1
|
Biggi AFB, Silvestre RN, Tirapelle MC, de Azevedo JTC, García HDM, Henrique Dos Santos M, de Lima SCG, de Souza LEB, Covas DT, Malmegrim KCR, Figueiredo ML, Picanço-Castro V. IL-27-engineered CAR.19-NK-92 cells exhibit enhanced therapeutic efficacy. Cytotherapy 2024; 26:1320-1330. [PMID: 38970613 DOI: 10.1016/j.jcyt.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 06/01/2024] [Indexed: 07/08/2024]
Abstract
Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells has shown promising results in early-phase clinical studies. However, advancing CAR-NK cell therapeutic efficacy is imperative. In this study, we investigated the impact of a fourth-generation CD19-targeted CAR (CAR.19) coexpressing IL-27 on NK-92 cells. We observed a significant improvement in NK-92 cell proliferation and cytotoxicity activity against B-cell cancer cell lines, both in vitro and in a xenograft mouse B-cell lymphoma model. Our systematic transcriptome analysis of the activated NK-92 CAR variants further supports the potential of IL-27 in fourth-generation CARs to overcome limitations of NK cell-based targeted tumor therapies by providing essential growth and activation signals. Integrating IL-27 into CAR-NK cells emerges as a promising strategy to enhance their therapeutic potential and elicit robust responses against cancer cells. These findings contribute substantially to the mounting evidence supporting the potential of fourth-generation CAR engineering in advancing NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Alison Felipe Bordini Biggi
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Renata Nacasaki Silvestre
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Mariane Cariati Tirapelle
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Julia Teixeira Cottas de Azevedo
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Matheus Henrique Dos Santos
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Sarah Caroline Gomes de Lima
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Dimas Tadeu Covas
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil; Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Virginia Picanço-Castro
- Center for Cell-based Therapy CTC, Regional Blood Center of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Mo X, Zhang W, Fu G, Chang Y, Zhang X, Xu L, Wang Y, Yan C, Shen M, Wei Q, Yan C, Huang X. Single-cell immune landscape of measurable residual disease in acute myeloid leukemia. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2309-2322. [PMID: 39034351 DOI: 10.1007/s11427-024-2666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Measurable residual disease (MRD) is a powerful prognostic factor of relapse in acute myeloid leukemia (AML). We applied the single-cell RNA sequencing to bone marrow (BM) samples from patients with (n=20) and without (n=12) MRD after allogeneic hematopoietic stem cell transplantation. A comprehensive immune landscape with 184,231 cells was created. Compared with CD8+ T cells enriched in the MRD-negative group (MRD-_CD8), those enriched in the MRD-positive group (MRD+_CD8) showed lower expression levels of cytotoxicity-related genes. Three monocyte clusters (i.e., MRD+_M) and three B-cell clusters (i.e., MRD+_B) were enriched in the MRD-positive group. Conversion from an MRD-positive state to an MRD-negative state was accompanied by an increase in MRD-_CD8 clusters and vice versa. MRD-enriched cell clusters employed the macrophage migration inhibitory factor pathway to regulate MRD-_CD8 clusters. These findings revealed the characteristics of the immune cell landscape in MRD positivity, which will allow for a better understanding of the immune mechanisms for MRD conversion.
Collapse
Affiliation(s)
- Xiaodong Mo
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Guomei Fu
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Yingjun Chang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaohui Zhang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Lanping Xu
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Yu Wang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Chenhua Yan
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Mengzhu Shen
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China
| | - Qiuxia Wei
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaojun Huang
- Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Beijing, 100044, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, 100044, China.
| |
Collapse
|
3
|
Liu L, Chen F, Li S, Yang T, Chen S, Zhou Y, Lin Z, Zeng G, Feng P, Shu HB, Zhou Q, Ding K, Chen L. Human/mouse CD137 agonist, JNU-0921, effectively shrinks tumors through enhancing the cytotoxicity of CD8 + T cells in cis and in trans. SCIENCE ADVANCES 2024; 10:eadp8647. [PMID: 39178257 PMCID: PMC11343023 DOI: 10.1126/sciadv.adp8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Agonistic antibodies against CD137 have been demonstrated to completely regress established tumors through activating T cell immunity. Unfortunately, current CD137 antibodies failed to benefit patients with cancer. Moreover, their antitumor mechanisms in vivo remain to be determined. Here, we report the development of a small molecular CD137 agonist, JNU-0921. JNU-0921 effectively activates both human and mouse CD137 through direct binding their extracellular domains to induce oligomerization and signaling and effectively shrinks tumors in vivo. Mechanistically, JNU-0921 enhances effector and memory function of cytotoxic CD8+ T cells (CTLs) and alleviates their exhaustion. JNU-0921 also skews polarization of helper T cells toward T helper 1 type and enhances their activity to boost CTL function. Meanwhile, JNU-0921 attenuates the inhibitory function of regulatory T cells on CTLs. Our current work shows that JNU-0921 shrinks tumors by enhancing the cytotoxicity of CTLs in cis and in trans and sheds light on strategy for developing CD137 small molecular agonists.
Collapse
Affiliation(s)
- Lu Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fenghua Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shan Li
- Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou 310018 Zhejiang, China
| | - Tong Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shuzhen Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zejian Lin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guandi Zeng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pengju Feng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou, Guangzhou 510632, China
| | - Hong-Bing Shu
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Qian Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Jones DM, Tuazon JA, Read KA, Leonard MR, Pokhrel S, Sreekumar BK, Warren RT, Yount JS, Collins PL, Oestreich KJ. Cytotoxic Programming of CD4+ T Cells Is Regulated by Opposing Actions of the Related Transcription Factors Eos and Aiolos. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1129-1141. [PMID: 38363226 PMCID: PMC10948294 DOI: 10.4049/jimmunol.2300748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
In contrast to the "helper" activities of most CD4+ T effector subsets, CD4+ cytotoxic T lymphocytes (CD4-CTLs) perform functions normally associated with CD8+ T and NK cells. Specifically, CD4-CTLs secrete cytotoxic molecules and directly target and kill compromised cells in an MHC class II-restricted fashion. The functions of these cells have been described in diverse immunological contexts, including their ability to provide protection during antiviral and antitumor responses, as well as being implicated in autoimmunity. Despite their significance to human health, the complete mechanisms that govern their programming remain unclear. In this article, we identify the Ikaros zinc finger transcription factor Eos (Ikzf4) as a positive regulator of CD4-CTL differentiation during murine immune responses against influenza virus infection. We find that the frequency of Eos+ cells is elevated in lung CD4-CTL populations and that the cytotoxic gene program is compromised in Eos-deficient CD4+ T cells. Consequently, we observe a reduced frequency and number of lung-residing, influenza virus-responsive CD4-CTLs in the absence of Eos. Mechanistically, we determine that this is due, at least in part, to reduced expression of IL-2 and IL-15 cytokine receptor subunits on the surface of Eos-deficient CD4+ T cells, both of which support the CD4-CTL program. Finally, we find that Aiolos, a related Ikaros family member and known CD4-CTL antagonist, represses Eos expression by antagonizing STAT5-dependent activation of the Ikzf4 promoter. Collectively, our findings reveal a mechanism wherein Eos and Aiolos act in opposition to regulate cytotoxic programming of CD4+ T cells.
Collapse
Affiliation(s)
- Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Biomedical Sciences Graduate Program, Columbus, OH
| | - Jasmine A Tuazon
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Biomedical Sciences Graduate Program, Columbus, OH
- Medical Scientist Training Program, Columbus, OH
| | - Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Biomedical Sciences Graduate Program, Columbus, OH
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Melissa R Leonard
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Combined Anatomic Pathology Residency/Ph.D. Program, The Ohio State University College of Veterinary Medicine, Columbus, OH
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
| | - Bharath K Sreekumar
- Department of Medicine; Gladstone Institute of Virology and Immunology, San Francisco, CA
| | - Robert T Warren
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
| | - Patrick L Collins
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, OH
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, OH
- Infectious Diseases Institute; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
| |
Collapse
|
5
|
Baudouin R, Tartour E, Badoual C, Hans S. Hypothesis of a CD137/Eomes activating axis for effector T cells in HPV oropharyngeal cancers. Mol Med 2024; 30:26. [PMID: 38355394 PMCID: PMC10868089 DOI: 10.1186/s10020-024-00796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic Human Papilloma Virus (HPV) infection is supplanting alcohol and tobacco intoxications as the leading cause of oropharyngeal cancer in developed countries. HPV-related squamous cell carcinomas of the oropharynx (HPV + OSC) present better survival and respond better to radiotherapy and chemotherapy. Regulatory T cells (TREG) are mainly described as immunosuppressive and protumoral in most solid cancers. However, TREG are paradoxically associated with a better prognosis in HPV + OSCs. The transcription factor FoxP3 is the basis for the identification of TREG. Among CD4 + FoxP3 + T cells, some have effector functions. A medical hypothesis is formulated here: the existence of a CD137 (4.1BB)-Eomesodermin (Eomes) activated pathway downstream of TCR-specific activation in a subpopulation of CD4 + FoxP3 + T cells may explain this effector function. Evidence suggest that this axis may exist either in CD4 + FoxP3 + T cells or CD8 + T cells. This pathway could lead T cells to strong antitumor cytotoxic activity in a tumor-specific manner. Furthermore, CD137 is one of the most expected targets for the development of agonist immunotherapies. The identification of CD137 + Eomes + FoxP3+/- T cells could be a key element in the selective activation of the most anti-tumor cells in the HPV + OSC microenvironment.
Collapse
Affiliation(s)
- Robin Baudouin
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, 40 rue Worth, 92 150, Suresnes, France.
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en- Yvelines (Paris Saclay University), 2 Av. de la Source de la Bièvre, Montigny- le-Bretonneux, 78 180, France.
| | - Eric Tartour
- Université Paris Cite, INSERM, PARCC, Hôpital européen Georges Pompidou, Service d'Immunologie biologique, 20, Rue Leblanc, Paris, 75015, France
| | - Cécile Badoual
- Hôpital européen Georges Pompidou, Service d'anatomopathologie, 20, Rue Leblanc, Paris, 75015, France
| | - Stéphane Hans
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, 40 rue Worth, 92 150, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en- Yvelines (Paris Saclay University), 2 Av. de la Source de la Bièvre, Montigny- le-Bretonneux, 78 180, France
| |
Collapse
|
6
|
Joulia E, Michieletto MF, Agesta A, Peillex C, Girault V, Le Dorze AL, Peroceschi R, Bucciarelli F, Szelechowski M, Chaubet A, Hakim N, Marrocco R, Lhuillier E, Lebeurrier M, Argüello RJ, Saoudi A, El Costa H, Adoue V, Walzer T, Sarry JE, Dejean AS. Eomes-dependent mitochondrial regulation promotes survival of pathogenic CD4+ T cells during inflammation. J Exp Med 2024; 221:e20230449. [PMID: 38189779 PMCID: PMC10772920 DOI: 10.1084/jem.20230449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
The mechanisms whereby Eomes controls tissue accumulation of T cells and strengthens inflammation remain ill-defined. Here, we show that Eomes deletion in antigen-specific CD4+ T cells is sufficient to protect against central nervous system (CNS) inflammation. While Eomes is dispensable for the initial priming of CD4+ T cells, it is required for long-term maintenance of CNS-infiltrating CD4+ T cells. We reveal that the impact of Eomes on effector CD4+ T cell longevity is associated with sustained expression of multiple genes involved in mitochondrial organization and functions. Accordingly, epigenetic studies demonstrate that Eomes supports mitochondrial function by direct binding to either metabolism-associated genes or mitochondrial transcriptional modulators. Besides, the significance of these findings was confirmed in CD4+ T cells from healthy donors and multiple sclerosis patients. Together, our data reveal a new mechanism by which Eomes promotes severity and chronicity of inflammation via the enhancement of CD4+ T cell mitochondrial functions and resistance to stress-induced cell death.
Collapse
Affiliation(s)
- Emeline Joulia
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Michaël F. Michieletto
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arantxa Agesta
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Cindy Peillex
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Virginie Girault
- Suivi Immunologique des Thérapeutiques Innovantes, Pôle de Biologie, Pontchaillou University Hospital, Rennes, France
- UMR1236, University of Rennes, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Bretagne, Rennes, France
| | - Anne-Louise Le Dorze
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Romain Peroceschi
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Florence Bucciarelli
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Marion Szelechowski
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Adeline Chaubet
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Nawad Hakim
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Rémi Marrocco
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Emeline Lhuillier
- GeT-Santé, Plateforme Génome et Transcriptome, GenoToul, Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Manuel Lebeurrier
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Rafael J. Argüello
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
| | - Abdelhadi Saoudi
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Hicham El Costa
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Veronique Adoue
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, Lyon, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Institut National de la Santé et de la Recherche Médicale, Toulouse, France
| | - Anne S. Dejean
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Institut National de la Santé et de la Recherche Médicale UMR1291, Centre National de la Recherche Scientifique UMR5051, Université Toulouse III, Toulouse, France
| |
Collapse
|
7
|
Wright QG, Sinha D, Wells JW, Frazer IH, Gonzalez Cruz JL, Leggatt GR. Peritumoral administration of immunomodulatory antibodies as a triple combination suppresses skin tumor growth without systemic toxicity. J Immunother Cancer 2024; 12:e007960. [PMID: 38296598 PMCID: PMC10831460 DOI: 10.1136/jitc-2023-007960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Skin cancers, particularly keratinocyte cancers, are the most commonly diagnosed tumors. Although surgery is often effective in early-stage disease, skin tumors are not always easily accessible, can reoccur and have the ability to metastasize. More recently, immunotherapies, including intravenously administered checkpoint inhibitors, have been shown to control some skin cancers, but with off-target toxicities when used in combination. Our study investigated whether peritumoral administration of an antibody combination targeting PD-1, 4-1BB (CD137) and VISTA might control skin tumors and lead to circulating antitumor immunity without off-target toxicity. METHODS The efficacy of combination immunotherapy administered peritumorally or intravenously was tested using transplantable tumor models injected into mouse ears (primary tumors) or subcutaneously in flank skin (secondary tumors). Changes to the tumor microenvironment were tracked using flow cytometry while tumor-specific, CD8 T cells were identified through enzyme-linked immunospot (ELISPOT) assays. Off-target toxicity of the combination immunotherapy was assessed via serum alanine aminotransferase ELISA and histological analysis of liver sections. RESULTS The data showed that local administration of antibody therapy eliminated syngeneic murine tumors transplanted in the ear skin at a lower dose than required intravenously, and without measured hepatic toxicity. Tumor elimination was dependent on CD8 T cells and was associated with an increased percentage of CD8 T cells expressing granzyme B, KLRG1 and Eomes, and a decreased population of CD4 T cells including CD4+FoxP3+ cells in the treated tumor microenvironment. Importantly, untreated, distal tumors regressed following antibody treatment of a primary tumor, and immune memory prevented growth of subcutaneous flank tumors administered 50 days after regression of a primary tumor. CONCLUSIONS Together, these data suggest that peritumoral immunotherapy for skin tumors offers advantages over conventional intravenous delivery, allowing antibody dose sparing, improved safety and inducing long-term systemic memory. Future clinical trials of immunotherapy for primary skin cancer should focus on peritumoral delivery of combinations of immune checkpoint antibodies.
Collapse
Affiliation(s)
- Quentin G Wright
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Debottam Sinha
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James W Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian H Frazer
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
8
|
Ager CR, Zhang M, Chaimowitz M, Bansal S, Tagore S, Obradovic A, Jugler C, Rogava M, Melms JC, McCann P, Spina C, Drake CG, Dallos MC, Izar B. KLRG1 marks tumor-infiltrating CD4 T cell subsets associated with tumor progression and immunotherapy response. J Immunother Cancer 2023; 11:e006782. [PMID: 37657842 PMCID: PMC10476134 DOI: 10.1136/jitc-2023-006782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/03/2023] Open
Abstract
Current methods for biomarker discovery and target identification in immuno-oncology rely on static snapshots of tumor immunity. To thoroughly characterize the temporal nature of antitumor immune responses, we developed a 34-parameter spectral flow cytometry panel and performed high-throughput analyses in critical contexts. We leveraged two distinct preclinical models that recapitulate cancer immunoediting (NPK-C1) and immune checkpoint blockade (ICB) response (MC38), respectively, and profiled multiple relevant tissues at and around key inflection points of immune surveillance and escape and/or ICB response. Machine learning-driven data analysis revealed a pattern of KLRG1 expression that uniquely identified intratumoral effector CD4 T cell populations that constitutively associate with tumor burden across tumor models, and are lost in tumors undergoing regression in response to ICB. Similarly, a Helios-KLRG1+ subset of tumor-infiltrating regulatory T cells was associated with tumor progression from immune equilibrium to escape and was also lost in tumors responding to ICB. Validation studies confirmed KLRG1 signatures in human tumor-infiltrating CD4 T cells associate with disease progression in renal cancer. These findings nominate KLRG1+ CD4 T cell populations as subsets for further investigation in cancer immunity and demonstrate the utility of longitudinal spectral flow profiling as an engine of dynamic biomarker discovery.
Collapse
Affiliation(s)
- Casey R Ager
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Urology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Mingxuan Zhang
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Molecular Pathology and Therapeutics, Columbia University Irving Medical Center, New York, New York, USA
| | - Matthew Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Shruti Bansal
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Somnath Tagore
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Aleksandar Obradovic
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Collin Jugler
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Meri Rogava
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Johannes C Melms
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Patrick McCann
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Catherine Spina
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Charles G Drake
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Urology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
- Janssen Research and Development, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
| | - Matthew C Dallos
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
- Department of Urology, Columbia University Irving Medical Center, New York, New York, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, New York, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
9
|
Venkatesh H, Tracy SI, Farrar MA. Cytotoxic CD4 T cells in the mucosa and in cancer. Front Immunol 2023; 14:1233261. [PMID: 37654482 PMCID: PMC10466411 DOI: 10.3389/fimmu.2023.1233261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
CD4 T cells were initially described as helper cells that promote either the cellular immune response (Th1 cells) or the humoral immune response (Th2 cells). Since then, a plethora of functionally distinct helper and regulatory CD4 T cell subsets have been described. CD4 T cells with cytotoxic function were first described in the setting of viral infections and autoimmunity, and more recently in cancer and gut dysbiosis. Regulatory CD4 T cell subsets such as Tregs and T-regulatory type 1 (Tr1) cells have also been shown to have cytotoxic potential. Indeed, Tr1 cells have been shown to be important for maintenance of stem cell niches in the bone marrow and the gut. This review will provide an overview of cytotoxic CD4 T cell development, and discuss the role of inflammatory and Tr1-like cytotoxic CD4 T cells in maintenance of intestinal stem cells and in anti-cancer immune responses.
Collapse
Affiliation(s)
- Hrishi Venkatesh
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| | - Sean I. Tracy
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Michael A. Farrar
- Center for Immunology, Masonic Cancer Center, Minneapolis, MN, United States
- University of Minnesota, Department of Laboratory Medicine and Pathology, Minneapolis, MN, United States
| |
Collapse
|
10
|
Dickerson LK, Carter JA, Kohli K, Pillarisetty VG. Emerging interleukin targets in the tumour microenvironment: implications for the treatment of gastrointestinal tumours. Gut 2023; 72:1592-1606. [PMID: 37258094 DOI: 10.1136/gutjnl-2023-329650] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
The effectiveness of antitumour immunity is dependent on intricate cytokine networks. Interleukins (ILs) are important mediators of complex interactions within the tumour microenvironment, including regulation of tumour-infiltrating lymphocyte proliferation, differentiation, migration and activation. Our evolving and increasingly nuanced understanding of the cell type-specific and heterogeneous effects of IL signalling has presented unique opportunities to fine-tune elaborate IL networks and engineer new targeted immunotherapeutics. In this review, we provide a primer for clinicians on the challenges and potential of IL-based treatment. We specifically detail the roles of IL-2, IL-10, IL-12 and IL-15 in shaping the tumour-immune landscape of gastrointestinal malignancies, paying particular attention to promising preclinical findings, early-stage clinical research and innovative therapeutic approaches that may properly place ILs to the forefront of immunotherapy regimens.
Collapse
Affiliation(s)
| | - Jason A Carter
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
| | - Karan Kohli
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
- Flatiron Bio, Palo Alto, California, USA
| | - Venu G Pillarisetty
- Hepatopancreatobiliary Surgery, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Leitner J, Egerer R, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Steinberger P. FcγR requirements and costimulatory capacity of Urelumab, Utomilumab, and Varlilumab. Front Immunol 2023; 14:1208631. [PMID: 37575254 PMCID: PMC10413977 DOI: 10.3389/fimmu.2023.1208631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Targeting costimulatory receptors of the tumor necrosis factor receptor (TNFR) superfamily with agonistic antibodies is a promising approach in cancer immuno therapy. It is known that their efficacy strongly depends on FcγR cross-linking. Methods In this study, we made use of a Jurkat-based reporter platform to analyze the influence of individual FcγRs on the costimulatory activity of the 41BB agonists, Urelumab and Utomilumab, and the CD27 agonist, Varlilumab. Results We found that Urelumab (IgG4) can activate 41BB-NFκB signaling without FcγR cross-linking, but the presence of the FcγRs (CD32A, CD32B, CD64) augments the agonistic activity of Urelumab. The human IgG2 antibody Utomilumab exerts agonistic function only when crosslinked via CD32A and CD32B. The human IgG1 antibody Varlilumab showed strong agonistic activity with all FcγRs tested. In addition, we analyzed the costimulatory effects of Urelumab, Utomilumab, and Varlilumab in primary human peripheral blood mononuclear cells (PBMCs). Interestingly, we observed a very weak capacity of Varlilumab to enhance cytokine production and proliferation of CD4 and CD8 T cells. In the presence of Varlilumab the percentage of annexin V positive T cells was increased, indicating that this antibody mediated FcγR-dependent cytotoxic effects. Conclusion Collectively, our data underscore the importance to perform studies in reductionist systems as well as in primary PBMC samples to get a comprehensive understanding of the activity of costimulation agonists.
Collapse
Affiliation(s)
- Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ricarda Egerer
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Soto-Heredero G, Gómez de Las Heras MM, Escrig-Larena JI, Mittelbrunn M. Extremely Differentiated T Cell Subsets Contribute to Tissue Deterioration During Aging. Annu Rev Immunol 2023; 41:181-205. [PMID: 37126417 DOI: 10.1146/annurev-immunol-101721-064501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.
Collapse
Affiliation(s)
- Gonzalo Soto-Heredero
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - J Ignacio Escrig-Larena
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
| | - María Mittelbrunn
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
13
|
Lin W, Singh V, Springer R, Choonoo G, Gupta N, Patel A, Frleta D, Zhong J, Owczarek T, Decker C, Macdonald L, Murphy A, Thurston G, Mohrs M, Ioffe E, Lu YF. Human CD4 cytotoxic T lymphocytes mediate potent tumor control in humanized immune system mice. Commun Biol 2023; 6:447. [PMID: 37185301 PMCID: PMC10130128 DOI: 10.1038/s42003-023-04812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Efficacy of immune checkpoint inhibitors in cancers can be limited by CD8 T cell dysfunction or HLA-I down-regulation. Tumor control mechanisms independent of CD8/HLA-I axis would overcome these limitations. Here, we report potent CD4 T cell-mediated tumor regression and memory responses in humanized immune system (HIS) mice implanted with HT-29 colorectal tumors. The regressing tumors showed increased CD4 cytotoxic T lymphocyte (CTL) infiltration and enhanced tumor HLA-II expression compared to progressing tumors. The intratumoral CD4 T cell subset associated with tumor regression expressed multiple cytotoxic markers and exhibited clonal expansion. Notably, tumor control was abrogated by depletion of CD4 but not CD8 T cells. CD4 T cells derived from tumor-regressing mice exhibited HLA-II-dependent and tumor-specific killing ex vivo. Taken together, our study demonstrates a critical role of human CD4 CTLs in mediating tumor clearance independent of CD8 T cells and provides a platform to study human anti-tumor immunity in vivo.
Collapse
Affiliation(s)
- Wen Lin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Varan Singh
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Raynel Springer
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gabrielle Choonoo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Namita Gupta
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Aditi Patel
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Davor Frleta
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Jun Zhong
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Tomasz Owczarek
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Corinne Decker
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Lynn Macdonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Andrew Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Markus Mohrs
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Ella Ioffe
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yi-Fen Lu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| |
Collapse
|
14
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
15
|
Read KA, Jones DM, Pokhrel S, Hales EDS, Varkey A, Tuazon JA, Eisele CD, Abdouni O, Saadey A, Leonard MR, Warren RT, Powell MD, Boss JM, Hemann EA, Yount JS, Xin G, Ghoneim HE, Lio CWJ, Freud AG, Collins PL, Oestreich KJ. Aiolos represses CD4 + T cell cytotoxic programming via reciprocal regulation of T FH transcription factors and IL-2 sensitivity. Nat Commun 2023; 14:1652. [PMID: 36964178 PMCID: PMC10039023 DOI: 10.1038/s41467-023-37420-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
During intracellular infection, T follicular helper (TFH) and T helper 1 (TH1) cells promote humoral and cell-mediated responses, respectively. Another subset, CD4-cytotoxic T lymphocytes (CD4-CTLs), eliminate infected cells via functions typically associated with CD8+ T cells. The mechanisms underlying differentiation of these populations are incompletely understood. Here, we identify the transcription factor Aiolos as a reciprocal regulator of TFH and CD4-CTL programming. We find that Aiolos deficiency results in downregulation of key TFH transcription factors, and consequently reduced TFH differentiation and antibody production, during influenza virus infection. Conversely, CD4-CTL programming is elevated, including enhanced Eomes and cytolytic molecule expression. We further demonstrate that Aiolos deficiency allows for enhanced IL-2 sensitivity and increased STAT5 association with CD4-CTL gene targets, including Eomes, effector molecules, and IL2Ra. Thus, our collective findings identify Aiolos as a pivotal regulator of CD4-CTL and TFH programming and highlight its potential as a target for manipulating CD4+ T cell responses.
Collapse
Affiliation(s)
- Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
| | - Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Emily D S Hales
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Aditi Varkey
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jasmine A Tuazon
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
- Medical Scientist Training Program, Columbus, OH, 43210, USA
| | - Caprice D Eisele
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
- Department of Pathology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Omar Abdouni
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Abbey Saadey
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Biomedical Sciences Graduate Program, Columbus, OH, 43210, USA
| | - Melissa R Leonard
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Combined Anatomic Pathology Residency/PhD Program, The Ohio State University College of Veterinary Medicine, Columbus, USA
| | - Robert T Warren
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Michael D Powell
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Emily A Hemann
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
| | - Gang Xin
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Chan-Wang J Lio
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Aharon G Freud
- Department of Pathology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Patrick L Collins
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA.
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The Ohio State Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Bowakim-Anta N, Acolty V, Azouz A, Yagita H, Leo O, Goriely S, Oldenhove G, Moser M. Chronic CD27-CD70 costimulation promotes type 1-specific polarization of effector Tregs. Front Immunol 2023; 14:1023064. [PMID: 36993956 PMCID: PMC10041113 DOI: 10.3389/fimmu.2023.1023064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionMost T lymphocytes, including regulatory T cells, express the CD27 costimulatory receptor in steady state conditions. There is evidence that CD27 engagement on conventional T lymphocytes favors the development of Th1 and cytotoxic responses in mice and humans, but the impact on the regulatory lineage is unknown.MethodsIn this report, we examined the effect of constitutive CD27 engagement on both regulatory and conventional CD4+ T cells in vivo, in the absence of intentional antigenic stimulation.ResultsOur data show that both T cell subsets polarize into type 1 Tconvs or Tregs, characterized by cell activation, cytokine production, response to IFN-γ and CXCR3-dependent migration to inflammatory sites. Transfer experiments suggest that CD27 engagement triggers Treg activation in a cell autonomous fashion.ConclusionWe conclude that CD27 may regulate the development of Th1 immunity in peripheral tissues as well as the subsequent switch of the effector response into long-term memory.
Collapse
Affiliation(s)
- Natalia Bowakim-Anta
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Valérie Acolty
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Abdulkader Azouz
- Institute for Medical Immunology, Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Oberdan Leo
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stanislas Goriely
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Institute for Medical Immunology, Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Guillaume Oldenhove
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Muriel Moser
- Laboratory of Immunobiology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- *Correspondence: Muriel Moser,
| |
Collapse
|
17
|
Jeong S, Jang N, Kim M, Choi IK. CD4 + cytotoxic T cells: an emerging effector arm of anti-tumor immunity. BMB Rep 2023; 56:140-144. [PMID: 36863358 PMCID: PMC10068340 DOI: 10.5483/bmbrep.2023-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 04/29/2024] Open
Abstract
While CD8+ cytotoxic T cells have long been considered the primary effector in controlling tumors, the involvement of CD4+ "helper" T cells in anti-tumor immunity has been underappreciated. The investigations of intra-tumoral T cells, fueled by the recent advances in genomic technologies, have led to a rethinking of the indirect role of CD4+ T cells that have traditionally been described as a "helper". Accumulating evidence from preclinical and clinical studies indicates that CD4+ T cells can acquire intrinsic cytotoxic properties and directly kill various types of tumor cells in a major histocompatibility complex class II (MHC-II)-dependent manner, as opposed to the indirect "helper" function, thus underscoring a potentially critical contribution of CD4+ cytotoxic T cells to immune responses against a wide range of tumor types. Here, we discuss the biological properties of anti-tumor CD4+ T cells with cytotoxic capability and highlight the emerging observations suggesting their more significant role in anti-tumor immunity than previously appreciated. [BMB Reports 2023; 56(3): 140-144].
Collapse
Affiliation(s)
- Seongmin Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Nawon Jang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Minchae Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Il-Kyu Choi
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- New Biology Research Center (NBRC), Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
18
|
Claus C, Ferrara-Koller C, Klein C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. MAbs 2023; 15:2167189. [PMID: 36727218 PMCID: PMC9897756 DOI: 10.1080/19420862.2023.2167189] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
The clinical development of 4-1BB agonists for cancer immunotherapy has raised substantial interest during the past decade. The first generation of 4-1BB agonistic antibodies entering the clinic, urelumab (BMS-663513) and utomilumab (PF-05082566), failed due to (liver) toxicity or lack of efficacy, respectively. The two antibodies display differences in the affinity and the 4-1BB receptor epitope recognition, as well as the isotype, which determines the Fc-gamma-receptor (FcγR) crosslinking activity. Based on this experience a very diverse landscape of second-generation 4-1BB agonists addressing the liabilities of first-generation agonists has recently been developed, with many entering clinical Phase 1 and 2 studies. This review provides an overview focusing on differences and their scientific rationale, as well as challenges foreseen during the clinical development of these molecules.
Collapse
Affiliation(s)
- Christina Claus
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Claudia Ferrara-Koller
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| |
Collapse
|
19
|
Hofland T, Danelli L, Cornish G, Donnarumma T, Hunt DM, de Carvalho LPS, Kassiotis G. CD4 + T cell memory is impaired by species-specific cytotoxic differentiation, but not by TCF-1 loss. Front Immunol 2023; 14:1168125. [PMID: 37122720 PMCID: PMC10140371 DOI: 10.3389/fimmu.2023.1168125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
CD4+ T cells are typically considered as 'helper' or 'regulatory' populations that support and orchestrate the responses of other lymphocytes. However, they can also develop potent granzyme (Gzm)-mediated cytotoxic activity and CD4+ cytotoxic T cells (CTLs) have been amply documented both in humans and in mice, particularly in the context of human chronic infection and cancer. Despite the established description of CD4+ CTLs, as well as of the critical cytotoxic activity they exert against MHC class II-expressing targets, their developmental and memory maintenance requirements remain elusive. This is at least in part owing to the lack of a murine experimental system where CD4+ CTLs are stably induced. Here, we show that viral and bacterial vectors encoding the same epitope induce distinct CD4+ CTL responses in challenged mice, all of which are nevertheless transient in nature and lack recall properties. Consistent with prior reports, CD4+ CTL differentiation is accompanied by loss of TCF-1 expression, a transcription factor considered essential for memory T cell survival. Using genetic ablation of Tcf7, which encodes TCF-1, at the time of CD4+ T cell activation, we further show that, contrary to observations in CD8+ T cells, continued expression of TCF-1 is not required for CD4+ T cell memory survival. Whilst Tcf7-deficient CD4+ T cells persisted normally following retroviral infection, the CD4+ CTL subset still declined, precluding conclusive determination of the requirement for TCF-1 for murine CD4+ CTL survival. Using xenotransplantation of human CD4+ T cells into murine recipients, we demonstrate that human CD4+ CTLs develop and persist in the same experimental conditions where murine CD4+ CTLs fail to persist. These observations uncover a species-specific defect in murine CD4+ CTL persistence with implications for their use as a model system.
Collapse
Affiliation(s)
- Tom Hofland
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Luca Danelli
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Georgina Cornish
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tiziano Donnarumma
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Deborah M. Hunt
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Luiz P. S. de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, United Kingdom
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- *Correspondence: George Kassiotis,
| |
Collapse
|
20
|
Triggering of lymphocytes by CD28, 4-1BB, and PD-1 checkpoints to enhance the immune response capacities. PLoS One 2022; 17:e0275777. [PMID: 36480493 PMCID: PMC9731445 DOI: 10.1371/journal.pone.0275777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/24/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor infiltrating lymphocytes (TILs) usually become exhausted and dysfunctional owing to chronic contact with tumor cells and overexpression of multiple inhibitor receptors. Activation of TILs by targeting the inhibitory and stimulatory checkpoints has emerged as one of the most promising immunotherapy prospectively. We investigated whether triggering of CD28, 4-1BB, and PD-1 checkpoints simultaneously or alone could enhance the immune response capacity of lymphocytes. In this regard, anti-PD-1, CD80-Fc, and 4-1BBL-Fc proteins were designed and produced in CHO-K1 cells as an expression host. Following confirmation of the Fc fusion proteins' ability to bind to native targets expressed on engineered CHO-K1 cells (CHO-K1/hPD-1, CHO-K1/hCD28, CHO-K1/hCTLA4, and CHO-K1/h4-1BB), the effects of each protein, on its own and in various combinations, were assessed in vitro on T cell proliferation, cytotoxicity, and cytokines secretion using the Mixed lymphocyte reaction (MLR) assay, 7-AAD/CFSE cell-mediated cytotoxicity assay, and a LEGENDplex™ Human Th Cytokine Panel, respectively. MLR results demonstrated that T cell proliferation in the presence of the combinations of anti-PD-1/CD80-Fc, CD80-Fc/4-1BBL-Fc, and anti-PD-1/CD80-Fc/4-1BBL-Fc proteins was significantly higher than in the untreated condition (1.83-, 1.91-, and 2.02-fold respectively). Furthermore, anti-PD-1 (17%), 4-1BBL-Fc (19.2%), anti-PD-1/CD80-Fc (18.6%), anti-PD-1/4-1BBL-Fc (21%), CD80-Fc/4-1BBL-Fc (18.5%), and anti-PD-1/CD80-Fc/4-1BBL-Fc (17.3%) significantly enhanced cytotoxicity activity compared to untreated condition (7.8%). However, concerning the cytokine production, CD80-Fc and 4-1BBL-Fc alone or in combination significantly increased the secretion of IFN-γ, TNF-α, and IL-2 compared with the untreated conditions. In conclusion, this research establishes that the various combinations of produced anti-PD-1, CD80-Fc, and 4-1BBL-Fc proteins can noticeably induce the immune response in vitro. Each of these combinations may be effective in killing or destroying cancer cells depending on the type and stage of cancer.
Collapse
|
21
|
Current and Future Perspectives for Chimeric Antigen Receptor T Cells Development in Poland. Biomedicines 2022; 10:biomedicines10112912. [PMID: 36428480 PMCID: PMC9687915 DOI: 10.3390/biomedicines10112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells are genetically modified autologous T cells that have revolutionized the treatment of relapsing and refractory haematological malignancies. In this review we present molecular pathways involved in the activation of CAR-T cells, describe in details the structures of receptors and the biological activity of CAR-T cells currently approved for clinical practice in the European Union, and explain the functional differences between them. Finally, we present the potential for the development of CAR-T cells in Poland, as well as indicate the possible directions of future research in this area, including novel modifications and applications of CAR-T cells and CAR-natural killer (NK) cells.
Collapse
|
22
|
Regulation of CD4 T Cell Responses by the Transcription Factor Eomesodermin. Biomolecules 2022; 12:biom12111549. [PMID: 36358898 PMCID: PMC9687629 DOI: 10.3390/biom12111549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central to the impacts of CD4 T cells, both positive in settings of infectious disease and cancer and negative in the settings of autoimmunity and allergy, is their ability to differentiate into distinct effector subsets with specialized functions. The programming required to support such responses is largely dictated by lineage-specifying transcription factors, often called ‘master regulators’. However, it is increasingly clear that many aspects of CD4 T cell immunobiology that can determine the outcomes of disease states involve a broader transcriptional network. Eomesodermin (Eomes) is emerging as an important member of this class of transcription factors. While best studied in CD8 T cells and NK cells, an increasing body of work has focused on impacts of Eomes expression in CD4 T cell responses in an array of different settings. Here, we focus on the varied impacts reported in these studies that, together, indicate the potential of targeting Eomes expression in CD4 T cells as a strategy to improve a variety of clinical outcomes.
Collapse
|
23
|
Identification and Development of an Age-Related Classification and Signature to Predict Prognosis and Immune Landscape in Osteosarcoma. JOURNAL OF ONCOLOGY 2022; 2022:5040458. [PMID: 36276293 PMCID: PMC9581613 DOI: 10.1155/2022/5040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Background. In childhood and adolescence, the prevailing bone tumor is osteosarcoma associated with frequent recurrence and lung metastasis. This research focused on predicting the survival and immune landscape of osteosarcoma by developing a prognostic signature and establishing aging-related genes (ARGs) subtypes. Methods. The training group comprised of the transcriptomic and associated clinical data of 84 patients with osteosarcoma accessed at the TARGET database and the validation group consisted of 53 patients from GSE21257. The aging-related subtypes were identified using unsupervised consensus clustering analysis. The ARG signature was developed utilizing multivariate Cox analysis and LASSO regression. The prognostic value was assessed using the univariate and multivariate Cox analyses, Kaplan-Meier plotter, time-dependent ROC curve, and nomogram. The functional enrichment analyses were performed by GSEA, GO, and KEGG analysis, while the ssGSEA, ESTIMATE, and CIBERSORT analyses were conducted to reveal the immune landscape in osteosarcoma. Results. The two clusters of osteosarcoma patients formed based on 543 ARGs, depicted a considerable difference in the tumor microenvironment, and the overall survival and immune cell infiltration rate varied as well. Among these, the selected 23 ARGs were utilized for the construction of an efficient predictive prognostic signature for the overall survival prediction. The testing in the validation group of osteosarcoma patients confirmed the status of the high-risk score as an independent indicator for poor prognosis, which was already identified as such using the univariate and multivariate Cox analyses. Furthermore, the ARG signature could distinguish different immune-related functions, infiltration status of immune cells, and tumor microenvironment, as well as predict the immunotherapy response of osteosarcoma patients. Conclusion. The aging-related subtypes were identified and a prognostic signature was developed in this research, which determined different prognoses and allowed for treatment of osteosarcoma patients to be tailored. Additionally, the immunotherapeutic response of individuals with osteosarcoma could also be predicted by the ARG signature.
Collapse
|
24
|
Wang B, Hu S, Fu X, Li L. CD4
+
Cytotoxic T Lymphocytes in Cancer Immunity and Immunotherapy. Adv Biol (Weinh) 2022; 7:e2200169. [PMID: 36193961 DOI: 10.1002/adbi.202200169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Indexed: 11/05/2022]
Abstract
CD4+ T cells have the ability to differentiate into relatively specialized effector subsets after exposure to innate immune signals. The remarkable plasticity of CD4+ T cells is required to achieve immune responses in different tissues and against various pathogens. Numerous studies have shown that CD4+ T cells can play direct and indispensable roles in protective immunity by killing infected or transformed cells. Although the lineage decision of commitment to the CD4+ or CD8+ cell lineage is once thought to be inflexible, the identification of antigen-experienced CD4+ T cells with cytotoxic activity suggests the existence of unexpected plasticity for these cells. The recognition of CD4+ cytotoxic T lymphocytes (CTLs) and the mechanisms driving the differentiation of this particular cell subset create opportunities to explore the roles of these effector cells in protective immunity and immune-related pathology. CD4+ CTLs are proven to play a protective role in antiviral immunity. Here, the latest investigations on the phenotypic and functional features of CD4+ CTLs and their roles in antitumor immunity and immunotherapy are briefly reviewed.
Collapse
Affiliation(s)
- Boyu Wang
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Shaojie Hu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Xiangning Fu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Lequn Li
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| |
Collapse
|
25
|
Han G, Deng Q, Marques-Piubelli ML, Dai E, Dang M, Ma MCJ, Li X, Yang H, Henderson J, Kudryashova O, Meerson M, Isaev S, Kotlov N, Nomie KJ, Bagaev A, Parra ER, Solis Soto LM, Parmar S, Hagemeister FB, Ahmed S, Iyer SP, Samaniego F, Steiner R, Fayad L, Lee H, Fowler NH, Flowers CR, Strati P, Westin JR, Neelapu SS, Nastoupil LJ, Vega F, Wang L, Green MR. Follicular Lymphoma Microenvironment Characteristics Associated with Tumor Cell Mutations and MHC Class II Expression. Blood Cancer Discov 2022; 3:428-443. [PMID: 35687817 PMCID: PMC9894575 DOI: 10.1158/2643-3230.bcd-21-0075] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/02/2021] [Accepted: 06/03/2022] [Indexed: 01/01/2023] Open
Abstract
Follicular lymphoma (FL) is a B-cell malignancy with a complex tumor microenvironment that is rich in nonmalignant immune cells. We applied single-cell RNA sequencing to characterize the diverse tumor and immune cell populations of FL and identified major phenotypic subsets of FL T cells, including a cytotoxic CD4 T-cell population. We characterized four major FL subtypes with differential representation or relative depletion of distinct T-cell subsets. By integrating exome sequencing, we observed that somatic mutations are associated with, but not definitive for, reduced MHC expression on FL cells. In turn, expression of MHCII genes by FL cells was associated with significant differences in the proportions and targetable immunophenotypic characteristics of T cells. This provides a classification framework of the FL microenvironment in association with FL genotypes and MHC expression, and informs different potential immunotherapeutic strategies based upon tumor cell MHCII expression. SIGNIFICANCE We have characterized the FL-infiltrating T cells, identified cytotoxic CD4 T cells as an important component that is associated with tumor cell-intrinsic characteristics, and identified sets of targetable immune checkpoints on T cells that differed from FLs with normal versus low MHC expression. See related commentary by Melnick, p. 374. This article is highlighted in the In This Issue feature, p. 369.
Collapse
Affiliation(s)
- Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Deng
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Man Chun John Ma
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xubin Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haopeng Yang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared Henderson
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | - Edwin R. Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luisa M. Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simrit Parmar
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fredrick B. Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Swaminathan P. Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Felipe Samaniego
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raphael Steiner
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hun Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nathan H. Fowler
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
- BostonGene Corporation, Waltham, Massachusetts
| | - Christopher R. Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason R. Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sattva S. Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Loretta J. Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael R. Green
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
26
|
Pichler AC, Cannons JL, Schwartzberg PL. The Road Less Taken: Less Appreciated Pathways for Manipulating CD8 + T Cell Exhaustion. Front Immunol 2022; 13:926714. [PMID: 35874734 PMCID: PMC9297918 DOI: 10.3389/fimmu.2022.926714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Exhausted CD8+ T (Tex) cells are a distinct cell population that arise during persistent antigen exposure in the context of chronic infections and cancers. Although characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression and distinct transcriptional and epigenetic programs, Tex cells are heterogeneous. Among these, a self-renewing TCF-1+ Tex population, having unique characteristics and the ability to respond to immune-checkpoint blockade, gives rise to TCF-1- terminally Tex cells. These TCF-1+ cells have stem cell-like properties similar to memory T cell populations, but the signals that regulate the developmental pathways and relationships among exhausted cell populations are still unclear. Here, we review our current understanding of Tex cell biology, and discuss some less appreciated molecules and pathways affecting T cell exhaustion. We highlight two co-stimulatory receptors, CD226 and CD137, and their role in inducing or restraining T cell exhaustion, as well as signaling pathways that may be amenable to pharmacological inhibition with a focus on Phosphoinositide-3 Kinase and IL-2 partial agonists. Finally, we discuss novel methods that may increase TCF-1+ populations and therefore improve immunotherapy responsiveness. Understanding features of and pathways to exhaustion has important implications for the success of immunotherapy, including checkpoint blockade and adoptive T-cell transfer therapies.
Collapse
Affiliation(s)
- Andrea C. Pichler
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer L. Cannons
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L. Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Barbosa CHD, Canto FB, Gomes A, Brandao LM, Lima JR, Melo GA, Granato A, Neves EGA, Dutra WO, Oliveira AC, Nóbrega A, Bellio M. Cytotoxic CD4+ T cells driven by T-cell intrinsic IL-18R/MyD88 signaling predominantly infiltrate Trypanosoma cruzi-infected hearts. eLife 2022; 11:74636. [PMID: 35670567 PMCID: PMC9236613 DOI: 10.7554/elife.74636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/04/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing attention has been directed to cytotoxic CD4+ T cells (CD4CTLs) in different pathologies, both in humans and mice. The impact of CD4CTLs in immunity and the mechanisms controlling their generation, however, remain poorly understood. Here, we show that CD4CTLs abundantly differentiate during mouse infection with the intracellular parasite Trypanosoma cruzi. CD4CTLs display parallel kinetics to Th1 cells in the spleen, mediate specific cytotoxicity against cells presenting pathogen-derived antigens and express immunoregulatory and/or exhaustion markers. We demonstrate that CD4CTL absolute numbers and activity are severely reduced in both Myd88-/- and Il18ra-/- mice. Of note, the infection of mixed-bone marrow chimeras revealed that WT but not Myd88-/- cells transcribe the CD4CTL gene signature and that Il18ra-/- and Myd88-/- CD4+ T cells phenocopy each other. Moreover, adoptive transfer of WT CD4+GzB+ T cells to infected Il18ra-/- mice extended their survival. Importantly, cells expressing the CD4CTL phenotype predominate among CD4+ T cells infiltrating the infected mouse cardiac tissue and are increased in the blood of Chagas patients, in which the frequency of CD4CTLs correlates with the severity of cardiomyopathy. Our findings describe CD4CTLs as a major player in immunity to a relevant human pathogen and disclose T-cell intrinsic IL-18R/MyD88 signaling as a key pathway controlling the magnitude of the CD4CTL response.
Collapse
Affiliation(s)
| | - Fabio B Canto
- Departamento de Imunobiologia, Universidade Federal Fluminense
| | - Ariel Gomes
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| | - Layza M Brandao
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| | - Jéssica R Lima
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| | - Guilherme A Melo
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| | | | - Eula GA Neves
- Laboratório de Biologia das Interações Celulares, Universidade Federal de Minas Gerais
| | - Walderez O Dutra
- Laboratório de Biologia das Interações Celulares, Universidade Federal de Minas Gerais
| | - Ana-Carolina Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ)
| | - Alberto Nóbrega
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| | - Maria Bellio
- Department of Immunology, Universidade Federal do Rio de Janeiro (UFRJ)
| |
Collapse
|
28
|
Preglej T, Ellmeier W. CD4 + Cytotoxic T cells - Phenotype, Function and Transcriptional Networks Controlling Their Differentiation Pathways. Immunol Lett 2022; 247:27-42. [PMID: 35568324 DOI: 10.1016/j.imlet.2022.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
The two major subsets of peripheral T cells are classically divided into the CD4+ T helper cells and the cytotoxic CD8+ T cell lineage. However, the appearance of some effector CD4+ T cell populations displaying cytotoxic activity, in particular during viral infections, has been observed, thus breaking the functional dichotomy of CD4+ and CD8+ T lymphocytes. The strong association of the appearance of CD4+ cytotoxic T lymphocytes (CD4 CTLs) with viral infections suggests an important role of this subset in antiviral immunity by controlling viral replication and infection. Moreover, CD4 CTLs have been linked with anti-tumor activity and might also cause immunopathology in autoimmune diseases. This raises interest into the molecular mechanisms regulating CD4 CTL differentiation, which are poorly understood in comparison to differentiation pathways of other Th subsets. In this review, we provide a brief overview about key features of CD4 CTLs, including their role in viral infections and cancer immunity, and about the link between CD4 CTLs and immune-mediated diseases. Subsequently, we will discuss the current knowledge about transcriptional and epigenetic networks controlling CD4 CTL differentiation and highlight recent data suggesting a role for histone deacetylases in the generation of CD4 CTLs.
Collapse
Affiliation(s)
- Teresa Preglej
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna.
| |
Collapse
|
29
|
Liu JQ, Zhang C, Zhang X, Yan J, Zeng C, Talebian F, Lynch K, Zhao W, Hou X, Du S, Kang DD, Deng B, McComb DW, Bai XF, Dong Y. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J Control Release 2022; 345:306-313. [PMID: 35301053 PMCID: PMC9133152 DOI: 10.1016/j.jconrel.2022.03.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/05/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Cytokines are important immunotherapeutics with approved drugs for the treatment of human cancers. However, systemic administration of cytokines often fails to achieve adequate concentrations to immune cells in tumors due to dose-limiting toxicity. Thus, developing localized therapy that directly delivers immune-stimulatory cytokines to tumors may improve the therapeutic efficacy. In this study, we generated novel lipid nanoparticles (LNPs) encapsulated with mRNAs encoding cytokines including IL-12, IL-27 and GM-CSF, and tested their anti-tumor activity. We first synthesized ionizable lipid materials containing di-amino groups with various head groups (DALs). The novel DAL4-LNP effectively delivered different mRNAs in vitro to tumor cells and in vivo to tumors. Intratumoral injection of DAL4-LNP loaded with IL-12 mRNA was most potent in inhibiting B16F10 melanoma tumor growth compared to IL-27 or GM-CSF mRNAs in monotherapy. Furthermore, intratumoral injection of dual DAL4-LNP-IL-12 mRNA and IL-27 mRNA showed a synergistic effect in suppressing tumor growth without causing systematic toxicity. Most importantly, intratumoral delivery of IL-12 and IL-27 mRNAs induced robust infiltration of immune effector cells, including IFN-γ and TNF-α producing NK and CD8+ T cells into tumors. Thus, intratumoral administration of DAL-LNP loaded with IL-12 and IL-27 mRNA provides a new treatment strategy for cancer.
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Xinfu Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Chunxi Zeng
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Fatemeh Talebian
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Kimberly Lynch
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Weiyu Zhao
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, United States
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, United States; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States; Department of Radiation Oncology, Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Center for Cancer Engineering, Center for Cancer Metabolism, Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
30
|
Ding M, Fei Y, Zhu J, Ma J, Zhu G, Zhen N, Zhu J, Mao S, Sun F, Wang F, Pan Q. IL-27 Improves Adoptive CD8 + T Cells Antitumor Activity via Enhancing Cells Survival and Memory T Cells Differentiation. Cancer Sci 2022; 113:2258-2271. [PMID: 35441753 PMCID: PMC9277268 DOI: 10.1111/cas.15374] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022] Open
Abstract
IL-27 is an anti-inflammatory cytokine that triggers enhanced antitumor immunity, particularly cytotoxic T lymphocyte responses. In the present study, we sought to develop IL-27 into a therapeutic adjutant for adoptive T-cell therapy using our well-established models. We have found that IL-27 directly improved the survival status and cytotoxicity of adoptive OT-1 CD8+ T cells in vitro and in vivo. Meanwhile, IL-27 treatment programs memory T cells differentiation in CD8+ T cells, characterized by up regulation of genes associated with T cell memory differentiation (T-bet, Eomes, Blimp1 and Ly6C). Additionally, we engineered the adoptive OT-1 CD8+ T cells to deliver IL-27. In mice, the established tumors treated with OT-1 CD8+ T-IL-27 were completely rejected, which demonstrated that IL-27 delivered via tumor antigen-specific T cells enhance adoptive T cells cancer immunity. To our knowledge, this is the first application of CD8+ T cells as a vehicle to deliver IL-27 to treat tumors. Thus, these studies demonstrate IL-27 is a feasible approach for enhancing CD8+ T cells anti-tumor immunity and can be used as a therapeutic adjutant for T cell adoptive transfer to treat cancer.
Collapse
Affiliation(s)
- Miao Ding
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Fei
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiaotong University affiliated Sixth People's Hospital
| | - Jianmin Zhu
- Key Laboratory of Pediatric Hematology and Oncology, Shanghai Children's Medical Center, Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji Ma
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqing Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Zhen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiabei Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siwei Mao
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| |
Collapse
|
31
|
Dhume K, Finn CM, Devarajan P, Singh A, Tejero JD, Prokop E, Strutt TM, Sell S, Swain SL, McKinstry KK. Bona Fide Th17 Cells without Th1 Functional Plasticity Protect against Influenza. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1998-2007. [PMID: 35338093 PMCID: PMC9012674 DOI: 10.4049/jimmunol.2100801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/04/2022] [Indexed: 01/24/2023]
Abstract
Optimal transcriptional programming needed for CD4 T cells to protect against influenza A virus (IAV) is unclear. Most IAV-primed CD4 T cells fit Th1 criteria. However, cells deficient for the Th1 "master regulator," T-bet, although marked by reduced Th1 identity, retain robust protective capacity. In this study, we show that T-bet's paralog, Eomesodermin (Eomes), is largely redundant in the presence of T-bet but is essential for the residual Th1 attributes of T-bet-deficient cells. Cells lacking both T-bet and Eomes instead develop concurrent Th17 and Th2 responses driven by specific inflammatory signals in the infected lung. Furthermore, the transfer of T-bet- and Eomes-deficient Th17, but not Th2, effector cells protects mice from lethal IAV infection. Importantly, these polyfunctional Th17 effectors do not display functional plasticity in vivo promoting gain of Th1 attributes seen in wild-type Th17 cells, which has clouded evaluation of the protective nature of Th17 programming in many studies. Finally, we show that primary and heterosubtypic IAV challenge is efficiently cleared in T-bet- and Eomes double-deficient mice without enhanced morbidity despite a strongly Th17-biased inflammatory response. Our studies thus demonstrate unexpectedly potent antiviral capacity of unadulterated Th17 responses against IAV, with important implications for vaccine design.
Collapse
Affiliation(s)
- Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Caroline M Finn
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | | | - Ayushi Singh
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Joanne D Tejero
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Emily Prokop
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Tara M Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL
| | - Stewart Sell
- Palisades Pathology Laboratory, Williamsburg, VA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA; and
| | - Karl Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL;
| |
Collapse
|
32
|
Jin W, Fang M, Sayin I, Smith C, Hunter JL, Richardson B, Golden JB, Haley C, Schmader KE, Betts MR, Tyring SK, Cameron CM, Cameron MJ, Canaday DH. Differential CD4+ T-Cell Cytokine and Cytotoxic Responses Between Reactivation and Latent Phases of Herpes Zoster Infection. Pathog Immun 2022; 7:171-188. [PMID: 36865570 PMCID: PMC9973729 DOI: 10.20411/pai.v7i2.560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 02/19/2023] Open
Abstract
Background CD4+ T cells are a critical component of effective immune responses to varicella zoster virus (VZV), but their functional properties during the reactivation acute vs latent phase of infection remain poorly defined. Methods Here we assessed the functional and transcriptomic properties of peripheral blood CD4+ T cells in persons with acute herpes zoster (HZ) compared to those with a prior history of HZ infection using multicolor flow cytometry and RNA sequencing. Results We found significant differences between the polyfunctionality of VZV-specific total memory, effector memory, and central memory CD4+ T cells in acute vs prior HZ. VZV-specific CD4+ memory T-cell responses in acute HZ reactivation had higher frequencies of IFN-γ and IL-2 producing cells compared to those with prior HZ. In addition, cytotoxic markers were higher in VZV-specific CD4+ T cells than non-VZV-specific cells. Transcriptomic analysis of ex vivo total memory CD4+ T cells from these individuals showed differential regulation of T-cell survival and differentiation pathways, including TCR, cytotoxic T lymphocytes (CTL), T helper, inflammation, and MTOR signaling pathways. These gene signatures correlated with the frequency of IFN-γ and IL-2 producing cells responding to VZV. Conclusions In summary, VZV-specific CD4+ T cells from acute HZ individuals had unique functional and transcriptomic features, and VZV-specific CD4+ T cells as a group had a higher expression of cytotoxic molecules including Perforin, Granzyme-B, and CD107a.
Collapse
Affiliation(s)
- Wenjie Jin
- Division of Infectious Diseases Case Western Reserve University, Cleveland, OH.,Division of Infectious Diseases Case Western Reserve University, Cleveland, OH
| | - Mike Fang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Ismail Sayin
- Division of Infectious Diseases Case Western Reserve University, Cleveland, OH.,Division of Infectious Diseases and Geriatric Research, Education and Clinical Center (GRECC), Cleveland Veterans Administration Medical Center, Cleveland, OH
| | - Carson Smith
- Division of Infectious Diseases Case Western Reserve University, Cleveland, OH.,Division of Infectious Diseases and Geriatric Research, Education and Clinical Center (GRECC), Cleveland Veterans Administration Medical Center, Cleveland, OH
| | | | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Jackelyn B Golden
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - Christopher Haley
- Center for Clinical Studies and Department of Dermatology, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX
| | - Kenneth E Schmader
- Division of Geriatrics, Duke University Medical Center and GRECC, Durham Veterans Affairs Medical Center, Durham, NC
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Stephen K Tyring
- Center for Clinical Studies and Department of Dermatology, University of Texas Health Science Center, McGovern School of Medicine, Houston, TX
| | - Cheryl M Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, OH
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| | - David H Canaday
- Division of Infectious Diseases Case Western Reserve University, Cleveland, OH.,Division of Infectious Diseases and Geriatric Research, Education and Clinical Center (GRECC), Cleveland Veterans Administration Medical Center, Cleveland, OH
| |
Collapse
|
33
|
Stairiker CJ, Pfister SX, Hendrickson E, Yang W, Xie T, Lee C, Zhang H, Dillon C, Thomas GD, Salek-Ardakani S. EZH2 Inhibition Compromises α4-1BB-Mediated Antitumor Efficacy by Reducing the Survival and Effector Programming of CD8 + T Cells. Front Immunol 2021; 12:770080. [PMID: 34925340 PMCID: PMC8683156 DOI: 10.3389/fimmu.2021.770080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Enhancer of Zeste Homolog 2 (EZH2) inhibitors (EZH2i) are approved to treat certain cancer types. Previous studies have suggested the potential to combine EZH2i with immune checkpoint blockade targeting coinhibitory receptors like PD-(L)1 and CTLA-4, but whether it can also enhance the activity of agents targeting costimulatory receptors is not known. Here, we explore the combination between EZH2i and an agonist antibody targeting the T cell costimulatory receptor 4-1BB (α4-1BB). Our data show that EZH2i compromise the efficacy of α4-1BB in both CT26 colon carcinoma and in an in vivo protein immunization model. We link this to reduced effector survival and increased BIM expression in CD8+ T cells upon EZH2i treatment. These data support the requirement of EZH2 function in 4-1BB-mediated CD8+ T cell expansion and effector programming and emphasize the consideration that must be given when combining such antitumoral therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Cell Survival/immunology
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
- Enhancer of Zeste Homolog 2 Protein/immunology
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Humans
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/prevention & control
- Tumor Burden/drug effects
- Tumor Burden/genetics
- Tumor Burden/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Mice
Collapse
Affiliation(s)
- Christopher J. Stairiker
- Cancer Immunology Discovery, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Sophia Xiao Pfister
- Cancer Immunology Discovery, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Eleanore Hendrickson
- Translational Sciences, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Wenjing Yang
- Computational Biology, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Tao Xie
- Computational Biology, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Catherine Lee
- Translational Sciences, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Haikuo Zhang
- Translational Sciences, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Christopher Dillon
- Translational Sciences, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Graham D. Thomas
- Cancer Immunology Discovery, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Shahram Salek-Ardakani
- Cancer Immunology Discovery, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| |
Collapse
|
34
|
Browning LM, Miller C, Kuczma M, Pietrzak M, Jing Y, Rempala G, Muranski P, Ignatowicz L, Kraj P. Bone Morphogenic Proteins Are Immunoregulatory Cytokines Controlling FOXP3 + T reg Cells. Cell Rep 2021; 33:108219. [PMID: 33027660 DOI: 10.1016/j.celrep.2020.108219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Bone morphogenic proteins (BMPs) are members of the transforming growth factor β (TGF-β) cytokine family promoting differentiation, homeostasis, and self-renewal of multiple tissues. We show that signaling through the bone morphogenic protein receptor 1α (BMPR1α) sustains expression of FOXP3 in Treg cells in peripheral lymphoid tissues. BMPR1α signaling promotes molecular circuits supporting acquisition and preservation of Treg cell phenotype and inhibiting differentiation of pro-inflammatory effector Th1/Th17 CD4+ T cell. Mechanistically, increased expression of KDM6B (JMJD3) histone demethylase, an antagonist of the polycomb repressive complex 2, underlies lineage-specific changes of T cell phenotypes associated with abrogation of BMPR1α signaling. These results reveal that BMPs are immunoregulatory cytokines mediating maturation and stability of peripheral FOXP3+ regulatory T cells (Treg cells) and controlling generation of iTreg cells. Thus, we establish that BMPs, a large cytokine family, are an essential link between stromal tissues and the adaptive immune system involved in sustaining tissue homeostasis by promoting immunological tolerance.
Collapse
Affiliation(s)
- Lauren M Browning
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Caroline Miller
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Yu Jing
- Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529, USA
| | - Grzegorz Rempala
- College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | - Pawel Muranski
- Columbia University Medical Center, New York, NY 10032, USA
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
35
|
Roessner PM, Llaó Cid L, Lupar E, Roider T, Bordas M, Schifflers C, Arseni L, Gaupel AC, Kilpert F, Krötschel M, Arnold SJ, Sellner L, Colomer D, Stilgenbauer S, Dietrich S, Lichter P, Izcue A, Seiffert M. EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4 + T cells in chronic lymphocytic leukemia. Leukemia 2021; 35:2311-2324. [PMID: 33526861 PMCID: PMC8324479 DOI: 10.1038/s41375-021-01136-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
The transcription factor eomesodermin (EOMES) promotes interleukin (IL)-10 expression in CD4+ T cells, which has been linked to immunosuppressive and cytotoxic activities. We detected cytotoxic, programmed cell death protein-1 (PD-1) and EOMES co-expressing CD4+ T cells in lymph nodes (LNs) of patients with chronic lymphocytic leukemia (CLL) or diffuse large B-cell lymphoma. Transcriptome and flow cytometry analyses revealed that EOMES does not only drive IL-10 expression, but rather controls a unique transcriptional signature in CD4+ T cells, that is enriched in genes typical for T regulatory type 1 (TR1) cells. The TR1 cell identity of these CD4+ T cells was supported by their expression of interferon gamma and IL-10, as well as inhibitory receptors including PD-1. TR1 cells with cytotoxic capacity accumulate also in Eµ-TCL1 mice that develop CLL-like disease. Whereas wild-type CD4+ T cells control TCL1 leukemia development after adoptive transfer in leukopenic Rag2-/- mice, EOMES-deficient CD4+ T cells failed to do so. We further show that TR1 cell-mediated control of TCL1 leukemia requires IL-10 receptor (IL-10R) signaling, as Il10rb-deficient CD4+ T cells showed impaired antileukemia activity. Altogether, our data demonstrate that EOMES is indispensable for the development of IL-10-expressing, cytotoxic TR1 cells, which accumulate in LNs of CLL patients and control TCL1 leukemia in mice in an IL-10R-dependent manner.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Interferon-gamma
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control
- Mice
- Mice, Inbred C57BL
- Prognosis
- Signal Transduction
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Th1 Cells/immunology
- Transcriptome
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Philipp M Roessner
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Llaó Cid
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ekaterina Lupar
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Cellzome, Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bordas
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Christoph Schifflers
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cell Biology Research Unit (URBC)-Namur Research Institute of Life Science (Narilis), University of Namur, Namur, Belgium
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ann-Christin Gaupel
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Kilpert
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Essen University Hospital, Institute of Human Genetics, Genome Informatics, Essen, Germany
| | - Marit Krötschel
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- BioMed X Institute, Heidelberg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Leopold Sellner
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain
| | | | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
36
|
Basu J, Reis BS, Peri S, Zha J, Hua X, Ge L, Ferchen K, Nicolas E, Czyzewicz P, Cai KQ, Tan Y, Fuxman Bass JI, Walhout AJM, Grimes HL, Grivennikov SI, Mucida D, Kappes DJ. Essential role of a ThPOK autoregulatory loop in the maintenance of mature CD4 + T cell identity and function. Nat Immunol 2021; 22:969-982. [PMID: 34312548 DOI: 10.1038/s41590-021-00980-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
The transcription factor ThPOK (encoded by the Zbtb7b gene) controls homeostasis and differentiation of mature helper T cells, while opposing their differentiation to CD4+ intraepithelial lymphocytes (IELs) in the intestinal mucosa. Thus CD4 IEL differentiation requires ThPOK transcriptional repression via reactivation of the ThPOK transcriptional silencer element (SilThPOK). In the present study, we describe a new autoregulatory loop whereby ThPOK binds to the SilThPOK to maintain its own long-term expression in CD4 T cells. Disruption of this loop in vivo prevents persistent ThPOK expression, leads to genome-wide changes in chromatin accessibility and derepresses the colonic regulatory T (Treg) cell gene expression signature. This promotes selective differentiation of naive CD4 T cells into GITRloPD-1loCD25lo (Triplelo) Treg cells and conversion to CD4+ IELs in the gut, thereby providing dominant protection from colitis. Hence, the ThPOK autoregulatory loop represents a key mechanism to physiologically control ThPOK expression and T cell differentiation in the gut, with potential therapeutic relevance.
Collapse
Affiliation(s)
- Jayati Basu
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Suraj Peri
- Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jikun Zha
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Xiang Hua
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lu Ge
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kyle Ferchen
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital 10 Medical Center, Cincinnati, OH, USA
| | - Emmanuelle Nicolas
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Philip Czyzewicz
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Signaling and Epigenetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yinfei Tan
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Juan I Fuxman Bass
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital 10 Medical Center, Cincinnati, OH, USA
| | - Sergei I Grivennikov
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA.,Cedars-Sinai Medical Center, Departments of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Dietmar J Kappes
- Blood Cell Development and Cancer, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Weulersse M, Asrir A, Pichler AC, Lemaitre L, Braun M, Carrié N, Joubert MV, Le Moine M, Do Souto L, Gaud G, Das I, Brauns E, Scarlata CM, Morandi E, Sundarrajan A, Cuisinier M, Buisson L, Maheo S, Kassem S, Agesta A, Pérès M, Verhoeyen E, Martinez A, Mazieres J, Dupré L, Gossye T, Pancaldi V, Guillerey C, Ayyoub M, Dejean AS, Saoudi A, Goriely S, Avet-Loiseau H, Bald T, Smyth MJ, Martinet L. Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8 + T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity 2021; 53:824-839.e10. [PMID: 33053331 DOI: 10.1016/j.immuni.2020.09.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/15/2020] [Accepted: 09/10/2020] [Indexed: 01/16/2023]
Abstract
CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Marianne Weulersse
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Assia Asrir
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Andrea C Pichler
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Lea Lemaitre
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Matthias Braun
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nadège Carrié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Marie Le Moine
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Laura Do Souto
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Guillaume Gaud
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Indrajit Das
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Elisa Brauns
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Clara M Scarlata
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Elena Morandi
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | | | - Marine Cuisinier
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Laure Buisson
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Sabrina Maheo
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Sahar Kassem
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Arantxa Agesta
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Michaël Pérès
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, Nice, France; Centre international de recherche en infectiologie (CIRI), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alejandra Martinez
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Julien Mazieres
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Loïc Dupré
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Thomas Gossye
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Vera Pancaldi
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Barcelona Supercomputing Center, Barcelona, Spain
| | - Camille Guillerey
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Maha Ayyoub
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Anne S Dejean
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Abdelhadi Saoudi
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Stanislas Goriely
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ludovic Martinet
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France.
| |
Collapse
|
38
|
Llaó-Cid L, Roessner PM, Chapaprieta V, Öztürk S, Roider T, Bordas M, Izcue A, Colomer D, Dietrich S, Stilgenbauer S, Hanna B, Martín-Subero JI, Seiffert M. EOMES is essential for antitumor activity of CD8 + T cells in chronic lymphocytic leukemia. Leukemia 2021; 35:3152-3162. [PMID: 33731848 PMCID: PMC8550953 DOI: 10.1038/s41375-021-01198-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/30/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies identified a single-nucleotide polymorphism (SNP) affecting the transcription factor Eomesodermin (EOMES) associated with a significantly increased risk to develop chronic lymphocytic leukemia (CLL). Epigenetic analyses, RNA sequencing, and flow cytometry revealed that EOMES is not expressed in CLL cells, but in CD8+ T cells for which EOMES is a known master regulator. We thus hypothesized that the increased CLL risk associated with the EOMES SNP might be explained by its negative impact on CD8+ T-cell-mediated immune control of CLL. Flow cytometry analyses revealed a higher EOMES expression in CD8+ T cells of CLL patients compared to healthy individuals, and an accumulation of PD-1+ EOMES+ CD8+ T cells in lymph nodes rather than blood or bone marrow in CLL. This was in line with an observed expansion of EOMES+ CD8+ T cells in the spleen of leukemic Eµ-TCL1 mice. As EOMES expression was highest in CD8+ T cells that express inhibitory receptors, an involvement of EOMES in T-cell exhaustion and dysfunction seems likely. Interestingly, Eomes-deficiency in CD8+ T cells resulted in their impaired expansion associated with decreased CLL control in mice. Overall, these observations suggest that EOMES is essential for CD8+ T-cell expansion and/or maintenance, and therefore involved in adaptive immune control of CLL.
Collapse
Affiliation(s)
- Laura Llaó-Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Selcen Öztürk
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bordas
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany.,Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Hematopathology Section, Hospital Clinic, Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.,Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Bola Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
39
|
Yang W, Zhang W, Wang X, Tan L, Li H, Wu J, Wu Q, Sun W, Chen J, Yin Y. HCA587 Protein Vaccine Induces Specific Antitumor Immunity Mediated by CD4 + T-cells Expressing Granzyme B in a Mouse Model of Melanoma. Anticancer Agents Med Chem 2021; 21:738-746. [PMID: 32723258 DOI: 10.2174/1871520620666200728131951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The antigen HCA587 (also known as MAGE-C2), which is considered a cancer-testis antigen, exhibits upregulated expression in a wide range of malignant tumors with unique immunological properties, and may thus serve as a promising target for tumor immunotherapy. OBJECTIVE The study aimed to explore the antitumor effect of the HCA587 protein vaccine and the response of humoral and cell-mediated immunity. METHODS The HCA587 protein vaccine was formulated with adjuvants CpG and ISCOM. B16 melanoma cells were subcutaneously inoculated to C57BL/6 mice, followed by treatment with HCA587 protein vaccine subcutaneously. Mouse survival was monitored daily, and tumor volume was measured every 2 to 3 days. The tumor sizes, survival time and immune cells in tumor tissues were detected. And the vital immune cell subset and effector molecules were explored. RESULTS After treatment with HCA587 protein vaccine, the vaccination elicited significant immune responses, which delayed tumor growth and improved animal survival. The vaccination increased the proportion of CD4+ T cells expressing IFN-γ and granzyme B in tumor tissues. The depletion of CD4+T cells resulted in an almost complete abrogation of the antitumor effect of the vaccination, suggesting that the antitumor efficacy was mediated by CD4+ T cells. In addition, knockout of IFN-γ resulted in a decrease in granzyme B levels, which were secreted by CD4+ T cells, and the antitumor effect was also significantly attenuated. CONCLUSION The HCA587 protein vaccine may increase the levels of granzyme B expressed by CD4+ T cells, and this increase is dependent on IFN-γ, and the vaccine resulted in a specific tumor immune response and subsequent eradication of the tumor.
Collapse
Affiliation(s)
- Weiming Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Weiheng Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Liming Tan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Hua Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Jiemin Wu
- Department of Clinical Laboratory, Wuyuan County People's Hospital, Wuyuan 333200, Jiangxi Province, China
| | - Qiong Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Wanlei Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Juanjuan Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
40
|
Jiang J, Ahuja S. Addressing Patient to Patient Variability for Autologous CAR T Therapies. J Pharm Sci 2021; 110:1871-1876. [PMID: 33340532 DOI: 10.1016/j.xphs.2020.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy clinical trials have had unprecedented success in the endeavors to cure cancer patients, particularly those having hematological cancers. As researchers learn more about the ways to make CAR T cells more effective to kill tumor cells, equally important will be understanding the differences between T cells from healthy donors and cancer patients and how these differences could affect ex vivo expansion of T cells during CAR T production. This undoubtedly could be a crucial factor in treating solid tumors, where CAR T cells are needed in significantly higher numbers. As the evidence for significant differences between the patients and healthy donors is compelling, an adaptable and robust production process should be designed to allow manufacture of the required CAR T cells for all cancer patients. Improving the fundamental understanding of the cellular metabolism and accompanying epigenetic and phenotypic changes during in vivo and ex vivo expansion of T cells will be just as important. Such discoveries will provide an invaluable tool box from which actionable knowledge could be drawn for designing an adaptable CAR T production process that is able to absorb the patient-to-patient variation.
Collapse
Affiliation(s)
- Jinlin Jiang
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Sanjeev Ahuja
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD.
| |
Collapse
|
41
|
You G, Lee Y, Kang YW, Park HW, Park K, Kim H, Kim YM, Kim S, Kim JH, Moon D, Chung H, Son W, Jung UJ, Park E, Lee S, Son YG, Eom J, Won J, Park Y, Jung J, Lee SW. B7-H3×4-1BB bispecific antibody augments antitumor immunity by enhancing terminally differentiated CD8 + tumor-infiltrating lymphocytes. SCIENCE ADVANCES 2021; 7:7/3/eaax3160. [PMID: 33523913 PMCID: PMC7810375 DOI: 10.1126/sciadv.aax3160] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/19/2020] [Indexed: 05/17/2023]
Abstract
Cancer immunotherapy with 4-1BB agonists has limited further clinical development because of dose-limiting toxicity. Here, we developed a bispecific antibody (bsAb; B7-H3×4-1BB), targeting human B7-H3 (hB7-H3) and mouse or human 4-1BB, to restrict the 4-1BB stimulation in tumors. B7-H3×m4-1BB elicited a 4-1BB-dependent antitumor response in hB7-H3-overexpressing tumor models without systemic toxicity. BsAb primarily targets CD8 T cells in the tumor and increases their proliferation and cytokine production. Among the CD8 T cell population in the tumor, 4-1BB is solely expressed on PD-1+Tim-3+ "terminally differentiated" subset, and bsAb potentiates these cells for eliminating the tumor. Furthermore, the combination of bsAb and PD-1 blockade synergistically inhibits tumor growth accompanied by further increasing terminally differentiated CD8 T cells. B7-H3×h4-1BB also shows antitumor activity in h4-1BB-expressing mice. Our data suggest that B7-H3×4-1BB is an effective and safe therapeutic agent against B7-H3-positive cancers as monotherapy and combination therapy with PD-1 blockade.
Collapse
Affiliation(s)
- Gihoon You
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | - Yeon-Woo Kang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Han Wook Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | - Hyekang Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Young-Min Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sora Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Ji-Hae Kim
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| | - Dain Moon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | - Wonjun Son
- ABL Bio Inc., Seongnam, Republic of Korea
| | | | | | - Shinai Lee
- ABL Bio Inc., Seongnam, Republic of Korea
| | | | | | | | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jaeho Jung
- ABL Bio Inc., Seongnam, Republic of Korea.
| | - Seung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| |
Collapse
|
42
|
Oda SK, Anderson KG, Ravikumar P, Bonson P, Garcia NM, Jenkins CM, Zhuang S, Daman AW, Chiu EY, Bates BM, Greenberg PD. A Fas-4-1BB fusion protein converts a death to a pro-survival signal and enhances T cell therapy. J Exp Med 2020; 217:e20191166. [PMID: 32860705 PMCID: PMC7953733 DOI: 10.1084/jem.20191166] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/02/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Adoptive T cell therapy (ACT) with genetically modified T cells has shown impressive results against some hematologic cancers, but efficacy in solid tumors can be limited by restrictive tumor microenvironments (TMEs). For example, Fas ligand is commonly overexpressed in TMEs and induces apoptosis in tumor-infiltrating, Fas receptor-positive lymphocytes. We engineered immunomodulatory fusion proteins (IFPs) to enhance ACT efficacy, combining an inhibitory receptor ectodomain with a costimulatory endodomain to convert negative into positive signals. We developed a Fas-4-1BB IFP that replaces the Fas intracellular tail with costimulatory 4-1BB. Fas-4-1BB IFP-engineered murine T cells exhibited increased pro-survival signaling, proliferation, antitumor function, and altered metabolism in vitro. In vivo, Fas-4-1BB ACT eradicated leukemia and significantly improved survival in the aggressive KPC pancreatic cancer model. Fas-4-1BB IFP expression also enhanced primary human T cell function in vitro. Thus, Fas-4-1BB IFP expression is a novel strategy to improve multiple T cell functions and enhance ACT against solid tumors and hematologic malignancies.
Collapse
Affiliation(s)
- Shannon K. Oda
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Pranali Ravikumar
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Patrick Bonson
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Nicolas M. Garcia
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Cody M. Jenkins
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Summer Zhuang
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Andrew W. Daman
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Edison Y. Chiu
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Breanna M. Bates
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Philip D. Greenberg
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine/Oncology, University of Washington, Seattle, WA
| |
Collapse
|
43
|
Lian J, Liu S, Yue Y, Yang Q, Zhang Z, Yang S, Zhang Y. Eomes promotes esophageal carcinoma progression by recruiting Treg cells through the CCL20-CCR6 pathway. Cancer Sci 2020; 112:144-154. [PMID: 33113266 PMCID: PMC7780006 DOI: 10.1111/cas.14712] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Eomesodermin (Eomes) is a T‐box transcription factor that drives the differentiation and function of cytotoxic lymphocytes. However, the underlying function and mechanism of Eomes in tumor cells remains elusive. Here, we studied the role of Eomes in human esophageal squamous cell carcinoma (ESCC). Using 2 human ESCC cell lines, we found that Eomes knockdown reduced esophageal cancer cell proliferation and that the esophageal cancer cell cycle was blocked in the G2/M phase. Mechanistically, we identified CCL20 as the main downstream target of Eomes. Furthermore, we found that CCL20 could chemoregulate regulatory T cells (Tregs) through their specific receptor CCR6, then promoting the proliferation of esophageal cancer cells. Eomes knockdown also delayed the growth of human ESCC xenografts in BALB/c nude mice. Importantly, in 133 human ESCC tissues, high Eomes levels were associated with poor clinical prognosis. Overall, our findings suggested that the Eomes‐CCL20‐CCR6 pathway plays a vital role in human ESCC progress. Therefore, targeting this pathway may represent a promising strategy for controlling human ESCC.
Collapse
Affiliation(s)
- Jingyao Lian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
| | - Saisai Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
| | - Ying Yue
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Clinical Laboratory, Henan Medical College Hospital Workers, Zhengzhou, China
| | - Qingshan Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
| | - Shengli Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
| |
Collapse
|
44
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
45
|
Liu JQ, Zhu J, Hu A, Zhang A, Yang C, Yu J, Ghoshal K, Basu S, Bai XF. Is AAV-delivered IL-27 a potential immunotherapeutic for cancer? Am J Cancer Res 2020; 10:3565-3574. [PMID: 33294255 PMCID: PMC7716159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023] Open
Abstract
Cytokines are one of the first immunotherapeutics utilized in trials of human cancers with significant success. However, due to their significant toxicity and often lack of efficacy, cytokines have given their spotlight to other cancer immunotherapeutics such as immune checkpoint inhibitors. Nevertheless, only a subset of cancer patients respond to checkpoint inhibitors. Therefore, developing a novel cytokine-based immunotherapy is still necessary. Among an array of cytokine candidates, IL-27 is a unique one that exhibits clear anti-tumor activity with low toxicity. Systemically delivered IL-27 by adeno-associated virus (AAV-IL-27) is very well tolerized by mice and exhibits potent anti-tumor activity in a variety of tumor models. AAV-IL-27 exerts its anti-tumor activity through directly stimulation of immune effector cells and systemic depletion of Tregs, and is particularly suitable for delivery in combination with checkpoint inhibitors or vaccines. Additionally, AAV-IL-27 can also be delivered locally to tumors to exert its unique actions. In this review, we summarize the evidence that support these points and propose AAV-delivered IL-27 as a potential immunotherapeutic for cancer.
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Jianmin Zhu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Aiyan Hu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Alaina Zhang
- College of Medicine and Life Sciences, University of ToledoToledo, Ohio, USA
| | - Chunbaixue Yang
- University of North Carolina Eshelman School of PharmacyChapel Hill, NC, USA
| | - Jianyu Yu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Kalpana Ghoshal
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Sujit Basu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, The Ohio State UniversityColumbus, Ohio 43210, USA
| |
Collapse
|
46
|
Morales Del Valle C, Maxwell JR, Xu MM, Menoret A, Mittal P, Tsurutani N, Adler AJ, Vella AT. Costimulation Induces CD4 T Cell Antitumor Immunity via an Innate-like Mechanism. Cell Rep 2020; 27:1434-1445.e3. [PMID: 31042471 DOI: 10.1016/j.celrep.2019.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 12/12/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic exposure to tumor-associated antigens inactivates cognate T cells, restricting the repertoire of tumor-specific effector T cells. This problem was studied here by transferring TCR transgenic CD4 T cells into recipient mice that constitutively express a cognate self-antigen linked to MHC II on CD11c-bearing cells. Immunotherapeutic agonists to CD134 plus CD137, "dual costimulation," induces specific CD4 T cell expansion and expression of the receptor for the Th2-associated IL-1 family cytokine IL-33. Rather than producing IL-4, however, they express the tumoricidal Th1 cytokine IFNγ when stimulated with IL-33 or IL-36 (a related IL-1 family member) plus IL-12 or IL-2. IL-36, which is induced within B16-F10 melanomas by dual costimulation, reduces tumor growth when injected intratumorally as a monotherapy and boosts the efficacy of tumor-nonspecific dual costimulated CD4 T cells. Dual costimulation thus enables chronic antigen-exposed CD4 T cells, regardless of tumor specificity, to elaborate tumoricidal function in response to tumor-associated cytokines.
Collapse
Affiliation(s)
| | - Joseph R Maxwell
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Maria M Xu
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Antoine Menoret
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Payal Mittal
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Naomi Tsurutani
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA
| | - Adam J Adler
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA.
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
47
|
Qu QX, Zhu XY, Du WW, Wang HB, Shen Y, Zhu YB, Chen C. 4-1BB Agonism Combined With PD-L1 Blockade Increases the Number of Tissue-Resident CD8+ T Cells and Facilitates Tumor Abrogation. Front Immunol 2020; 11:577. [PMID: 32391001 PMCID: PMC7193033 DOI: 10.3389/fimmu.2020.00577] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Although the milestone discovery of immune checkpoint blockade (ICB) has been translated into clinical practice, only a fraction of patients can benefit from it with durable responses and subsequent long-term survival. Here, we tested the anti-tumor effect of combining PD-L1 blockade with 4-1BB costimulation in 3LL and 4T1.2 murine tumor models. Dual treatment induced further tumor regression and enhanced survival in tumor-bearing mice more so than PD-L1 and 4-1BB mAb alone. It was demonstrated that dual anti-PD-L1/anti-4-1BB immunotherapy increased the number of intratumoral CD103+CD8+ T cells and altered their distribution. Phenotypically, CD103+CD8+ T cells expressed a higher level of 4-1BB and PD-1 than their CD103− counterparts. Administration of PD-L1 mAb and 4-1BB mAb further increased the cytolytic capacity of CD103+CD8+ T cells. In vivo, CD103−CD8+ T cells could differentiate into CD103+CD8+ progeny cells. In a human setting, more CD8+ T cells differentiated into CD103+CD8+ T cells in the peripheral tumor region of lung cancer tissues than in the central tumor region. Collectively, infiltrated CD103+CD8+ T cells served as a potential effector T cell population. Combining 4-1BB agonism with PD-L1 blockade could increase tumor-infiltrated CD103+CD8+T cells, thereby facilitating tumor regression.
Collapse
Affiliation(s)
- Qiu-Xia Qu
- Clinical Immunology Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Xin-Yun Zhu
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Wen Du
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Bin Wang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Shen
- Clinical Immunology Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Yi-Bei Zhu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Cheng Chen
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
48
|
David P, Drabczyk-Pluta M, Pastille E, Knuschke T, Werner T, Honke N, Megger DA, Akhmetzyanova I, Shaabani N, Eyking-Singer A, Cario E, Kershaw O, Gruber AD, Tenbusch M, Dietze KK, Trilling M, Liu J, Schadendorf D, Streeck H, Lang KS, Xie Y, Zimmer L, Sitek B, Paschen A, Westendorf AM, Dittmer U, Zelinskyy G. Combination immunotherapy with anti-PD-L1 antibody and depletion of regulatory T cells during acute viral infections results in improved virus control but lethal immunopathology. PLoS Pathog 2020; 16:e1008340. [PMID: 32226027 PMCID: PMC7105110 DOI: 10.1371/journal.ppat.1008340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
Combination immunotherapy (CIT) is currently applied as a treatment for different cancers and is proposed as a cure strategy for chronic viral infections. Whether such therapies are efficient during an acute infection remains elusive. To address this, inhibitory receptors were blocked and regulatory T cells depleted in acutely Friend retrovirus-infected mice. CIT resulted in a dramatic expansion of cytotoxic CD4+ and CD8+ T cells and a subsequent reduction in viral loads. Despite limited viral replication, mice developed fatal immunopathology after CIT. The pathology was most severe in the gastrointestinal tract and was mediated by granzyme B producing CD4+ and CD8+ T cells. A similar post-CIT pathology during acute Influenza virus infection of mice was observed, which could be prevented by vaccination. Melanoma patients who developed immune-related adverse events under immune checkpoint CIT also presented with expanded granzyme-expressing CD4+ and CD8+ T cell populations. Our data suggest that acute infections may induce immunopathology in patients treated with CIT, and that effective measures for infection prevention should be applied.
Collapse
Affiliation(s)
- Paul David
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nadine Honke
- Department of Rheumatology, Hiller Research Center Rheumatology, University Hospital Düsseldorf, Germany
| | - Dominik A. Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Ilseyar Akhmetzyanova
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Namir Shaabani
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Eyking-Singer
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elke Cario
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olivia Kershaw
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Achim D. Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten K. Dietze
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dirk Schadendorf
- Department of Dermatology, Comprehensive Cancer Center, University Hospital Essen, Essen, Germany
| | - Hendrik Streeck
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karl S. Lang
- Institute of Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Youhua Xie
- Key Lab of Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lisa Zimmer
- Department of Dermatology, Comprehensive Cancer Center, University Hospital Essen, Essen, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Annette Paschen
- Department of Dermatology, Comprehensive Cancer Center, University Hospital Essen, Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
49
|
Decoding the Role of Interleukin-30 in the Crosstalk Between Cancer and Myeloid Cells. Cells 2020; 9:cells9030615. [PMID: 32143355 PMCID: PMC7140424 DOI: 10.3390/cells9030615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
In the last few years, a new actor hit the scene of the tumor microenvironment, the p28 subunit of interleukin (IL)-27, known as IL-30. Its molecular structure allows it to function as an autonomous cytokine and, alternatively, to pair with other subunits to form heterodimeric complexes and enables it to play different, and not fully elucidated, roles in immunity. However, data from the experimental models and clinical samples, suggest IL-30′s engagement in the relationship between cancer and myeloid cells, which fosters the tumor microenvironment and the cancer stem cell niche, boosting the disease progression. Activated myeloid cells are the primary cellular source and one of the targets of IL-30, which can also be produced by cancer cells, especially, in aggressive tumors, as observed in the breast and prostate. This review briefly reports on the immunobiology of IL-30 and related cytokines, by comparing mouse and human counterparts, and then focuses on the mechanisms whereby IL-30 amplifies intratumoral myeloid cell infiltrate and triggers a vicious cycle that worsens immunosuppression in the tumor microenvironment (TME) and constitutes a real threat for a successful immunotherapeutic strategy.
Collapse
|
50
|
Smalley Rumfield C, Roller N, Pellom ST, Schlom J, Jochems C. Therapeutic Vaccines for HPV-Associated Malignancies. Immunotargets Ther 2020; 9:167-200. [PMID: 33117742 PMCID: PMC7549137 DOI: 10.2147/itt.s273327] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Human papillomavirus (HPV)-related malignancies are responsible for almost all cases of cervical cancer in women, and over 50% of all cases of head and neck carcinoma. Worldwide, HPV-positive malignancies account for 4.5% of the global cancer burden, or over 600,000 cases per year. HPV infection is a pressing public health issue, as more than 80% of all individuals have been exposed to HPV by age 50, representing an important target for vaccine development to reduce the incidence of cancer and the economic cost of HPV-related health issues. The approval of Gardasil® as a prophylactic vaccine for high-risk HPV 16 and 18 and low-risk HPV6 and 11 for people aged 11-26 in 2006, and of Cervarix® in 2009, revolutionized the field and has since reduced HPV infection in young populations. Unfortunately, prophylactic vaccination does not induce immunity in those with established HPV infections or HPV-induced neoplasms, and there are currently no therapeutic HPV vaccines approved by the US Food and Drug Administration. This comprehensive review will detail the progress made in the development of therapeutic vaccines against high-risk HPV types, and potential combinations with other immunotherapeutic agents for more efficient and rational designs of combination treatments for HPV-associated malignancies.
Collapse
Affiliation(s)
- Claire Smalley Rumfield
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Roller
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Troy Pellom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Jeffrey Schlom Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Room 8B09, Bethesda, MD20892, USATel +1 240-858-3463Fax +1 240-541-4558 Email
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|