1
|
Zhou EJ, Lang XL, Yang MJ, Sun HY, Hao MY, Jin J, Wang BL, Li AJ, Wang XJ. Modeling and biological evaluation of pegmolesatide, a novel and potent erythropoiesis-stimulating agent. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1339-1347. [PMID: 38860546 DOI: 10.1080/10286020.2024.2362376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Pegmolesatide, a synthetic, polyethylene-glycolylated, peptide-based erythropoiesis-stimulating agent (ESA), has been recently approved in China. Pegmolesatide is derived from the structure of endogenous erythropoietin (EPO), a natural product in mammals. This study compared the in vitro effects and selectivity of pegmolesatide to those of recombinant EPO and carbamylated EPO (CEPO) through computer-aided analyses and biological tests. The findings indicate that pegmolesatide exhibited the same stimulating effect on erythropoiesis as EPO with fewer side effects than EPO and CEPO.
Collapse
Affiliation(s)
- En-Jia Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xu-Li Lang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Min-Jian Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Department of Medicinal Chemistry, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Han-Yu Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Meng-Yao Hao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Bao-Lian Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ai-Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences (South Campus), Beijing 100050, China
| | - Xiao-Jian Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Department of Medicinal Chemistry, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
2
|
Bessoles S, Chiron A, Sarrabayrouse G, De La Grange P, Abina AM, Hacein-Bey-Abina S. Erythropoietin induces tumour progression and CD39 expression on immune cells in a preclinical model of triple-negative breast cancer. Immunology 2024; 173:360-380. [PMID: 38953295 DOI: 10.1111/imm.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
The adverse effects observed in some cancer patients treated with erythropoiesis-stimulating agents such as erythropoietin (EPO) might be due to the latter's well-known immunosuppressive functions. Here, we used a mouse model of syngeneic triple-negative breast cancer to explore EPO's immunomodulatory role in a tumour setting. Our results showed that EPO treatment promotes tumour growth, exacerbates the 'immune desert', and results in a 'cold tumour'. EPO treatment changed the immune cell distribution in peripheral blood, secondary lymphoid organs, and the tumour microenvironment (TME). Our in-depth analysis showed that EPO mainly impacts CD4 T cells by accelerating their activation in the spleen and thus their subsequent exhaustion in the TME. This process is accompanied by a general elevation of CD39 expression by several immune cells (notably CD4 T cells in the tumour and spleen), which promotes an immunosuppressive TME. Lastly, we identified a highly immunosuppressive CD39+ regulatory T cell population (ICOS+, CTLA4+, Ki67+) as a potential biomarker of the risk of EPO-induced tumour progression. EPO displays pleiotropic immunosuppressive functions and enhances mammary tumour progression in mice.
Collapse
Affiliation(s)
- Stéphanie Bessoles
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Andrada Chiron
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Paris, France
| | | | - Amine M Abina
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Liu G, Liang J, Li W, Jiang S, Song M, Xu S, Du Q, Wang L, Wang X, Liu X, Tang L, Yang Z, Zhou M, Meng H, Zhang L, Yang Y, Zhang B. The protective effect of erythropoietin and its novel derived peptides in peripheral nerve injury. Int Immunopharmacol 2024; 138:112452. [PMID: 38943972 DOI: 10.1016/j.intimp.2024.112452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Peripheral nerve injury seriously endangers human life and health, but there is no clinical drug for the treatment of peripheral nerve injury, so it is imperative to develop drugs to promote the repair of peripheral nerve injury. Erythropoietin (EPO) not only has the traditional role of promoting erythropoiesis, but also has a tissue-protective effect. Over the past few decades, researchers have confirmed that EPO has neuroprotective effects. However, side effects caused by long-term use of EPO limited its clinical application. Therefore, EPO derivatives with low side effects have been explored. Among them, ARA290 has shown significant protective effects on the nervous system, but the biggest disadvantage of ARA290, its short half-life, limits its application. To address the short half-life issue, the researchers modified ARA290 with thioether cyclization to generate a thioether cyclized helical B peptide (CHBP). ARA290 and CHBP have promising applications as peptide drugs. The neuroprotective effects they exhibit have attracted continuous exploration of their mechanisms of action. This article will review the research on the role of EPO, ARA290 and CHBP in the nervous system around this developmental process, and provide a certain reference for the subsequent research.
Collapse
Affiliation(s)
- Guixian Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Meiying Song
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiao Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiaoli Liu
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Zijie Yang
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Mengting Zhou
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- Department of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
4
|
Smyke NA, Sedlak CA. Blood Management for the Orthopaedic Surgical Patient. Orthop Nurs 2023; 42:363-373. [PMID: 37989156 DOI: 10.1097/nor.0000000000000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Prevention and management of anemia and blood loss in the orthopaedic patient undergoing surgery is a major concern for healthcare providers and patients. Although transfusion technology can be lifesaving, there are risks to blood products that have led to increased awareness of blood management and development of hospital patient blood management programs. Use of patient blood management can be effective in addressing preoperative anemia, a major modifiable risk factor in patients undergoing surgery. In this informational article, evidence-based practice guidelines for perioperative blood management are addressed. A case scenario is introduced focusing on a patient whose religious preference is Jehovah's Witness having "no blood wishes" undergoing elective orthopaedic surgery. Orthopaedic nurses can facilitate optimal patient blood management through multidisciplinary collaboration.
Collapse
Affiliation(s)
- Norman A Smyke
- Norman A. Smyke, Jr., MD, Medical Director Center for Blood Conservation at Grant, Medical Director Otterbein/Grant Nurse Anesthesia Program, OhioHealth Grant Medical Center, Grant Anesthesia Services, Columbus
- Carol A. Sedlak, PhD, RN, FAAN, Professor Emeritus, Kent State University, College of Nursing, Kent, OH
| | - Carol A Sedlak
- Norman A. Smyke, Jr., MD, Medical Director Center for Blood Conservation at Grant, Medical Director Otterbein/Grant Nurse Anesthesia Program, OhioHealth Grant Medical Center, Grant Anesthesia Services, Columbus
- Carol A. Sedlak, PhD, RN, FAAN, Professor Emeritus, Kent State University, College of Nursing, Kent, OH
| |
Collapse
|
5
|
Lotsios NS, Keskinidou C, Jahaj E, Mastora Z, Dimopoulou I, Orfanos SE, Vassilaki N, Vassiliou AG, Kotanidou A. Prognostic Value of HIF-1α-Induced Genes in Sepsis/Septic Shock. Med Sci (Basel) 2023; 11:41. [PMID: 37367740 DOI: 10.3390/medsci11020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Hypoxia is characterized as one of the main consequences of sepsis, which is recognized as the leading cause of death in intensive care unit (ICU) patients. In this study, we aimed to examine whether the expression levels of genes regulated under hypoxia could be utilized as novel biomarkers for sepsis prognosis in ICU patients. Whole blood expression levels of hypoxia-inducible factor-1α (HIF1A), interferon-stimulated gene 15 (ISG15), hexokinase 2 (HK2), lactate dehydrogenase (LDHA), heme oxygenase-1 (HMOX1), erythropoietin (EPO), and the vascular endothelial growth factor A (VEGFA) were measured on ICU admission in 46 critically ill, initially non-septic patients. The patients were subsequently divided into two groups, based on the development of sepsis and septic shock (n = 25) or lack thereof (n = 21). HMOX1 mRNA expression was increased in patients who developed sepsis/septic shock compared to the non-septic group (p < 0.0001). The ROC curve, multivariate logistic regression, and Kaplan-Meier analysis demonstrated that HMOX1 expression could be utilized for sepsis and septic shock development probability. Overall, our results indicate that HMOX1 mRNA levels have the potential to be a valuable predictive factor for the prognosis of sepsis and septic shock in ICU patients.
Collapse
Affiliation(s)
- Nikolaos S Lotsios
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Chrysi Keskinidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Zafeiria Mastora
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Stylianos E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Alice G Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece
| |
Collapse
|
6
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
7
|
Josselsohn R, Barnes BJ, Kalfa TA, Blanc L. Navigating the marrow sea towards erythromyeloblastic islands under normal and inflammatory conditions. Curr Opin Hematol 2023; 30:80-85. [PMID: 36718814 PMCID: PMC10065913 DOI: 10.1097/moh.0000000000000756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW Terminal erythroid differentiation occurs in specialized niches called erythroblastic islands. Since their discovery in 1958, these niches have been described as a central macrophage surrounded by differentiating erythroblasts. Here, we review the recent advances made in the characterization of these islands and the role they could play in anaemia of inflammation. RECENT FINDINGS The utilization of multispectral imaging flow cytometry (flow cytometry with microscopy) has enabled for a more precise characterization of the niche that revealed the presence of maturing granulocytes in close contact with the central macrophage. These erythromyeloblastic islands (EMBIs) can adapt depending on the peripheral needs. Indeed, during inflammation wherein inflammatory cytokines limit erythropoiesis and promote granulopoiesis, EMBIs present altered structures with increased maturing granulocytes and decreased erythroid precursors. SUMMARY Regulation of the structure and function of the EMBI in the bone marrow emerges as a potential player in the pathophysiology of acute and chronic inflammation and its associated anaemia.
Collapse
Affiliation(s)
- Rachel Josselsohn
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030
- Zucker School of Medicine at Hofstra Northwell, Hempstead NY 11549
| | - Betsy J. Barnes
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030
- Zucker School of Medicine at Hofstra Northwell, Hempstead NY 11549
- Division of Pediatrics Hematology/Oncology, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | | | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030
- Zucker School of Medicine at Hofstra Northwell, Hempstead NY 11549
- Division of Pediatrics Hematology/Oncology, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| |
Collapse
|
8
|
Iso Y, Usui S, Suzuki H. Mesenchymal Stem/Stromal Cells in Skeletal Muscle Are Pro-Angiogenic, and the Effect Is Potentiated by Erythropoietin. Pharmaceutics 2023; 15:pharmaceutics15041049. [PMID: 37111534 PMCID: PMC10142054 DOI: 10.3390/pharmaceutics15041049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this study was to investigate the angiogenic potential of skeletal muscle mesenchymal stem/stromal cells (mMSCs). Platelet-derived growth factor receptor (PDGFR)-α positive mMSCs secreted vascular endothelial growth factor (VEGF) and hepatocyte growth factor when cultured in an ELISA assay. The mMSC-medium significantly induced endothelial tube formation in an in vitro angiogenesis assay. The mMSC implantation promoted capillary growth in rat limb ischemia models. Upon identifying the erythropoietin receptor (Epo-R) in the mMSCs, we examined how Epo affected the cells. Epo stimulation enhanced the phosphorylation of Akt and STAT3 in the mMSCs and significantly promoted cellular proliferation. Next, Epo was directly administered into the rats' ischemic hindlimb muscles. PDGFR-α positive mMSCs in the interstitial area of muscles expressed VEGF and proliferating cell markers. The proliferating cell index was significantly higher in the ischemic limbs of Epo-treated rats than in untreated controls. Investigations by laser Doppler perfusion imaging and immunohistochemistry demonstrated significantly improved perfusion recovery and capillary growth in the Epo-treated groups versus the control groups. Taken together, the results of this study demonstrated that mMSCs possessed a pro-angiogenic property, were activated by Epo, and potentially contributed to capillary growth in skeletal muscle after ischemic injury.
Collapse
Affiliation(s)
- Yoshitaka Iso
- Division of Cardiology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Yokohama City 227-8501, Kanagawa, Japan
| | - Sayaka Usui
- Division of Cardiology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Yokohama City 227-8501, Kanagawa, Japan
| | - Hiroshi Suzuki
- Division of Cardiology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Yokohama City 227-8501, Kanagawa, Japan
| |
Collapse
|
9
|
Zhang H, Wan GZ, Wang YY, Chen W, Guan JZ. The role of erythrocytes and erythroid progenitor cells in tumors. Open Life Sci 2022; 17:1641-1656. [PMID: 36567722 PMCID: PMC9755711 DOI: 10.1515/biol-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 12/23/2022] Open
Abstract
In the current research context of precision treatment of malignant tumors, the advantages of immunotherapy are unmatched by conventional antitumor therapy, which can prolong progression-free survival and overall survival. The search for new targets and novel combination therapies can improve the efficacy of immunotherapy and reduce adverse effects. Since current research targets for immunotherapy mainly focus on lymphocytes, little research has been done on erythrocytes. Nucleated erythroid precursor stem cells have been discovered to play an essential role in tumor progression. Researchers are exploring new targets and therapeutic approaches for immunotherapy from the perspective of erythroid progenitor cells (EPCs). Recent studies have shown that different subtypes of EPCs have specific surface markers and distinct biological roles in tumor immunity. CD45+ EPCs are potent myeloid-derived suppressor cell-like immunosuppressants that reduce the patient's antitumor immune response. CD45- EPCs promote tumor invasion and metastasis by secreting artemin. A specific type of EPC also promotes angiogenesis and provides radiation protection. Therefore, EPCs may be involved in tumor growth, infiltration, and metastasis. It may also be an important cause of anti-angiogenesis and immunotherapy resistance. This review summarizes recent research advances in erythropoiesis, EPC features, and their impacts and processes on tumors.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100091, China,Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China,Postgraduate Department of Hebei North University, Zhangjiakou 075000, China
| | - Guang-zhi Wan
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China
| | - Yu-ying Wang
- Department of Oncology, First Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Wen Chen
- Department of Pathology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100091, China
| | - Jing-Zhi Guan
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China
| |
Collapse
|
10
|
Jeng SS, Chen YH. Association of Zinc with Anemia. Nutrients 2022; 14:nu14224918. [PMID: 36432604 PMCID: PMC9696717 DOI: 10.3390/nu14224918] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Zinc is an essential trace element, and anemia is the most common blood disorder. The association of zinc with anemia may be divided into three major forms: (1) zinc deficiency contributing to anemia, (2) excess intake of zinc leading to anemia, and (3) anemia leading to abnormal blood-zinc levels in the body. In most cases, zinc deficiency coexists with iron deficiency, especially in pregnant women and preschool-age children. To a lesser extent, zinc deficiency may cooperate with other factors to lead to anemia. It seems that zinc deficiency alone does not result in anemia and that it may need to cooperate with other factors to lead to anemia. Excess intake of zinc is rare. However, excess intake of zinc interferes with the uptake of copper and results in copper deficiency that leads to anemia. Animal model studies indicate that in anemia, zinc is redistributed from plasma and bones to the bone marrow to produce new red blood cells. Inadequate zinc status (zinc deficiency or excess) could have effects on anemia; at the same time, anemia could render abnormal zinc status in the body. In handling anemia, zinc status needs to be observed carefully, and supplementation with zinc may have preventive and curative effects.
Collapse
Affiliation(s)
- Sen-Shyong Jeng
- Department of Food Science, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: ; Tel.: +886-2-26326986
| | - Yen-Hua Chen
- Institute of Food Safety and Risk Management, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
11
|
Huang K, Ding Y, Que L, Chu N, Shi Y, Qian Z, Qin W, Chen Y, Gu X, Wang J, Zhang Z, Xu J, He Q. Safety, tolerability and pharmacokinetics of WXFL10203614 in healthy Chinese subjects: A randomized, double-blind, placebo-controlled phase Ⅰ study. Front Pharmacol 2022; 13:1057949. [DOI: 10.3389/fphar.2022.1057949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Objective: This study was conducted to investigate the safety, tolerability and pharmacokinetics (PK) of WXFL10203614 after single and multiple oral doses in healthy Chinese subjects.Methods: A single-center, randomized, double-blind, placebo-controlled phase Ⅰ study was performed on healthy Chinese subjects. In the single-dose study, Subjects were randomized into 7 dose levels of WXFL10203614 (1 mg group, n = 2; 2, 5, 10, 17, 25 and 33 mg groups with placebo, 8 subjects per group, 2 of them given placebo). In the multiple-dose study, subjects received 5 or 10 mg WXFL10203614 once daily (QD), 5 mg twice daily (BID) or placebo for 7 consecutive days. Safety, tolerability and PK of WXFL10203614 were all assessed.Results: A total of 592 subjects were screened, 50 subjects were enrolled in the single-dose study and 30 in the multiple-dose study. All adverse events (AEs) were mild or moderate and resolved spontaneously. No Serious Adverse Events (SAEs) or deaths were reported during the study. WXFL10203614 was absorbed rapidly after dosing with Tmax of 0.48–0.98 h, Cmax, AUC0-t and AUC0-∞ were all increased in a dose-related manner over the range of 1–33 mg. Renal excretion was the major route of elimination of WXFL10203614. Steady-state PK parameters (Cmax,ss, AUC0-t,ss and AUC0-∞,ss) were elevated after once-daily administration of 5–10 mg WXFL10203614 and non- and weak drug accumulations were observed, whereas moderate drug accumulation occurred in the 5 mg BID group.Conclusion: WXFL10203614 exhibited good safety, tolerability and favorable PK profiles in healthy Chinese subjects, supporting further clinical development in patients with rheumatoid arthritis.Clinical Trials Registration Number:http://www.chinadrugtrials.org.cn/index.html, #CTR20190069 and CTR20200143.
Collapse
|
12
|
Zuk A, Si Z, Loi S, Bommegowda S, Hoivik D, Danthi S, Molnar G, Csizmadia V, Rabinowitz M. Preclinical Characterization of Vadadustat (AKB-6548), an Oral Small Molecule Hypoxia-Inducible Factor Prolyl-4-Hydroxylase Inhibitor, for the Potential Treatment of Renal Anemia. J Pharmacol Exp Ther 2022; 383:11-24. [PMID: 35926869 DOI: 10.1124/jpet.122.001126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Pharmacological inhibition of prolyl-4-hydroxylase domain (PHD) enzymes stabilizes hypoxia-inducible factors (HIFs), transcription factors that activate target genes that, among others, increase erythropoietin (EPO) synthesis, resulting in the production of new red blood cells (RBCs). Herein, we summarize the preclinical characteristics of the small molecule HIF prolyl-4-hydroxylase inhibitor vadadustat (AKB-6548), which is in development for the treatment of anemia in patients with chronic kidney disease (CKD). Vadadustat inhibits the enzyme activity of all three human PHD isozymes, PHD1, PHD2, and PHD3, with similar low nanomolar inhibitory constant values. PHD enzyme inhibition by vadadustat is competitive with endogenous cofactor 2-oxoglutarate and is insensitive to free iron concentration. In the human hepatocellular carcinoma cell line (Hep 3B) and human umbilical vein endothelial cells, PHD inhibition by vadadustat leads to the time- and concentration-dependent stabilization of HIF-1α and HIF-2α In Hep 3B cells, this in turn results in the synthesis and secretion of EPO; vascular endothelial growth factor is not measured at detectable levels. A single oral dose of vadadustat in rats potently increases circulating levels of EPO, and daily oral dosing for 14 days increases RBC indices in healthy rats and in the 5/6 nephrectomy model of CKD. In mice and dogs, once-daily repeat oral dosing increases hemoglobin and hematocrit. Vadadustat has a relatively short half-life in all nonclinical species evaluated and does not accumulate when administered as a single bolus dose (oral or intravenous) or upon repeat oral dosing. The pharmacological profile of vadadustat supports continued development for treatment of renal anemia. SIGNIFICANCE STATEMENT: Vadadustat (AKB-6548) is an orally bioavailable small molecule prolyl-4-hydroxylase inhibitor in development for anemia of chronic kidney disease. It is an equipotent inhibitor of the three human prolyl-4-hydroxylase domain isoforms, which activates erythropoiesis through stabilization of hypoxia-inducible factor (HIF)-1α and HIF-2α, increasing production of erythropoietin, without detectable stimulation of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Anna Zuk
- Department of Research and Early Development, Akebia Therapeutics, Inc., Cambridge, Massachusetts (A.Z, Z.S., S.L, S.B., D.H., S.D., G.M., V.C., M.R)
| | - Zhihai Si
- Department of Research and Early Development, Akebia Therapeutics, Inc., Cambridge, Massachusetts (A.Z, Z.S., S.L, S.B., D.H., S.D., G.M., V.C., M.R)
| | - Sally Loi
- Department of Research and Early Development, Akebia Therapeutics, Inc., Cambridge, Massachusetts (A.Z, Z.S., S.L, S.B., D.H., S.D., G.M., V.C., M.R)
| | - Santhosh Bommegowda
- Department of Research and Early Development, Akebia Therapeutics, Inc., Cambridge, Massachusetts (A.Z, Z.S., S.L, S.B., D.H., S.D., G.M., V.C., M.R)
| | - Debie Hoivik
- Department of Research and Early Development, Akebia Therapeutics, Inc., Cambridge, Massachusetts (A.Z, Z.S., S.L, S.B., D.H., S.D., G.M., V.C., M.R)
| | - Sanjay Danthi
- Department of Research and Early Development, Akebia Therapeutics, Inc., Cambridge, Massachusetts (A.Z, Z.S., S.L, S.B., D.H., S.D., G.M., V.C., M.R)
| | - Gyongyi Molnar
- Department of Research and Early Development, Akebia Therapeutics, Inc., Cambridge, Massachusetts (A.Z, Z.S., S.L, S.B., D.H., S.D., G.M., V.C., M.R)
| | - Vilmos Csizmadia
- Department of Research and Early Development, Akebia Therapeutics, Inc., Cambridge, Massachusetts (A.Z, Z.S., S.L, S.B., D.H., S.D., G.M., V.C., M.R)
| | - Michael Rabinowitz
- Department of Research and Early Development, Akebia Therapeutics, Inc., Cambridge, Massachusetts (A.Z, Z.S., S.L, S.B., D.H., S.D., G.M., V.C., M.R)
| |
Collapse
|
13
|
Kralova B, Sochorcova L, Song J, Jahoda O, Hlusickova Kapralova K, Prchal JT, Divoky V, Horvathova M. Developmental changes in iron metabolism and erythropoiesis in mice with human gain-of-function erythropoietin receptor. Am J Hematol 2022; 97:1286-1299. [PMID: 35815815 DOI: 10.1002/ajh.26658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 01/24/2023]
Abstract
Iron availability for erythropoiesis is controlled by the iron-regulatory hormone hepcidin. Increased erythropoiesis negatively regulates hepcidin synthesis by erythroferrone (ERFE), a hormone produced by erythroid precursors in response to erythropoietin (EPO). The mechanisms coordinating erythropoietic activity with iron homeostasis in erythrocytosis with low EPO are not well defined as exemplified by dominantly inherited (heterozygous) gain-of-function mutation of human EPO receptor (mtHEPOR) with low EPO characterized by postnatal erythrocytosis. We previously created a mouse model of this mtHEPOR that develops fetal erythrocytosis with a transient perinatal amelioration of erythrocytosis and its reappearance at 3-6 weeks of age. Prenatally and perinatally, mtHEPOR heterozygous and homozygous mice (differing in erythrocytosis severity) had increased Erfe transcripts, reduced hepcidin, and iron deficiency. Epo was transiently normal in the prenatal life; then decreased at postnatal day 7, and remained reduced in adulthood. Postnatally, hepcidin increased in mtHEPOR heterozygotes and homozygotes, accompanied by low Erfe induction and iron accumulation. With aging, the old, especially mtHEPOR homozygotes had a decline of erythropoiesis, myeloid expansion, and local bone marrow inflammatory stress. In addition, mtHEPOR erythrocytes had a reduced lifespan. This, together with reduced iron demand for erythropoiesis, due to its age-related attenuation, likely contributes to increased iron deposition in the aged mtHEPOR mice. In conclusion, the erythroid drive-mediated inhibition of hepcidin production in mtHEPOR mice in the prenatal/perinatal period is postnatally abrogated by increasing iron stores promoting hepcidin synthesis. The differences observed in studied characteristics between mtHEPOR heterozygotes and homozygotes suggest dose-dependent alterations of downstream EPOR stimulation.
Collapse
Affiliation(s)
- Barbora Kralova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Sochorcova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jihyun Song
- Division of Hematology & Hematologic Malignancies, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ondrej Jahoda
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | | | - Josef T Prchal
- Division of Hematology & Hematologic Malignancies, The University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Monika Horvathova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
14
|
Xu G, Zou T, Deng L, Yang G, Guo T, Wang Y, Niu C, Cheng Q, Yang X, Dong J, Zhang J. Nonerythropoietic Erythropoietin Mimetic Peptide ARA290 Ameliorates Chronic Stress-Induced Depression-Like Behavior and Inflammation in Mice. Front Pharmacol 2022; 13:896601. [PMID: 36046815 PMCID: PMC9421426 DOI: 10.3389/fphar.2022.896601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder. But the treatment of depression remains challenging. Anti-inflammatory treatments frequently produce antidepressant effects. EPO-derived helix-B peptide ARA290 has been reported to retain the anti-inflammatory and tissue-protective functions of EPO without erythropoiesis-stimulating effects. The effects of ARA290 on MDD remain elusive. This study established chronic unpredictable mild stress and chronic social defeat stress mouse models. Daily administration of ARA290 during chronic stress induction in two mouse models ameliorated depression-like behavior, similar to fluoxetine. With marginal effects on peripheral blood hemoglobin and red cells, ARA290 and fluoxetine reversed chronic stress-induced increased frequencies and/or numbers of CD11b+Ly6Ghi neutrophils and CD11b+Ly6Chi monocytes in the bone marrow and meninges. Furthermore, both drugs reversed chronic stress-induced microglia activation. Thus, ARA290 ameliorated chronic stress-induced depression-like behavior in mice through, at least partially, its anti-inflammatory effects.
Collapse
Affiliation(s)
- Guanglei Xu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Zou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijiao Deng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tingting Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yi Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- *Correspondence: Jiyan Zhang,
| |
Collapse
|
15
|
Atia GAN, Shalaby HK, Zehravi M, Ghobashy MM, Attia HAN, Ahmad Z, Khan FS, Dey A, Mukerjee N, Alexiou A, Rahman MH, Klepacka J, Najda A. Drug-Loaded Chitosan Scaffolds for Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3192. [PMID: 35956708 PMCID: PMC9371089 DOI: 10.3390/polym14153192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Chitosan is a natural anionic polysaccharide with a changeable architecture and an abundance of functional groups; in addition, it can be converted into various shapes and sizes, making it appropriate for a variety of applications. This article examined and summarized current developments in chitosan-based materials, with a focus on the modification of chitosan, and presented an abundance of information about the fabrication and use of chitosan-derived products in periodontal regeneration. Numerous preparation and modification techniques for enhancing chitosan performance, as well as the uses of chitosan and its metabolites, were reviewed critically and discussed in depth in this study. Chitosan-based products may be formed into different shapes and sizes, considering fibers, nanostructures, gels, membranes, and hydrogels. Various drug-loaded chitosan devices were discussed regarding periodontal regeneration.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo P.O. Box 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21526, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Khardaha 700118, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20-280 Lublin, Poland
| |
Collapse
|
16
|
Abdel Nasser Atia G, Shalaby HK, Zehravi M, Ghobashy MM, Ahmad Z, Khan FS, Dey A, Rahman MH, Joo SW, Barai HR, Cavalu S. Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review. Polymers (Basel) 2022; 14:polym14142964. [PMID: 35890740 PMCID: PMC9319147 DOI: 10.3390/polym14142964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022] Open
Abstract
Bone and periodontium are tissues that have a unique capacity to repair from harm. However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult as the defect grows larger. Because of aging and the increased prevalence of debilitating disorders such as diabetes, there is a considerable increase in demand for orthopedic and periodontal surgical operations, and successful techniques for tissue regeneration are still required. Even with significant limitations, such as quantity and the need for a donor area, autogenous bone grafts remain the best solution. Topical administration methods integrate osteoconductive biomaterial and osteoinductive chemicals as hormones as alternative options. This is a promising method for removing the need for autogenous bone transplantation. Furthermore, despite enormous investigation, there is currently no single approach that can reproduce all the physiologic activities of autogenous bone transplants. The localized bioengineering technique uses biomaterials to administer different hormones to capitalize on the host’s regeneration capacity and capability, as well as resemble intrinsic therapy. The current study adds to the comprehension of the principle of hormone redirection and its local administration in both bone and periodontal tissue engineering.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo 13759, Egypt;
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Sang Woo Joo
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| |
Collapse
|
17
|
The Effect of Low-Energy Laser-Driven Ultrashort Pulsed Electron Beam Irradiation on Erythropoiesis and Oxidative Stress in Rats. Int J Mol Sci 2022; 23:ijms23126692. [PMID: 35743135 PMCID: PMC9223873 DOI: 10.3390/ijms23126692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Anemia is a commonly observed consequence of whole-body exposure to a dose of X-ray or gamma irradiation of the order of the mean lethal dose in mammals, and it is an important factor for the determination of the survival of animals. The aim of this study was to unravel the effect of laser-driven ultrashort pulsed electron beam (UPEB) irradiation on the process of erythropoiesis and the redox state in the organism. Wistar rats were exposed to laser-driven UPEB irradiation, after which the level of oxidative stress and the activities of different antioxidant enzymes, as well as blood smears, bone marrow imprints and sections, erythroblastic islets, hemoglobin and hematocrit, hepatic iron, DNA, and erythropoietin levels, were assessed on the 1st, 3rd, 7th, 14th, and 28th days after irradiation. Despite the fact that laser-driven UPEB irradiation requires quite low doses and repetition rates to achieve the LD50 in rats, our findings suggest that whole-body exposure with this new type of irradiation causes relatively mild anemia in rats, with subsequent fast recovery up to the 28th day. Moreover, this novel type of irradiation causes highly intense processes of oxidative stress, which, despite being relatively extinguished, did not reach the physiologically stable level even at the 28th day after irradiation due to the violations in the antioxidant system of the organism.
Collapse
|
18
|
Horwitz JK, Bin S, Fairchild RL, Keslar KS, Yi Z, Zhang W, Pavlov VI, Li Y, Madsen JC, Cravedi P, Heeger PS. Linking erythropoietin to regulatory T-cell-dependent allograft survival through myeloid cells. JCI Insight 2022; 7:158856. [PMID: 35389892 PMCID: PMC9220923 DOI: 10.1172/jci.insight.158856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/06/2022] [Indexed: 12/03/2022] Open
Abstract
Erythropoietin (EPO) has multiple nonerythropoietic functions, including immune modulation, but EPO’s effects in transplantation remain incompletely understood. We tested the mechanisms linking EPO administration to prolongation of murine heterotopic heart transplantation using WT and conditional EPO receptor–knockout (EPOR-knockout) mice as recipients. In WT controls, peritransplant administration of EPO synergized with CTLA4-Ig to prolong allograft survival (P < 0.001), reduce frequencies of donor-reactive effector CD8+ T cells in the spleen (P < 0.001) and in the graft (P < 0.05), and increase frequencies and total numbers of donor-reactive Tregs (P < 0.01 for each) versus CTLA4-Ig alone. Studies performed in conditional EPOR-knockout recipients showed that each of these differences required EPOR expression in myeloid cells but not in T cells. Analysis of mRNA isolated from spleen monocytes showed that EPO/EPOR ligation upregulated macrophage-expressed, antiinflammatory, regulatory, and pro-efferocytosis genes and downregulated selected proinflammatory genes. Taken together, the data support the conclusion that EPO promotes Treg-dependent murine cardiac allograft survival by crucially altering the phenotype and function of macrophages. Coupled with our previous documentation that EPO promotes Treg expansion in humans, the data support the need for testing the addition of EPO to costimulatory blockade-containing immunosuppression regimens in an effort to prolong human transplant survival.
Collapse
Affiliation(s)
- Julian K Horwitz
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Sofia Bin
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Robert L Fairchild
- Department of Immunology, Cleveland Clinic, Cleveland, United States of America
| | - Karen S Keslar
- Department of Immunology, Cleveland Clinic, Cleveland, United States of America
| | - Zhengzi Yi
- Translational Transplant Research Center, Icahn School of medicine at Mount Sinai, New York, United States of America
| | - Weijia Zhang
- Translational Transplant Research Center, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Vasile I Pavlov
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Yansui Li
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Joren C Madsen
- Department of Surgery, Massachusetts General Hospital, Boston, United States of America
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Peter S Heeger
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
19
|
Nishal S, Jhawat V, Phaugat P, Dutt R. Rheumatoid Arthritis and JAK-STAT Inhibitors: Prospects of Topical Delivery. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220329185842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Rheumatoid arthritis (RA) is the most common musculoskeletal disease in the world. The clinical prospects have increased tremendously since the advent of biological agents as therapy options. NSAIDs such as indomethacin, celecoxib, and etoricoxib are used often in the treatment of RA but off-target effects decreased their use. DMARDs such as methotrexate and etanercept were also effective in the treatment of RA, but tolerance to methotrexate developed in many cases. Janus kinase inhibitors (JAKi) have also gained popularity as a treatment option for rheumatoid arthritis. Tofacitinib is the foremost JAK inhibitor that is used to treat RA as an individual agent or in combination with other DMARDs. The most frequently used route of administration for JAKi is oral. Since oral formulations of JAK inhibitors have a number of health hazards, such as systemic toxicity and patient noncompliance, topical formulations of JAK inhibitors have emerged as a preferable alternative for administering JAK inhibitors. Tofacitinib delivered topically, seems to have the potential to eliminate or reduce the occurrences of negative effects when compared to tofacitinib taken orally. Given the scarcity of knowledge on the techniques for topical distribution of JAKi, more effort will be required to develop a stable topical formulation of JAKi to address the limitations of oral route. The current review looks at JAK inhibitors and the ways that have been used to generate topical formulations of them.
Collapse
Affiliation(s)
- Suchitra Nishal
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Vikas Jhawat
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Parmita Phaugat
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| | - Rohit Dutt
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
20
|
A Review of Pleiotropic Potential of Erythropoietin as an Adjunctive Therapy for COVID-19. JOURNAL OF CLINICAL AND BASIC RESEARCH 2022. [DOI: 10.52547/jcbr.6.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Crugliano G, Serra R, Ielapi N, Battaglia Y, Coppolino G, Bolignano D, Bracale UM, Pisani A, Faga T, Michael A, Provenzano M, Andreucci M. Hypoxia-Inducible Factor Stabilizers in End Stage Kidney Disease: "Can the Promise Be Kept?". Int J Mol Sci 2021; 22:12590. [PMID: 34830468 PMCID: PMC8618724 DOI: 10.3390/ijms222212590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Anemia is a common complication of chronic kidney disease (CKD). The prevalence of anemia in CKD strongly increases as the estimated Glomerular Filtration Rate (eGFR) decreases. The pathophysiology of anemia in CKD is complex. The main causes are erythropoietin (EPO) deficiency and functional iron deficiency (FID). The administration of injectable preparations of recombinant erythropoiesis-stimulating agents (ESAs), especially epoetin and darbepoetin, coupled with oral or intravenous(iv) iron supplementation, is the current treatment for anemia in CKD for both dialysis and non-dialysis patients. This approach reduces patients' dependence on transfusion, ensuring the achievement of optimal hemoglobin target levels. However, there is still no evidence that treating anemia with ESAs can significantly reduce the risk of cardiovascular events. Meanwhile, iv iron supplementation causes an increased risk of allergic reactions, gastrointestinal side effects, infection, and cardiovascular events. Currently, there are no studies defining the best strategy for using ESAs to minimize possible risks. One class of agents under evaluation, known as prolyl hydroxylase inhibitors (PHIs), acts to stabilize hypoxia-inducible factor (HIF) by inhibiting prolyl hydroxylase (PH) enzymes. Several randomized controlled trials showed that HIF-PHIs are almost comparable to ESAs. In the era of personalized medicine, it is possible to envisage and investigate specific contexts of the application of HIF stabilizers based on the individual risk profile and mechanism of action.
Collapse
Affiliation(s)
- Giuseppina Crugliano
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy;
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, I-88100 Catanzaro, Italy
| | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, I-00185 Roma, Italy;
| | - Yuri Battaglia
- Division of Nephrology and Dialysis, St. Anna University-Hospital, I-44121 Ferrara, Italy;
| | - Giuseppe Coppolino
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| | - Davide Bolignano
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| | - Umberto Marcello Bracale
- Vascular Surgery Unit, Department of Public Health, University Federico II of Naples, I-80131 Naples, Italy;
| | - Antonio Pisani
- Department of Public Health, University Federico II of Naples, I-80131 Naples, Italy;
| | - Teresa Faga
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| | - Ashour Michael
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| | - Michele Provenzano
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy;
| | - Michele Andreucci
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (G.C.); (G.C.); (D.B.); (T.F.); (A.M.)
| |
Collapse
|
22
|
Tsiftsoglou AS. Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells 2021; 10:cells10082140. [PMID: 34440909 PMCID: PMC8391952 DOI: 10.3390/cells10082140] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Human erythropoietin (EPO) is an N-linked glycoprotein consisting of 166 aa that is produced in the kidney during the adult life and acts both as a peptide hormone and hematopoietic growth factor (HGF), stimulating bone marrow erythropoiesis. EPO production is activated by hypoxia and is regulated via an oxygen-sensitive feedback loop. EPO acts via its homodimeric erythropoietin receptor (EPO-R) that increases cell survival and drives the terminal erythroid maturation of progenitors BFU-Es and CFU-Es to billions of mature RBCs. This pathway involves the activation of multiple erythroid transcription factors, such as GATA1, FOG1, TAL-1, EKLF and BCL11A, and leads to the overexpression of genes encoding enzymes involved in heme biosynthesis and the production of hemoglobin. The detection of a heterodimeric complex of EPO-R (consisting of one EPO-R chain and the CSF2RB β-chain, CD131) in several tissues (brain, heart, skeletal muscle) explains the EPO pleotropic action as a protection factor for several cells, including the multipotent MSCs as well as cells modulating the innate and adaptive immunity arms. EPO induces the osteogenic and endothelial transdifferentiation of the multipotent MSCs via the activation of EPO-R signaling pathways, leading to bone remodeling, induction of angiogenesis and secretion of a large number of trophic factors (secretome). These diversely unique properties of EPO, taken together with its clinical use to treat anemias associated with chronic renal failure and other blood disorders, make it a valuable biologic agent in regenerative medicine for the treatment/cure of tissue de-regeneration disorders.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
23
|
STAT5 as a Key Protein of Erythropoietin Signalization. Int J Mol Sci 2021; 22:ijms22137109. [PMID: 34281163 PMCID: PMC8268974 DOI: 10.3390/ijms22137109] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Erythropoietin (EPO) acts on multiple tissues through its receptor EPOR, a member of a cytokine class I receptor superfamily with pleiotropic effects. The interaction of EPO and EPOR triggers the activation of several signaling pathways that induce erythropoiesis, including JAK2/STAT5, PI3K/AKT, and MAPK. The canonical EPOR/JAK2/STAT5 pathway is a known regulator of differentiation, proliferation, and cell survival of erythroid progenitors. In addition, its role in the protection of other cells, including cancer cells, is under intense investigation. The involvement of EPOR/JAK2/STAT5 in other processes such as mRNA splicing, cytoskeleton reorganization, and cell metabolism has been recently described. The transcriptomics, proteomics, and epigenetic studies reviewed in this article provide a detailed understanding of EPO signalization. Advances in this area of research may be useful for improving the efficacy of EPO therapy in hematologic disorders, as well as in cancer treatment.
Collapse
|
24
|
Liang F, Guan H, Li W, Zhang X, Liu T, Liu Y, Mei J, Jiang C, Zhang F, Luo B, Zhang Z. Erythropoietin Promotes Infection Resolution and Lowers Antibiotic Requirements in E. coli- and S. aureus-Initiated Infections. Front Immunol 2021; 12:658715. [PMID: 33927725 PMCID: PMC8076604 DOI: 10.3389/fimmu.2021.658715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Endogenous mechanisms underlying bacterial infection resolution are essential for the development of novel therapies for the treatment of inflammation caused by infection without unwanted side effects. Herein, we found that erythropoietin (EPO) promoted the resolution and enhanced antibiotic actions in Escherichia coli (E. coli)- and Staphylococcus aureus (S. aureus)-initiated infections. Levels of peritoneal EPO and macrophage erythropoietin receptor (EPOR) were elevated in self-limited E. coli-initiated peritonitis. Myeloid-specific EPOR-deficient mice exhibited an impaired inflammatory resolution and exogenous EPO enhanced this resolution in self-limited infections. Mechanistically, EPO increased macrophage clearance of bacteria via peroxisome proliferator-activated receptor γ (PPARγ)-induced CD36. Moreover, EPO ameliorated inflammation and increased the actions of ciprofloxacin and vancomycin in resolution-delayed E. coli- and S. aureus-initiated infections. Collectively, macrophage EPO signaling is temporally induced during infections. EPO is anti-phlogistic, increases engulfment, promotes infection resolution, and lowers antibiotic requirements.
Collapse
Affiliation(s)
- Feihong Liang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiting Guan
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Li
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Zhang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingting Liu
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Yu Liu
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Jie Mei
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cheng Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bangwei Luo
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Zhiren Zhang
- Institute of Immunology, Army Medical University, Chongqing, China
| |
Collapse
|
25
|
Kükrek H, Aitzetmüller M, Vodiškar M, Moog P, Machens HG, Duscher D. Erythropoetin can partially restore cigarette smoke induced effects on Adipose derived Stem Cells. Clin Hemorheol Microcirc 2021; 77:27-36. [PMID: 32651309 DOI: 10.3233/ch-200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Adipose derived Stem Cells (ASCs) have been proven to play a key role in tissue regeneration. However, exposure to large amounts of cigarette smoke can drastically diminish their function. Erythropoetin (EPO), can modulate cellular response to injury. Therefore, we investigated the ability of EPO to restore the regenerative function and differentiation capacity of ASCs. MATERIAL AND METHODS Human ASCs were isolated from abdominoplasty samples using standard isolation procedures. Cell identity was established by means of Fluorescence Activated Cell Scanning. Subsequently, isolated ASCs were cultivated with cigarette smoke extract both with and without EPO. Parameters investigated included cellular metabolic activity, adipogenic and osteogenic differentiation capacity, and in vitro wound closure capacity. For further enhancing wound closure, EPO was combined with Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) or Stromal Derived Factor-1 alpha (SDF-1 a). RESULTS Cigarette smoke reduces adipogenic differentiation, the osteogenic differentiation capacity as well as the in vitro wound healing ability of human derived ASCs. EPO did not change metabolic activity of ASCs significantly. The addition of EPO could partially restore their function. The combination of EPO with GM-CSF or SDF-1 did not result in a synergistic effect regarding wound healing ability. CONCLUSION Exposure to cigarette smoke significantly reduced the regenerative potential of ASCs. Treatment of ASCs exposed to cigarette smoke with EPO has the potential to partially restore their function.
Collapse
Affiliation(s)
- Haydar Kükrek
- Department for Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Aitzetmüller
- Department for Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mateja Vodiškar
- Department for Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Philipp Moog
- Department for Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Günther Machens
- Department for Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominik Duscher
- Department for Plastic and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
26
|
[Into thin air - Altitude training and hypoxic conditioning: From athlete to patient]. Rev Mal Respir 2021; 38:404-417. [PMID: 33722445 DOI: 10.1016/j.rmr.2021.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/15/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Hypoxic exposure should be considered as a continuum, the effects of which depend on the dose and individual response to hypoxia. Hypoxic conditioning (HC) represents an innovative and promising strategy, ranging from improved human performance to therapeutic applications. STATE OF THE ART With the aim of improving sports performance, the effectiveness of hypoxic exposure, whether natural or simulated, is difficult to demonstrate because of the large variability of the protocols used. In therapeutics, the benefits of HC are described in many pathological conditions such as obesity or cardiovascular pathologies. If the HC benefits from a strong preclinical rationale, its application to humans remains limited. PERSPECTIVES Advances in training and acclimation will require greater personalization and precise periodization of hypoxic exposures. For patients, the harmonization of HC protocols, the identification of biomarkers and the development and subsequent validation of devices allowing a precise control of the hypoxic stimulus are necessary steps for the development of HC. CONCLUSIONS From the athlete to the patient, HC represents an innovative and promising field of research, ranging from the improvement of human performance to the prevention and treatment of certain pathologies.
Collapse
|
27
|
Improvement of Islet Allograft Function Using Cibinetide, an Innate Repair Receptor Ligand. Transplantation 2021; 104:2048-2058. [PMID: 32345869 DOI: 10.1097/tp.0000000000003284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND During intraportal pancreatic islet transplantation (PITx), early inflammatory reactions cause an immediate loss of more than half of the transplanted graft and potentiate subsequent allograft rejection. Previous findings suggest that cibinetide, a selective innate repair receptor agonist, exerts islet protective and antiinflammatory properties and improved transplant efficacy in syngeneic mouse PITx model. In a stepwise approach toward a clinical application, we have here investigated the short- and long-term effects of cibinetide in an allogeneic mouse PITx model. METHODS Streptozotocin-induced diabetic C57BL/6N (H-2) mice were transplanted with 320 (marginal) or 450 (standard) islets from BALB/c (H-2) mice via the portal vein. Recipients were treated perioperative and thereafter daily during 14 d with cibinetide (120 µg/kg), with or without tacrolimus injection (0.4 mg/kg/d) during days 4-14 after transplantation. Graft function was assessed using nonfasting glucose measurements. Relative gene expressions of proinflammatory cytokines and proinsulin of the graft-bearing liver were assessed by quantitative polymerase chain reaction. Cibinetide's effects on dendritic cell maturation were investigated in vitro. RESULTS Cibinetide ameliorated the local inflammatory responses in the liver and improved glycemic control immediately after allogeneic PITx and significantly delayed the onset of allograft loss. Combination treatment with cibinetide and low-dose tacrolimus significantly improved long-term graft survival following allogeneic PITx. In vitro experiments indicated that cibinetide lowered bone-marrow-derived-immature-dendritic cell maturation and subsequently reduced allogeneic T-cell response. CONCLUSIONS Cibinetide reduced the initial transplantation-related severe inflammation and delayed the subsequent alloreactivity. Cibinetide, in combination with low-dose tacrolimus, could significantly improve long-term graft survival in allogeneic PITx.
Collapse
|
28
|
Sano Y, Yoshida T, Choo MK, Jiménez-Andrade Y, Hill KR, Georgopoulos K, Park JM. Multiorgan Signaling Mobilizes Tumor-Associated Erythroid Cells Expressing Immune Checkpoint Molecules. Mol Cancer Res 2020; 19:507-515. [PMID: 33234577 DOI: 10.1158/1541-7786.mcr-20-0746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
Hematopoietic-derived cells are integral components of the tumor microenvironment and serve as critical mediators of tumor-host interactions. Host cells derived from myeloid and lymphoid lineages perform well-established functions linked to cancer development, progression, and response to therapy. It is unclear whether host erythroid cells also contribute to shaping the path that cancer can take, but emerging evidence points to this possibility. Here, we show that tumor-promoting environmental stress and tumor-induced hemodynamic changes trigger renal erythropoietin production and erythropoietin-dependent expansion of splenic erythroid cell populations in mice. These erythroid cells display molecular features indicative of an immature erythroid phenotype, such as the expression of both CD71 and TER119 and the retention of intact nuclei, and express genes encoding immune checkpoint molecules. Nucleated erythroid cells with similar properties are present in mouse and human tumor tissues. Antibody-mediated erythropoietin blockade reduces tumor-responsive erythroid cell induction and tumor growth. These findings reveal the potential of tumor-induced erythropoietin and erythroid cells as targets for cancer treatment. IMPLICATIONS: : Our study identifies erythropoietin and erythroid cells as novel players in tumor-host interactions and highlights the involvement of multiorgan signaling events in their induction in response to environmental stress and tumor growth.
Collapse
Affiliation(s)
- Yasuyo Sano
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Toshimi Yoshida
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Yanek Jiménez-Andrade
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Kathryn R Hill
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts.
| |
Collapse
|
29
|
Hypoxia Pathway Proteins are Master Regulators of Erythropoiesis. Int J Mol Sci 2020; 21:ijms21218131. [PMID: 33143240 PMCID: PMC7662373 DOI: 10.3390/ijms21218131] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Erythropoiesis is a complex process driving the production of red blood cells. During homeostasis, adult erythropoiesis takes place in the bone marrow and is tightly controlled by erythropoietin (EPO), a central hormone mainly produced in renal EPO-producing cells. The expression of EPO is strictly regulated by local changes in oxygen partial pressure (pO2) as under-deprived oxygen (hypoxia); the transcription factor hypoxia-inducible factor-2 induces EPO. However, erythropoiesis regulation extends beyond the well-established hypoxia-inducible factor (HIF)-EPO axis and involves processes modulated by other hypoxia pathway proteins (HPPs), including proteins involved in iron metabolism. The importance of a number of these factors is evident as their altered expression has been associated with various anemia-related disorders, including chronic kidney disease. Eventually, our emerging understanding of HPPs and their regulatory feedback will be instrumental in developing specific therapies for anemic patients and beyond.
Collapse
|
30
|
Fu XN, Li HW, Du N, Liang X, He SH, Guo KJ, Li TF. Erythropoietin enhances meniscal regeneration and prevents osteoarthritis formation in mice. Am J Transl Res 2020; 12:6464-6477. [PMID: 33194044 PMCID: PMC7653595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability, and knee is the most commonly afflicted joint. Meniscal tear due to injury or degeneration is an established factor for OA pathogenesis. Previous studies have demonstrated that meniscectomy does not reduce the OA incidence. We hypothesized that enhancing meniscal regeneration may prevent OA formation and progression. We first investigated the developmental pattern of mouse meniscus. Knee joint samples were collected at embryonic stages as well as after birth for histological and immunohistochemical studies. The results showed that meniscal cells underwent active proliferation and apoptosis at embryonic day 19.5 and Day 1 after birth. Collagen I (Col-1) is a major type of matrix protein in matured meniscus. Meniscal cells isolated from 3-month-old mice were used to examine the effect of selected factors on the molecules related to cell proliferation, angiogenesis, inflammation, extracellular matrix proteins and matrix degradation enzymes. Overall assessment indicated that EPO had optimal effect on meniscal regeneration. An organ culture system of mouse meniscus was established to test the effect of EPO on in vitro cultured menisci. EPO upregulated the expression of Col-1, Col-2 and VEGF-A, and downregulated the expression of MMP-13. Finally, we established a mouse model of meniscus injury induced OA (MIO), and mice were subjected to PBS or EPO treatments. The results demonstrated that EPO enhanced meniscal repair and prevented OA formation. EPO may become an effective Disease Modifying Osteoarthritis Drug and may be used for early treatment for meniscal injury to prevent OA progression.
Collapse
Affiliation(s)
- Xiao-Ning Fu
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Hui-Wu Li
- Department of Orthopaedics, Shanghai 9 Hospital, Shanghai Jiaotong UniversityShanghai, China
| | - Na Du
- Department of Nephrology, Central Hospital of Kai-Feng CityKai Feng, China
| | - Xu Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Shi-Hao He
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Kuang-Jin Guo
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
31
|
Bhoopalan SV, Huang LJS, Weiss MJ. Erythropoietin regulation of red blood cell production: from bench to bedside and back. F1000Res 2020; 9:F1000 Faculty Rev-1153. [PMID: 32983414 PMCID: PMC7503180 DOI: 10.12688/f1000research.26648.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
More than 50 years of efforts to identify the major cytokine responsible for red blood cell (RBC) production (erythropoiesis) led to the identification of erythropoietin (EPO) in 1977 and its receptor (EPOR) in 1989, followed by three decades of rich scientific discovery. We now know that an elaborate oxygen-sensing mechanism regulates the production of EPO, which in turn promotes the maturation and survival of erythroid progenitors. Engagement of the EPOR by EPO activates three interconnected signaling pathways that drive RBC production via diverse downstream effectors and simultaneously trigger negative feedback loops to suppress signaling activity. Together, the finely tuned mechanisms that drive endogenous EPO production and facilitate its downstream activities have evolved to maintain RBC levels in a narrow physiological range and to respond rapidly to erythropoietic stresses such as hypoxia or blood loss. Examination of these pathways has elucidated the genetics of numerous inherited and acquired disorders associated with deficient or excessive RBC production and generated valuable drugs to treat anemia, including recombinant human EPO and more recently the prolyl hydroxylase inhibitors, which act partly by stimulating endogenous EPO synthesis. Ongoing structure-function studies of the EPOR and its essential partner, tyrosine kinase JAK2, suggest that it may be possible to generate new "designer" drugs that control selected subsets of cytokine receptor activities for therapeutic manipulation of hematopoiesis and treatment of blood cancers.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN, 38105, USA
| | - Lily Jun-shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS #355, Memphis, TN, 38105, USA
| |
Collapse
|
32
|
Na N, Zhao D, Zhang J, Wu J, Miao B, Li H, Luo Y, Tang Z, Zhang W, Bellanti JA, Zheng SG. Carbamylated erythropoietin regulates immune responses and promotes long-term kidney allograft survival through activation of PI3K/AKT signaling. Signal Transduct Target Ther 2020; 5:194. [PMID: 32934199 PMCID: PMC7493938 DOI: 10.1038/s41392-020-00232-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/28/2020] [Accepted: 05/26/2020] [Indexed: 01/06/2023] Open
Abstract
Modulation of alloimmune responses is critical to improving transplant outcome and promoting long-term graft survival. To determine mechanisms by which a nonhematopoietic erythropoietin (EPO) derivative, carbamylated EPO (CEPO), regulates innate and adaptive immune cells and affects renal allograft survival, we utilized a rat model of fully MHC-mismatched kidney transplantation. CEPO administration markedly extended the survival time of kidney allografts compared with the transplant alone control group. This therapeutic effect was inhibited when the recipients were given LY294002, a selective inhibitor of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway or anti-EPO receptor (EPOR) antibody, in addition to CEPO. In vitro, CEPO inhibited the differentiation and function of dendritic cells and modulated their production of pro-inflammatory and anti-inflammatory cytokines, along with activating the PI3K/AKT signaling pathway and increasing EPOR mRNA and protein expression by these innate immune cells. Moreover, after CD4+ T cells were exposed to CEPO the Th1/Th2 ratio decreased and the regulatory T cell (Treg)/Th17 ratio increased. These effects were abolished by LY294002 or anti-EPOR antibody, suggesting that CEPO regulates immune responses and promotes kidney allograft survival by activating the PI3K/AKT signaling pathway in an EPOR-dependent manner. The immunomodulatory and specific signaling pathway effects of CEPO identified in this study suggest a potential therapeutic approach to promoting kidney transplant survival.
Collapse
Affiliation(s)
- Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Daqiang Zhao
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Jinhua Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Jiaqing Wu
- Department of Kidney Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Bin Miao
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Heng Li
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Yingxun Luo
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Zuofu Tang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Wensheng Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, 15261, PA, USA. .,Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, 15261, PA, USA. .,United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Houston, 78234, TX, USA.
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, 43210, OH, USA.
| |
Collapse
|
33
|
Samson F, He W, Sripathi SR, Patrick AT, Madu J, Chung H, Frost MC, Jee D, Gutsaeva DR, Jahng WJ. Dual Switch Mechanism of Erythropoietin as an Antiapoptotic and Pro-Angiogenic Determinant in the Retina. ACS OMEGA 2020; 5:21113-21126. [PMID: 32875248 PMCID: PMC7450639 DOI: 10.1021/acsomega.0c02763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 05/07/2023]
Abstract
Constant or intense light degenerates the retina and retinal pigment epithelial cells. Light generates reactive oxygen species and nitric oxide leading to initial reactions of retinal degeneration. Apoptosis is the primary mechanism of abnormal death of photoreceptors, retinal ganglion cells, or retinal pigment epithelium (RPE) in degenerative retinal diseases, including diabetic retinopathy and age-related macular degeneration. The current study evaluated the function of erythropoietin (EPO) on angiogenesis and apoptosis in the retina and RPE under oxidative stress. We determined the pro-angiogenic and antiapoptotic mechanism of EPO under stress conditions using a conditional EPO knockdown model using siRNA, EPO addition, proteomics, immunocytochemistry, and bioinformatic analysis. Our studies verified that EPO protected retinal cells from light-, hypoxia-, hyperoxia-, and hydrogen peroxide-induced apoptosis through caspase inhibition, whereas up-regulated angiogenic reactions through vascular endothelial growth factor (VEGF) and angiotensin pathway. We demonstrated that the EPO expression in the retina and subsequent serine/threonine/tyrosine kinase phosphorylations might be linked to oxidative stress response tightly to determining angiogenesis and apoptosis. Neuroprotective roles of EPO may involve the balance between antiapoptotic and pro-angiogenic signaling molecules, including BCL-xL, c-FOS, caspase-3, nitric oxide, angiotensin, and VEGF receptor. Our data indicate a new therapeutic application of EPO toward retinal degeneration based on the dual roles in apoptosis and angiogenesis at the molecular level under oxidative stress.
Collapse
Affiliation(s)
| | - Weilue He
- Department
of Biomedical Engineering, Michigan Technological
University, Houghton 49931, United States
| | - Srinivas R. Sripathi
- Department
of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Ambrose Teru Patrick
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Joshua Madu
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Hyewon Chung
- Department
of Ophthalmology, School of Medicine, Konkuk
University, Seoul 05030, Korea
| | - Megan C. Frost
- Department
of Biomedical Engineering, Michigan Technological
University, Houghton 49931, United States
| | - Donghyun Jee
- Division
of Vitreous and Retina, Department of Ophthalmology, St. Vincent’s
Hospital, College of Medicine, The Catholic
University of Korea, Suwon 16247, Korea
| | - Diana R. Gutsaeva
- Department
of Ophthalmology, Augusta University, Augusta, Georgia 30912, United States
| | - Wan Jin Jahng
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| |
Collapse
|
34
|
Xiong H, Zhang AH, Zhao QQ, Yan GL, Sun H, Wang XJ. Discovery of quality-marker ingredients of Panax quinquefolius driven by high-throughput chinmedomics approach. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 74:152928. [PMID: 31451286 DOI: 10.1016/j.phymed.2019.152928] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Quality control of traditional Chinese medicine (TCM) has always been a hot issue to TCM. However, due to the complexity of TCM ingredients, the current quality standards of TCM have problems that are difficult to guarantee clinical efficacy. American ginseng, the dried roots of Pawajc quinquefolium L. (Araliaceae), is a valuable herbal medicine due to various pharmacological effects and huge health benefit, which are associated with numerous active ingredients such as ginsenosides. Although a large number of studies have investigated the active ingredients of American ginseng, Q-markers reflecting comprehensive review on its efficacies has yet been unrevealed. PURPOSE The study aims to discover the Q-markers of Panax quinquefolius (American ginseng), provides a powerful method to clarify the significant ingredents of TCM and help further discovering extensive quality evaluation model,contributing to a significant improvement of TCM quality standard. METHODS Mice general status, biochemical indexes assay, urine metabolic profile, and serum metabolic profile were utilized for model replication and efficacy evaluation. The in vitro and in vivo constituents of American ginseng using ultra-high performance liquid chromatography coupled with mass spectrometry (UPLC-MS) with Serum Pharmacochemistry of TCM were in-depth investigated. Q-markers that were associated with core markers of therapeutic effects were excavated by a plotting of correlation between marker metabolites and serum constituents (PCMS) approach. RESULTS Correlation analysis of 41 blood and urine labeled metabolites with 14 serum components showed that 24-methyl-7-cholesten-3β-ol, zizybeoside II, betulin, ginsenoside Rd, cinnamyl alcohol, pseudoginsenoside F11 is highly correlated with the therapeutic effects of Compound Zaofan Pill (CZP), while pseudoginsenoside F11 and ginsenoside Rd are highly correlated with the therapeutic effects of American ginseng. The six absorbed blood compounds can be considered as potential Q-markers for compound, of which two compounds, such as pseudoginsenoside F11 and ginsenoside Rd, can be considered as potential Q-markers for American ginseng. CONCLUSION The study has demonstrated that the Chinmedomics is an effective, comprehensive and fire-new method for discovering the Q-markers of TCM, and it may be more reasonable choices to establish quality standards of TCM.
Collapse
Affiliation(s)
- Hui Xiong
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Qi-Qi Zhao
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| |
Collapse
|
35
|
Deshet-Unger N, Kolomansky A, Ben-Califa N, Hiram-Bab S, Gilboa D, Liron T, Ibrahim M, Awida Z, Gorodov A, Oster HS, Mittelman M, Rauner M, Wielockx B, Gabet Y, Neumann D. Erythropoietin receptor in B cells plays a role in bone remodeling in mice. Theranostics 2020; 10:8744-8756. [PMID: 32754275 PMCID: PMC7392011 DOI: 10.7150/thno.45845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Erythropoietin (EPO) is a key regulator of erythropoiesis. However, EPO receptors (EPO-Rs) are also expressed on non-erythroid cell types, including myeloid and bone cells. Immune cells also participate in bone homeostasis. B cells produce receptor activator of nuclear factor kappa-Β ligand (RANKL) and osteoprotegerin (OPG), two pivotal regulators of bone metabolism. Here we explored the ability of B cells to transdifferentiate into functional osteoclasts and examined the role of EPO in this process in a murine model. Methods: We have combined specifically-designed experimental mouse models and in vitro based osteoclastogenesis assays, as well as PCR analysis of gene expression. Results: (i) EPO treatment in vivo increased RANKL expression in bone marrow (BM) B cells, suggesting a paracrine effect on osteoclastogenesis; (ii) B cell-derived osteoclastogenesis occured in vivo and in vitro, as demonstrated by B cell lineage tracing in murine models; (iii) B-cell-derived osteoclastogenesis in vitro was restricted to Pro-B cells expressing CD115/CSF1-R and is enhanced by EPO; (iv) EPO treatment increased the number of B-cell-derived preosteoclasts (β3+CD115+), suggesting a physiological rationale for B cell derived osteoclastogenesis; (v) finally, mice with conditional EPO-R knockdown in the B cell lineage (cKD) displayed a higher cortical and trabecular bone mass. Moreover, cKD displayed attenuated EPO-driven trabecular bone loss, an effect that was observed despite the fact that cKD mice attained higher hemoglobin levels following EPO treatment. Conclusions: Our work highlights B cells as an important extra-erythropoietic target of EPO-EPO-R signaling and suggests their involvement in the regulation of bone homeostasis and possibly in EPO-stimulated erythropoietic response. Importantly, we present here for the first time, histological evidence for B cell-derived osteoclastogenesis in vivo.
Collapse
|
36
|
Yang L, Lewis K. Erythroid Lineage Cells in the Liver: Novel Immune Regulators and Beyond. J Clin Transl Hepatol 2020; 8:177-183. [PMID: 32832398 PMCID: PMC7438359 DOI: 10.14218/jcth.2019.00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/19/2019] [Accepted: 02/25/2020] [Indexed: 12/04/2022] Open
Abstract
The lineage of the erythroid cell has been revisited in recent years. Instead of being classified as simply inert oxygen carriers, emerging evidence has shown that they are a tightly regulated in immune potent population with potential developmental plasticity for lineage crossing. Erythroid cells have been reported to exert immune regulatory function through secreted cytokines, or cell-cell contact, depending on the conditions of the microenvironment and disease models. In this review, we explain the natural history of erythroid cells in the liver through a developmental lens, as it offers perspectives into newly recognized roles of this lineage in liver biology. Here, we review the known immune roles of erythroid cells and discuss the mechanisms in the context of disease models and stages. Then, we explore the capability of erythroid lineage as a cell source for regenerative medicine. We propose that the versatile lineage of erythroid cells provides an underappreciated and potentially promising area for basic and translational research in the field of liver disease.
Collapse
Affiliation(s)
- Li Yang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Correspondence to: Li Yang, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue; Cincinnati, OH 45229-3030, USA. Tel: +1-513-636-3008, E-mail:
| | - Kyle Lewis
- Division of Gastroenterology, Hepatology & Nutrition Developmental Biology Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
37
|
Tanaka Y, Izutsu H. Peficitinib for the treatment of rheumatoid arthritis: an overview from clinical trials. Expert Opin Pharmacother 2020; 21:1015-1025. [PMID: 32345068 DOI: 10.1080/14656566.2020.1739649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The treatment of rheumatoid arthritis (RA), a chronic, systemic, autoimmune disease, has been greatly advanced by the introduction of biologic disease-modifying antirheumatic drugs (DMARDs); however, many patients still fail to achieve disease remission. Peficitinib, an orally bioavailable inhibitor of the Janus kinase (JAK) receptor family, was approved in Japan in 2019 and Korea in 2020 for the treatment of RA. AREAS COVERED This review provides an overview of JAK inhibitors currently marketed or in development; the pharmacodynamics and pharmacokinetics of peficitinib; and the efficacy and safety data for peficitinib from Phase 2b and 3 trials. EXPERT OPINION Peficitinib has proven clinical efficacy in Asian patients (Japan, Korea, and Taiwan) with RA who have an inadequate response to conventional DMARDs. In Phase 3 trials, clinical improvements and prevention of joint destruction were demonstrated for both 100 mg and 150 mg once-daily peficitinib versus placebo, and treatment for up to 52 weeks was well tolerated. Safety signals, in particular the increased incidence of herpes zoster-related disease, appeared in line with other JAK inhibitors. Post-launch monitoring will establish the long-term safety and effectiveness of this drug, and further studies are necessary to determine its potential use in non-Asian populations.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health , Japan, Kitakyushu, Japan
| | | |
Collapse
|
38
|
Locatelli F, Del Vecchio L, De Nicola L, Minutolo R. Are all erythropoiesis-stimulating agents created equal? Nephrol Dial Transplant 2020; 36:1369-1377. [PMID: 32206785 DOI: 10.1093/ndt/gfaa034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
Erythropoiesis-stimulating agents (ESAs) are effective drugs to correct and maintain haemoglobin (Hb) levels, however, their use at doses to reach high Hb targets has been associated with an increased risk of cardiovascular adverse events, mortality and cancer. Presently used ESAs have a common mechanism of action but different pharmacokinetic and pharmacodynamic characteristics. Accordingly, the mode of activation of the erythropoietin (EPO) receptor can exert marked differences in downstream events. It is unknown whether the various ESA molecules have different efficacy/safety profiles. The relative mortality and morbidity risks associated with the use of different types of ESAs remains poorly evaluated. Recently an observational study and a randomized clinical trial provided conflicting results regarding this matter. However, these two studies displayed several differences in patient characteristics and ESA molecules used. More importantly, by definition, randomized clinical trials avoid bias by indication and suffer less from confounding factors. Therefore they bring a higher degree of evidence. The scenario becomes even more complex when considering the new class of ESAs, called prolyl-hydroxylase domain (PHD) inhibitors. They are oral drugs that mimic exposure to hypoxia and stabilize hypoxia-inducible factor α. They profoundly differ from presently used ESAs, as they have multiple targets of action, including the stimulation of endogenous EPO synthesis, direct mobilization/absorption of iron and a higher reduction of hepcidin. Accordingly, they have the potential to be more effective in inflamed patients with functional iron deficiency, i.e. the setting of patients who are at higher risk of cardiovascular events and mortality in response to present ESA use. As for ESAs, individual PHD inhibitors differ in molecular structure and degree of selectivity for the three main PHD isoforms; their efficacy and safety profiles may therefore be different from that of presently available ESAs.
Collapse
Affiliation(s)
- Francesco Locatelli
- Past Director of the Department of Nephrology and Dialysis, Alessandro Manzoni Hospital, ASST Lecco, Lecco, Italy
| | | | - Luca De Nicola
- Department of Scienze Mediche e Chirurgiche Avanzate, Division of Nephrology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Minutolo
- Department of Scienze Mediche e Chirurgiche Avanzate, Division of Nephrology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
39
|
Logan RM, Al-Azri AR, Bossi P, Stringer AM, Joy JK, Soga Y, Ranna V, Vaddi A, Raber-Durlacher JE, Lalla RV, Cheng KKF, Elad S. Systematic review of growth factors and cytokines for the management of oral mucositis in cancer patients and clinical practice guidelines. Support Care Cancer 2020; 28:2485-2498. [PMID: 32080767 DOI: 10.1007/s00520-019-05170-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023]
Abstract
PURPOSE To update the clinical practice guidelines for the use of growth factors and cytokines for the prevention and/or treatment of oral mucositis (OM). METHODS A systematic review was conducted by the Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO). The body of evidence for each intervention, in each cancer treatment setting, was assigned an evidence level. The findings were added to the database used to develop the 2014 MASCC/ISOO clinical practice guidelines. Based on the evidence level, the following guidelines were determined: recommendation, suggestion, and no guideline possible. RESULTS A total of 15 new papers were identified within the scope of this section and were merged with 51 papers that were reviewed in the previous guidelines update. Of these, 14, 5, 13, 2, and 1 were randomized controlled trials about KGF-1, G-CSF, GM-CSF, EGF, and erythropoietin, respectively. For the remaining agents there were no new RCTs. The previous recommendation for intravenous KGF-1 in patients undergoing autologous hematopoietic stem cell transplantation (HSCT) conditioned with high-dose chemotherapy and TBI-based regimens is confirmed. The previous suggestion against the use of topical GM-CSF for the prevention of OM in the setting of high-dose chemotherapy followed by autologous or allogeneic stem cell transplantation remains unchanged. CONCLUSIONS Of the growth factors and cytokines studied for the management of OM, the evidence supports a recommendation in favor of KGF-1 and a suggestion against GM-CSF in certain clinical settings.
Collapse
Affiliation(s)
- Richard M Logan
- Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Abdul Rahman Al-Azri
- Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, South Australia, Australia. .,Dental and OMFS Department, Oral Pathology and Medicine, Al-Nahdha Hospital, Ministry of Health, Muscat, Oman.
| | - Paolo Bossi
- Medical Oncology, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Andrea M Stringer
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Jamie K Joy
- Clinical Pharmacy, Cancer Treatment Centers of America, Boca Raton, FL, USA
| | - Yoshihiko Soga
- Okayama University Hospital, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| | - Vinisha Ranna
- Department of Oral and Maxillofacial Surgery, The Mount Sinai Hospital, New York, NY, USA
| | - Anusha Vaddi
- Oral Medicine, Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA.,Division of Oral and Maxillofacial Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Judith E Raber-Durlacher
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam , Amsterdam, Netherlands
| | - Rajesh V Lalla
- Division of Oral and Maxillofacial Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT, USA
| | - Karis Kin Fong Cheng
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sharon Elad
- Oral Medicine, Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
40
|
Bernecker C, Ackermann M, Lachmann N, Rohrhofer L, Zaehres H, Araúzo-Bravo MJ, van den Akker E, Schlenke P, Dorn I. Enhanced Ex Vivo Generation of Erythroid Cells from Human Induced Pluripotent Stem Cells in a Simplified Cell Culture System with Low Cytokine Support. Stem Cells Dev 2019; 28:1540-1551. [PMID: 31595840 PMCID: PMC6882453 DOI: 10.1089/scd.2019.0132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Red blood cell (RBC) differentiation from human induced pluripotent stem cells (hiPSCs) offers great potential for developmental studies and innovative therapies. However, ex vivo erythropoiesis from hiPSCs is currently limited by low efficiency and unphysiological conditions of common culture systems. Especially, the absence of a physiological niche may impair cell growth and lineage-specific differentiation. We here describe a simplified, xeno- and feeder-free culture system for prolonged RBC generation that uses low numbers of supporting cytokines [stem cell factor (SCF), erythropoietin (EPO), and interleukin 3 (IL-3)] and is based on the intermediate development of a “hematopoietic cell forming complex (HCFC).” From this HCFC, CD43+ hematopoietic cells (purity >95%) were continuously released into the supernatant and could be collected repeatedly over a period of 6 weeks for further erythroid differentiation. The released cells were mainly CD34+/CD45+ progenitors with high erythroid colony-forming potential and CD36+ erythroid precursors. A total of 1.5 × 107 cells could be harvested from the supernatant of one six-well plate, showing 100- to 1000-fold amplification during subsequent homogeneous differentiation into GPA+ erythroid cells. Mean enucleation rates near 40% (up to 60%) further confirmed the potency of the system. These benefits may be explained by the generation of a niche within the HCFC that mimics the spatiotemporal signaling of the physiological microenvironment in which erythropoiesis occurs. Compared to other protocols, this method provides lower complexity, less cytokine and medium consumption, higher cellular output, and better enucleation. In addition, slight modifications in cytokine addition shift the system toward continuous generation of granulocytes and macrophages.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Mania Ackermann
- RG Translational Hematology of Congenital Diseases, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- RG Translational Hematology of Congenital Diseases, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Lisa Rohrhofer
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Holm Zaehres
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Research Group, Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Isabel Dorn
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
41
|
Vega-López A, Pagadala NS, López-Tapia BP, Madera-Sandoval RL, Rosales-Cruz E, Nájera-Martínez M, Reyes-Maldonado E. Is related the hematopoietic stem cells differentiation in the Nile tilapia with GABA exposure? FISH & SHELLFISH IMMUNOLOGY 2019; 93:801-814. [PMID: 31419534 DOI: 10.1016/j.fsi.2019.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The signaling mediated by small non-proteinogenic molecules, which probably have the capacity to serve as a bridge amongst complex systems is one of the most exiting challenges for the study. In the current report, stem cells differentiation of the immune system in Nile tilapia treated with sub-basal doses of GABA evaluated as c-kit+ and Sca-1+ cells disappearance on pronephros, thymus, spleen and peripheral blood mononuclear cells by flow cytometry was assessed. Explanation of biological response was performed by molecular docking approach and multiparametric analysis. Stem cell differentiation depends on a delicate balance of negative and positive interactions of this neurotransmitter with receptors and transcription factors involved in this process. This in turn depends on the type of interaction with hematopoietic niche to differentiate into primordial, early or late hematopoiesis as well as from the dose delivery. In fish treated with the low doses of GABA (0.1% over basal value) primordial hematopoiesis is regulated by interaction of glutamate (Glu) with the Ly-6 antigen. Early hematopoiesis was influenced by the bond of GABA near or adjacent to turns of FLTR3-Ig-IV domain. During late hematopoiesis, negative regulation by structural modifications on PU.1/IRF-4 complex, IL-7Rα and GM-CSFR mainly prevails. Results of molecular docking were in agreement with the percentages of the main blood cells lineages estimated in pronephros by flow cytometry. Current study provides the first evidences about the role of inhibitory and excitatory neurotransmitters such as GABA and Glu, respectively with the most transcriptional factors and receptors involved on hematopoiesis in adult Nile tilapia.
Collapse
Affiliation(s)
- Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico.
| | | | - Brenda P López-Tapia
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico
| | - Ruth L Madera-Sandoval
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico
| | - Erika Rosales-Cruz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Citología, Carpio y Plan de Ayala S/n, Casco de Santo Tomás, México, CP 11340, Mexico
| | - Minerva Nájera-Martínez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico
| | - Elba Reyes-Maldonado
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Citología, Carpio y Plan de Ayala S/n, Casco de Santo Tomás, México, CP 11340, Mexico
| |
Collapse
|
42
|
Cantarelli C, Angeletti A, Cravedi P. Erythropoietin, a multifaceted protein with innate and adaptive immune modulatory activity. Am J Transplant 2019; 19:2407-2414. [PMID: 30903735 PMCID: PMC6711804 DOI: 10.1111/ajt.15369] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 01/25/2023]
Abstract
Erythropoietin (EPO) is a glycoprotein produced mainly by the adult kidney in response to hypoxia and is the crucial regulator of red blood cell production. EPO receptors (EPORs), however, are not confined to erythroid cells, but are expressed by many organs including the heart, brain, retina, pancreas, and kidney, where they mediate EPO-induced, erythropoiesis-independent, tissue-protective effects. Some of these tissues also produce and locally release small amounts of EPO in response to organ injury as a mechanism of self-repair. Growing evidence shows that EPO possesses also important immune-modulating effects. Monocytes can produce EPO, and autocrine EPO/EPOR signaling in these cells is crucial in maintaining immunologic self-tolerance. New data in mice and humans also indicate that EPO has a direct inhibitory effect on effector/memory T cells, while it promotes formation of regulatory T cells. This review examines the nonerythropoietic effects of EPO, with a special emphasis on its modulating activity on innate immune cells and T cells and on how it affects transplant outcomes.
Collapse
Affiliation(s)
- Chiara Cantarelli
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Angeletti
- Department of Experimental, Diagnostic, Specialty Medicine, Nephrology, Dialysis, and Renal Transplant Unit, S. Orsola University Hospital, Bologna, Italy
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
43
|
Garzón F, Coimbra D, Parcerisas A, Rodriguez Y, García JC, Soriano E, Rama R. NeuroEPO Preserves Neurons from Glutamate-Induced Excitotoxicity. J Alzheimers Dis 2019; 65:1469-1483. [PMID: 30175978 DOI: 10.3233/jad-180668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many experimental studies show that erythropoietin (EPO) has a neuroprotective action in the brain. EPO in acute and chronic neurological disorders, particularly in stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, has neuroprotective effects. We previously reported the neuroprotective effect of NeuroEPO, a low sialic form of EPO, against oxidative stress induced by glutamate excitotoxicity. In this paper, we analyze the effect of NeuroEPO against apoptosis induced by glutamate excitotoxicity in primary neuronal cultures obtained from the forebrains of Wistar rat embryos after 17 days of gestation. Excitotoxicity was induced after nine days of in vitro culture by treatment with a culture medium containing 100μM glutamate for 15 min. To withdraw glutamate, a new medium containing 100 ng NeuroEPO/mL was added. Apoptosis was analyzed after 24 h. Images obtained by phase contrast microscopy show that neurons treated with glutamate exhibit cell body shrinkage, loss of dendrites that do not make contact with neighboring cells, and that NeuroEPO was able to preserve the morphological characteristics of the control. Immunocytochemistry images show that the culture is essentially pure in neurons; that glutamate causes cell mortality, and that this is partially avoided when the culture medium is supplemented with NeuroEPO. Activation of intrinsic apoptotic pathways was analyzed. The decreases in Bcl-2/Bax ratio, increase in the release of cytochrome c, and in the expression and activity of caspase-3 observed in cells treated with glutamate, were restored by NeuroEPO. The results from this study show that NeuroEPO protects cortical neurons from glutamate-induced apoptosis via upregulation of Bcl-2 and inhibit glutamate-induced activation of caspase-3.
Collapse
Affiliation(s)
- Fernando Garzón
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Department of Animal Health, University of Nariño, Colombia
| | - Débora Coimbra
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Vall d'Hebron Institute of Research, Barcelona, Spain
| | - Yamila Rodriguez
- Department of Histology, Institute of Preclinical and Basic Sciences, University of Medical Sciences, Havana, Cuba.,Center of Molecular Immunology (CIM), Havana, Cuba
| | - Julio Cesar García
- Department of Histology, Institute of Preclinical and Basic Sciences, University of Medical Sciences, Havana, Cuba.,National Center for Animals Breeding (Cenpalab), Havana, Cuba
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Vall d'Hebron Institute of Research, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Ramón Rama
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| |
Collapse
|
44
|
Merelli A, Ramos AJ, Lazarowski A, Auzmendi J. Convulsive Stress Mimics Brain Hypoxia and Promotes the P-Glycoprotein (P-gp) and Erythropoietin Receptor Overexpression. Recombinant Human Erythropoietin Effect on P-gp Activity. Front Neurosci 2019; 13:750. [PMID: 31379495 PMCID: PMC6652211 DOI: 10.3389/fnins.2019.00750] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Erythropoietin (EPO) is not only a hormone that promotes erythropoiesis but also has a neuroprotective effect on neurons attributed to its known anti-apoptotic action. Previously, our group has demonstrated that recombinant-human EPO (rHu-EPO) can protect neurons and recovery motor activity in a chemical focal brain hypoxia model (Merelli et al., 2011). We and others also have reported that repetitive seizures can mimic a hypoxic- like condition by HIF-1α nuclear translocation and high neuronal expression P-gp. Here, we report that a single 20-min status epilepticus (SE) induces P-gp and EPO-R expression in cortical pyramidal neurons and only P-gp expression in astrocytes. In vitro, excitotoxic stress (300 μM glutamate, 5 min), can also induce the expression of EPO-R and P-gp simultaneously with both HIF-1α and NFkB nuclear translocation in primary cortical neurons. Primary astrocytes exposed to chemical hypoxia with CoCl2 (0.3 mM, 6 h) increased P-gp expression as well as an increased efflux of Rhodamine 123 (Rho123) that is a P-gp substrate. Tariquidar, a specific 3er generation P-gp-blocker was used as an efflux inhibitor control. Astrocytes treated with rHu-EPO showed a significant recovery of the Rho123 retention in a similar way as seen by Tariquidar, demonstrating for first time that rHu-EPO can inhibit the P-gp-dependent efflux activity. Taking together, these data suggest that stimulation of EPO depending signaling system could not only play a central role in brain cell protection, but this system could be a new tool for reverse the pharmacoresistant phenotype in refractory epilepsy as well as in other pharmacoresistant hypoxic brain diseases expressing P-gp.
Collapse
Affiliation(s)
- Amalia Merelli
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" IBCN-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Departamento de Bioquímica Clínica, Instituto de Investigaciones en Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jeronimo Auzmendi
- Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" IBCN-UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
45
|
Donadei C, Angeletti A, Cantarelli C, D'Agati VD, La Manna G, Fiaccadori E, Horwitz JK, Xiong H, Guglielmo C, Hartzell S, Madsen JC, Maggiore U, Heeger PS, Cravedi P. Erythropoietin inhibits SGK1-dependent TH17 induction and TH17-dependent kidney disease. JCI Insight 2019; 5:127428. [PMID: 31013255 DOI: 10.1172/jci.insight.127428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IL-17-producing CD4+ cells (TH17) are pathogenically linked to autoimmunity including to autoimmune kidney disease. Erythropoietin's (EPO) newly recognized immunoregulatory functions and its predominant intra-renal source suggested that EPO physiologically regulates TH17 differentiation, thereby serving as a barrier to the development of autoimmune kidney disease. Using in vitro studies of human and murine cells and in vivo models, we show that EPO ligation of its receptor (EPO-R) on CD4+ T cells directly inhibits TH17 generation and promotes trans-differentiation of TH17 into IL-17-FOXP3+CD4+ T cells. Mechanistically, EPO/EPO-R ligation abrogates upregulation of SGK1 gene expression and blocks p38 activity to prevent SGK1 phosphorylation, thereby inhibiting RORC-mediated transcription of IL-17 and IL-23 receptor genes. In a murine model of TH17-dependent aristolochic acid (ArA)-induced, interstitial kidney disease associated with reduced renal EPO production, we demonstrate that transgenic EPO overexpression or recombinant EPO (rEPO) administration limits TH17 formation and clinical/histological disease expression. EPO/EPO-R ligations on CD4+ T cells abrogate, while absence of T cell-expressed EPO-R augments, TH17 induction and clinical/histological expression of pristane-induced glomerulonephritis (associated with decreased intrarenal EPO). rEPO prevents spontaneous glomerulonephritis and TH17 generation in MRL-lpr mice. Together, our findings indicate that EPO physiologically and therapeutically modulate TH17 cells to limit expression of TH17-associated autoimmune kidney disease.
Collapse
Affiliation(s)
- Chiara Donadei
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nephrology Dialysis and Renal Transplantation Unit, S. Orsola University Hospital, Bologna, Italy
| | - Andrea Angeletti
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Nephrology Dialysis and Renal Transplantation Unit, S. Orsola University Hospital, Bologna, Italy
| | - Chiara Cantarelli
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Dipartimento di Medicina e Chirurgia (Università di Parma), UO Nefrologia (Azienda Ospedaliera-Universitaria Parma), Parma, Italy
| | - Vivette D D'Agati
- Department of Pathology, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Gaetano La Manna
- Nephrology Dialysis and Renal Transplantation Unit, S. Orsola University Hospital, Bologna, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia (Università di Parma), UO Nefrologia (Azienda Ospedaliera-Universitaria Parma), Parma, Italy
| | - Julian K Horwitz
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Huabao Xiong
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chiara Guglielmo
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan Hartzell
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joren C Madsen
- Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Umberto Maggiore
- Dipartimento di Medicina e Chirurgia (Università di Parma), UO Nefrologia (Azienda Ospedaliera-Universitaria Parma), Parma, Italy
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
46
|
Mobilization of Transplanted Bone Marrow Mesenchymal Stem Cells by Erythropoietin Facilitates the Reconstruction of Segmental Bone Defect. Stem Cells Int 2019; 2019:5750967. [PMID: 31065275 PMCID: PMC6466852 DOI: 10.1155/2019/5750967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/30/2018] [Accepted: 01/13/2019] [Indexed: 02/05/2023] Open
Abstract
Reconstruction of segmental bone defects poses a tremendous challenge for both orthopedic clinicians and scientists, since bone rehabilitation is requisite substantially and may be beyond the capacity of self-healing. Bone marrow mesenchymal stem cells (BMSCs) have been identified as an optimal progenitor cell source to facilitate bone repair since they have a higher ability for proliferation and are more easily accessible than mature osteoblastic cells. In spite of the potential of BMSCs in regeneration medicine, particularly for bone reconstruction, noteworthy limitations still remain in previous application of BMSCs, including the amount of cells that could be recruited, the compromised bone migration of grafted cells, reduced proliferation and osteoblastic differentiation ability, and likely tumorigenesis. Our current work demonstrates that BMSCs transplanted through the caudal vein can be mobilized by erythropoietin (EPO) to the bone defect area and participate in regeneration of new bone. Based on the histological analysis and micro-CT findings of this study, EPO can dramatically promote the effects on the osteogenesis and angiogenesis efficiency of BMSCs in vivo. Animals that underwent EPO+BMSC administration demonstrated a remarkable increase in new bone formation, tissue structure organization, new vessel density, callus formation, and bone mineral density (BMD) compared with the BMSCs alone and control groups. At the biomechanical level, we demonstrated that combing transplantation of EPO and BMSCs enhances bone defect reconstruction by increasing the strength of the diaphysis, making it less fragile. Therefore, combination therapy using EPO infusion and BMSC transplantation may be a new therapeutic strategy for the reconstruction of segmental bone defect.
Collapse
|
47
|
Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med 2019; 133:46-54. [PMID: 29969719 DOI: 10.1016/j.freeradbiomed.2018.06.037] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
In vertebrates, transferrin (Tf) safely delivers iron through circulation to cells. Tf-bound iron is incorporated through Tf receptor (TfR) 1-mediated endocytosis. TfR1 can mediate cellular uptake of both Tf and H-ferritin, an iron storage protein. New World arenaviruses, which cause hemorrhagic fever, and Plasmodium vivax use TfR1 for entry into host cells. Human TfR2, another receptor for Tf, is predominantly expressed in hepatocytes and erythroid precursors, and holo-Tf dramatically upregulates its expression. TfR2 forms a complex with hemochromatosis protein, HFE, and serves as a component of the iron sensing machinery in hepatocytes. Defects in TfR2 cause systemic iron overload, hemochromatosis, through down-regulation of hepcidin. In erythroid cells, TfR2 forms a complex with the erythropoietin receptor and regulates erythropoiesis. TfR2 facilitates iron transport from lysosomes to mitochondria in erythroblasts and dopaminergic neurons. Administration of apo-Tf, which scavenges free iron, has been explored for various clinical conditions including atransferrinemia, iron overload, and tissue ischemia. Apo-Tf has also been shown to ameliorate anemia in animal models of β-thalassemia. In this review, I provide an update and summary on our knowledge of mammalian Tf and its receptors.
Collapse
Affiliation(s)
- Hiroshi Kawabata
- Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Ishikawa-ken 920-0293, Japan.
| |
Collapse
|
48
|
Yang F, Huang Y, Chen X, Liu L, Liao D, Zhang H, Huang G, Liu W, Zhu X, Wang W, Lobo CA, Yazdanbakhsh K, An X, Ju Z. Deletion of a flippase subunit Tmem30a in hematopoietic cells impairs mouse fetal liver erythropoiesis. Haematologica 2019; 104:1984-1994. [PMID: 30819915 PMCID: PMC6886424 DOI: 10.3324/haematol.2018.203992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
Transmembrane protein 30A (Tmem30a) is the β-subunit of P4-ATPases which function as flippase that transports aminophospholipids such as phosphatidylserine from the outer to the inner leaflets of the plasma membrane to maintain asymmetric distribution of phospholipids. It has been documented that deficiency of Tmem30a led to exposure of phosphatidylserine. However, the role of Tmem30a in vivo remains largely unknown. Here we found that Vav-Cre-driven conditional deletion of Tmem30a in hematopoietic cells led to embryonic lethality due to severe anemia by embryonic day 16.5. The numbers of erythroid colonies and erythroid cells were decreased in the Tmem30a deficient fetal liver. This was accompanied by increased apoptosis of erythroid cells. Confocal microscopy analysis revealed an increase of localization of erythropoietin receptor to areas of membrane raft microdomains in response to erythropoietin stimulation in Ter119−erythroid progenitors, which was impaired in Tmem30a deficient cells. Moreover, erythropoietin receptor (EPOR)-mediated activation of the STAT5 pathway was significantly reduced in Tmem30a deficient fetal liver cells. Consistently, knockdown of TMEM30A in human CD34+ cells also impaired erythropoiesis. Our findings demonstrate that Tmem30a plays a critical role in erythropoiesis by regulating the EPOR signaling pathway through the formation of membrane rafts in erythroid cells.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yumin Huang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianda Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Lu Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Dandan Liao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Huan Zhang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA.,School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Gang Huang
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China and Chengdu, Sichuan, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China and Chengdu, Sichuan, China.,Chengdu Institute of Biology, Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Cheryl A Lobo
- Laboratory of Blood-Borne Parasites, New York Blood Center, New York, NY, USA
| | | | - Xiuli An
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China .,Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA.,School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China .,Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
49
|
Luo B, Wang Z, Zhang Z, Shen Z, Zhang Z. The deficiency of macrophage erythropoietin signaling contributes to delayed acute inflammation resolution in diet-induced obese mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:339-349. [DOI: 10.1016/j.bbadis.2018.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
|
50
|
Rama R, Garzón F, Rodríguez-Cruz Y, Maurice T, García-Rodríguez JC. Neuroprotective effect of Neuro-EPO in neurodegenerative diseases: "Alea jacta est". Neural Regen Res 2019; 14:1519-1521. [PMID: 31089047 PMCID: PMC6557108 DOI: 10.4103/1673-5374.255968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ramón Rama
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Fernando Garzón
- Department of Animal Health, University of Nariño, Pasto, Nariño, Colombia
| | | | - Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France
| | | |
Collapse
|