals (Basel) 2022; 12:ani12111445. [PMID: 35681909 PMCID: PMC9179378 DOI: 10.3390/ani12111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Susceptibility to pathogen infections and efficacy of vaccination highly depend on the immune status of the piglet. Here, we measured immunocytes in piglets from birth to weaning to elucidate how immunocyte populations change during development and are affected by weaning. Crossbred piglets were used. Suckling piglets were euthanized at 1, 7, 14, 21, 28 or 35 days old (3~4 piglets at each time point). In addition, seven piglets were weaned at 21 days old, with four being euthanized at 28 days old and the remaining at 35 days old. Piglet carcasses were dissected, and blood, mesenteric lymph nodes (MLN) and spleen were sampled. In total, seven antibodies were used to stain the immunocyte population. Dynamics of myeloid (CD3−SWC3+CD16+), natural killer (NK; CD3−SWC3−CD16+), killer T (CD3+CD8+), helper T (CD3+CD4+) and B (CD3−CD21+) cells were analyzed. Percentage of innate immunity cells such as myeloid cells declined (p < 0.05) from the first day after birth. In contrast, percentage of NK cells increased in piglets while they were still suckling. Killer T, helper T, and B cell populations increased around 2~3 weeks after birth. No significant differences in the populations of the evaluated cell types were observed between suckling and weaned piglets at least for 14 days post weaning.
Collapse
|
41
|
Ljunggren H, Heggernes Ask E, Cornillet M, Strunz B, Chen P, Rao Muvva J, Akber M, Buggert M, Chambers BJ, Cuapio Gomez A, Dzidic M, Filipovic I, Flodström‐Tullberg M, Garcia M, Gorin J, Gredmark‐Russ S, Hertwig L, Klingström J, Kokkinou E, Kvedaraite E, Lourda M, Mjösberg J, Maucourant C, Norrby‐Teglund A, Palma Medina LM, Parrot T, Perez‐Potti A, Ponzetta A, Ringqvist E, Rivera‐Ballesteros O, Rooyackers O, Sandberg JK, Sandberg JT, Sekine T, Svensson M, Varnaite R, Wullimann D, Eriksson LI, Aleman S, Malmberg K, Strålin K, Björkström NK. The Karolinska KI/K COVID-19 Immune Atlas: An open resource for immunological research and educational purposes. Scand J Immunol 2022; 96:e13195. [PMID: 35652743 PMCID: PMC9287045 DOI: 10.1111/sji.13195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
The Karolinska KI/K COVID-19 Immune Atlas project was conceptualized in March 2020 as a part of the academic research response to the developing SARS-CoV-2 pandemic. The aim was to rapidly provide a curated dataset covering the acute immune response towards SARS-CoV-2 infection in humans, as it occurred during the first wave. The Immune Atlas was built as an open resource for broad research and educational purposes. It contains a presentation of the response evoked by different immune and inflammatory cells in defined naïve patient-groups as they presented with moderate and severe COVID-19 disease. The present Resource Article describes how the Karolinska KI/K COVID-19 Immune Atlas allow scientists, students, and other interested parties to freely explore the nature of the immune response towards human SARS-CoV-2 infection in an online setting.
Collapse
Affiliation(s)
- Hans‐Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Eivind Heggernes Ask
- Department of Cancer Immunology, Institute for Cancer ResearchOslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Martin Cornillet
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Benedikt Strunz
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Puran Chen
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Jagadeeswara Rao Muvva
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Mira Akber
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Benedict J. Chambers
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Angelica Cuapio Gomez
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Majda Dzidic
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Iva Filipovic
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Malin Flodström‐Tullberg
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Marina Garcia
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Jean‐Baptiste Gorin
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Sara Gredmark‐Russ
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Laura Hertwig
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Efthymia Kokkinou
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Egle Kvedaraite
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Magda Lourda
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Jenny Mjösberg
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Christopher Maucourant
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Anna Norrby‐Teglund
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Laura M. Palma Medina
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Tiphaine Parrot
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - André Perez‐Potti
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Andrea Ponzetta
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Emma Ringqvist
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Olga Rivera‐Ballesteros
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Olav Rooyackers
- Department of Emergency MedicineKarolinska University HospitalStockholmSweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - John Tyler Sandberg
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Takuya Sekine
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Mattias Svensson
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - Renata Varnaite
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | - David Wullimann
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| | | | - Lars I. Eriksson
- Department of Emergency MedicineKarolinska University HospitalStockholmSweden
| | - Soo Aleman
- Department of Infectious DiseasesKarolinska University HospitalStockholmSweden
| | - Karl‐Johan Malmberg
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
- Department of Cancer Immunology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Kristoffer Strålin
- Department of Infectious DiseasesKarolinska University HospitalStockholmSweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
42
|
Jaiswal SR, Arunachalam J, Saifullah A, Lakhchaura R, Tailor D, Mehta A, Bhagawati G, Aiyer H, Khamar B, Malhotra SV, Chakrabarti S. Impact of an Immune Modulator Mycobacterium-w on Adaptive Natural Killer Cells and Protection Against COVID-19. Front Immunol 2022; 13:887230. [PMID: 35603154 PMCID: PMC9115578 DOI: 10.3389/fimmu.2022.887230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
The kinetics of NKG2C+ adaptive natural killer (ANK) cells and NKG2A+inhibitory NK (iNK) cells with respect to the incidence of SARS-CoV-2 infection were studied for 6 months in a cohort of healthcare workers following the administration of the heat-killed Mycobacterium w (Mw group) in comparison to a control group. In both groups, corona virus disease 2019 (COVID-19) correlated with lower NKG2C+ANK cells at baseline. There was a significant upregulation of NKG2C expression and IFN-γ release in the Mw group (p=0.0009), particularly in those with a lower baseline NKG2C expression, along with the downregulation of iNK cells (p<0.0001). This translated to a significant reduction in the incidence and severity of COVID-19 in the Mw group (incidence risk ratio-0.15, p=0.0004). RNA-seq analysis at 6 months showed an upregulation of the ANK pathway genes and an enhanced ANK-mediated antibody-dependent cellular cytotoxicity (ADCC) signature. Thus, Mw was observed to have a salutary impact on the ANK cell profile and a long-term upregulation of ANK-ADCC pathways, which could have provided protection against COVID-19 in a non-immune high-risk population.
Collapse
Affiliation(s)
- Sarita Rani Jaiswal
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, New Delhi, India
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Jaganath Arunachalam
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, New Delhi, India
| | - Ashraf Saifullah
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi, India
| | - Rohit Lakhchaura
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi, India
| | - Dhanir Tailor
- Department of Cell, Development & Cancer Biology and Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Anupama Mehta
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi, India
| | - Gitali Bhagawati
- Department of Pathology and Microbiology, Dharamshila Narayana Super-speciality Hospital, New Delhi, India
| | - Hemamalini Aiyer
- Department of Pathology and Microbiology, Dharamshila Narayana Super-speciality Hospital, New Delhi, India
| | - Bakulesh Khamar
- Research & Development, Cadila Pharmaceuticals Ltd, Ahmedabad, India
| | - Sanjay V. Malhotra
- Department of Cell, Development & Cancer Biology and Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Suparno Chakrabarti
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, New Delhi, India
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi, India
| |
Collapse
|
43
|
Single-cell transcriptomics reveal a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19. Genome Med 2022; 14:46. [PMID: 35501841 PMCID: PMC9060844 DOI: 10.1186/s13073-022-01049-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/15/2022] [Indexed: 12/22/2022] Open
Abstract
Background Natural killer (NK) cells are innate lymphoid cells that mediate antitumour and antiviral responses. However, very little is known about how ageing influences human NK cells, especially at the single-cell level. Methods We applied single-cell sequencing (scRNA-seq) to human lymphocytes and NK cells from 4 young and 4 elderly individuals and then analysed the transcriptome data using Seurat. We detected the proportion and phenotype of NK cell subsets in peripheral blood samples from a total of 62 young and 52 elderly healthy donors by flow cytometry. We also used flow cytometry to examine the effector functions of NK cell subsets upon IFN-α/IL-12+IL-15/K562/IL-2 stimulation in vitro in peripheral blood samples from a total of 64 young and 63 elderly healthy donors. We finally studied and integrated single-cell transcriptomes of NK cells from 15 young and 41 elderly COVID-19 patients with those from 12 young and 6 elderly healthy control individuals to investigate the impacts of ageing on NK cell subsets in COVID-19 disease. Results We discovered a memory-like NK subpopulation (NK2) exhibiting the largest distribution change between elderly and young individuals among lymphocytes. Notably, we discovered a unique NK subset that was predominantly CD52+ NK2 cells (NK2.1). These memory-like NK2.1 cells accumulated with age, exhibited proinflammatory characteristics, and displayed a type I interferon response state. Integrative analyses of a large-cohort COVID-19 dataset and our datasets revealed that NK2.1 cells from elderly COVID-19 patients are enriched for type I interferon signalling, which is positively correlated with disease severity in COVID-19. Conclusions We identified a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19. Our results identify memory-like NK2.1 cells as a potential target for developing immunotherapies for infectious diseases and for addressing age-related dysfunctions of the immune system. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01049-3.
Collapse
|
44
|
Wantoch M, Wilson EB, Droop AP, Phillips SL, Coffey M, El‐Sherbiny YM, Holmes TD, Melcher AA, Wetherill LF, Cook GP. Oncolytic virus treatment differentially affects the CD56 dim and CD56 bright NK cell subsets in vivo and regulates a spectrum of human NK cell activity. Immunology 2022; 166:104-120. [PMID: 35156714 PMCID: PMC10357483 DOI: 10.1111/imm.13453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cells protect against intracellular infection and cancer. These properties are exploited in oncolytic virus (OV) therapy, where antiviral responses enhance anti-tumour immunity. We have analysed the mechanism by which reovirus, an oncolytic dsRNA virus, modulates human NK cell activity. Reovirus activates NK cells in a type I interferon (IFN-I) dependent manner, inducing STAT1 and STAT4 signalling in both CD56dim and CD56bright NK cell subsets. Gene expression profiling revealed the dominance of IFN-I responses and identified induction of genes associated with NK cell cytotoxicity and cell cycle progression, with distinct responses in the CD56dim and CD56bright subsets. However, reovirus treatment inhibited IL-15 induced NK cell proliferation in an IFN-I dependent manner and was associated with reduced AKT signalling. In vivo, human CD56dim and CD56bright NK cells responded with similar kinetics to reovirus treatment, but CD56bright NK cells were transiently lost from the peripheral circulation at the peak of the IFN-I response, suggestive of their redistribution to secondary lymphoid tissue. Coupled with the direct, OV-mediated killing of tumour cells, the activation of both CD56dim and CD56bright NK cells by antiviral pathways induces a spectrum of activity that includes the NK cell-mediated killing of tumour cells and modulation of adaptive responses via the trafficking of IFN-γ expressing CD56bright NK cells to lymph nodes.
Collapse
Affiliation(s)
- Michelle Wantoch
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Erica B. Wilson
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | - Alastair P. Droop
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Wellcome Trust Sanger InstituteCambridgeUK
| | - Sarah L. Phillips
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | | | - Yasser M. El‐Sherbiny
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
School of Science and TechnologyNottingham Trent UniversityNottinghamUK
- Present address:
Clinical Pathology DepartmentFaculty of MedicineMansoura UniversityMansouraEgypt
| | - Tim D. Holmes
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Alan A. Melcher
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Institute of Cancer ResearchLondonUK
| | - Laura F. Wetherill
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | - Graham P. Cook
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| |
Collapse
|
45
|
Tariq M, Kim DM. Hemorrhagic Fever with Renal Syndrome: Literature Review, Epidemiology, Clinical Picture and Pathogenesis. Infect Chemother 2022; 54:1-19. [PMID: 35384417 PMCID: PMC8987181 DOI: 10.3947/ic.2021.0148] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/30/2022] [Indexed: 02/06/2023] Open
Abstract
Hantaviruses can cause two types of infections in humans: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome. The old world hantaviruses, primarily Hantaan virus (HTNV), responsible for causing HFRS occurs endemically in Asia and Europe. Apodernus agraricus, a striped field mouse, is being considered as main host reservoir for HTNV. Infection in humans is typically accidental and occurs when virus-containing rodent excretions such as urine, feces, or saliva are aerosolized. The major clinical manifestations includes increased vascular permeability causing vascular leakage, acute kidney injury and coagulation abnormalities. The case fatality rate of HFRS varies around 5.0 - 10.0% depending on the causative viral agent. The direct effects of viral infection on endothelial cells, as well as the immunological response to the viral infection, have been suggested to play a key role in the pathogenesis of HFRS. This article summarizes the current knowledge of HFRS epidemiology in Korea and around the globe, etiology, host transmission, clinical presentation, pathogenesis, diagnostic techniques, treatment, and prevention.
Collapse
Affiliation(s)
- Misbah Tariq
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju, Korea.,Dow University of Health Sciences, Karachi, Pakistan
| | - Dong-Min Kim
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju, Korea.
| |
Collapse
|
46
|
Basílio-Queirós D, Venturini L, Luther-Wolf S, Dammann E, Ganser A, Stadler M, Falk CS, Weissinger EM. Adaptive NK cells undergo a dynamic modulation in response to human cytomegalovirus and recruit T cells in in vitro migration assays. Bone Marrow Transplant 2022; 57:712-720. [PMID: 35177828 PMCID: PMC9090630 DOI: 10.1038/s41409-022-01603-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022]
Abstract
Human cytomegalovirus (HCMV) reactivation remains a relevant complication after hematopoietic stem cell transplantation (HSCT) despite the great progress made in prophylaxis and treatment. Adaptive Natural Killer (NK) cells undergo a persistent reconfiguration in response to HCMV reactivation however, the exact role of adaptive NK cells in HCMV surveillance is currently unknown. We studied the relationship between HCMV reactivation and adaptive NK cells in 70 patients monitored weekly until day +100 after HSCT. Absolute cell counts of adaptive NK cells increased significantly after resolution of HCMV-reactivation compared to patients without reactivation. Patients with HCMV-reactivation had an early reconstitution of adaptive NK cells (“Responders”) and had mainly a single reactivation (75% Responders vs 48% Non-Responders). Adaptive NK cells eliminated HCMV-infected human foreskin fibroblasts (HFF) in vitro and recruited T cells in an in vitro transwell migration assay. An extensive cytokine/chemokine panel demonstrated strongly increased secretion of CXCL10/IP-10, IFN-α, IL-1α, IL-1β, IL-5, IL-7 and CCL4. Thus, adaptive NK cells may control viral spread and T cell expansion and survival during HCMV-reactivation. Taken together, we have demonstrated the potential of adaptive NK cells in the control of HCMV reactivation both by direct cytotoxicity and by recruitment of other immune cells. Human cytomegalovirus (HCMV) is a β-herpes virus that causes life-long infection as a latent virus in its host. Its prevalence depends on socioeconomic geographical factors and can affect 50–90% of the population depending on these factors. HCMV infection is usually asymptomatic in healthy individuals. However, in patients lacking proper immune responses, such as following hematopoietic stem cell transplant (HSCT), HCMV can reactivate and increase the mortality and morbidity rates in these patients. We set to investigate the role of a population of innate cells, the adaptive Natural Killer (NK) cells, in the response to HCMV reactivation after HSCT. Our findings revealed that adaptive NK cells are modulated in response to HCMV reactivation after HSCT. Furthermore, in addition to their ability to eliminate HCMV-infected target cells after in vitro expansion, we have also shown that adaptive NK cells recruit T cells in response to co-culture with HCMV-infected target cells and identified secreted factors possibly involved in this recruitment.
Collapse
Affiliation(s)
- Débora Basílio-Queirós
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany.
| | - Letizia Venturini
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Brunswick, Germany
| | - Susanne Luther-Wolf
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany
| | - Elke Dammann
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany
| | - Michael Stadler
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany
| | - Christine S Falk
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Brunswick, Germany.,Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
| | - Eva M Weissinger
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Transplantation Biology Laboratory, Hannover Medical School, Hanover, Germany.,German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Brunswick, Germany
| |
Collapse
|
47
|
La Sala L, Gandini S, Bruno A, Allevi R, Gallazzi M, Senesi P, Palano MT, Meregalli P, Longhi E, Sommese C, Luzi L, Trabucchi E. SARS-CoV-2 Immunization Orchestrates the Amplification of IFNγ-Producing T Cell and NK Cell Persistence. Front Immunol 2022; 13:798813. [PMID: 35237261 PMCID: PMC8882867 DOI: 10.3389/fimmu.2022.798813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
A successful vaccination would represent the most efficient means to control the pandemic of Coronavirus Disease-19 (COVID-19) that led to millions of deaths worldwide. Novel mRNA-based vaccines confer protective immunity against SARS-CoV-2, but whether immunity is immediately effective and how long it will remain in recipients are uncertain. We sought to assess the effectiveness of a two-dose regimen since the boosts are often delayed concerning the recommended intervals.MethodsA longitudinal cohort of healthcare workers (HCW, N = 46; 30.4% men; 69.6% women; mean age 36.05 ± 2.2 years) with no SARS-CoV-2 infection as documented by negative polymerase chain reaction was immunophenotyped in PBMC once a week for 4 weeks from the prime immunization (Pfizer mRNA BNT162b2) and had received 2 doses, to study the kinetic response.ResultsWe identified three risk groups to develop SARS-CoV-2 infection IgG+-based (late responders, R-; early responders, R+; pauci responders, PR). In all receipts, amplification of B cells and NK cells, including IL4-producing B cells and IL4-producing CD8+ T cells, is early stimulated by the vaccine. After the boost, we observed a growing increase of NK cells but a resistance of T cells, IFNγ-producing CD4+T cells, and IFNγ-producing NK cells. Also, hematologic parameters decline until the boost. The positive association of IFNγ-producing NK with IFNγ-producing CD4+T cells by the multiple mixed-effect model, adjusted for confounders (p = 0.036) as well as the correlation matrix (r = 0.6, p < 0.01), suggests a relationship between these two subsets of lymphocytes.ConclusionsThese findings introduce several concerns about policy delay in vaccination: based on immunological protection, B cells and the persistent increase of NK cells during 2 doses of the mRNA-based vaccine could provide further immune protection against the virus, while CD8+ T cells increased slightly only in the R+ and PR groups.
Collapse
Affiliation(s)
- Lucia La Sala
- Lab of Cardiovascular Diabetology and Dysmetabolic Disease, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- *Correspondence: Lucia La Sala,
| | - Sara Gandini
- Department of Experimental Oncology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Raffaele Allevi
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Matteo Gallazzi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Pamela Senesi
- Lab of Cardiovascular Diabetology and Dysmetabolic Disease, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Maria Teresa Palano
- Laboratory of Innate Immunity, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Paola Meregalli
- Lab of Cardiovascular Diabetology and Dysmetabolic Disease, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Ermanno Longhi
- Lab of Cardiovascular Diabetology and Dysmetabolic Disease, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Carmen Sommese
- Lab of Cardiovascular Diabetology and Dysmetabolic Disease, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Livio Luzi
- Lab of Cardiovascular Diabetology and Dysmetabolic Disease, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Emilio Trabucchi
- Lab of Cardiovascular Diabetology and Dysmetabolic Disease, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| |
Collapse
|
48
|
NK cell frequencies, function and correlates to vaccine outcome in BNT162b2 mRNA anti-SARS-CoV-2 vaccinated healthy and immunocompromised individuals. Mol Med 2022; 28:20. [PMID: 35135470 PMCID: PMC8822735 DOI: 10.1186/s10020-022-00443-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022] Open
Abstract
Adaptive immune responses have been studied extensively in the course of mRNA vaccination against COVID-19. Considerably fewer studies have assessed the effects on innate immune cells. Here, we characterized NK cells in healthy individuals and immunocompromised patients in the course of an anti-SARS-CoV-2 BNT162b2 mRNA prospective, open-label clinical vaccine trial. See trial registration description in notes. Results revealed preserved NK cell numbers, frequencies, subsets, phenotypes, and function as assessed through consecutive peripheral blood samplings at 0, 10, 21, and 35 days following vaccination. A positive correlation was observed between the frequency of NKG2C+ NK cells at baseline (Day 0) and anti-SARS-CoV-2 Ab titers following BNT162b2 mRNA vaccination at Day 35. The present results provide basic insights in regards to NK cells in the context of mRNA vaccination, and have relevance for future mRNA-based vaccinations against COVID-19, other viral infections, and cancer.Trial registration: The current study is based on clinical material from the COVAXID open-label, non-randomized prospective clinical trial registered at EudraCT and clinicaltrials.gov (no. 2021-000175-37). Description: https://clinicaltrials.gov/ct2/show/NCT04780659?term=2021-000175-37&draw=2&rank=1 .
Collapse
|
49
|
Abstract
Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we review recent insights into the role of NK cells in viral infections, with particular emphasis on human studies. We first discuss NK cells in the context of acute viral infections, with flavivirus and influenza virus infections as examples. Questions related to activation of NK cells, homing to infected tissues and the role of tissue-resident NK cells in acute viral infections are also addressed. Next, we discuss NK cells in the context of chronic viral infections with hepatitis C virus and HIV-1. Also covered is the role of adaptive-like NK cell expansions as well as the appearance of CD56- NK cells in the course of chronic infection. Specific emphasis is then placed in viral infections in patients with primary immunodeficiencies affecting NK cells. Not least, studies in this area have revealed an important role for NK cells in controlling several herpesvirus infections. Finally, we address new data with respect to the activation of NK cells and NK cell function in humans infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) giving rise to coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
50
|
Herrera L, Martin‐Inaraja M, Santos S, Inglés‐Ferrándiz M, Azkarate A, Perez‐Vaquero MA, Vesga MA, Vicario JL, Soria B, Solano C, De Paz R, Marcos A, Ferreras C, Perez‐Martinez A, Eguizabal C. Identifying SARS-CoV-2 'memory' NK cells from COVID-19 convalescent donors for adoptive cell therapy. Immunology 2022; 165:234-249. [PMID: 34775592 PMCID: PMC8652867 DOI: 10.1111/imm.13432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 disease is the manifestation of syndrome coronavirus 2 (SARS-CoV-2) infection, which is causing a worldwide pandemic. This disease can lead to multiple and different symptoms, being lymphopenia associated with severity one of the most persistent. Natural killer cells (NK cells) are part of the innate immune system, being fighting against virus-infected cells one of their key roles. In this study, we determined the phenotype of NK cells after COVID-19 and the main characteristic of SARS-CoV-2-specific-like NK population in the blood of convalescent donors. CD57+ NKG2C+ phenotype in SARS-CoV-2 convalescent donors indicates the presence of 'memory'/activated NK cells as it has been shown for cytomegalovirus infections. Although the existence of this population is donor dependent, its expression may be crucial for the specific response against SARS-CoV-2, so that, it gives us a tool for selecting the best donors to produce off-the-shelf living drug for cell therapy to treat COVID-19 patients under the RELEASE clinical trial (NCT04578210).
Collapse
Affiliation(s)
- Lara Herrera
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Myriam Martin‐Inaraja
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Silvia Santos
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Marta Inglés‐Ferrándiz
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Aida Azkarate
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Perez‐Vaquero
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Miguel A. Vesga
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| | - Jose L. Vicario
- HistocompatibilityCentro de Transfusión de MadridMadridSpain
| | - Bernat Soria
- Instituto de BioingenieríaUniversidad Miguel Hernández de ElcheAlicanteSpain
- Instituto de Investigación Sanitaria Hospital General y Universitario de Alicante (ISABIAL)AlicanteSpain
| | - Carlos Solano
- Hospital Clínico Universitario de Valencia/Instituto de Investigación Sanitaria INCLIVAValenciaSpain
- School of MedicineUniversity of ValenciaSpain
| | - Raquel De Paz
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Antonio Marcos
- Hematology DepartmentUniversity Hospital La PazMadridSpain
| | - Cristina Ferreras
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
| | - Antonio Perez‐Martinez
- Hospital La Paz Institute for Health ResearchIdiPAZUniversity Hospital La PazMadridSpain
- Pediatric Hemato‐Oncology DepartmentUniversity Hospital La PazMadridSpain
- Faculty of MedicineUniversidad Autónoma de MadridMadridSpain
| | - Cristina Eguizabal
- Research UnitBasque Center for Blood Transfusion and Human TissuesOsakidetza, GaldakaoSpain
- Cell Therapy, Stem Cells and Tissues GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
| |
Collapse
|