1
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400702. [PMID: 39248327 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Weiss SA, Huang AY, Fung ME, Martinez D, Chen ACY, LaSalle TJ, Miller BC, Scharer CD, Hegde M, Nguyen TH, Rowe JH, Osborn JF, Patterson DG, Sifnugel N, Mei-An Nolan C, Davidson RA, Schwartz MA, Bally APR, Neeld DK, LaFleur MW, Boss JM, Doench JG, Nicholas Haining W, Sharpe AH, Sen DR. Epigenetic tuning of PD-1 expression improves exhausted T cell function and viral control. Nat Immunol 2024; 25:1871-1883. [PMID: 39289557 PMCID: PMC11528687 DOI: 10.1038/s41590-024-01961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/08/2024] [Indexed: 09/19/2024]
Abstract
PD-1 is a key negative regulator of CD8+ T cell activation and is highly expressed by exhausted T cells in cancer and chronic viral infection. Although PD-1 blockade can improve viral and tumor control, physiological PD-1 expression prevents immunopathology and improves memory formation. The mechanisms driving high PD-1 expression in exhaustion are not well understood and could be critical to disentangling its beneficial and detrimental effects. Here, we functionally interrogated the epigenetic regulation of PD-1 using a mouse model with deletion of an exhaustion-specific PD-1 enhancer. Enhancer deletion exclusively alters PD-1 expression in CD8+ T cells in chronic infection, creating a 'sweet spot' of intermediate expression where T cell function is optimized compared to wild-type and Pdcd1-knockout cells. This permits improved control of chronic infection without additional immunopathology. Together, these results demonstrate that tuning PD-1 via epigenetic editing can reduce CD8+ T cell dysfunction while avoiding excess immunopathology.
Collapse
Affiliation(s)
- Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Amy Y Huang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Megan E Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniela Martinez
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Alex C Y Chen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas J LaSalle
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Brian C Miller
- Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Mudra Hegde
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thao H Nguyen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jared H Rowe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jossef F Osborn
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dillon G Patterson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Natalia Sifnugel
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - C Mei-An Nolan
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard A Davidson
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marc A Schwartz
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander P R Bally
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Dennis K Neeld
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Martin W LaFleur
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - John G Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - W Nicholas Haining
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- ArsenalBio, San Francisco, CA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Debattama R Sen
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024. [PMID: 39248154 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A D King
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Abdolmohammadi-Vahid S, Baradaran B, Adcock IM, Mortaz E. Immune checkpoint inhibitors and SARS-CoV2 infection. Int Immunopharmacol 2024; 137:112419. [PMID: 38865755 DOI: 10.1016/j.intimp.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) triggers coronavirus disease 2019 (COVID-19), which predominantly targets the respiratory tract. SARS-CoV-2 infection, especially severe COVID-19, is associated with dysregulated immune responses against the virus, including exaggerated inflammatory responses known as the cytokine storm, together with lymphocyte and NK cell dysfunction known as immune cell exhaustion. Overexpression of negative immune checkpoints such as PD-1 and CTLA-4 plays a considerable role in the dysfunction of immune cells upon SARS-CoV-2 infection. Blockade of these checkpoints has been suggested to improve the clinical outcome of COVID-19 patients by promoting potent immune responses against the virus. In the current review, we provide an overview of the potential of checkpoint inhibitors to induce potent immune responses against SARS-CoV-2 and improving the clinical outcome of severe COVID-19 patients.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA; Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Ngiow SF, Manne S, Huang YJ, Azar T, Chen Z, Mathew D, Chen Q, Khan O, Wu JE, Alcalde V, Flowers AJ, McClain S, Baxter AE, Kurachi M, Shi J, Huang AC, Giles JR, Sharpe AH, Vignali DAA, Wherry EJ. LAG-3 sustains TOX expression and regulates the CD94/NKG2-Qa-1b axis to govern exhausted CD8 T cell NK receptor expression and cytotoxicity. Cell 2024; 187:4336-4354.e19. [PMID: 39121847 PMCID: PMC11337978 DOI: 10.1016/j.cell.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/20/2023] [Accepted: 07/10/2024] [Indexed: 08/12/2024]
Abstract
Exhausted CD8 T (Tex) cells in chronic viral infection and cancer have sustained co-expression of inhibitory receptors (IRs). Tex cells can be reinvigorated by blocking IRs, such as PD-1, but synergistic reinvigoration and enhanced disease control can be achieved by co-targeting multiple IRs including PD-1 and LAG-3. To dissect the molecular changes intrinsic when these IR pathways are disrupted, we investigated the impact of loss of PD-1 and/or LAG-3 on Tex cells during chronic infection. These analyses revealed distinct roles of PD-1 and LAG-3 in regulating Tex cell proliferation and effector functions, respectively. Moreover, these studies identified an essential role for LAG-3 in sustaining TOX and Tex cell durability as well as a LAG-3-dependent circuit that generated a CD94/NKG2+ subset of Tex cells with enhanced cytotoxicity mediated by recognition of the stress ligand Qa-1b, with similar observations in humans. These analyses disentangle the non-redundant mechanisms of PD-1 and LAG-3 and their synergy in regulating Tex cells.
Collapse
Affiliation(s)
- Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinghui Jane Huang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tarek Azar
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingzhou Chen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Wu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victor Alcalde
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahron J Flowers
- Tara Miller Melanoma Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean McClain
- Tara Miller Melanoma Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E Baxter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Makoto Kurachi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Gene Lay Institute of Immunology and Inflammation at Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Hirsch T, Neyens D, Duhamel C, Bayard A, Vanhaver C, Luyckx M, Sala de Oyanguren F, Wildmann C, Dauguet N, Squifflet JL, Montiel V, Deschamps M, van der Bruggen P. IRF4 impedes human CD8 T cell function and promotes cell proliferation and PD-1 expression. Cell Rep 2024; 43:114401. [PMID: 38943641 DOI: 10.1016/j.celrep.2024.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Human CD8 tumor-infiltrating lymphocytes (TILs) with impaired effector functions and PD-1 expression are categorized as exhausted. However, the exhaustion-like features reported in TILs might stem from their activation rather than the consequence of T cell exhaustion itself. Using CRISPR-Cas9 and lentiviral overexpression in CD8 T cells from non-cancerous donors, we show that the T cell receptor (TCR)-induced transcription factor interferon regulatory factor 4 (IRF4) promotes cell proliferation and PD-1 expression and hampers effector functions and expression of nuclear factor κB (NF-κB)-regulated genes. While CD8 TILs with impaired interferon γ (IFNγ) production exhibit activation markers IRF4 and CD137 and exhaustion markers thymocyte selection associated high mobility group box (TOX) and PD-1, activated T cells in patients with COVID-19 do not demonstrate elevated levels of TOX and PD-1. These results confirm that IRF4+ TILs are exhausted rather than solely activated. Our study indicates, however, that PD-1 expression, low IFNγ production, and active cycling in TILs are all influenced by IRF4 upregulation after T cell activation.
Collapse
Affiliation(s)
- Thibault Hirsch
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Damien Neyens
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Céline Duhamel
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Alexandre Bayard
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Mathieu Luyckx
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Département de Gynécologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Claude Wildmann
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Luc Squifflet
- Département de Gynécologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Virginie Montiel
- Unité de Soins Intensifs, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Mélanie Deschamps
- Unité de Soins Intensifs, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre van der Bruggen
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
7
|
De George DJ, Jhala G, Selck C, Trivedi P, Brodnicki TC, Mackin L, Kay TW, Thomas HE, Krishnamurthy B. Altering β Cell Antigen Exposure to Exhausted CD8+ T Cells Prevents Autoimmune Diabetes in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1658-1669. [PMID: 38587315 DOI: 10.4049/jimmunol.2300785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
Chronic destruction of insulin-producing pancreatic β cells by T cells results in autoimmune diabetes. Similar to other chronic T cell-mediated pathologies, a role for T cell exhaustion has been identified in diabetes in humans and NOD mice. The development and differentiation of exhausted T cells depends on exposure to Ag. In this study, we manipulated β cell Ag presentation to target exhausted autoreactive T cells by inhibiting IFN-γ-mediated MHC class I upregulation or by ectopically expressing the β cell Ag IGRP under the MHC class II promotor in the NOD8.3 model. Islet PD-1+TIM3+CD8+ (terminally exhausted [TEX]) cells were primary producers of islet granzyme B and CD107a, suggestive of cells that have entered the exhaustion program yet maintained cytotoxic capacity. Loss of IFN-γ-mediated β cell MHC class I upregulation correlated with a significant reduction in islet TEX cells and diabetes protection in NOD8.3 mice. In NOD.TII/8.3 mice with IGRP expression induced in APCs, IGRP-reactive T cells remained exposed to high levels of IGRP in the islets and periphery. Consequently, functionally exhausted TEX cells, with reduced granzyme B expression, were significantly increased in these mice and this correlated with diabetes protection. These results indicate that intermediate Ag exposure in wild-type NOD8.3 islets allows T cells to enter the exhaustion program without becoming functionally exhausted. Moreover, Ag exposure can be manipulated to target this key cytotoxic population either by limiting the generation of cytotoxic TIM3+ cells or by driving their functional exhaustion, with both resulting in diabetes protection.
Collapse
Affiliation(s)
- David J De George
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Claudia Selck
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Prerak Trivedi
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Thomas C Brodnicki
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Leanne Mackin
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
| | - Thomas W Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
8
|
Anidi IU, Sakai S, Brooks K, Fling SP, Wagner MJ, Lurain K, Lindestam Arlehamn CS, Sette A, Knox KS, Brenchley JM, Uldrick TS, Sharon E, Barber DL. Exacerbation of CMV and Nontuberculous Mycobacterial Infections Following PD-1 Blockade for HIV-Associated Kaposi Sarcoma. Open Forum Infect Dis 2024; 11:ofae183. [PMID: 38680611 PMCID: PMC11049581 DOI: 10.1093/ofid/ofae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Blockade of the co-inhibitory receptor PD-1 enhances antitumor responses by boosting the function of antigen-specific T cells. Although rare, PD-1 blockade in patients with cancer can lead to exacerbation of infection-associated pathology. Here, we detail the case of a 38-year-old man who was enrolled in a clinical trial for assessment of the safety and activity of anti-PD-1 therapy for Kaposi sarcoma in people with HIV well-controlled on antiretroviral therapy. Less than a week after receiving the first dose of anti-PD-1 antibody (pembrolizumab), he presented with severe abdominal pain associated with sudden exacerbations of preexisting cytomegalovirus (CMV) enteritis and nontuberculous mycobacterial mesenteric lymphadenitis. Plasma biomarkers of gastrointestinal tract damage were highly elevated compared with healthy controls, consistent with HIV-associated loss of gut epithelial barrier integrity. Moreover, CMV-specific CD8 T cells expressed high levels of PD-1, and 7 days following PD-1 blockade, there was an increase in the frequency of activated CD38+ Ki67+ CMV-specific CD8 T cells. This case highlights the potential for PD-1 blockade to drive rapid exacerbations of inflammatory symptoms when administered to individuals harboring multiple unresolved infections.
Collapse
Affiliation(s)
- Ifeanyichukwu U Anidi
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shunsuke Sakai
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven P Fling
- Cancer Immunotherapy Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael J Wagner
- Division of Medical Oncology, University of Washington and Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cecilia S Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Kenneth S Knox
- Department of Internal Medicine, College of Medicine Phoenix, University of Arizona Health Sciences, Phoenix, Arizona, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas S Uldrick
- Cancer Immunotherapy Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Elad Sharon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Daniel L Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Chen Y, Gao J, Ma M, Wang K, Liu F, Yang F, Zou X, Cheng Z, Wu D. The potential role of CMC1 as an immunometabolic checkpoint in T cell immunity. Oncoimmunology 2024; 13:2344905. [PMID: 38659649 PMCID: PMC11042068 DOI: 10.1080/2162402x.2024.2344905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
T cell immunity is critical for human defensive immune response. Exploring the key molecules during the process provides new targets for T cell-based immunotherapies. CMC1 is a mitochondrial electron transport chain (ETC) complex IV chaperon protein. By establishing in-vitro cell culture system and Cmc1 gene knock out mice, we evaluated the role of CMC1 in T cell activation and differentiation. The B16-OVA tumor model was used to test the possibility of targeting CMC1 for improving T cell anti-tumor immunity. We identified CMC1 as a positive regulator in CD8+T cells activation and terminal differentiation. Meanwhile, we found that CMC1 increasingly expressed in exhausted T (Tex) cells. Genetic lost of Cmc1 inhibits the development of CD8+T cell exhaustion in mice. Instead, deletion of Cmc1 in T cells prompts cells to differentiate into metabolically and functionally quiescent cells with increased memory-like features and tolerance to cell death upon repetitive or prolonged T cell receptor (TCR) stimulation. Further, the in-vitro mechanistic study revealed that environmental lactate enhances CMC1 expression by inducing USP7, mediated stabilization and de-ubiquitination of CMC1 protein, in which a mechanism we propose here that the lactate-enriched tumor microenvironment (TME) drives CD8+TILs dysfunction through CMC1 regulatory effects on T cells. Taken together, our study unraveled the novel role of CMC1 as a T cell regulator and its possibility to be utilized for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yuwen Chen
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jie Gao
- Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingyue Ma
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wang
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fangming Liu
- Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feiyu Yang
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhouli Cheng
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Duojiao Wu
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Maymí VI, Zhu H, Jager M, Johnson S, Getchell R, Casey JW, Grenier JK, Wherry EJ, Smith NL, Grimson A, Rudd BD. Neonatal CD8+ T Cells Resist Exhaustion during Chronic Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:834-843. [PMID: 38231127 PMCID: PMC11298781 DOI: 10.4049/jimmunol.2300396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Chronic viral infections, such as HIV and hepatitis C virus, represent a major public health problem. Although it is well understood that neonates and adults respond differently to chronic viral infections, the underlying mechanisms remain unknown. In this study, we transferred neonatal and adult CD8+ T cells into a mouse model of chronic infection (lymphocytic choriomeningitis virus clone 13) and dissected out the key cell-intrinsic differences that alter their ability to protect the host. Interestingly, we found that neonatal CD8+ T cells preferentially became effector cells early in chronic infection compared with adult CD8+ T cells and expressed higher levels of genes associated with cell migration and effector cell differentiation. During the chronic phase of infection, the neonatal cells retained more immune functionality and expressed lower levels of surface markers and genes related to exhaustion. Because the neonatal cells protect from viral replication early in chronic infection, the altered differentiation trajectories of neonatal and adult CD8+ T cells is functionally significant. Together, our work demonstrates how cell-intrinsic differences between neonatal and adult CD8+ T cells influence key cell fate decisions during chronic infection.
Collapse
Affiliation(s)
- Viviana I. Maymí
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Hongya Zhu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mason Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shawn Johnson
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Rodman Getchell
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - James W. Casey
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jennifer K. Grenier
- Transcriptional Regulation and Expression Facility, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - E. John Wherry
- Institute for Immunology and Immune Health, and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Norah L. Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Spiteri AG, Suprunenko T, Cutts E, Suen A, Ashhurst TM, Viengkhou B, King NJC, Hofer MJ. CD8 + T Cells Mediate Lethal Lung Pathology in the Absence of PD-L1 and Type I Interferon Signalling following LCMV Infection. Viruses 2024; 16:390. [PMID: 38543756 PMCID: PMC10975266 DOI: 10.3390/v16030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 05/23/2024] Open
Abstract
CD8+ T cells are critical to the adaptive immune response against viral pathogens. However, overwhelming antigen exposure can result in their exhaustion, characterised by reduced effector function, failure to clear virus, and the upregulation of inhibitory receptors, including programmed cell death 1 (PD-1). However, exhausted T cell responses can be "re-invigorated" by inhibiting PD-1 or the primary ligand of PD-1: PD-L1. Further, the absence of the type I interferon receptor IFNAR1 also results in T cell exhaustion and virus persistence in lymphocytic choriomeningitis virus Armstrong (LCMV-Arm)-infected mice. In this study, utilizing single- and double-knockout mice, we aimed to determine whether ablation of PD-1 could restore T cell functionality in the absence of IFNAR1 signalling in LCMV-Arm-infected mice. Surprisingly, this did not re-invigorate the T cell response and instead, it converted chronic LCMV-Arm infection into a lethal disease characterized by severe lung inflammation with an infiltration of neutrophils and T cells. Depletion of CD8+ T cells, but not neutrophils, rescued mice from lethal disease, demonstrating that IFNAR1 is required to prevent T cell exhaustion and virus persistence in LCMV-Arm infection, and in the absence of IFNAR1, PD-L1 is required for survival. This reveals an important interplay between IFNAR1 and PD-L1 with implications for therapeutics targeting these pathways.
Collapse
Affiliation(s)
- Alanna G. Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Tamara Suprunenko
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Erin Cutts
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Andrew Suen
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Thomas M. Ashhurst
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW 2050, Australia
| | - Barney Viengkhou
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Nicholas J. C. King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW 2050, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2050, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2050, Australia
| | - Markus J. Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2050, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
12
|
Mostaghim A, Minkove S, Aguilar-Company J, Ruiz-Camps I, Eremiev-Eremiev S, Dettorre GM, Fox L, Tondini C, Brunet J, Carmona-García MC, Lambertini M, Bower M, Newsom-Davis T, Sharkey R, Pria AD, Rossi M, Plaja A, Salazar R, Sureda A, Prat A, Michalarea V, Van Hemelrijck M, Sita-Lumsden A, Bertuzzi A, Rimassa L, Rossi S, Rizzo G, Pedrazzoli P, Lee AJ, Murphy C, Belessiotis K, Diamantis N, Mukherjee U, Pommeret F, Stoclin A, Martinez-Vila C, Bruna R, Gaidano G, D'Avanzo F, Gennari A, Athale J, Eichacker P, Pinato DJ, Torabi-Parizi P, Cortellini A. Previous immune checkpoint inhibitor therapy is associated with decreased COVID-19-related hospitalizations and complications in patients with cancer: Results of a propensity-matched analysis of the OnCovid registry. Int J Infect Dis 2024; 139:13-20. [PMID: 38029831 DOI: 10.1016/j.ijid.2023.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVES To date, studies have not provided definitive answers regarding whether previous immune checkpoint inhibitor (ICI) treatment alters outcomes for cancer patients with COVID-19. METHODS The OnCovid registry (NCT04393974) was searched from February 27, 2020, to January 31, 2022, for patients who received systemic anti-cancer therapy in the 4 weeks before laboratory-confirmed COVID-19 diagnosis. Propensity-score matching using country, vaccination status, primary tumor type, sex, age, comorbidity burden, tumor stage, and remission status investigated differences in predefined clinical outcomes comparing those who had or had not received ICIs. RESULTS Of 3523 patients screened, 137 ICI-only and 1378 non-ICI met inclusion criteria. Before matching, ICI patients were older, male, enrolled at centers in Italy, and had histories of smoking, thoracic cancers, advanced cancer stages, and active malignancies (P ≤0.02). After matching, there were 120 ICI and 322 non-ICI patients. ICI patients had no differences (odds ratio: 95% CI) in presenting COVID-19 symptoms (0.69: 0.37-1.28), receipt of COVID-specific therapy (0.88: 0.54-1.41), 14-day (0.95: 0.56-1.61), or 28-day (0.79: 0.48-1.29) mortalities. However, ICI patients required less COVID-19-related hospitalization (0.37: 0.21-0.67) and oxygen therapy (0.51: 0.31-0.83) and developed fewer complications (0.57: 0.36-0.92). CONCLUSION In this propensity-score matched analysis, previous ICI therapy did not worsen and potentially improved COVID-19 outcomes in patients with cancer.
Collapse
Affiliation(s)
- Anahita Mostaghim
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, USA; Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, USA
| | - Samuel Minkove
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, USA
| | - Juan Aguilar-Company
- Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain; Infectious Diseases, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Isabel Ruiz-Camps
- Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain; Infectious Diseases, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Simeon Eremiev-Eremiev
- Medical Oncology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain; Infectious Diseases, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Gino M Dettorre
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, USA
| | - Laura Fox
- Department of Hematology, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Barcelona, Spain
| | - Carlo Tondini
- Oncology Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Joan Brunet
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Josep Trueta, Girona, Spain
| | - MCarmen Carmona-García
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Josep Trueta, Girona, Spain
| | - Matteo Lambertini
- Medical Oncology Department, U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Mark Bower
- Department of Oncology and National Centre for HIV Malignancy, Chelsea and Westminster Hospital, London, UK
| | - Thomas Newsom-Davis
- Department of Oncology and National Centre for HIV Malignancy, Chelsea and Westminster Hospital, London, UK
| | - Rachel Sharkey
- Department of Oncology and National Centre for HIV Malignancy, Chelsea and Westminster Hospital, London, UK
| | - Alessia Dalla Pria
- Department of Oncology and National Centre for HIV Malignancy, Chelsea and Westminster Hospital, London, UK
| | - Maura Rossi
- Oncology Unit, Azienda Ospedaliera "SS Antonio e Biagio e Cesare Arrigo", Alessandria, Italy
| | - Andrea Plaja
- Medical Oncology Department, B-ARGO Group, IGTP, Catalan Institute of Oncology-Badalona, Spain
| | - Ramon Salazar
- Department of Medical Oncology, ICO L'Hospitalet, Oncobell Program (IDIBELL), CIBERONC, Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Sureda
- Haematology Department, ICO Hospitalet, Hospitalet de Llobregat, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Aleix Prat
- Department of Medical Oncology, Hospital Clinic, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Vasiliki Michalarea
- Medical Oncology, Guy's and St Thomas' NHS Foundation Trust (GSTT), London, UK
| | - Mieke Van Hemelrijck
- Medical Oncology, Guy's and St Thomas' NHS Foundation Trust (GSTT), London, UK; Translational Oncology and Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Ailsa Sita-Lumsden
- Medical Oncology, Guy's and St Thomas' NHS Foundation Trust (GSTT), London, UK
| | - Alexia Bertuzzi
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Lorenza Rimassa
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Milan, Italy
| | - Sabrina Rossi
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Gianpiero Rizzo
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Alvin Jx Lee
- Cancer Division, University College London Hospital, London, UK
| | - Cian Murphy
- Cancer Division, University College London Hospital, London, UK
| | | | | | - Uma Mukherjee
- Medical Oncology, Barts Health NHS Trust, London, UK
| | - Fanny Pommeret
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| | - Annabelle Stoclin
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| | | | - Riccardo Bruna
- Division of Haematology, Department of Translational Medicine, University of Piemonte Orientale and Ospedale Maggiore della Carità Hospital, Novara, Italy
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational Medicine, University of Piemonte Orientale and Ospedale Maggiore della Carità Hospital, Novara, Italy
| | - Francesca D'Avanzo
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Janhavi Athale
- Critical Care Medicine, Mayo Clinic Arizona, Phoenix, USA
| | - Peter Eichacker
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, USA
| | - David J Pinato
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Department of Surgery and Cancer, Imperial College of London, Hammersmith Hospital Campus, London, UK
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center and National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alessio Cortellini
- Department of Surgery and Cancer, Imperial College of London, Hammersmith Hospital Campus, London, UK; Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Roma, Italy.
| |
Collapse
|
13
|
Li Q, Zhang C, Xu G, Shang X, Nan X, Li Y, Liu J, Hong Y, Wang Q, Peng G. Astragalus polysaccharide ameliorates CD8 + T cell dysfunction through STAT3/Gal-3/LAG3 pathway in inflammation-induced colorectal cancer. Biomed Pharmacother 2024; 171:116172. [PMID: 38278025 DOI: 10.1016/j.biopha.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024] Open
Abstract
Chronic inflammation can promote cancer development as observed in inflammation-induced colorectal cancer (CRC). However, the poor treatment outcomes emphasize the need for effective treatment. Astragalus polysaccharide (APS), a vital component of the natural drug Astragalus, has anti-tumor effects by inhibiting cancer cell proliferation and enhancing immune function. In this study, we found that APS effectively suppressed CRC development through activating CD8+ T cells and reversing its inhibitory state in the tumor microenvironment (TME) of AOM/DSS inflammation-induced CRC mice. Network pharmacology and clinical databases suggested that the STAT3/ Galectin-3(Gal-3)/LAG3 pathway might be APS's potential target for treating CRC and associated with CD8+ T cell dysfunction. In vivo experiments showed that APS significantly reduced phosphorylated STAT3 and Gal-3 levels in tumor cells, as well as LAG3 in CD8+ T cells. Co-culture experiments with MC38 and CD8+ T cells demonstrated that APS decreased the expression of co-inhibitory receptor LAG3 in CD8+ T cells by targeting STAT3/Gal-3 in MC38 cells. Mechanism investigations revealed that APS specifically improved CD8+ T cell function through modulation of the STAT3/Gal-3/LAG3 pathway to inhibit CRC development, providing insights for future clinical development of natural anti-tumor drugs and immunotherapies as a novel strategy combined with immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Qiuyi Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Chonghao Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Guichuan Xu
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xuekai Shang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xinmei Nan
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yalan Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiajing Liu
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yanfei Hong
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Qing Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| | - Guiying Peng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
14
|
Hou B, Hu Y, Zhu Y, Wang X, Li W, Tang J, Jia X, Wang J, Cong Y, Quan M, Yang H, Zheng H, Bao Y, Chen XL, Wang HR, Xu B, Gascoigne NRJ, Fu G. SHP-1 Regulates CD8+ T Cell Effector Function but Plays a Subtle Role with SHP-2 in T Cell Exhaustion Due to a Stage-Specific Nonredundant Functional Relay. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:397-409. [PMID: 38088801 DOI: 10.4049/jimmunol.2300462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 01/18/2024]
Abstract
SHP-1 (Src homology region 2 domain-containing phosphatase 1) is a well-known negative regulator of T cells, whereas its close homolog SHP-2 is the long-recognized main signaling mediator of the PD-1 inhibitory pathway. However, recent studies have challenged the requirement of SHP-2 in PD-1 signaling, and follow-up studies further questioned the alternative idea that SHP-1 may replace SHP-2 in its absence. In this study, we systematically investigate the role of SHP-1 alone or jointly with SHP-2 in CD8+ T cells in a series of gene knockout mice. We show that although SHP-1 negatively regulates CD8+ T cell effector function during acute lymphocytic choriomeningitis virus (LCMV) infection, it is dispensable for CD8+ T cell exhaustion during chronic LCMV infection. Moreover, in contrast to the mortality of PD-1 knockout mice upon chronic LCMV infection, mice double deficient for SHP-1 and SHP-2 in CD8+ T cells survived without immunopathology. Importantly, CD8+ T cells lacking both phosphatases still differentiate into exhausted cells and respond to PD-1 blockade. Finally, we found that SHP-1 and SHP-2 suppressed effector CD8+ T cell expansion at the early and late stages, respectively, during chronic LCMV infection.
Collapse
Affiliation(s)
- Bowen Hou
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yanyan Hu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhen Zhu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaocui Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Wanyun Li
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jian Tang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Xian Jia
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jiayu Wang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yu Cong
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Minxue Quan
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hongying Yang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yuzhou Bao
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiao Lei Chen
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hong-Rui Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
- Department of Hematology, The First Affiliated Hospital and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Cancer Research Center of Xiamen University, Xiamen, China
- Laboratory Animal Center, Xiamen University; Xiamen, China
| |
Collapse
|
15
|
Small A, Lowe K, Wechalekar MD. Immune checkpoints in rheumatoid arthritis: progress and promise. Front Immunol 2023; 14:1285554. [PMID: 38077329 PMCID: PMC10704353 DOI: 10.3389/fimmu.2023.1285554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune inflammatory conditions, and while the mechanisms driving pathogenesis are yet to be completely elucidated, self-reactive T cells and immune checkpoint pathways have a clear role. In this review, we provide an overview of the importance of checkpoint pathways in the T cell response and describe the involvement of these in RA development and progression. We discuss the relationship between immune checkpoint therapy in cancer and autoimmune adverse events, draw parallels with the involvement of immune checkpoints in RA pathobiology, summarise emerging research into some of the lesser-known pathways, and the potential of targeting checkpoint-related pathways in future treatment approaches to RA management.
Collapse
Affiliation(s)
- Annabelle Small
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Katie Lowe
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Mihir D Wechalekar
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Rheumatology, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
16
|
Li J, Che M, Zhang B, Zhao K, Wan C, Yang K. The association between the neuroendocrine system and the tumor immune microenvironment: Emerging directions for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2023; 1878:189007. [PMID: 37907132 DOI: 10.1016/j.bbcan.2023.189007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
This review summarizes emerging evidence that the neuroendocrine system is involved in the regulation of the tumor immune microenvironment (TIME) to influence cancer progression. The basis of the interaction between the neuroendocrine system and cancer is usually achieved by the infiltration of nerve fibers into the tumor tissue, which is called neurogenesis; the migration of cancer cells toward nerve fibers, which is called perineural invasion (PNI), and the neurotransmitters. In addition to the traditional role of neurotransmitters in neural communications, neurotransmitters are increasingly recognized as mediators of crosstalk between the nervous system, cancer cells, and the immune system. Recent studies have revealed that not only nerve fibers but also cancer cells and immune cells within the TIME can secrete neurotransmitters, exerting influence on both neurons and themselves. Furthermore, immune cells infiltrating the tumor environment have been found to express a wide array of neurotransmitter receptors. Hence, targeting these neurotransmitter receptors may promote the activity of immune cells in the tumor microenvironment and exert anti-tumor immunity. Herein, we discuss the crosstalk between the neuroendocrine system and tumor-infiltrating immune cells, which may provide feasible cancer immunotherapy options.
Collapse
Affiliation(s)
- Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengjie Che
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kewei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
Giles JR, Globig AM, Kaech SM, Wherry EJ. CD8 + T cells in the cancer-immunity cycle. Immunity 2023; 56:2231-2253. [PMID: 37820583 PMCID: PMC11237652 DOI: 10.1016/j.immuni.2023.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
CD8+ T cells are end effectors of cancer immunity. Most forms of effective cancer immunotherapy involve CD8+ T cell effector function. Here, we review the current understanding of T cell function in cancer, focusing on key CD8+ T cell subtypes and states. We discuss factors that influence CD8+ T cell differentiation and function in cancer through a framework that incorporates the classic three-signal model and a fourth signal-metabolism-and also consider the impact of the tumor microenvironment from a T cell perspective. We argue for the notion of immunotherapies as "pro-drugs" that act to augment or modulate T cells, which ultimately serve as the drug in vivo, and for the importance of overall immune health in cancer treatment and prevention. The progress in understanding T cell function in cancer has and will continue to improve harnessing of the immune system across broader tumor types to benefit more patients.
Collapse
Affiliation(s)
- Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Khadri L, Ziraksaz MH, Barekzai AB, Ghauri B. T cell responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:183-217. [PMID: 38237986 DOI: 10.1016/bs.pmbts.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides a comprehensive analysis of T cell responses in COVID-19, focusing on T cell differentiation, specificity, and functional characteristics during SARS-CoV-2 infection. The differentiation of T cells in COVID-19 is explored, highlighting the key factors that influence T cell fate and effector functions. The immunology of the spike protein, a critical component of SARS-CoV-2, is discussed in detail, emphasizing its role in driving T-cell responses. The cellular immune responses against SARS-CoV-2 during acute infection are examined, including the specificity, phenotype, and functional attributes of SARS-CoV-2-specific T-cell responses. Furthermore, the chapter explores T-cell cross-recognition against other human coronaviruses (HCoVs) and the mechanisms of immune regulation mediated by spike proteins. This includes the induction of regulation through the innate immune system, the activation of self-spike protein-cross-reactive regulatory T cells, and the impact of self-tolerance on the regulation of spike proteins. The chapter investigates T cell responses to self-spike proteins and their implications in disease. The role of spike proteins as immunological targets in the context of COVID-19 is examined, shedding light on potential therapeutic interventions and clinical trials in autoimmune diseases. In conclusion, this chapter provides a comprehensive understanding of T cell responses in COVID-19, highlighting their differentiation, immune regulation, and clinical implications. This knowledge contributes to the development of targeted immunotherapies, vaccine strategies, and diagnostic approaches for COVID-19 and other related diseases.
Collapse
Affiliation(s)
- Laiqha Khadri
- Department of Biotechnology, Immune Inspired, Bangalore.
| | | | | | - Baber Ghauri
- Department of Biotechnology, Immune Inspired, Bangalore
| |
Collapse
|
19
|
Friebus-Kardash J, Christ TC, Dietlein N, Elwy A, Abdelrahman H, Holnsteiner L, Hu Z, Rodewald HR, Lang KS. Usp22 Deficiency Leads to Downregulation of PD-L1 and Pathological Activation of CD8 + T Cells and Causes Immunopathology in Response to Acute LCMV Infection. Vaccines (Basel) 2023; 11:1563. [PMID: 37896966 PMCID: PMC10610587 DOI: 10.3390/vaccines11101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Ubiquitin-specific peptidase 22 (Usp22) cleaves ubiquitin moieties from numerous proteins, including histone H2B and transcription factors. Recently, it was reported that Usp22 acts as a negative regulator of interferon-dependent responses. In the current study, we investigated the role of Usp22 deficiency in acute viral infection with lymphocytic choriomeningitis virus (LCMV). We found that the lack of Usp22 on bone marrow-derived cells (Usp22fl/fl Vav1-Cre mice) reduced the induction of type I and II interferons. A limited type I interferon response did not influence virus replication. However, restricted expression of PD-L1 led to increased frequencies of functional virus-specific CD8+ T cells and rapid death of Usp22-deficient mice. CD8+ T cell depletion experiments revealed that accelerated CD8+ T cells were responsible for enhanced lethality in Usp22 deficient mice. In conclusion, we found that the lack of Usp22 generated a pathological CD8+ T cell response, which gave rise to severe disease in mice.
Collapse
Affiliation(s)
- Justa Friebus-Kardash
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Theresa Charlotte Christ
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Nikolaus Dietlein
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; (N.D.)
| | - Abdelrahman Elwy
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Hossam Abdelrahman
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Lisa Holnsteiner
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Zhongwen Hu
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; (N.D.)
| | - Karl Sebastian Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (T.C.C.); (A.E.); (H.A.); (L.H.); (Z.H.); (K.S.L.)
| |
Collapse
|
20
|
Donini C, Galvagno F, Rotolo R, Massa A, Merlini A, Scagliotti GV, Novello S, Bironzo P, Leuci V, Sangiolo D. PD-1 receptor outside the main paradigm: tumour-intrinsic role and clinical implications for checkpoint blockade. Br J Cancer 2023; 129:1409-1416. [PMID: 37474722 PMCID: PMC10628145 DOI: 10.1038/s41416-023-02363-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Blocking the inhibitory receptor PD-1 on antitumour T lymphocytes is the main rationale underlying the clinical successes of cancer immunotherapies with checkpoint inhibitor (CI) antibodies (Abs). Besides this main paradigm, there is recent evidence of unconventional and "ectopic" signalling pathways of PD-1, found to be expressed not only by lymphocytes but also by peculiar subsets of cancer cells. Several groups reported on the tumour-intrinsic role of PD-1 in multiple settings, including melanoma, hepatocellular, thyroid, lung, pancreatic and colorectal cancer. Its functional activity appears intriguing but is not yet conclusively clarified. The initial studies are, in fact, supporting either a pro-tumourigenic role involved in chemoresistance and disease relapse or, oppositely, tumour-suppressive functions. The implications connected to the therapeutic administration of PD-1 blocking Abs are, of course, potentially relevant, respectively inferring an anti-tumour activity contrasting PD-1+ tumourigenic cells or a pro-tumoural effect by tackling PD-1 tumour suppressive signalling. The progressive exploration and consideration of this new paradigm of tumour-intrinsic PD-1 signalling may improve the interpretation of the observed clinical effects by anti-PD-1 Abs, likely resulting from multiple cumulative activities, and might provide important bases for dedicated clinical studies that take into account such composite roles of PD-1.
Collapse
Affiliation(s)
- C Donini
- Department of Oncology, University of Turin, Turin, Italy
| | - F Galvagno
- Department of Oncology, University of Turin, Turin, Italy
| | - R Rotolo
- Department of Oncology, University of Turin, Turin, Italy
| | - A Massa
- Department of Oncology, University of Turin, Turin, Italy
| | - A Merlini
- Department of Oncology, University of Turin, Turin, Italy
| | - G V Scagliotti
- Department of Oncology, University of Turin, Turin, Italy
| | - S Novello
- Department of Oncology, University of Turin, Turin, Italy
| | - P Bironzo
- Department of Oncology, University of Turin, Turin, Italy
| | - V Leuci
- Department of Oncology, University of Turin, Turin, Italy
| | - D Sangiolo
- Department of Oncology, University of Turin, Turin, Italy.
| |
Collapse
|
21
|
Lan X, Zebley CC, Youngblood B. Cellular and molecular waypoints along the path of T cell exhaustion. Sci Immunol 2023; 8:eadg3868. [PMID: 37656775 PMCID: PMC10618911 DOI: 10.1126/sciimmunol.adg3868] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Thirty years of foundational research investigating molecular and cellular mechanisms promoting T cell exhaustion are now enabling rational design of T cell-based therapies for the treatment of chronic infections and cancer. Once described as a static cell fate, it is now well appreciated that the developmental path toward exhaustion is composed of a heterogeneous pool of cells with varying degrees of effector potential that ultimately converge on a terminally differentiated state. Recent description of the developmental stages along the differentiation trajectory of T cell exhaustion has provided insight into past immunotherapeutic success and future opportunities. Here, we discuss the hallmarks of distinct developmental stages occurring along the path to T cell dysfunction and the impact of these discrete CD8+ T cell fates on cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
22
|
Tian W, Qin G, Jia M, Li W, Cai W, Wang H, Zhao Y, Bao X, Wei W, Zhang Y, Shao Q. Hierarchical transcriptional network governing heterogeneous T cell exhaustion and its implications for immune checkpoint blockade. Front Immunol 2023; 14:1198551. [PMID: 37398674 PMCID: PMC10311999 DOI: 10.3389/fimmu.2023.1198551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
The fundamental principle of immune checkpoint blockade (ICB) is to protect tumor-infiltrating T cells from being exhausted. Despite the remarkable success achieved by ICB treatment, only a small group of patients benefit from it. Characterized by a hypofunctional state with the expression of multiple inhibitory receptors, exhausted T (Tex) cells are a major obstacle in improving ICB. T cell exhaustion is a progressive process which adapts to persistent antigen stimulation in chronic infections and cancers. In this review, we elucidate the heterogeneity of Tex cells and offer new insights into the hierarchical transcriptional regulation of T cell exhaustion. Factors and signaling pathways that induce and promote exhaustion are also summarized. Moreover, we review the epigenetic and metabolic alterations of Tex cells and discuss how PD-1 signaling affects the balance between T cell activation and exhaustion, aiming to provide more therapeutic targets for applications of combinational immunotherapies.
Collapse
Affiliation(s)
- Weihong Tian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Gaofeng Qin
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Miaomiao Jia
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Wuhao Li
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weili Cai
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yangjing Zhao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| | - Wangzhi Wei
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu Zhang
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
23
|
Soto-Heredero G, Gómez de Las Heras MM, Escrig-Larena JI, Mittelbrunn M. Extremely Differentiated T Cell Subsets Contribute to Tissue Deterioration During Aging. Annu Rev Immunol 2023; 41:181-205. [PMID: 37126417 DOI: 10.1146/annurev-immunol-101721-064501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.
Collapse
Affiliation(s)
- Gonzalo Soto-Heredero
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - J Ignacio Escrig-Larena
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
| | - María Mittelbrunn
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
24
|
Zhang T, Yu-Jing L, Ma T. Role of regulation of PD-1 and PD-L1 expression in sepsis. Front Immunol 2023; 14:1029438. [PMID: 36969168 PMCID: PMC10035551 DOI: 10.3389/fimmu.2023.1029438] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Long term immunosuppression is problematic during sepsis. The PD-1 and PD-L1 immune checkpoint proteins have potent immunosuppressive functions. Recent studies have revealed several features of PD-1 and PD-L1 and their roles in sepsis. Here, we summarize the overall findings of PD-1 and PD-L1 by first reviewing the biological features of PD-1 and PD-L1 and then discussing the mechanisms that control the expression of PD-1 and PD-L1. We then review the functions of PD-1 and PD-L1 in physiological settings and further discuss PD-1 and PD-L1 in sepsis, including their involvement in several sepsis-related processes and their potential therapeutic relevance in sepsis. In general, PD-1 and PD-L1 have critical roles in sepsis, indicating that their regulation may be a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
25
|
Li Q, Wei S, Li Y, Wu F, Qin X, Li Z, Li J, Chen C. Blocking of programmed cell death-ligand 1 (PD-L1) expressed on endothelial cells promoted the recruitment of CD8 +IFN-γ + T cells in atherosclerosis. Inflamm Res 2023; 72:783-796. [PMID: 36867228 DOI: 10.1007/s00011-023-01703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Programmed death ligand-1 (PD-L1) is involved in the negative regulation of immune responses in a variety of diseases. We evaluated the contribution of PD-L1 to the activation of immune cells that promote atherosclerotic lesion formation and inflammation. METHODS AND RESULTS Compared to ApoE-/- mice that were provided a high-cholesterol diet in combination with anti-PD-L1 antibody developed a larger lipid burden with more abundant CD8+ T cells. The anti-PD-L1 antibody increased the abundance of CD3+PD-1+, CD8 + PD-1+,CD3+IFN-γ+ and CD8+IFN-γ+ T cell under high-cholesterol diet, as well as the serum tumor necrosis factor-α (TNF-a), IFN-γ, PF, GNLY, Gzms B and LTA. Interestingly, the anti-PD-L1 antibody increased the serum level of sPD-L1. In vitro, blocking of PD-L1 on the surface of mouse aortic endothelial cells with anti-PD-L1 antibody stimulated the activation and secretion of cytokines, including IFN-γ, PF, GNLY, Gzms B and LTA, from cytolytic CD8+IFN-γ+ T cell. However, the concentration of sPD-L1 was lower after treatment of the MAECs with anti-PD-L1 antibody. CONCLUSIONS Our findings highlighted that blocking of PD-L1 promoted up-regulation of CD8 + IFN-γ + T cell-mediated immune responses, leading to the secretion of inflammatory cytokine that exacerbated the atherosclerotic burden and promoted inflammation. However, further studies are needed to gain insight into whether PD-L1 activation could be a novel immunotherapy strategy for atherosclerosis.
Collapse
Affiliation(s)
- Qi Li
- The Biotherapy Center, Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, People's Republic of China
| | - Simeng Wei
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Yue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Fengjiao Wu
- The Biotherapy Center, Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, People's Republic of China
| | - Xiaoling Qin
- The Biotherapy Center, Tumor Hospital of Harbin Medical University, 150 Haping Road, Harbin, People's Republic of China
| | - Zhongsha Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Jingyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Chang Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Baojian Road 157, Harbin, 150086, Heilongjiang, People's Republic of China.
| |
Collapse
|
26
|
Marx AF, Kallert SM, Brunner TM, Villegas JA, Geier F, Fixemer J, Abreu-Mota T, Reuther P, Bonilla WV, Fadejeva J, Kreutzfeldt M, Wagner I, Aparicio-Domingo P, Scarpellino L, Charmoy M, Utzschneider DT, Hagedorn C, Lu M, Cornille K, Stauffer K, Kreppel F, Merkler D, Zehn D, Held W, Luther SA, Löhning M, Pinschewer DD. The alarmin interleukin-33 promotes the expansion and preserves the stemness of Tcf-1 + CD8 + T cells in chronic viral infection. Immunity 2023; 56:813-828.e10. [PMID: 36809763 DOI: 10.1016/j.immuni.2023.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/22/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023]
Abstract
T cell factor 1 (Tcf-1) expressing CD8+ T cells exhibit stem-like self-renewing capacity, rendering them key for immune defense against chronic viral infection and cancer. Yet, the signals that promote the formation and maintenance of these stem-like CD8+ T cells (CD8+SL) remain poorly defined. Studying CD8+ T cell differentiation in mice with chronic viral infection, we identified the alarmin interleukin-33 (IL-33) as pivotal for the expansion and stem-like functioning of CD8+SL as well as for virus control. IL-33 receptor (ST2)-deficient CD8+ T cells exhibited biased end differentiation and premature loss of Tcf-1. ST2-deficient CD8+SL responses were restored by blockade of type I interferon signaling, suggesting that IL-33 balances IFN-I effects to control CD8+SL formation in chronic infection. IL-33 signals broadly augmented chromatin accessibility in CD8+SL and determined these cells' re-expansion potential. Our study identifies the IL-33-ST2 axis as an important CD8+SL-promoting pathway in the context of chronic viral infection.
Collapse
Affiliation(s)
- Anna-Friederike Marx
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland.
| | - Sandra M Kallert
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - José A Villegas
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Florian Geier
- Department of Biomedicine, Bioinformatics Core Facility, University Hospital Basel, 4031 Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jonas Fixemer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Tiago Abreu-Mota
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Peter Reuther
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Weldy V Bonilla
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Jelizaveta Fadejeva
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | | | - Leo Scarpellino
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Mélanie Charmoy
- Department of Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Claudia Hagedorn
- Witten/Herdecke University (UW/H), Faculty of Health/School of Medicine, Stockumer Str. 10, 58453 Witten, Germany
| | - Min Lu
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Karen Cornille
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Karsten Stauffer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Florian Kreppel
- Witten/Herdecke University (UW/H), Faculty of Health/School of Medicine, Stockumer Str. 10, 58453 Witten, Germany
| | - Doron Merkler
- Department of Pathology and Immunology University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Werner Held
- Department of Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany.
| | - Daniel D Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland.
| |
Collapse
|
27
|
Hsiung S, Egawa T. Population dynamics and gene regulation of T cells in response to chronic antigen stimulation. Int Immunol 2023; 35:67-77. [PMID: 36334059 DOI: 10.1093/intimm/dxac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
Abstract
T cells are activated by antigen and co-stimulatory receptor signaling and undergo robust proliferation and differentiation into effector cells with protective function. Such quantitatively and qualitatively amplified T cell responses are effective in controlling acute infection and are followed by contraction of the effector population and the formation of resting memory T cells for enhanced protection against previously experienced antigens. However, in the face of persistent antigen during chronic viral infection, in autoimmunity, or in the tumor microenvironment, T cells exhibit distinct responses relative to those in acute insult in several aspects, including reduced clonal expansion and impaired effector function associated with inhibitory receptor expression, a state known as exhaustion. Nevertheless, their responses to chronic infection and tumors are sustained through the establishment of hierarchical heterogeneity, which preserves the duration of the response by generating newly differentiated effector cells. In this review, we highlight recent findings on distinct dynamics of T cell responses under "exhausting" conditions and the roles of the transcription factors that support attenuated yet long-lasting T cell responses as well as the establishment of dysfunctional states.
Collapse
Affiliation(s)
- Sunnie Hsiung
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| |
Collapse
|
28
|
MORHART PATRICK, KEHL SVEN, SCHUH WOLFGANG, HERMES KATHARINA, MELTENDORF STEFAN, NEUBERT ANTJE, SCHNEIDER MICHAEL, BRUNNER-WEINZIERL MONIKA, SCHNEIDER HOLM, LINGEL HOLGER. Age-related Differences in Immune Reactions to SARS-CoV-2 Spike and Nucleocapsid Antigens. In Vivo 2023; 37:70-78. [PMID: 36593041 PMCID: PMC9843773 DOI: 10.21873/invivo.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM The manifestation and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections show a clear correlation to the age of a patient. The younger a person, the less likely the infection results in significant illness. To explore the immunological characteristics behind this phenomenon, we studied the course of SARS-CoV-2 infections in 11 households, including 8 children and 6 infants/neonates of women who got infected with SARS-CoV-2 during pregnancy. MATERIALS AND METHODS We investigated the immune responses of peripheral blood mononuclear cells (PBMCs), umbilical cord blood mononuclear cells (UCBCs), and T cells against spike and nucleocapsid antigens of SARS-COV-2 by flow cytometry and cytokine secretion assays. RESULTS Upon peptide stimulation, UCBC from neonates showed a strongly reduced IFN-γ production, as well as lower levels of IL-5, IL-13, and TNF-α alongside with decreased frequencies of surface CD137/PD-1 co-expressing CD4+ and CD+8 T cells compared with adult PBMCs. The PBMC response of older children instead was characterized by elevated frequencies of IFN-γ+ CD4+ T cells, but significantly lower levels of multiple cytokines (IL-5, IL-6, IL-9, IL-10, IL-17A, and TNF-α) and a marked shift of the CD4+/CD8+ T-cell ratio towards CD8+ T cells in comparison to adults. CONCLUSION The increased severity of SARS-CoV-2 infections in adults could result from the strong cytokine production and lower potential to immunomodulate the excessive inflammation, while the limited IFN-γ production of responding T cells in infants/neonates and the additional higher frequencies of CD8+ T cells in older children may provide advantages during the course of a SARS-CoV-2 infection.
Collapse
Affiliation(s)
- PATRICK MORHART
- Department of Pediatrics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - SVEN KEHL
- Department of Obstetrics and Gynecology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - WOLFGANG SCHUH
- Division of Molecular Immunology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - KATHARINA HERMES
- Hauner’sches Kinderspital, University of Munich, Munich, Germany
| | - STEFAN MELTENDORF
- Department of Experimental Pediatrics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - ANTJE NEUBERT
- Department of Pediatrics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - MICHAEL SCHNEIDER
- Department of Obstetrics and Gynecology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - MONIKA BRUNNER-WEINZIERL
- Department of Experimental Pediatrics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - HOLM SCHNEIDER
- Department of Pediatrics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - HOLGER LINGEL
- Department of Experimental Pediatrics, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
29
|
Immune checkpoint inhibitors-induced systemic capillary leak syndrome: A report of two cases. Rev Med Interne 2023; 44:35-37. [PMID: 36404226 DOI: 10.1016/j.revmed.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The occurrence of systemic capillary leak syndrome under immune checkpoint inhibitors has seldom been reported in the literature. OBSERVATION We report two cases of systemic capillary leak syndrome that occurred with nivolumab (anti-PD-1 antibody) for one, and with an anti-PD-1/CTLA-4 bi-specific antibody for the other. Patients presented with anasarca, hypoalbuminemia, acute kidney injury and, in one case, circulatory collapse. Immune checkpoint inhibitor causality was retained in the lack of evidence for other causes of secondary capillary leak syndrome or for an idiopathic form. The symptoms resolved after a few days of supportive measures (associated with glucocorticoids in one case). DISCUSSION A high index of suspicion is required for the diagnosis of immune checkpoint inhibitors-induced systemic capillary leak syndrome because its presentation may differ from that of the idiopathic form. Activated CD8+ T-cells play a prominent role in the occurrence of immune checkpoint inhibitors-induced capillary leakage via their cytolytic action on the vascular endothelium. Treatment relies on supportive measures and discontinuation of the immune checkpoint inhibitor while the place of immunomodulatory drugs remains to be defined.
Collapse
|
30
|
Wang Y, Bui T, Zhang Y. The pleiotropic roles of EZH2 in T-cell immunity and immunotherapy. Int J Hematol 2022; 116:837-845. [PMID: 36271224 DOI: 10.1007/s12185-022-03466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022]
Abstract
EZH2 is a histone methyltransferase. It catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3) to control gene transcription critical for cell proliferation, differentiation, expansion, and function. For instance, EZH2 plays a central role in regulating T-cell immune responses. EZH2 restrains terminal differentiation of effector CD8 T cells, promotes formation of precursor and mature memory CD8 T cells, regulates appropriate lineage-specification and identity maintenance of helper CD4 T cells, and maintains survival of differentiated antigen-specific T cells. Most importantly, EZH2 is shown to be important for reinvigoration of exhausted chimeric antigen receptor (CAR) T cells. Dysregulated EZH2 function has been linked to many forms of cancer, including lymphomas and solid tumors. In B-cell lymphoid malignancies, EZH2 is overexpressed to drive tumorigenesis. These specific effects of EZH2, in the context of its roles in catalyzing H3K27me3 and orchestrating gene transcription programs in both normal and malignant cells, establishes EZH2 as a unique target for drug development. Here, we will discuss Ezh2 regulation of T-cell immunity, EZH2-mediated lymphomagenesis, and therapeutic benefits of EZH2 inhibitors to the treatment of lymphoma.
Collapse
Affiliation(s)
- Ying Wang
- Center for Discovery & Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Tien Bui
- Center for Discovery & Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Yi Zhang
- Center for Discovery & Innovation, Hackensack University Medical Center, Nutley, NJ, USA.
| |
Collapse
|
31
|
Liu K, Sun Q, Liu Q, Li H, Zhang W, Sun C. Focus on immune checkpoint PD-1/PD-L1 pathway: New advances of polyphenol phytochemicals in tumor immunotherapy. Biomed Pharmacother 2022; 154:113618. [DOI: 10.1016/j.biopha.2022.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/02/2022] Open
|
32
|
Minkove SJ, Sun J, Li Y, Cui X, Cooper D, Eichacker PQ, Torabi‐Parizi P. Comprehensive adjusted outcome data are needed to assess the impact of immune checkpoint inhibitors in cancer patients with COVID-19: Results of a systematic review and meta-analysis. Rev Med Virol 2022; 32:e2352. [PMID: 35416370 PMCID: PMC9111045 DOI: 10.1002/rmv.2352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Determining how prior immune checkpoint inhibitor (ICI) therapy influences outcomes in cancer patients presenting with COVID-19 is essential for patient management but must account for confounding variables. METHODS We performed a systematic review and meta-analysis of studies reporting adjusted effects of ICIs on survival, severe events, or hospitalisation in cancer patients with COVID-19 based on variables including age, gender, diabetes mellitus, hypertension (HTN), chronic obstructive pulmonary disease, and other comorbidities. When adjusted effects were unavailable, unadjusted data were analysed. RESULTS Of 42 observational studies (38 retrospective), 7 reported adjusted outcomes for ICIs and 2 provided sufficient individual patient data to calculate adjusted outcomes. In eight studies, adjusted outcomes were based on ≤7 variables. Over all studies, only one included >100 ICI patients while 26 included <10. ICIs did not alter the odds ratio (95%CI) (OR) of death significantly (random effects model), across adjusted (n = 8) [1.31 (0.58-2.95) p = 0.46; I2 = 42%, p = 0.10], unadjusted (n = 30) [1.06 (0.85-1.32) p = 0.58; I2 = 0%, p = 0.76] or combined [1.09 (0.88;1.36) p = 0.41; I2 = 0%, p = 0.5)] studies. Similarly, ICIs did not alter severe events significantly across adjusted (n = 5) [1.20 (0.30-4.74) p = 0.73; I2 = 52%, p = 0.08], unadjusted (n = 19) [(1.23 (0.87-1.75) p = 0.23; I2 = 16%, p = 0.26] or combined [1.26 (0.90-1.77) p = 0.16; I2 = 25%, p = 0.14] studies. Two studies provided adjusted hospitalisation data and when combined with 13 unadjusted studies, ICIs did not alter hospitalisation significantly [1.19 (0.85-1.68) p = 029; I2 = 5%, p = 0.40]. Results of sensitivity analyses examining ICI effects based on 5 variables were inconclusive. Certainty of evidence was very low. CONCLUSIONS Across studies with adjusted and unadjusted results, ICIs did not alter outcomes significantly. But studies with comprehensive adjusted outcome data controlling for confounding variables are necessary to determine whether ICIs impact COVID-19 outcomes in cancer patients.
Collapse
Affiliation(s)
- Samuel J. Minkove
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Junfeng Sun
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Yan Li
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Xizhong Cui
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Diane Cooper
- NIH Library, Clinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Peter Q. Eichacker
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| | - Parizad Torabi‐Parizi
- Critical Care Medicine DepartmentClinical Center, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
33
|
Tsui C, Kretschmer L, Rapelius S, Gabriel SS, Chisanga D, Knöpper K, Utzschneider DT, Nüssing S, Liao Y, Mason T, Torres SV, Wilcox SA, Kanev K, Jarosch S, Leube J, Nutt SL, Zehn D, Parish IA, Kastenmüller W, Shi W, Buchholz VR, Kallies A. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 2022; 609:354-360. [PMID: 35978192 PMCID: PMC9452299 DOI: 10.1038/s41586-022-05105-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
CD8+ T cells that respond to chronic viral infections or cancer are characterized by the expression of inhibitory receptors such as programmed cell death protein 1 (PD-1) and by the impaired production of cytokines. This state of restrained functionality—which is referred to as T cell exhaustion1,2—is maintained by precursors of exhausted T (TPEX) cells that express the transcription factor T cell factor 1 (TCF1), self-renew and give rise to TCF1− exhausted effector T cells3–6. Here we show that the long-term proliferative potential, multipotency and repopulation capacity of exhausted T cells during chronic infection are selectively preserved in a small population of transcriptionally distinct CD62L+ TPEX cells. The transcription factor MYB is not only essential for the development of CD62L+ TPEX cells and maintenance of the antiviral CD8+ T cell response, but also induces functional exhaustion and thereby prevents lethal immunopathology. Furthermore, the proliferative burst in response to PD-1 checkpoint inhibition originates exclusively from CD62L+ TPEX cells and depends on MYB. Our findings identify CD62L+ TPEX cells as a stem-like population that is central to the maintenance of long-term antiviral immunity and responsiveness to immunotherapy. Moreover, they show that MYB is a transcriptional orchestrator of two fundamental aspects of exhausted T cell responses: the downregulation of effector function and the long-term preservation of self-renewal capacity. CD62L+ precursors of exhausted T cells retain long-term proliferative potential, multipotency and repopulation capacity, and the transcription factor MYB is essential for the development and function of this population of cells.
Collapse
Affiliation(s)
- Carlson Tsui
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Lorenz Kretschmer
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Svenja Rapelius
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Sarah S Gabriel
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Teisha Mason
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Santiago Valle Torres
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen A Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Krystian Kanev
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Justin Leube
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany.
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
34
|
'Stem-like' precursors are the fount to sustain persistent CD8 + T cell responses. Nat Immunol 2022; 23:836-847. [PMID: 35624209 DOI: 10.1038/s41590-022-01219-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
Abstract
Virus-specific CD8+ T cells that differentiate in the context of resolved versus persisting infections exhibit divergent phenotypic and functional characteristics, which suggests that their differentiation trajectories are governed by distinct cellular dynamics, developmental pathways and molecular mechanisms. For acute infection, it is long known that antigen-specific T cell populations contain terminally differentiated effector T cells, known as short-lived effector T cells, and proliferation-competent and differentiation-competent memory precursor T cells. More recently, it was identified that a similar functional segregation occurs in chronic infections. A failure to generate proliferation-competent precursor cells in chronic infections and tumors results in the collapse of the T cell response. Thus, these precursor cells are major therapeutic and prophylactic targets of immune interventions. These observations suggest substantial commonality between T cell responses in acute and chronic infections but there are also critical differences. We are therefore reviewing the common features and peculiarities of precursor cells in acute infections, different types of persistent infection and cancer.
Collapse
|
35
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
36
|
Philip M, Schietinger A. CD8 + T cell differentiation and dysfunction in cancer. Nat Rev Immunol 2022; 22:209-223. [PMID: 34253904 PMCID: PMC9792152 DOI: 10.1038/s41577-021-00574-3] [Citation(s) in RCA: 423] [Impact Index Per Article: 211.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
CD8+ T cells specific for cancer cells are detected within tumours. However, despite their presence, tumours progress. The clinical success of immune checkpoint blockade and adoptive T cell therapy demonstrates the potential of CD8+ T cells to mediate antitumour responses; however, most patients with cancer fail to achieve long-term responses to immunotherapy. Here we review CD8+ T cell differentiation to dysfunctional states during tumorigenesis. We highlight similarities and differences between T cell dysfunction and other hyporesponsive T cell states and discuss the spatio-temporal factors contributing to T cell state heterogeneity in tumours. An important challenge is predicting which patients will respond to immunotherapeutic interventions and understanding which T cell subsets mediate the clinical response. We explore our current understanding of what determines T cell responsiveness and resistance to immunotherapy and point out the outstanding research questions.
Collapse
Affiliation(s)
- Mary Philip
- Vanderbilt Center for Immunobiology, Vanderbilt-Ingram Cancer Center, Department of Medicine/Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,;
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,;
| |
Collapse
|
37
|
Torabi-Parizi P, Suffredini AF. Resolving sticky relationships between platelets and lymphocytes in COVID: A role for checkpoint inhibitors? Br J Haematol 2022; 197:247-249. [PMID: 35132612 PMCID: PMC9111338 DOI: 10.1111/bjh.18095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony F Suffredini
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Tan R, Yun C, Seetasith A, Sheinson D, Walls R, Ngwa I, Reddy JC, Zhang Q, Secrest MH, Lambert P, Sarsour K. OUP accepted manuscript. Oncologist 2022; 27:236-243. [PMID: 35274714 PMCID: PMC8914490 DOI: 10.1093/oncolo/oyab083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/24/2021] [Indexed: 11/14/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Ruoding Tan
- Corresponding author: Ruoding Tan, U.S. Medical Affairs, Genentech, Inc., South San Francisco, CA, USA. Tel: 650-463-6091;
| | - Cindy Yun
- U.S. Medical Affairs, Genentech, Inc., South San Francisco, CA, USA
| | | | - Daniel Sheinson
- U.S. Medical Affairs, Genentech, Inc., South San Francisco, CA, USA
| | - Robert Walls
- Safety and Risk Management, Product Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Innocent Ngwa
- Safety and Risk Management, Product Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Josina C Reddy
- Safety and Risk Management, Product Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Qing Zhang
- Personalized Healthcare Data Science, Global Product Development, Genentech, South San Francisco, CA, USA
| | - Matthew H Secrest
- Personalized Healthcare Data Science, Global Product Development, Genentech, South San Francisco, CA, USA
| | - Peter Lambert
- Personalized Healthcare Data Science, Global Product Development, Genentech, South San Francisco, CA, USA
| | - Khaled Sarsour
- Personalized Healthcare Data Science, Global Product Development, Genentech, South San Francisco, CA, USA
| |
Collapse
|
39
|
Hardardottir L, Bazzano MV, Glau L, Gattinoni L, Köninger A, Tolosa E, Solano ME. The New Old CD8+ T Cells in the Immune Paradox of Pregnancy. Front Immunol 2021; 12:765730. [PMID: 34868016 PMCID: PMC8635142 DOI: 10.3389/fimmu.2021.765730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
CD8+ T cells are the most frequent T cell population in the immune cell compartment at the feto-maternal interface. Due to their cytotoxic potential, the presence of CD8+ T cells in the immune privileged pregnant uterus has raised considerable interest. Here, we review our current understanding of CD8+ T cell biology in the uterus of pregnant women and discuss this knowledge in relation to a recently published immune cell Atlas of human decidua. We describe how the expansion of CD8+ T cells with an effector memory phenotype often presenting markers of exhaustion is critical for a successful pregnancy, and host defense towards pathogens. Moreover, we review new evidence on the presence of long-lasting immunological memory to former pregnancies and discuss its impact on prospective pregnancy outcomes. The formation of fetal-specific memory CD8+ T cell subests in the uterus, in particular of tissue resident, and stem cell memory cells requires further investigation, but promises interesting results to come. Advancing the knowledge of CD8+ T cell biology in the pregnant uterus will be pivotal for understanding not only tissue-specific immune tolerance but also the etiology of complications during pregnancy, thus enabling preventive or therapeutic interventions in the future.
Collapse
Affiliation(s)
- Lilja Hardardottir
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| | - Maria Victoria Bazzano
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Gattinoni
- Department of Functional Immune Cell Modulation, Regensburg Center for Interventional Immunology, Regensburg, Germany
- University of Regensburg, Regensburg, Germany
| | - Angela Köninger
- Department of Obstetrics and Gynecology of the University of Regensburg at the St. Hedwig Hospital of the Order of St. John, Regensburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Emilia Solano
- Laboratory for Translational Perinatology- Focus: Immunology, University Department of Obstetrics and Gynecology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
40
|
Kalia V, Yuzefpolskiy Y, Vegaraju A, Xiao H, Baumann F, Jatav S, Church C, Prlic M, Jha A, Nghiem P, Riddell S, Sarkar S. Metabolic regulation by PD-1 signaling promotes long-lived quiescent CD8 T cell memory in mice. Sci Transl Med 2021; 13:eaba6006. [PMID: 34644150 DOI: 10.1126/scitranslmed.aba6006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vandana Kalia
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yevgeniy Yuzefpolskiy
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Adithya Vegaraju
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Hanxi Xiao
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Florian Baumann
- QIAGEN Sciences LLC, 19300 Germantown Rd, Germantown, MD 20874, USA
| | | | - Candice Church
- Dermatology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Department of Global Health, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Paul Nghiem
- Dermatology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stanley Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Surojit Sarkar
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
41
|
Abstract
In this essay, we show that 3 distinct approaches to immunological exhaustion coexist and that they only partially overlap, generating potential misunderstandings. Exploring cases ranging from viral infections to cancer, we propose that it is crucial, for experimental and therapeutic purposes, to clarify these approaches and their interconnections so as to make the concept of exhaustion genuinely operational.
Collapse
Affiliation(s)
- Hannah Kaminski
- ImmunoConcept, CNRS & University of Bordeaux, Bordeaux, France
| | - Maël Lemoine
- ImmunoConcept, CNRS & University of Bordeaux, Bordeaux, France
| | - Thomas Pradeu
- ImmunoConcept, CNRS & University of Bordeaux, Bordeaux, France
| |
Collapse
|
42
|
Ring SS, Cupovic J, Onder L, Lütge M, Perez-Shibayama C, Gil-Cruz C, Scandella E, De Martin A, Mörbe U, Hartmann F, Wenger R, Spiegl M, Besse A, Bonilla WV, Stemeseder F, Schmidt S, Orlinger KK, Krebs P, Ludewig B, Flatz L. Viral vector-mediated reprogramming of the fibroblastic tumor stroma sustains curative melanoma treatment. Nat Commun 2021; 12:4734. [PMID: 34354077 PMCID: PMC8342618 DOI: 10.1038/s41467-021-25057-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) is a complex amalgam of tumor cells, immune cells, endothelial cells and fibroblastic stromal cells (FSC). Cancer-associated fibroblasts are generally seen as tumor-promoting entity. However, it is conceivable that particular FSC populations within the TME contribute to immune-mediated tumor control. Here, we show that intratumoral treatment of mice with a recombinant lymphocytic choriomeningitis virus-based vaccine vector expressing a melanocyte differentiation antigen resulted in T cell-dependent long-term control of melanomas. Using single-cell RNA-seq analysis, we demonstrate that viral vector-mediated transduction reprogrammed and activated a Cxcl13-expressing FSC subset that show a pronounced immunostimulatory signature and increased expression of the inflammatory cytokine IL-33. Ablation of Il33 gene expression in Cxcl13-Cre-positive FSCs reduces the functionality of intratumoral T cells and unleashes tumor growth. Thus, reprogramming of FSCs by a self-antigen-expressing viral vector in the TME is critical for curative melanoma treatment by locally sustaining the activity of tumor-specific T cells. Lymphocytic choriomeningitis virus (LCMV)-based viral vectors have been shown to induce potent antitumor immune responses. Here the authors show that a LCMV-based vaccine vector remodels the tumor-associated fibroblastic stroma, sustaining CD8+ T cell activation and reducing tumor growth in a preclinical model of melanoma.
Collapse
Affiliation(s)
- Sandra S Ring
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Jovana Cupovic
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland.,Max Planck Institute of Immunology and Epigenetics, Freiburg, Germany
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | | | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Elke Scandella
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Urs Mörbe
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Fabienne Hartmann
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Robert Wenger
- Department of Plastic Reconstructive Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Matthias Spiegl
- Department of Plastic Reconstructive Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Andrej Besse
- Department of Medical Oncology and Hematology, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Weldy V Bonilla
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Philippe Krebs
- Institute of Pathology, University of Berne, Berne, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland. .,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St.Gallen, St.Gallen, Switzerland. .,Department of Dermatology, Kantonsspital St. Gallen, St. Gallen, Switzerland. .,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. Not-so-opposite ends of the spectrum: CD8 + T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol 2021; 22:809-819. [PMID: 34140679 PMCID: PMC9197228 DOI: 10.1038/s41590-021-00949-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
CD8+ T cells are critical mediators of cytotoxic effector function in infection, cancer and autoimmunity. In cancer and chronic viral infection, CD8+ T cells undergo a progressive loss of cytokine production and cytotoxicity, a state termed T cell exhaustion. In autoimmunity, autoreactive CD8+ T cells retain the capacity to effectively mediate the destruction of host tissues. Although the clinical outcome differs in each context, CD8+ T cells are chronically exposed to antigen in all three. These chronically stimulated CD8+ T cells share some common phenotypic features, as well as transcriptional and epigenetic programming, across disease contexts. A better understanding of these CD8+ T cell states may reveal novel strategies to augment clearance of chronic viral infection and cancer and to mitigate self-reactivity leading to tissue damage in autoimmunity.
Collapse
Affiliation(s)
- Jenna L Collier
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA.,Broad Institute of MIT and Harvard, Cambridge MA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Debattama R Sen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Broad Institute of MIT and Harvard, Cambridge MA
| |
Collapse
|
44
|
Landscape of Exhausted Virus-Specific CD8 T Cells in Chronic LCMV Infection. Cell Rep 2021; 32:108078. [PMID: 32846135 DOI: 10.1016/j.celrep.2020.108078] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/31/2020] [Accepted: 08/05/2020] [Indexed: 01/14/2023] Open
Abstract
A hallmark of chronic infections is the presence of exhausted CD8 T cells, characterized by a distinct transcriptional program compared with functional effector or memory cells, co-expression of multiple inhibitory receptors, and impaired effector function, mainly driven by recurrent T cell receptor engagement. In the context of chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, most studies focused on studying splenic virus-specific CD8 T cells. Here, we provide a detailed characterization of exhausted CD8 T cells isolated from six different tissues during established LCMV infection, using single-cell RNA sequencing. Our data reveal that exhausted cells are heterogeneous, adopt organ-specific transcriptomic profiles, and can be divided into five main functional subpopulations: advanced exhaustion, effector-like, intermediate, proliferating, or memory-like. Adoptive transfer experiments showed that these phenotypes are plastic, suggesting that the tissue microenvironment has a major impact in shaping the phenotype and function of virus-specific CD8 T cells during chronic infection.
Collapse
|
45
|
Curran CS, Busch LM, Li Y, Xizhong C, Sun J, Eichacker PQ, Torabi-Parizi P. Anti-PD-L1 therapy does not improve survival in a murine model of lethal Staphyloccocus aureus pneumonia. J Infect Dis 2021; 224:2073-2084. [PMID: 34009385 DOI: 10.1093/infdis/jiab274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Staphyloccocus aureus (SA) bacterial pneumonia is a common cause of sepsis in intensive care units. Immune checkpoint inhibitors (CPIs) that target programmed death (PD)-1 protein and its ligand (PD-L1) have been proposed for the treatment of sepsis. However, in our systematic review of sepsis pre-clinical models, none of the models examined CPIs in pneumonia. METHODS Mice were inoculated intratracheally with vehicle control, low (LD)- or high dose (H D)-SA. Immune cell recruitment and checkpoint molecule expression were examined at 4h, 24h and 48h after infection. Infected animals, treated with control or anti-PDL1 antibodies, were assessed for survival, bacterial burden, lung immunophenotypes and mediator production. RESULTS LD-SA and HD-SA produced lethality of 15% and 70% respectively by 168h. At 24h, LD-infected animals exhibited increased lung monocyte PD-L1 expression (p=0.0002) but lower bacterial counts (p=0.0002) compared to HD-animals. By 48h, either infection induced lung neutrophil and macrophage PD-L1 expression (p<0.0001). Anti-PD-L1 treatment at the time of infection and at 24h infection with low to high doses of SA reduced PD-L1 detection but did not affect survival or bacterial clearance. CONCLUSIONS Anti-PD-L1 therapy did not alter survival in this pneumonia model. Pre-clinical studies of additional common pathogens and septic foci are needed.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay M Busch
- Department of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Cui Xizhong
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
46
|
Pauken KE, Godec J, Odorizzi PM, Brown KE, Yates KB, Ngiow SF, Burke KP, Maleri S, Grande SM, Francisco LM, Ali MA, Imam S, Freeman GJ, Haining WN, Wherry EJ, Sharpe AH. The PD-1 Pathway Regulates Development and Function of Memory CD8 + T Cells following Respiratory Viral Infection. Cell Rep 2021; 31:107827. [PMID: 32610128 DOI: 10.1016/j.celrep.2020.107827] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 07/05/2019] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
The PD-1 pathway regulates dysfunctional T cells in chronic infection and cancer, but the role of this pathway during acute infection remains less clear. Here, we demonstrate that PD-1 signals are needed for optimal memory. Mice deficient in the PD-1 pathway exhibit impaired CD8+ T cell memory following acute influenza infection, including reduced virus-specific CD8+ T cell numbers and compromised recall responses. PD-1 blockade during priming leads to similar differences early post-infection but without the defect in memory formation, suggesting that timing and/or duration of PD-1 blockade could be tailored to modulate host responses. Our studies reveal a role for PD-1 as an integrator of CD8+ T cell signals that promotes CD8+ T cell memory formation and suggest PD-1 continues to fine-tune CD8+ T cells after they migrate into non-lymphoid tissues. These findings have important implications for PD-1-based immunotherapy, in which PD-1 inhibition may influence memory responses in patients.
Collapse
Affiliation(s)
- Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jernej Godec
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Pamela M Odorizzi
- Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Keturah E Brown
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kathleen B Yates
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Shin Foong Ngiow
- Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly P Burke
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Seth Maleri
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shannon M Grande
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Loise M Francisco
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mohammed-Alkhatim Ali
- Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sabrina Imam
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - E John Wherry
- Institute for Immunology and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
47
|
ElTanbouly MA, Noelle RJ. Rethinking peripheral T cell tolerance: checkpoints across a T cell's journey. Nat Rev Immunol 2021; 21:257-267. [PMID: 33077935 DOI: 10.1038/s41577-020-00454-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/10/2023]
Abstract
Following their exit from the thymus, T cells are endowed with potent effector functions but must spare host tissue from harm. The fate of these cells is dictated by a series of checkpoints that regulate the quality and magnitude of T cell-mediated immunity, known as tolerance checkpoints. In this Perspective, we discuss the mediators and networks that control the six main peripheral tolerance checkpoints throughout the life of a T cell: quiescence, ignorance, anergy, exhaustion, senescence and death. At the naive T cell stage, two intrinsic checkpoints that actively maintain tolerance are quiescence and ignorance. In the presence of co-stimulation-deficient T cell activation, anergy is a dominant hallmark that mandates T cell unresponsiveness. When T cells are successfully stimulated and reach the effector stage, exhaustion and senescence can limit excessive inflammation and prevent immunopathology. At every stage of the T cell's journey, cell death exists as a checkpoint to limit clonal expansion and to terminate unrestrained responses. Here, we compare and contrast the T cell tolerance checkpoints and discuss their specific roles, with the aim of providing an integrated view of T cell peripheral tolerance and fate regulation.
Collapse
Affiliation(s)
- Mohamed A ElTanbouly
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
48
|
Chen Y, Gaber T. Hypoxia/HIF Modulates Immune Responses. Biomedicines 2021; 9:biomedicines9030260. [PMID: 33808042 PMCID: PMC8000289 DOI: 10.3390/biomedicines9030260] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Oxygen availability varies throughout the human body in health and disease. Under physiological conditions, oxygen availability drops from the lungs over the blood stream towards the different tissues into the cells and the mitochondrial cavities leading to physiological low oxygen conditions or physiological hypoxia in all organs including primary lymphoid organs. Moreover, immune cells travel throughout the body searching for damaged cells and foreign antigens facing a variety of oxygen levels. Consequently, physiological hypoxia impacts immune cell function finally controlling innate and adaptive immune response mainly by transcriptional regulation via hypoxia-inducible factors (HIFs). Under pathophysiological conditions such as found in inflammation, injury, infection, ischemia and cancer, severe hypoxia can alter immune cells leading to dysfunctional immune response finally leading to tissue damage, cancer progression and autoimmunity. Here we summarize the effects of physiological and pathophysiological hypoxia on innate and adaptive immune activity, we provide an overview on the control of immune response by cellular hypoxia-induced pathways with focus on the role of HIFs and discuss the opportunity to target hypoxia-sensitive pathways for the treatment of cancer and autoimmunity.
Collapse
Affiliation(s)
- Yuling Chen
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
| | - Timo Gaber
- Charité—Universitätsmedizin Berlin, Corporate Ember of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Charitéplatz 1, 10117 Berlin, Germany;
- German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513364
| |
Collapse
|
49
|
Parry HM, Dowell AC, Zuo J, Verma K, Kinsella FAM, Begum J, Croft W, Sharma-Oates A, Pratt G, Moss P. PD-1 is imprinted on cytomegalovirus-specific CD4+ T cells and attenuates Th1 cytokine production whilst maintaining cytotoxicity. PLoS Pathog 2021; 17:e1009349. [PMID: 33662046 PMCID: PMC7963093 DOI: 10.1371/journal.ppat.1009349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 03/16/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
PD-1 is expressed on exhausted T cells in cancer patients but its physiological role remains uncertain. We determined the phenotype, function and transcriptional correlates of PD-1 expression on cytomegalovirus-specific CD4+ T cells during latent infection. PD-1 expression ranged from 10-85% and remained stable over time within individual donors. This 'setpoint' was correlated with viral load at primary infection. PD-1+ CD4+ T cells display strong cytotoxic function but generate low levels of Th1 cytokines which is only partially reversed by PD-1 blockade. TCR clonotypes showed variable sharing between PD-1+ and PD-1- CMV-specific cells indicating that PD-1 status is defined either during T cell priming or subsequent clonal expansion. Physiological PD-1+ CD4+ T cells therefore display a unique 'high cytotoxicity-low cytokine' phenotype and may act to suppress viral reactivation whilst minimizing tissue inflammation. Improved understanding of the physiological role of PD-1 will help to delineate the mechanisms, and potential reversal, of PD-1+ CD4+ T cell exhaustion in patients with malignant disease.
Collapse
Affiliation(s)
- Helen M. Parry
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander C. Dowell
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jianmin Zuo
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kriti Verma
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesca A. M. Kinsella
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jusnara Begum
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Wayne Croft
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Computational Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Archana Sharma-Oates
- Centre for Computational Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Cancer & Genomics, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Guy Pratt
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
50
|
Studstill CJ, Pritzl CJ, Seo YJ, Kim DY, Xia C, Wolf JJ, Nistala R, Vijayan M, Cho YB, Kang KW, Lee SM, Hahm B. Sphingosine kinase 2 restricts T cell immunopathology but permits viral persistence. J Clin Invest 2021; 130:6523-6538. [PMID: 32897877 DOI: 10.1172/jci125297] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic viral infections are often established by the exploitation of immune-regulatory mechanisms that result in nonfunctional T cell responses. Viruses that establish persistent infections remain a serious threat to human health. Sphingosine kinase 2 (SphK2) generates sphingosine 1-phosphate, which is a molecule known to regulate multiple cellular processes. However, little is known about SphK2's role during the host immune responses to viral infection. Here, we demonstrate that SphK2 functions during lymphocytic choriomeningitis virus Cl 13 (LCMV Cl 13) infection to limit T cell immune pathology, which subsequently aids in the establishment of virus-induced immunosuppression and the resultant viral persistence. The infection of Sphk2-deficient (Sphk2-/-) mice with LCMV Cl 13 led to the development of nephropathy and mortality via T cell-mediated immunopathology. Following LCMV infection, Sphk2-/- CD4+ T cells displayed increased activity and proliferation, and these cells promoted overactive LCMV Cl 13-specific CD8+ T cell responses. Notably, oral instillation of an SphK2-selective inhibitor promoted protective T cell responses and accelerated the termination of LCMV Cl 13 persistence in mice. Thus, SphK2 is indicated as an immunotherapeutic target for the control of persistent viral infections.
Collapse
Affiliation(s)
- Caleb J Studstill
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Curtis J Pritzl
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Dae Young Kim
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine
| | - Chuan Xia
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Jennifer J Wolf
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Ravi Nistala
- Division of Nephrology, Department of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Madhuvanthi Vijayan
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Korea.,College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|