1
|
Kadyrov FF, Koenig AL, Amrute JM, Dun H, Li W, Weinheimer CJ, Nigro JM, Kovacs A, Bredemeyer AL, Yang S, Das S, Penna VR, Parvathaneni A, Lai L, Hartmann N, Kopecky BJ, Kreisel D, Lavine KJ. Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury. NATURE CARDIOVASCULAR RESEARCH 2024:10.1038/s44161-024-00553-6. [PMID: 39433910 DOI: 10.1038/s44161-024-00553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
Myocardial infarction initiates cardiac remodeling and is central to heart failure pathogenesis. Following myocardial ischemia-reperfusion injury, monocytes enter the heart and differentiate into diverse subpopulations of macrophages. Here we show that deletion of Hif1α, a hypoxia response transcription factor, in resident cardiac macrophages led to increased remodeling and overrepresentation of macrophages expressing arginase 1 (Arg1). Arg1+ macrophages displayed an inflammatory gene signature and may represent an intermediate state of monocyte differentiation. Lineage tracing of Arg1+ macrophages revealed a monocyte differentiation trajectory consisting of multiple transcriptionally distinct states. We further showed that deletion of Hif1α in resident cardiac macrophages resulted in arrested progression through this trajectory and accumulation of an inflammatory intermediate state marked by persistent Arg1 expression. Depletion of the Arg1+ trajectory accelerated cardiac remodeling following ischemic injury. Our findings unveil distinct trajectories of monocyte differentiation and identify hypoxia sensing as an important determinant of monocyte differentiation following myocardial infarction.
Collapse
Affiliation(s)
- Farid F Kadyrov
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrew L Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Junedh M Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hao Dun
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wenjun Li
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carla J Weinheimer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jessica M Nigro
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Attila Kovacs
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrea L Bredemeyer
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven Yang
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shibali Das
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vinay R Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alekhya Parvathaneni
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lulu Lai
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Niklas Hartmann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
- Department of Cardiology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Benjamin J Kopecky
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Bogert NV, Therre M, Din S, Furkel J, Zhou X, El-Battrawy I, Heineke J, Schweizer PA, Akin I, Katus HA, Frey N, Leuschner F, Konstandin MH. Macrophages enhance sodium channel expression in cardiomyocytes. Basic Res Cardiol 2024:10.1007/s00395-024-01084-8. [PMID: 39382673 DOI: 10.1007/s00395-024-01084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Cardiac macrophages facilitate electrical conduction through the atrioventricular-node (AV) in mice. A possible role for cardiomyocyte-macrophage coupling on the effect of antiarrhythmic therapy has not been investigated yet. Holter monitoring was conducted in LysMCrexCsf1rLsL-DTR mice (MMDTR) under baseline conditions and after an elctrophysiological stress test by flecainide. In vivo effects were recapitulated in vitro by patch-clamp experiments. The underlying mechanism was characterized by expression and localization analysis of connexin43 (Cx43) and voltage-gated-sodium-channel-5 (Nav1.5). ECG monitoring in MMDTR mice did not show any significant conduction abnormalities but a significantly attenuated flecainide-induced extension of RR- and PP-intervals. Patch-clamp analysis revealed that the application of flecainide to neonatal rat ventricular cardiomyocytes (CMs) changed their resting-membrane-potential (RMP) to more negative potentials and decreased action-potential-duration (APD50). Coupling of macrophages to CMs significantly enhances the effects of flecainide, with a further reduction of the RMP and APD50, mediated by an upregulation of Cx43 and Nav1.5 surface expression. Macrophage depletion in mice does not correlate with cardiac electric conduction delay. Cardiac macrophages amplify the effects of flecainide on electrophysiological properties of cardiomyocytes in vivo and in vitro. Mechanistically, formation of macrophage-cardiomyocyte cell-cell-contacts via Cx43 facilitates the recruitment of Nav1.5 to the cell membrane increasing flecainide effects.
Collapse
Affiliation(s)
- N V Bogert
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - M Therre
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - S Din
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - J Furkel
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - X Zhou
- Department of Cardiology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - I El-Battrawy
- Department of Cardiology, BG Universitätsklinikum Bergmannsheil Bochum, Ruhr-University, Bochum, Germany
- Institut Für Forschung Und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - J Heineke
- Department of Cardiovascular Physiology, European Center for Angioscience, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - P A Schweizer
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - I Akin
- Department of Cardiology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - H A Katus
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - N Frey
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - F Leuschner
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany
| | - M H Konstandin
- Department of Cardiology, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Mannheim, Germany.
| |
Collapse
|
3
|
Ohara D, Takeuchi Y, Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell Mol Immunol 2024:10.1038/s41423-024-01218-x. [PMID: 39379604 DOI: 10.1038/s41423-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- ImmunoSensation Cluster of Excellence, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Walch P, Broz P. Viral-bacterial co-infections screen in vitro reveals molecular processes affecting pathogen proliferation and host cell viability. Nat Commun 2024; 15:8595. [PMID: 39366977 PMCID: PMC11452664 DOI: 10.1038/s41467-024-52905-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The broadening of accessible methodologies has enabled mechanistic insights into single-pathogen infections, yet the molecular mechanisms underlying co-infections remain largely elusive, despite their clinical frequency and relevance, generally exacerbating symptom severity and fatality. Here, we describe an unbiased in vitro screening of pairwise co-infections in a murine macrophage model, quantifying pathogen proliferation and host cell death in parallel over time. The screen revealed that the majority of interactions are antagonistic for both metrics, highlighting general patterns depending on the pathogen virulence strategy. We subsequently decipher two distinct molecular interaction points: Firstly, murine Adenovirus 3 modifies ASC-dependent inflammasome responses in murine macrophages, altering host cell death and cytokine production, thereby impacting secondary Salmonella infection. Secondly, murine Adenovirus 2 infection triggers upregulation of Mprip, a crucial mediator of phagocytosis, which in turn causes increased Yersinia uptake, specifically in virus pre-infected bone-marrow-derived macrophages. This work therefore encompasses both a first-of-its-kind systematic assessment of host-pathogen-pathogen interactions, and mechanistic insight into molecular mediators during co-infection.
Collapse
Affiliation(s)
- Philipp Walch
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Petr Broz
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland.
| |
Collapse
|
5
|
Lee SH, Sacks DL. Resilience of dermis resident macrophages to inflammatory challenges. Exp Mol Med 2024:10.1038/s12276-024-01313-z. [PMID: 39349826 DOI: 10.1038/s12276-024-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
The skin serves as a complex barrier organ populated by tissue-resident macrophages (TRMs), which play critical roles in defense, homeostasis, and tissue repair. This review examines the functions of dermis resident TRMs in different inflammatory settings, their embryonic origins, and their long-term self-renewal capabilities. We highlight the M2-like phenotype of dermal TRMs and their specialized functions in perivascular and perineuronal niches. Their interactions with type 2 immune cells, autocrine cytokines such as IL-10, and their phagocytic clearance of apoptotic cells have been explored as mechanisms for M2-like dermal TRM self-maintenance and function. In conclusion, we address the need to bridge murine models with human studies, with the possibility of targeting TRMs to promote skin immunity or restrain cutaneous pathology.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Solaymani-Mohammadi S. The IL-21/IL-21R signaling axis regulates CD4+ T-cell responsiveness to IL-12 to promote bacterial-induced colitis. J Leukoc Biol 2024; 116:726-737. [PMID: 38498592 PMCID: PMC11408709 DOI: 10.1093/jleuko/qiae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
IL-21/IL-21R signaling dysregulation is linked to multiple chronic intestinal inflammatory disorders in humans and animal models of human diseases. In addition to its critical requirement for the generation and development of germinal center B cells, IL-21/IL-21R signaling can also regulate the effector functions of a variety of T-cell subsets. The antibody-mediated abrogation of IL-21/IL-21R signaling led to the impaired expression of IFN-γ by mucosal CD4+ T cells from human subjects with colitis, suggesting an IL-21/IL-21R-triggered positive feedback loop of the TH1 immune response in the colon. Despite recent advances in our understanding of the mechanisms underpinning the regulation of proinflammatory immune responses by the IL-21/IL-21R signaling axis, it remains unclear how this pathway or its downstream molecules contribute to inflammation during bacterial-induced colitis. This study found that IL-21 enhances the surface expression of IL-12Rβ2, but not IL-12Rβ1, in CD4+ T cells, leading to TH1 differentiation and stability. Consistently, these findings also point to an indispensable role of the IL-12Rβ2 signaling axis in promoting proinflammatory immune responses during Citrobacter rodentium-induced colitis. Genetic deletion of the IL-12Rβ2 signaling pathway led to the attenuation of C. rodentium-induced colitis in vivo. The genetic deletion of the IL-12Rβ2 signaling pathway did not alter the host's ability to respond adequately to C. rodentium infection or the ability of Il12rb2-/- mice to express antigen-specific cytokines (IFN-γ, IL-17A). IL-21 is a pleiotropic cytokine exerting a wide range of immunomodulatory functions in multiple tissues, and its direct targeting may result in undesirable off-target consequences. These findings highlight the possibility for targeted manipulations of signaling cascades downstream of main regulators of proinflammatory responses to control invading pathogens while preserving the integrity of host immune responses. A better understanding of the novel mechanisms by which IL-21/IL-21R signaling regulates bacterial-induced colitis will provide insights into the development of new therapeutic and preventive strategies to harness IL-21/IL-21R signaling or its downstream molecules to treat infectious colitis.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Road, Suite W315, Stop 9037, Grand Forks, ND, United States
| |
Collapse
|
7
|
Shealy NG, Baltagulov M, Byndloss MX. A long journey to the colon: The role of the small intestine microbiota in intestinal disease. Mol Microbiol 2024; 122:304-312. [PMID: 38690771 PMCID: PMC11499051 DOI: 10.1111/mmi.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The small intestine represents a complex and understudied gut niche with significant implications for human health. Indeed, many infectious and non-infectious diseases center within the small intestine and present similar clinical manifestations to large intestinal disease, complicating non-invasive diagnosis and treatment. One major neglected aspect of small intestinal diseases is the feedback relationship with the resident collection of commensal organisms, the gut microbiota. Studies focused on microbiota-host interactions in the small intestine in the context of infectious and non-infectious diseases are required to identify potential therapeutic targets dissimilar from those used for large bowel diseases. While sparsely populated, the small intestine represents a stringent commensal bacterial microenvironment the host relies upon for nutrient acquisition and protection against invading pathogens (colonization resistance). Indeed, recent evidence suggests that disruptions to host-microbiota interactions in the small intestine impact enteric bacterial pathogenesis and susceptibility to non-infectious enteric diseases. In this review, we focus on the microbiota's impact on small intestine function and the pathogenesis of infectious and non-infectious diseases of the gastrointestinal (GI) tract. We also discuss gaps in knowledge on the role of commensal microorganisms in proximal GI tract function during health and disease.
Collapse
Affiliation(s)
- Nicolas G. Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Madi Baltagulov
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN 37235, U.S.A
| |
Collapse
|
8
|
Zhu L, Shang J, Li Y, Zhang Z, Fu P, Zong Y, Chen S, Wang J, Zhang J, Wang J, Jiang C. Toll-Like Receptors Mediate Opposing Dendritic Cell Effects on Treg/Th17 Balance in Mice With Intracerebral Hemorrhage. Stroke 2024; 55:2126-2138. [PMID: 38920054 DOI: 10.1161/strokeaha.124.046394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Dendritic cells (DCs) regulate the immune response associated with T lymphocytes, but their role in stroke remains unclear. In this study, we investigated the causal relationship between DCs and T-cell response in intracerebral hemorrhage (ICH) by focusing on TLRs (toll-like receptors) that may modulate the function of DCs. METHODS We studied the effects of TLR4, TLR2, and TLR9 on DC-mediated T-cell response and the outcomes of ICH using male C57BL/6 and CD11c-DTx (diphtheria toxin) receptor mice. We administered specific agents intraperitoneally or orally and evaluated the results using flow cytometry, real-time polymerase chain reaction, Western blotting, immunofluorescence staining, histopathology, and behavioral tests. RESULTS TLR4 and TLR2 activation induces DC maturation and reduces the ratio of regulatory T to T-helper 17 cells in the brain and periphery after ICH. When either of these receptors is activated, it can worsen neuroinflammation and exacerbate ICH outcomes. TLR9 also promotes DC maturation, stabilizing the number of DCs, particularly conventional DCs. TLR9 has the opposite effects on regulatory T/T-helper 17 balance, neuroinflammation, and ICH outcomes compared with TLR4 and TLR2. Upon stimulation, TLR4 and TLR9 may achieve these effects through the p38-MAPK (p38-mitogen-activated protein kinase)/MyD88 (myeloid differentiation primary response gene 88) and indoleamine 2,3-dioxygenase 1 (IDO1)/GCN2 (general control nonderepressible 2) signaling pathways, respectively. DCs act as intermediaries for TLR-mediated T-cell response. CONCLUSIONS TLR-mediated opposing effects of DCs on T-cell response may provide novel strategies to treat ICH.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Junkui Shang
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| | - Yinuo Li
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Zhiying Zhang
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Peiji Fu
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Yan Zong
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Shuai Chen
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, China (Junmin Wang, Jian Wang)
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| | - Jian Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, China (Junmin Wang, Jian Wang)
| | - Chao Jiang
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| |
Collapse
|
9
|
Zhang Y, Li B, Hong Y, Luo P, Hong Z, Xia X, Mo P, Yu C, Chen W. Histone demethylase JMJD2D protects against enteric bacterial infection via up-regulating colonic IL-17F to induce β-defensin expression. PLoS Pathog 2024; 20:e1012316. [PMID: 38905308 PMCID: PMC11221690 DOI: 10.1371/journal.ppat.1012316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/03/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
Histone demethylase JMJD2D (also known as KDM4D) can specifically demethylate H3K9me2/3 to activate its target gene expression. Our previous study has demonstrated that JMJD2D can protect intestine from dextran sulfate sodium (DSS)-induced colitis by activating Hedgehog signaling; however, its involvement in host defense against enteric attaching and effacing bacterial infection remains unclear. The present study was aimed to investigate the role of JMJD2D in host defense against enteric bacteria and its underlying mechanisms. The enteric pathogen Citrobacter rodentium (C. rodentium) model was used to mimic clinical colonic infection. The responses of wild-type and JMJD2D-/- mice to oral infection of C. rodentium were investigated. Bone marrow chimeric mice were infected with C. rodentium. JMJD2D expression was knocked down in CMT93 cells by using small hairpin RNAs, and Western blot and real-time PCR assays were performed in these cells. The relationship between JMJD2D and STAT3 was studied by co-immunoprecipitation and chromatin immunoprecipitation. JMJD2D was significantly up-regulated in colonic epithelial cells of mice in response to Citrobacter rodentium infection. JMJD2D-/- mice displayed an impaired clearance of C. rodentium, more body weight loss, and more severe colonic tissue pathology compared with wild-type mice. JMJD2D-/- mice exhibited an impaired expression of IL-17F in the colonic epithelial cells, which restricts C. rodentium infection by inducing the expression of antimicrobial peptides. Accordingly, JMJD2D-/- mice showed a decreased expression of β-defensin-1, β-defensin-3, and β-defensin-4 in the colonic epithelial cells. Mechanistically, JMJD2D activated STAT3 signaling by inducing STAT3 phosphorylation and cooperated with STAT3 to induce IL-17F expression by interacting with STAT3 and been recruited to the IL-17F promoter to demethylate H3K9me3. Our study demonstrates that JMJD2D contributes to host defense against enteric bacteria through up-regulating IL-17F to induce β-defensin expression.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Bei Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yilin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ping Luo
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zaifa Hong
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | | | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenbo Chen
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Martin Gil C, Raoof R, Versteeg S, Willemen HLDM, Lafeber FPJG, Mastbergen SC, Eijkelkamp N. Myostatin and CXCL11 promote nervous tissue macrophages to maintain osteoarthritis pain. Brain Behav Immun 2024; 116:203-215. [PMID: 38070625 DOI: 10.1016/j.bbi.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Pain is the most debilitating symptom of knee osteoarthritis (OA) that can even persist after total knee replacement. The severity and duration of pain do not correlate well with joint tissue alterations, suggesting other mechanisms may drive pain persistence in OA. Previous work identified that macrophages accumulate in the dorsal root ganglia (DRG) containing the somas of sensory neurons innervating the injured knee joint in a mouse OA model and acquire a M1-like phenotype to maintain pain. Here we aimed to unravel the mechanisms that govern DRG macrophage accumulation and programming. The accumulation of F4/80+iNOS+ (M1-like) DRG macrophages was detectable at day 3 after mono-iodoacetate (MIA)-induced OA in the mouse. Depletion of macrophages prior to induction of OA resolved pain-like behaviors by day 7 without affecting the initial development of pain-like behaviors. Analysis of DRG transcript identified CXCL11 and myostatin. CXCL11 and myostatin were increased at 3 weeks post OA induction, with CXCL11 expression partially localized in satellite glial cells and myostatin in sensory neurons. Blocking CXCL11 or myostatin prevented the persistence of OA pain, without affecting the initiation of pain. CXCL11 neutralization reduced the number of total and F4/80+iNOS+ DRG macrophages, whilst myostatin inhibition diminished the programming of F4/80+iNOS+ DRG macrophages. Intrathecal injection of recombinant CXCL11 did not induce pain-associated behaviors. In contrast, intrathecal myostatin increased the number of F4/80+iNOS+ DRG macrophages concurrent with the development of mechanical hypersensitivity that was prevented by macrophages depletion or CXCL11 blockade. Finally, myostatin inhibition during established OA, resolved pain and F4/80+iNOS+ macrophage accumulation in the DRG. In conclusion, DRG macrophages maintain OA pain, but are not required for the induction of OA pain. Myostatin is a key ligand in neuro-immune communication that drives the persistence of pain in OA through nervous tissue macrophages and represent a novel therapeutic target for the treatment of OA pain.
Collapse
Affiliation(s)
- Christian Martin Gil
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Hanneke L D M Willemen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Floris P J G Lafeber
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Simon C Mastbergen
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Sobral MC, Mooney DJ. Materials-Based Approaches for Cancer Vaccination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:179-187. [PMID: 38166245 DOI: 10.4049/jimmunol.2300482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 01/04/2024]
Abstract
Therapeutic cancer vaccines offer the promise of stimulating the immune system to specifically eradicate tumor cells and establish long-term memory to prevent tumor recurrence. However, despite showing benign safety profiles and the ability to generate Ag-specific cellular responses, cancer vaccines have been hampered by modest clinical efficacy. Lessons learned from these studies have led to the emergence of innovative materials-based strategies that aim to boost the clinical activity of cancer vaccines. In this Brief Review, we provide an overview of the key elements needed for an effective vaccine-induced antitumor response, categorize current approaches to therapeutic cancer vaccination, and explore recent advances in materials-based strategies to potentiate cancer vaccines.
Collapse
Affiliation(s)
- Miguel C Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA; and Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA; and Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA
| |
Collapse
|
12
|
Boura-Halfon S, Haffner-Krausz R, Ben-Dor S, Kim JS, Jung S. Tackling Tissue Macrophage Heterogeneity by SplitCre Transgenesis. Methods Mol Biol 2024; 2713:481-503. [PMID: 37639143 DOI: 10.1007/978-1-0716-3437-0_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages represent a broad spectrum of distinct, but closely related tissue-resident immune cells. This presents a major challenge for the study of functional aspects of these cells using classical Cre recombinase-mediated conditional mutagenesis in mice, since single promoter-driven Cre transgenic models often display limited specificity toward their intended target. The advent of CRISPR/Cas9 technology has now provided a time- and cost-effective method to explore the full potential of binary transgenic, intersectional genetics. Specifically, the use of two promoters driving inactive Cre fragments that, when co-expressed, dimerize and only then gain recombinase activity allows the characterization and manipulation of genetically defined tissue macrophage subpopulations. Here, we will elaborate on the use of this protocol to capitalize on these recent technological advances in mouse genetics and discuss their strengths and pitfalls to improve the study of tissue macrophage subpopulations in physiology and pathophysiology.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | | | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Kim JS, Jung S. Visualization, Fate Mapping, Ablation, and Mutagenesis of Microglia in the Mouse Brain. ADVANCES IN NEUROBIOLOGY 2024; 37:53-63. [PMID: 39207686 DOI: 10.1007/978-3-031-55529-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Since the classical studies of Pío del Río-Hortega, microglia research has come a long way. In particular, recent advances in bulk and single-cell (sc) transcriptomics have yielded many fascinating new insights into these intriguing immune cells at the interface with the central nervous system (CNS), both in small animal models and human samples. In parallel, tools developed by advanced mouse genetics have revealed the unique ontogeny of microglia and their striking dynamic interactions with other cells in the brain parenchyma. In this chapter, we will discuss various applications of the Cre/loxP-based approach that have enabled the study of microglia in their physiological context of the mouse brain. We will highlight selected key findings that have shaped our current understanding of these cells and discuss the technical intricacies of the Cre/loxP approach and some remaining challenges.
Collapse
Affiliation(s)
- Jung-Seok Kim
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel.
| | - Steffen Jung
- Department of Immunology and Regenerative Biology (IRB), Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Hartley VL, Qaqish AM, Wood MJ, Studnicka BT, Iwai K, Liu TC, MacDuff DA. HOIL1 Regulates Group 3 Innate Lymphoid Cells in the Colon and Protects against Systemic Dissemination, Colonic Ulceration, and Lethality from Citrobacter rodentium Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1823-1834. [PMID: 37902285 PMCID: PMC10841105 DOI: 10.4049/jimmunol.2300351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL1)-deficient patients experience chronic intestinal inflammation and diarrhea as well as increased susceptibility to bacterial infections. HOIL1 is a component of the linear ubiquitin chain assembly complex that regulates immune signaling pathways, including NF-κB-activating pathways. We have shown previously that HOIL1 is essential for survival following Citrobacter rodentium gastrointestinal infection of mice, but the mechanism of protection by HOIL1 was not examined. C. rodentium is an important murine model for human attaching and effacing pathogens, enteropathogenic and enterohemorrhagic Escherichia coli that cause diarrhea and foodborne illnesses and lead to severe disease in children and immunocompromised individuals. In this study, we found that C. rodentium infection resulted in severe colitis and dissemination of C. rodentium to systemic organs in HOIL1-deficient mice. HOIL1 was important in the innate immune response to limit early replication and dissemination of C. rodentium. Using bone marrow chimeras and cell type-specific knockout mice, we found that HOIL1 functioned in radiation-resistant cells and partly in radiation-sensitive cells and in myeloid cells to limit disease, but it was dispensable in intestinal epithelial cells. HOIL1 deficiency significantly impaired the expansion of group 3 innate lymphoid cells and their production of IL-22 during C. rodentium infection. Understanding the role HOIL1 plays in type 3 inflammation and in limiting the pathogenesis of attaching and effacing lesion-forming bacteria will provide further insight into the innate immune response to gastrointestinal pathogens and inflammatory disorders.
Collapse
Affiliation(s)
- Victoria L Hartley
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, IL
| | - Arwa M Qaqish
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, IL
| | - Matthew J Wood
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, IL
| | - Brian T Studnicka
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, IL
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Donna A MacDuff
- Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, IL
| |
Collapse
|
15
|
Tomal F, Sausset A, Le Vern Y, Sedano L, Techer C, Lacroix-Lamandé S, Laurent F, Silvestre A, Bussière FI. Microbiota promotes recruitment and pro-inflammatory response of caecal macrophages during E. tenella infection. Gut Pathog 2023; 15:65. [PMID: 38098020 PMCID: PMC10720127 DOI: 10.1186/s13099-023-00591-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Eimeria genus belongs to the apicomplexan parasite phylum and is responsible for coccidiosis, an intestinal disease with a major economic impact on poultry production. Eimeria tenella is one of the most virulent species in chickens. In a previous study, we showed a negative impact of caecal microbiota on the physiopathology of this infection. However, the mechanism by which microbiota leads to the physiopathology remained undetermined. Macrophages play a key role in inflammatory processes and their interaction with the microbiota during E. tenella infection have never been investigated. We therefore examined the impact of microbiota on macrophages during E. tenella infection. Macrophages were monitored in caecal tissues by immunofluorescence staining with KUL01 antibody in non-infected and infected germ-free and conventional chickens. Caecal cells were isolated, stained, analyzed and sorted to examine their gene expression using high-throughput qPCR. RESULTS We demonstrated that microbiota was essential for caecal macrophage recruitment in E. tenella infection. Furthermore, microbiota promoted a pro-inflammatory transcriptomic profile of macrophages characterized by increased gene expression of NOS2, ACOD1, PTGS2, TNFα, IL1β, IL6, IL8L1, IL8L2 and CCL20 in infected chickens. Administration of caecal microbiota from conventional chickens to germ-free infected chickens partially restored macrophage recruitment and response. CONCLUSIONS Taken together, these results suggest that the microbiota enhances the physiopathology of this infection through macrophage recruitment and activation. Consequently, strategies involving modulation of the gut microbiota may lead to attenuation of the macrophage-mediated inflammatory response, thereby limiting the negative clinical outcome of the disease.
Collapse
Affiliation(s)
- F Tomal
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
- MixScience, 35170, Bruz, France
| | - A Sausset
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | - Y Le Vern
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | - L Sedano
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | | | | | - F Laurent
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | - A Silvestre
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France
| | - F I Bussière
- INRAE, Université de Tours, UMR ISP, 37380, Nouzilly, France.
| |
Collapse
|
16
|
Yaghi OK, Hanna BS, Langston PK, Michelson DA, Jayewickreme T, Marin-Rodero M, Benoist C, Mathis D. A discrete 'early-responder' stromal-cell subtype orchestrates immunocyte recruitment to injured tissue. Nat Immunol 2023; 24:2053-2067. [PMID: 37932455 PMCID: PMC10792729 DOI: 10.1038/s41590-023-01669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2023] [Indexed: 11/08/2023]
Abstract
Following acute injury, stromal cells promote tissue regeneration by a diversity of mechanisms. Time-resolved single-cell RNA sequencing of muscle mesenchymal stromal cells (MmSCs) responding to acute injury identified an 'early-responder' subtype that spiked on day 1 and expressed a notable array of transcripts encoding immunomodulators. IL-1β, TNF-α and oncostatin M each strongly and rapidly induced MmSCs transcribing this immunomodulatory program. Macrophages amplified the program but were not strictly required for its induction. Transfer of the inflammatory MmSC subtype, tagged with a unique surface marker, into healthy hindlimb muscle induced inflammation primarily driven by neutrophils and macrophages. Among the abundant inflammatory transcripts produced by this subtype, Cxcl5 was stroma-specific and highly upregulated with injury. Depletion of this chemokine early after injury revealed a substantial impact on recruitment of neutrophils, a prolongation of inflammation to later times and an effect on tissue regeneration. Mesenchymal stromal cell subtypes expressing a comparable inflammatory program were found in a mouse model of muscular dystrophy and in several other tissues and pathologies in both mice and humans. These 'early-responder' mesenchymal stromal cells, already in place, permit rapid and coordinated mobilization and amplification of critical cell collaborators in response to injury.
Collapse
Affiliation(s)
- Omar K Yaghi
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Bola S Hanna
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - P Kent Langston
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel A Michelson
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Teshika Jayewickreme
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Miguel Marin-Rodero
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
Lee SH, Kang B, Kamenyeva O, Ferreira TR, Cho K, Khillan JS, Kabat J, Kelsall BL, Sacks DL. Dermis resident macrophages orchestrate localized ILC2 eosinophil circuitries to promote non-healing cutaneous leishmaniasis. Nat Commun 2023; 14:7852. [PMID: 38030609 PMCID: PMC10687111 DOI: 10.1038/s41467-023-43588-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Tissue-resident macrophages are critical for tissue homeostasis and repair. We previously showed that dermis-resident macrophages produce CCL24 which mediates their interaction with IL-4+ eosinophils, required to maintain their M2-like properties in the TH1 environment of the Leishmania major infected skin. Here, we show that thymic stromal lymphopoietin (TSLP) and IL-5+ type 2 innate lymphoid cells are also required to maintain dermis-resident macrophages and promote infection. Single cell RNA sequencing reveals the dermis-resident macrophages as the sole source of TSLP and CCL24. Generation of Ccl24-cre mice permits specific labeling of dermis-resident macrophages and interstitial macrophages from other organs. Selective ablation of TSLP in dermis-resident macrophages reduces the numbers of IL-5+ type 2 innate lymphoid cells, eosinophils and dermis-resident macrophages, and ameliorates infection. Our findings demonstrate that dermis-resident macrophages are self-maintained as a replicative niche for L. major by orchestrating localized type 2 circuitries with type 2 innate lymphoid cells and eosinophils.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Byunghyun Kang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiago Rodrigues Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Jaspal S Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Ma C, McCallen J, McVey JC, Trehan R, Bauer K, Zhang Q, Ruf B, Wang S, Lai CW, Trinchieri G, Berzofsky JA, Korangy F, Greten TF. CSF-1R+ Macrophages Control the Gut Microbiome-Enhanced Liver Invariant NKT Function through IL-18. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1099-1107. [PMID: 37624046 PMCID: PMC10529904 DOI: 10.4049/jimmunol.2200854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The gut microbiome is an important modulator of the host immune system. In this study, we found that altering the gut microbiome by oral vancomycin increases liver invariant NKT (iNKT) cell function. Enhanced iNKT cytokine production and activation marker expression were observed in vancomycin-treated mice following both Ag-specific and Ag-independent in vivo iNKT stimulations, with a more prominent effect in the liver than in the spleen. Fecal transplantation studies demonstrated that the iNKT functional regulation is mediated by altering the gut microbiome but uncoupled from the modulation of iNKT cell population size. Interestingly, when stimulated in vitro, iNKT cells from vancomycin-treated mice did not show increased activation, suggesting an indirect regulation. iNKT cells expressed high levels of IL-18 receptor, and vancomycin increased the expression of IL-18 in the liver. Blocking IL-18 by neutralizing Ab or using genetically deficient mice attenuated the enhanced iNKT activation. Liver macrophages were identified as a major source of IL-18. General macrophage depletion by clodronate abolished this iNKT activation. Using anti-CSF-1R depletion or LyzCrexCSF-1RLsL-DTR mice identified CSF-1R+ macrophages as a critical modulator of iNKT function. Vancomycin treatment had no effect on iNKT cell function in vivo in IL-18 knockout macrophage reconstituted mice. Together, our results demonstrate that the gut microbiome controls liver iNKT function via regulating CSF-1R+ macrophages to produce IL-18.
Collapse
Affiliation(s)
- Chi Ma
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin McCallen
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John C. McVey
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Rajiv Trehan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kylynda Bauer
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Qianfei Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Benjamin Ruf
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sophie Wang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Chunwei Walter Lai
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Firouzeh Korangy
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tim F. Greten
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Ruf B, Bruhns M, Babaei S, Kedei N, Ma L, Revsine M, Benmebarek MR, Ma C, Heinrich B, Subramanyam V, Qi J, Wabitsch S, Green BL, Bauer KC, Myojin Y, Greten LT, McCallen JD, Huang P, Trehan R, Wang X, Nur A, Murphy Soika DQ, Pouzolles M, Evans CN, Chari R, Kleiner DE, Telford W, Dadkhah K, Ruchinskas A, Stovroff MK, Kang J, Oza K, Ruchirawat M, Kroemer A, Wang XW, Claassen M, Korangy F, Greten TF. Tumor-associated macrophages trigger MAIT cell dysfunction at the HCC invasive margin. Cell 2023; 186:3686-3705.e32. [PMID: 37595566 PMCID: PMC10461130 DOI: 10.1016/j.cell.2023.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 03/03/2023] [Accepted: 07/17/2023] [Indexed: 08/20/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthias Bruhns
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany; Department of Computer Science, University of Tübingen, Tübingen, Germany; University of Tübingen, Interfaculty Institute for Biomedical Informatics (IBMI), Tübingen, Germany; M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Sepideh Babaei
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany; University of Tübingen, Interfaculty Institute for Biomedical Informatics (IBMI), Tübingen, Germany; M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Noemi Kedei
- Collaborative Protein Technology Resource, OSTR, Office of the Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lichun Ma
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Bethesda, MD, USA
| | - Mahler Revsine
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Bethesda, MD, USA
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Varun Subramanyam
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan Qi
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Wabitsch
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Benjamin L Green
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kylynda C Bauer
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuta Myojin
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Layla T Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin D McCallen
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amran Nur
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dana Qiang Murphy Soika
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marie Pouzolles
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christine N Evans
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William Telford
- Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kimia Dadkhah
- Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Allison Ruchinskas
- Single Cell Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory, Bethesda, MD, USA
| | - Merrill K Stovroff
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Kesha Oza
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology, Office of the Higher Education Commission, Ministry of Education, Bangkok, Thailand
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Bethesda, MD, USA; NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Manfred Claassen
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany; Department of Computer Science, University of Tübingen, Tübingen, Germany; University of Tübingen, Interfaculty Institute for Biomedical Informatics (IBMI), Tübingen, Germany; M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Okamoto M, Sasai M, Kuratani A, Okuzaki D, Arai M, Wing JB, Sakaguchi S, Yamamoto M. A genetic method specifically delineates Th1-type Treg cells and their roles in tumor immunity. Cell Rep 2023; 42:112813. [PMID: 37440410 DOI: 10.1016/j.celrep.2023.112813] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/06/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Regulatory T (Treg) cells expressing the transcription factor (TF) Foxp3 also express other TFs shared by T helper (Th) subsets under certain conditions. Here, to determine the roles of T-bet-expressing Treg cells, we generate a mouse strain, called VeDTR, in which T-bet/Foxp3 double-positive cells are engineered to be specifically labeled and depleted by a combination of Cre- and Flp-recombinase-dependent gene expression control. Characterization of T-bet+Foxp3+ cells using VeDTR mice reveals high resistance under oxidative stress, which is involved in accumulation of T-bet+Foxp3+ cells in tumor tissues. Moreover, short-term depletion of T-bet+Foxp3+ cells leads to anti-tumor immunity but not autoimmunity, whereas that of whole Treg cells does both. Although ablation of T-bet+Foxp3+ cells during Toxoplasma infection slightly enhances Th1 immune responses, it does not affect the course of the infection. Collectively, the intersectional genetic method reveals the specific roles of T-bet+Foxp3+ cells in suppressing tumor immunity.
Collapse
Affiliation(s)
- Masaaki Okamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ayumi Kuratani
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaya Arai
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - James B Wing
- Laboratory of Human Immunology (Single Cell Immunology), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Human Immunology Team, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Department of Immunoparasitology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
21
|
Tadepalli S, Clements DR, Saravanan S, Hornero RA, Lüdtke A, Blackmore B, Paulo JA, Gottfried-Blackmore A, Seong D, Park S, Chan L, Kopecky BJ, Liu Z, Ginhoux F, Lavine KJ, Murphy JP, Mack M, Graves EE, Idoyaga J. Rapid recruitment and IFN-I-mediated activation of monocytes dictate focal radiotherapy efficacy. Sci Immunol 2023; 8:eadd7446. [PMID: 37294749 PMCID: PMC10340791 DOI: 10.1126/sciimmunol.add7446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/18/2023] [Indexed: 06/11/2023]
Abstract
The recruitment of monocytes and their differentiation into immunosuppressive cells is associated with the low efficacy of preclinical nonconformal radiotherapy (RT) for tumors. However, nonconformal RT (non-CRT) does not mimic clinical practice, and little is known about the role of monocytes after RT modes used in patients, such as conformal RT (CRT). Here, we investigated the acute immune response induced by after CRT. Contrary to non-CRT approaches, we found that CRT induces a rapid and robust recruitment of monocytes to the tumor that minimally differentiate into tumor-associated macrophages or dendritic cells but instead up-regulate major histocompatibility complex II and costimulatory molecules. We found that these large numbers of infiltrating monocytes are responsible for activating effector polyfunctional CD8+ tumor-infiltrating lymphocytes that reduce tumor burden. Mechanistically, we show that monocyte-derived type I interferon is pivotal in promoting monocyte accumulation and immunostimulatory function in a positive feedback loop. We also demonstrate that monocyte accumulation in the tumor microenvironment is hindered when RT inadvertently affects healthy tissues, as occurs in non-CRT. Our results unravel the immunostimulatory function of monocytes during clinically relevant modes of RT and demonstrate that limiting the exposure of healthy tissues to radiation has a positive therapeutic effect on the overall antitumor immune response.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Derek R. Clements
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sanjana Saravanan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Rebeca Arroyo Hornero
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Anja Lüdtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Beau Blackmore
- Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andres Gottfried-Blackmore
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Redwood City, CA 94063, USA
| | - David Seong
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Soyoon Park
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Leslie Chan
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Benjamin J. Kopecky
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire, Villejuif 94800, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Republic of Singapore
| | - Kory J. Lavine
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Patrick Murphy
- Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg 93053, Germany
| | - Edward E. Graves
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
22
|
Patel DA, Crain M, Pusic I, Schroeder MA. Acute Graft-versus-Host Disease: An Update on New Treatment Options. Drugs 2023:10.1007/s40265-023-01889-2. [PMID: 37247105 DOI: 10.1007/s40265-023-01889-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
Acute graft-versus-host disease (GVHD) occurs in approximately 50% of patients and remains a primary driver of non-relapse and transplant-related mortality. The best treatment remains prevention with either in vivo or ex vivo T-cell depletion, with multiple strategies used worldwide based on factors such as institution preference, ability to perform graft manipulation, and ongoing clinical trials. Predicting patients at high risk for developing severe acute GVHD based on clinical and biomarker-based criteria allows for escalation or potential de-escalation of therapy. Modern therapies for treatment of the disease include JAK/STAT pathway inhibitors, which are standard of care in the second-line setting and are being investigated for upfront management of non-severe risk based on biomarkers. Salvage therapies beyond the second-line remain suboptimal. In this review, we will focus on the most clinically used GVHD prevention and treatment strategies, including the accumulating data on JAK inhibitors in both settings.
Collapse
Affiliation(s)
- Dilan A Patel
- Section of BMT & Leukemia, Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Mallory Crain
- Section of BMT & Leukemia, Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Iskra Pusic
- Section of BMT & Leukemia, Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Mark A Schroeder
- Section of BMT & Leukemia, Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, USA.
| |
Collapse
|
23
|
Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00769-0. [PMID: 37069320 DOI: 10.1038/s41575-023-00769-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Macrophages are essential for the maintenance of intestinal homeostasis, yet appear to be drivers of inflammation in the context of inflammatory bowel disease (IBD). How these peacekeepers become powerful aggressors in IBD is still unclear, but technological advances have revolutionized our understanding of many facets of their biology. In this Review, we discuss the progress made in understanding the heterogeneity of intestinal macrophages, the functions they perform in gut health and how the environment and origin can control the differentiation and longevity of these cells. We describe how these processes might change in the context of chronic inflammation and how aberrant macrophage behaviour contributes to IBD pathology, and discuss how therapeutic approaches might target dysregulated macrophages to dampen inflammation and promote mucosal healing. Finally, we set out key areas in the field of intestinal macrophage biology for which further investigation is warranted.
Collapse
Affiliation(s)
- Lizi M Hegarty
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|
24
|
Lee SH, Kang B, Kamenyeva O, Ferreira TR, Cho K, Khillan JS, Kabat J, Kelsall BL, Sacks DL. Dermis resident macrophages orchestrate localized ILC2-eosinophil circuitries to maintain their M2-like properties and promote non-healing cutaneous leishmaniasis. RESEARCH SQUARE 2023:rs.3.rs-2644705. [PMID: 37066418 PMCID: PMC10104262 DOI: 10.21203/rs.3.rs-2644705/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Tissue-resident macrophages (TRMs) are critical for tissue homeostasis/repair. We previously showed that dermal TRMs produce CCL24 (eotaxin2) which mediates their interaction with IL-4 producing eosinophils, required to maintain their number and M2-like properties in the TH1 environment of the Leishmania major infected skin. Here, we unveil another layer of TRM self-maintenance involving their production of TSLP, an alarmin typically characterized as epithelial cell-derived. Both TSLP signaling and IL-5+ innate lymphoid cell 2 (ILC2s) were shown to maintain the number of dermal TRMs and promote infection. Single cell RNA sequencing identified the dermal TRMs as the sole source of TSLP and CCL24. Development of Ccl24-cre mice permitted specific labeling of dermal TRMs, as well as interstitial TRMs from other organs. Genetic ablation of TSLP from dermal TRMs reduced the number of dermal TRMs, and disease was ameliorated. Thus, by orchestrating localized type 2 circuitries with ILC2s and eosinophils, dermal TRMs are self-maintained as a replicative niche for L. major.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Byunghyun Kang
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiago Rodrigues Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyoungin Cho
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jaspal S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian L. Kelsall
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David L. Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Zou Y, Kamada N, Seong SY, Seo SU. CD115 - monocytic myeloid-derived suppressor cells are precursors of OLFM4 high polymorphonuclear myeloid-derived suppressor cells. Commun Biol 2023; 6:272. [PMID: 36922564 PMCID: PMC10017706 DOI: 10.1038/s42003-023-04650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) consist of monocytic (M-) MDSCs and polymorphonuclear (PMN-) MDSCs that contribute to an immunosuppressive environment in tumor-bearing hosts. However, research on the phenotypic and functional heterogeneity of MDSCs in tumor-bearing hosts and across different disease stage is limited. Here we subdivide M-MDSCs based on CD115 expression and report that CD115- M-MDSCs are functionally distinct from CD115+ M-MDSCs. CD115- M-MDSCs increased in bone marrow and blood as tumors progressed. Transcriptome analysis revealed that CD115- M-MDSCs expressed higher levels of neutrophil-related genes. Moreover, isolated CD115- M-MDSCs had higher potential to be differentiated into PMN-MDSCs compared with CD115+ M-MDSCs. Of note, CD115- M-MDSCs were able to differentiate into both olfactomedin 4 (OLFM4)hi and OLFM4lo PMN-MDSCs, whereas CD115+ M-MDSCs differentiated into a smaller proportion of OLFM4lo PMN-MDSCs. In vivo, M-MDSC to PMN-MDSC differentiation occurred most frequently in bone marrow while M-MDSCs preferentially differentiated into tumor-associated macrophages in the tumor mass. Our study reveals the presence of previously unrecognized subtypes of CD115- M-MDSCs in tumor-bearing hosts and demonstrates their cellular plasticity during tumorigenesis.
Collapse
Affiliation(s)
- Yunyun Zou
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Seung-Yong Seong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Republic of Korea.
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Backer RA, Probst HC, Clausen BE. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship. Eur J Immunol 2023; 53:e2149548. [PMID: 36642930 DOI: 10.1002/eji.202149548] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
To specifically tailor immune responses to a given pathogenic threat, dendritic cells (DC) are highly heterogeneous and comprise many specialized subtypes, including conventional DC (cDC) and monocyte-derived DC (MoDC), each with distinct developmental and functional characteristics. However, the functional relationship between cDC and MoDC is not fully understood, as the overlapping phenotypes of certain type 2 cDC (cDC2) subsets and MoDC do not allow satisfactory distinction of these cells in the tissue, particularly during inflammation. However, precise cDC2 and MoDC classification is required for studies addressing how these diverse cell types control immune responses and is therefore currently one of the major interests in the field of cDC research. This review will revise murine cDC2 and MoDC biology in the steady state and under inflammatory conditions and discusses the commonalities and differences between ESAMlo cDC2, inflammatory cDC2, and MoDC and their relative contribution to the initiation, propagation, and regulation of immune responses.
Collapse
Affiliation(s)
- Ronald A Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
27
|
Osorio EY, Uscanga-Palomeque A, Patterson GT, Cordova E, Travi BL, Soong L, Melby PC. Malnutrition-related parasite dissemination from the skin in visceral leishmaniasis is driven by PGE2-mediated amplification of CCR7-related trafficking of infected inflammatory monocytes. PLoS Negl Trop Dis 2023; 17:e0011040. [PMID: 36630476 PMCID: PMC9873180 DOI: 10.1371/journal.pntd.0011040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/24/2023] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
People are infected with Leishmania donovani when the parasite is deposited in the dermis during the blood meal of the sand fly vector. Most infected people develop a subclinical latent infection, but some develop progressive visceral leishmaniasis. Malnutrition is a risk factor for the development of active VL. We previously demonstrated increased parasite dissemination from the skin to visceral organs in a murine model of malnutrition. Here we investigated the mechanism of early parasite dissemination. After delivery of L. donovani to the skin, we found enhanced capture of parasites by inflammatory monocytes and neutrophils in the skin of malnourished mice. However, parasite dissemination in malnourished mice was driven primarily by infected inflammatory monocytes, which showed increased CCR7 expression, greater intrinsic migratory capacity, and increased trafficking from skin to spleen. PGE2 production, which was increased at the site of skin infection, increased monocyte CCR7 expression and promoted CCR7-related monocyte-mediated early parasite dissemination in malnourished mice. Parasite dissemination in monocytes was reduced by inhibition of PGE2, knockdown or silencing of CCR7 in monocytes, and depletion of inflammatory monocytes through administration of diphtheria toxin to CSFR1-DTR transgenic mice that have monocyte-specific DT receptor expression. CCR7-driven trafficking of infected inflammatory monocytes through the lymph node was accompanied by increased expression of its ligands CCL19 and CCL21. These results show that the CCR7/PGE2 axis is responsible for the increased trafficking of L. donovani-infected inflammatory monocytes from the skin to the spleen in the malnourished host. Undernutrition and production of PGE2 are potential targets to reduce the risk of people developing VL. Nutritional interventions that target improved immune function and reduced PGE2 synthesis should be studied in people at risk of developing VL.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (EYO)
| | - Ashanti Uscanga-Palomeque
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Grace T. Patterson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Erika Cordova
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L. Travi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter C. Melby
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (EYO)
| |
Collapse
|
28
|
Osorio EY, Gugala Z, Patterson GT, Palacios G, Cordova E, Uscanga-Palomeque A, Travi BL, Melby PC. Inflammatory stimuli alter bone marrow composition and compromise bone health in the malnourished host. Front Immunol 2022; 13:846246. [PMID: 35983045 PMCID: PMC9380851 DOI: 10.3389/fimmu.2022.846246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation has a role in the pathogenesis of childhood malnutrition. We investigated the effect of malnutrition and inflammatory challenge on bone marrow composition and bone health. We studied an established murine model of moderate acute malnutrition at baseline and after acute inflammatory challenge with bacterial lipopolysaccharide (LPS), a surrogate of Gram-negative bacterial sepsis, or Leishmania donovani, the cause of visceral leishmaniasis. Both of these infections cause significant morbidity and mortality in malnourished children. Of the 2 stimuli, LPS caused more pronounced bone marrow changes that were amplified in malnourished mice. LPS challenge led to increased inflammatory cytokine expression (Il1b, Il6, and Tnf), inflammasome activation, and inflammatory monocyte accumulation in the bone marrow of malnourished mice. Depletion of inflammatory monocytes in Csfr1-LysMcre-DT malnourished mice significantly reduced the inflammasome activation and IL1-ß production after LPS challenge. The inflammatory challenge also led to increased expansion of mesenchymal stem cells (MSCs), bone marrow adiposity, and expression of genes (Pparg, Adipoq, and Srbp1) associated with adipogenesis in malnourished mice. This suggests that inflammatory challenge promotes differentiation of BM MSCs toward the adipocyte lineage rather than toward bone-forming osteoblasts in the malnourished host. Concurrent with this reduced osteoblastic potential there was an increase in bone-resorbing osteoclasts, enhanced osteoclast activity, upregulation of inflammatory genes, and IL-1B involved in osteoclast differentiation and activation. The resulting weakened bone formation and increased bone resorption would contribute to the bone fragility associated with malnutrition. Lastly, we evaluated the effect of replacing lipid rich in omega-6 fatty acids (corn oil) with lipid-rich in omega-3 fatty acids (fish oil) in the nutrient-deficient diet. LPS-challenged malnourished mice that received dietary fish oil showed decreased expression of inflammatory cytokines and Rankl and reduced osteoclast differentiation and activation in the bone marrow. This work demonstrates that the negative effect of inflammatory challenge on bone marrow is amplified in the malnourished host. Increasing dietary intake of omega-3 fatty acids may be a means to reduce inflammation and improve bone health in malnourished children.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Peter C. Melby, ; E. Yaneth Osorio,
| | - Zbigniew Gugala
- Department of Orthopedic Surgery and Rehabilitation, The University of Texas Medical Branch, Galveston, TX, United States
| | - Grace T. Patterson
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Genesis Palacios
- Department of Parasitology, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| | - Erika Cordova
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Ashanti Uscanga-Palomeque
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Bruno L. Travi
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Peter C. Melby
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Peter C. Melby, ; E. Yaneth Osorio,
| |
Collapse
|
29
|
Sikora-Jasinska M, Morath LM, Kwesiga MP, Plank ME, Nelson AL, Oliver AA, Bocks ML, Guillory RJ, Goldman J. In-vivo evaluation of molybdenum as bioabsorbable stent candidate. Bioact Mater 2022; 14:262-271. [PMID: 35310360 PMCID: PMC8897701 DOI: 10.1016/j.bioactmat.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
Biodegradable stents have tremendous theoretical potential as an alternative to bare metal stents and drug-eluting stents for the treatment of obstructive coronary artery disease. Any bioresorbable or biodegradable scaffold material needs to possess optimal mechanical properties and uniform degradation behavior that avoids local and systemic toxicity. Recently, molybdenum (Mo) has been investigated as a potential novel biodegradable material for this purpose. With its proven moderate degradation rate and excellent mechanical properties, Mo may represent an ideal source material for clinical cardiac and vascular applications. The present study was performed to evaluate the mechanical performance of metallic Mo in vitro and the biodegradation properties in vivo. The results demonstrated favorable mechanical behavior and a uniform degradation profile as desired for a new generation ultra-thin degradable endovascular stent material. Moreover, Mo implants in mouse arteries avoided the typical cellular response that contributes to restenosis. There was minimal neointimal hyperplasia over 6 months, an absence of excessive smooth muscle cell (SMC) proliferation or inflammation near the implant, and avoidance of significant harm to regenerating endothelial cells (EC). Qualitative inspection of kidney sections showed a potentially pathological remodeling of kidney Bowman's capsule and glomeruli, indicative of impaired filtering function and development of kidney disease, although quantifications of these morphological changes were not statistically significant. Together, the results suggest that the products of Mo corrosion may exert beneficial or inert effects on the activities of inflammatory and arterial cells, while exerting potentially toxic effects in the kidneys that warrant further investigation. Mo implants in mouse arteries avoided neointimal hyperplasia over 6 months. Quantification of CD31-labeled arterial sections showed an avoidance of significant harm to regenerating endothelial cells for the Mo implants. Qualitative inspection of kidney sections showed a potential pathological remodeling, indicative of possible impaired filtering function.
Collapse
|
30
|
Neutral ceramidase-dependent regulation of macrophage metabolism directs intestinal immune homeostasis and controls enteric infection. Cell Rep 2022; 38:110560. [PMID: 35354041 DOI: 10.1016/j.celrep.2022.110560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
It is not clear how the complex interactions between diet and intestinal immune cells protect the gut from infection. Neutral ceramidase (NcDase) plays a critical role in digesting dietary sphingolipids. We find that NcDase is an essential factor that controls intestinal immune cell dynamics. Mice lacking NcDase have reduced cluster of differentiation (CD) 8αβ+ T cells and interferon (IFN)-γ+ T cells and increased macrophages in the intestine and fail to clear bacteria after Citrobacter rodentium infection. Mechanistically, cellular NcDase or extracellular vesicle (EV)-related NcDase generates sphingosine, which promotes macrophage-driven Th1 immunity. Loss of NcDase influences sphingosine-controlled glycolytic metabolism in macrophages, which regulates the bactericidal activity of macrophages. Importantly, administration of dietary sphingomyelin and genetic deletion or pharmacological inhibition of SphK1 can protect against C. rodentium infection. Our findings demonstrate that sphingosine profoundly alters macrophage glycolytic metabolism, leading to intestinal macrophage activation and T cell polarization, which prevent pathogen colonization of the gut.
Collapse
|
31
|
Arenas-Hernandez M, Romero R, Gershater M, Tao L, Xu Y, Garcia-Flores V, Pusod E, Miller D, Galaz J, Motomura K, Schwenkel G, Para R, Gomez-Lopez N. Specific innate immune cells uptake fetal antigen and display homeostatic phenotypes in the maternal circulation. J Leukoc Biol 2022; 111:519-538. [PMID: 34889468 PMCID: PMC8881318 DOI: 10.1002/jlb.5hi0321-179rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Pregnancy represents a period when the mother undergoes significant immunological changes to promote tolerance of the fetal semi-allograft. Such tolerance results from the exposure of the maternal immune system to fetal antigens (Ags), a process that has been widely investigated at the maternal-fetal interface and in the adjacent draining lymph nodes. However, the peripheral mechanisms of maternal-fetal crosstalk are poorly understood. Herein, we hypothesized that specific innate immune cells interact with fetal Ags in the maternal circulation. To test this hypothesis, a mouse model was utilized in which transgenic male mice expressing the chicken ovalbumin (OVA) Ag under the beta-actin promoter were allogeneically mated with wild-type females to allow for tracking of the fetal Ag. Fetal Ag-carrying Ly6G+ and F4/80+ cells were identified in the maternal circulation, where they were more abundant in the second half of pregnancy. Such innate immune cells displayed unique phenotypes: while Ly6G+ cells expressed high levels of MHC-II and CD80 together with low levels of pro-inflammatory cytokines, F4/80+ cells up-regulated the expression of CD86 as well as the anti-inflammatory cytokines IL-10 and TGF-β. In vitro studies using allogeneic GFP+ placental particles revealed that maternal peripheral Ly6G+ and F4/80+ cells phagocytose fetal Ags in mid and late murine pregnancy. Importantly, cytotrophoblast-derived particles were also engulfed in vitro by CD15+ and CD14+ cells from women in the second and third trimester, providing translational evidence that this process also occurs in humans. Collectively, this study demonstrates novel interactions between specific maternal circulating innate immune cells and fetal Ags, thereby shedding light on the systemic mechanisms of maternal-fetal crosstalk.
Collapse
Affiliation(s)
- Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Errile Pusod
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - George Schwenkel
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
32
|
Tai SL, Mortha A. Macrophage control of Crohn's disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:29-64. [PMID: 35461659 DOI: 10.1016/bs.ircmb.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestinal tract is the body's largest mucosal surface and permanently exposed to microbial and environmental signals. Maintaining a healthy intestine requires the presence of sentinel grounds keeper cells, capable of controlling immunity and tissue homeostasis through specialized functions. Intestinal macrophages are such cells and important players in steady-state functions and during acute and chronic inflammation. Crohn's disease, a chronic inflammatory condition of the intestinal tract is proposed to be the consequence of an altered immune system through microbial and environmental stimulation. This hypothesis suggests an involvement of macrophages in the regulation of this pathology. Within this chapter, we will discuss intestinal macrophage development and highlight data suggesting their implication in chronic intestinal pathologies like Crohn's disease.
Collapse
Affiliation(s)
- Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
33
|
Tang XZ, Kreuk LSM, Cho C, Metzger RJ, Allen CDC. Bronchus-associated macrophages efficiently capture and present soluble inhaled antigens and are capable of local Th2 cell activation. eLife 2022; 11:63296. [PMID: 36173678 PMCID: PMC9560158 DOI: 10.7554/elife.63296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
In allergic asthma, allergen inhalation leads to local Th2 cell activation and peribronchial inflammation. However, the mechanisms for local antigen capture and presentation remain unclear. By two-photon microscopy of the mouse lung, we established that soluble antigens in the bronchial airway lumen were efficiently captured and presented by a population of CD11c+ interstitial macrophages with high CX3CR1-GFP and MHC class II expression. We refer to these cells as Bronchus-Associated Macrophages (BAMs) based on their localization underneath the bronchial epithelium. BAMs were enriched in collagen-rich regions near some airway branchpoints, where inhaled antigens are likely to deposit. BAMs engaged in extended interactions with effector Th2 cells and promoted Th2 cytokine production. BAMs were also often in contact with dendritic cells (DCs). After exposure to inflammatory stimuli, DCs migrated to draining lymph nodes, whereas BAMs remained lung resident. We propose that BAMs act as local antigen presenting cells in the lung and also transfer antigen to DCs.
Collapse
Affiliation(s)
- Xin-Zi Tang
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States,Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Lieselotte S M Kreuk
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States
| | - Cynthia Cho
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States
| | - Ross J Metzger
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States,Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
34
|
Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron 2021; 110:613-626.e9. [PMID: 34921782 DOI: 10.1016/j.neuron.2021.11.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
The current paradigm is that inflammatory pain passively resolves following the cessation of inflammation. Yet, in a substantial proportion of patients with inflammatory diseases, resolution of inflammation is not sufficient to resolve pain, resulting in chronic pain. Mechanistic insight into how inflammatory pain is resolved is lacking. Here, we show that macrophages actively control resolution of inflammatory pain remotely from the site of inflammation by transferring mitochondria to sensory neurons. During resolution of inflammatory pain in mice, M2-like macrophages infiltrate the dorsal root ganglia that contain the somata of sensory neurons, concurrent with the recovery of oxidative phosphorylation in sensory neurons. The resolution of pain and the transfer of mitochondria requires expression of CD200 receptor (CD200R) on macrophages and the non-canonical CD200R-ligand iSec1 on sensory neurons. Our data reveal a novel mechanism for active resolution of inflammatory pain.
Collapse
|
35
|
Raoof R, Martin Gil C, Lafeber FPJG, de Visser H, Prado J, Versteeg S, Pascha MN, Heinemans ALP, Adolfs Y, Pasterkamp J, Wood JN, Mastbergen SC, Eijkelkamp N. Dorsal Root Ganglia Macrophages Maintain Osteoarthritis Pain. J Neurosci 2021; 41:8249-8261. [PMID: 34400519 PMCID: PMC8482866 DOI: 10.1523/jneurosci.1787-20.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Pain is the major debilitating symptom of osteoarthritis (OA), which is difficult to treat. In OA patients joint tissue damage only poorly associates with pain, indicating other mechanisms contribute to OA pain. Immune cells regulate the sensory system, but little is known about the involvement of immune cells in OA pain. Here, we report that macrophages accumulate in the dorsal root ganglia (DRG) distant from the site of injury in two rodent models of OA. DRG macrophages acquired an M1-like phenotype, and depletion of DRG macrophages resolved OA pain in male and female mice. Sensory neurons innervating the damaged knee joint shape DRG macrophages into an M1-like phenotype. Persisting OA pain, accumulation of DRG macrophages, and programming of DRG macrophages into an M1-like phenotype were independent of Nav1.8 nociceptors. Inhibition of M1-like macrophages in the DRG by intrathecal injection of an IL4-IL10 fusion protein or M2-like macrophages resolved persistent OA pain. In conclusion, these findings reveal a crucial role for macrophages in maintaining OA pain independent of the joint damage and suggest a new direction to treat OA pain.SIGNIFICANCE STATEMENT In OA patients pain poorly correlates with joint tissue changes indicating mechanisms other than only tissue damage that cause pain in OA. We identified that DRG containing the somata of sensory neurons innervating the damaged knee are infiltrated with macrophages that are shaped into an M1-like phenotype by sensory neurons. We show that these DRG macrophages actively maintain OA pain remotely and independent of joint damage. The phenotype of these macrophages is crucial for a pain-promoting role. Targeting the phenotype of DRG macrophages with either M2-like macrophages or a cytokine fusion protein that skews macrophages into an M2-like phenotype resolves OA pain. Our work reveals a mechanism that contributes to the maintenance of OA pain distant from the affected knee joint and suggests that dorsal root ganglia macrophages are a target to treat osteoarthritis chronic pain.
Collapse
Affiliation(s)
- Ramin Raoof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Christian Martin Gil
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Floris P J G Lafeber
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Huub de Visser
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Judith Prado
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Sabine Versteeg
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Mirte N Pascha
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Anne L P Heinemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jeroen Pasterkamp
- Department of Translational Neuroscience, Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - John N Wood
- Molecular Nociception Group, Department of Biology, University College London, London WC1E 6BT, England
| | - Simon C Mastbergen
- Department of Rheumatology and Clinical Immunology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
36
|
Abstract
Interleukin-4 (IL-4) is a four-α-helical bundle type I cytokine with broad pleiotropic actions on multiple lineages. Major actions of IL-4 were initially discovered for B and T cells, but this cytokine acts on more than a dozen different target cells spanning the innate and adaptive immune systems and is produced by multiple different cellular sources. While IL-4 was discovered just under 40 years ago in 1982, the interest in and discoveries related to this cytokine continue to markedly expand. There are important new advances related to its biological actions and to its mechanisms of signaling, including critical genes and downstream targets in a range of cell types. IL-4 is critical not only for careful control of immunoglobulin production but also related to inflammation, fibrosis, allergic reactions, and antitumor activity, with actions of IL-4 occurring through two different types of receptors, one of which is also used by IL-13, a closely related cytokine with partially overlapping actions. In this review, we cover critical older information but also highlight newer advances. An area of evolving interest relates to the therapeutic blockade of IL-4 signaling pathway to treat atopic dermatitis and asthma. Thus, this cytokine is historically important, and research in this area has both elucidated major biological pathways and led to therapeutic advances for diseases that affect millions of individuals.
Collapse
Affiliation(s)
- Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, and Veterans Affairs Maryland Health Care System, Baltimore Veterans Affairs Medical Center, Baltimore, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
37
|
Stockinger B. T cell subsets and environmental factors in Citrobacter rodentium infection. Curr Opin Microbiol 2021; 63:92-97. [PMID: 34298480 DOI: 10.1016/j.mib.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Infection with Citrobacter rodentium constitutes an attack on the intestinal barrier and results in concerted action by innate and adaptive immune responses to limit bacterial translocation and destroy those bacteria that have breached the intestinal barrier. Among the many immune cell types that are involved in the defence against this infection, Th17 cells as the major producers of the barrier protective cytokine IL-22 during the adaptive phase of the response are most numerous. Their extensive plasticity furthermore results in the production of additional cytokines that previously were ascribed to Th1 cells, such as IFNγ. The timely and coordinated repair of damaged epithelium requires input from environmental factors derived from diet and microbiota metabolism of tryptophan which are transmitted through the aryl hydrocarbon receptor (AHR). Thus, the combination of a robust immune response, coupled with intestinal stem cell differentiation guided by environmental factors, ensures resistance to barrier destruction by intestinal infection.
Collapse
|
38
|
Gensollen T, Lin X, Zhang T, Pyzik M, See P, Glickman JN, Ginhoux F, Waldor M, Salmi M, Rantakari P, Blumberg RS. Embryonic macrophages function during early life to determine invariant natural killer T cell levels at barrier surfaces. Nat Immunol 2021; 22:699-710. [PMID: 34040226 PMCID: PMC8171892 DOI: 10.1038/s41590-021-00934-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
It is increasingly recognized that immune development within mucosal tissues is under the control of environmental factors during early life. However, the cellular mechanisms that underlie such temporally and regionally restrictive governance of these processes are unclear. Here, we uncover an extrathymic pathway of immune development within the colon that is controlled by embryonic but not bone marrow-derived macrophages, which determines the ability of these organs to receive invariant natural killer T (iNKT) cells and allow them to establish local residency. Consequently, early-life perturbations of fetal-derived macrophages result in persistent decreases of mucosal iNKT cells and is associated with later-life susceptibility or resistance to iNKT cell-associated mucosal disorders. These studies uncover a host developmental program orchestrated by ontogenically distinct macrophages that is regulated by microbiota, and they reveal an important postnatal function of macrophages that emerge in fetal life.
Collapse
Affiliation(s)
- Thomas Gensollen
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Xi Lin
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Ting Zhang
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Michal Pyzik
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Peter See
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Jonathan N. Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Matthew Waldor
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland,MediCity Research Laboratory, University of Turku, Turku, FI-20520, Finland
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA,Correspondence to:
| |
Collapse
|
39
|
Huang HI, Jewell ML, Youssef N, Huang MN, Hauser ER, Fee BE, Rudemiller NP, Privratsky JR, Zhang JJ, Reyes EY, Wang D, Taylor GA, Gunn MD, Ko DC, Cook DN, Chandramohan V, Crowley SD, Hammer GE. Th17 Immunity in the Colon Is Controlled by Two Novel Subsets of Colon-Specific Mononuclear Phagocytes. Front Immunol 2021; 12:661290. [PMID: 33995384 PMCID: PMC8113646 DOI: 10.3389/fimmu.2021.661290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Intestinal immunity is coordinated by specialized mononuclear phagocyte populations, constituted by a diversity of cell subsets. Although the cell subsets constituting the mononuclear phagocyte network are thought to be similar in both small and large intestine, these organs have distinct anatomy, microbial composition, and immunological demands. Whether these distinctions demand organ-specific mononuclear phagocyte populations with dedicated organ-specific roles in immunity are unknown. Here we implement a new strategy to subset murine intestinal mononuclear phagocytes and identify two novel subsets which are colon-specific: a macrophage subset and a Th17-inducing dendritic cell (DC) subset. Colon-specific DCs and macrophages co-expressed CD24 and CD14, and surprisingly, both were dependent on the transcription factor IRF4. Novel IRF4-dependent CD14+CD24+ macrophages were markedly distinct from conventional macrophages and failed to express classical markers including CX3CR1, CD64 and CD88, and surprisingly expressed little IL-10, which was otherwise robustly expressed by all other intestinal macrophages. We further found that colon-specific CD14+CD24+ mononuclear phagocytes were essential for Th17 immunity in the colon, and provide definitive evidence that colon and small intestine have distinct antigen presenting cell requirements for Th17 immunity. Our findings reveal unappreciated organ-specific diversity of intestine-resident mononuclear phagocytes and organ-specific requirements for Th17 immunity.
Collapse
Affiliation(s)
- Hsin-I. Huang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Mark L. Jewell
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Nourhan Youssef
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Min-Nung Huang
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
| | - Elizabeth R. Hauser
- Department of Biostatistics and Bioinformatics, and Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States
- Cooperative Studies Program Epidemiology Center, VA Medical Center, Durham, NC, United States
| | - Brian E. Fee
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, NC, United States
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States
| | - Nathan P. Rudemiller
- Department of Medicine, Division of Nephrology, Duke University and Durham VA Medical Centers, Durham, NC, United States
| | - Jamie R. Privratsky
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Junyi J. Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Estefany Y. Reyes
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Donghai Wang
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Gregory A. Taylor
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, NC, United States
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Michael D. Gunn
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, United States
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Donald N. Cook
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, United States
| | - Vidyalakshmi Chandramohan
- Department of Neurosurgery and Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Steven D. Crowley
- Department of Medicine, Division of Nephrology, Duke University and Durham VA Medical Centers, Durham, NC, United States
| | - Gianna Elena Hammer
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
40
|
Heaster TM, Heaton AR, Sondel PM, Skala MC. Intravital Metabolic Autofluorescence Imaging Captures Macrophage Heterogeneity Across Normal and Cancerous Tissue. Front Bioeng Biotechnol 2021; 9:644648. [PMID: 33959597 PMCID: PMC8093439 DOI: 10.3389/fbioe.2021.644648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
Macrophages are dynamic immune cells that govern both normal tissue function and disease progression. However, standard methods to measure heterogeneity in macrophage function within tissues require tissue excision and fixation, which limits our understanding of diverse macrophage function in vivo. Two-photon microscopy of the endogenous metabolic co-enzymes NAD(P)H and flavin adenine dinucleotide (FAD) (metabolic autofluorescence imaging) enables dynamic imaging of mouse models in vivo. Here, we demonstrate metabolic autofluorescence imaging to assess cell-level macrophage heterogeneity in response to normal and cancerous tissue microenvironments in vivo. NAD(P)H and FAD fluorescence intensities and lifetimes were measured for both tissue-resident macrophages in mouse ear dermis and tumor-associated macrophages in pancreatic flank tumors. Metabolic and spatial organization of macrophages were determined by performing metabolic autofluorescence imaging and single macrophage segmentation in mice engineered for macrophage-specific fluorescent protein expression. Tumor-associated macrophages exhibited decreased optical redox ratio [NAD(P)H divided by FAD intensity] compared to dermal macrophages, indicating that tumor-associated macrophages are more oxidized than dermal macrophages. The mean fluorescence lifetimes of NAD(P)H and FAD were longer in dermal macrophages than in tumor-associated macrophages, which reflects changes in NAD(P)H and FAD protein-binding activities. Dermal macrophages had greater heterogeneity in optical redox ratio, NAD(P)H mean lifetime, and FAD mean lifetime compared to tumor-associated macrophages. Similarly, standard markers of macrophage phenotype (CD206 and CD86) assessed by immunofluorescence revealed greater heterogeneity in dermal macrophages compared to tumor-associated macrophages. Ultimately, metabolic autofluorescence imaging provides a novel tool to assess tissue-specific macrophage behavior and cell-level heterogeneity in vivo in animal models.
Collapse
Affiliation(s)
- Tiffany M. Heaster
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
| | - Alexa R. Heaton
- Morgridge Institute for Research, Madison, WI, United States
- Department of Human Oncology, University of Wisconsin–Madison, Madison, WI, United States
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI, United States
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
| |
Collapse
|
41
|
Hirobe S, Susai R, Takeuchi H, Eguchi R, Ito S, Quan YS, Kamiyama F, Okada N. Characteristics of immune induction by transcutaneous vaccination using dissolving microneedle patches in mice. Int J Pharm 2021; 601:120563. [PMID: 33811967 DOI: 10.1016/j.ijpharm.2021.120563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022]
Abstract
Transcutaneous immunization (TCI) is an appealing vaccination method. Compared with conventional injectable immunization, TCI is easier and less painful. We previously developed a dissolving microneedle (MN) patch and demonstrated that TCI using MN patches demonstrates high vaccination efficacy without adverse events in humans. In this study, we investigated the immune induction mechanism of TCI using our MN patch, focusing on inflammatory responses in the skin and on the dynamics, activation, and differentiation of various immunocompetent cells in draining lymph nodes (dLNs). We demonstrate that inflammatory cytokines such as IL-6 and TNF-α increased in the skin at an early stage after MN patch application, inducing the infiltration of macrophages and neutrophils and promoting the activation and migration of skin-resident antigen-presenting cells (Langerhans and Langerin- dermal dendritic cells) to dLNs. Moreover, the activated antigen-presenting cells reaching the dLNs enhanced the differentiation of T (Teff, Tem, and Tcm) and B (plasma and memory) cells. This may contribute to the efficient antigen-specific antibody production induced by TCI using MN patches. We believe that our findings reveal a part of the immune induction mechanism by TCI and provide useful information for the development and improvement of TCI formulations based on the immune induction mechanism.
Collapse
Affiliation(s)
- Sachiko Hirobe
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Clinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ryo Susai
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Honoka Takeuchi
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryosuke Eguchi
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sayami Ito
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ying-Shu Quan
- CosMED Pharmaceutical Co. Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Japan
| | - Fumio Kamiyama
- CosMED Pharmaceutical Co. Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Japan
| | - Naoki Okada
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory of Vaccine and Immune Regulation (BIKEN), Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
42
|
Zindel J, Peiseler M, Hossain M, Deppermann C, Lee WY, Haenni B, Zuber B, Deniset JF, Surewaard BGJ, Candinas D, Kubes P. Primordial GATA6 macrophages function as extravascular platelets in sterile injury. Science 2021; 371:371/6533/eabe0595. [PMID: 33674464 DOI: 10.1126/science.abe0595] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Most multicellular organisms have a major body cavity that harbors immune cells. In primordial species such as purple sea urchins, these cells perform phagocytic functions but are also crucial in repairing injuries. In mammals, the peritoneal cavity contains large numbers of resident GATA6+ macrophages, which may function similarly. However, it is unclear how cavity macrophages suspended in the fluid phase (peritoneal fluid) identify and migrate toward injuries. In this study, we used intravital microscopy to show that cavity macrophages in fluid rapidly form thrombus-like structures in response to injury by means of primordial scavenger receptor cysteine-rich domains. Aggregates of cavity macrophages physically sealed injuries and promoted rapid repair of focal lesions. In iatrogenic surgical situations, these cavity macrophages formed extensive aggregates that promoted the growth of intra-abdominal scar tissue known as peritoneal adhesions.
Collapse
Affiliation(s)
- J Zindel
- Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - M Peiseler
- Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - M Hossain
- Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - C Deppermann
- Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W Y Lee
- Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - B Haenni
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - B Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - J F Deniset
- Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - B G J Surewaard
- Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - D Candinas
- Department of Visceral Surgery and Medicine, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - P Kubes
- Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada. .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
43
|
Abstract
As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.
Collapse
Affiliation(s)
- Xiangyun Yin
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Shuting Chen
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
44
|
Klopfenstein N, Brandt SL, Castellanos S, Gunzer M, Blackman A, Serezani CH. SOCS-1 inhibition of type I interferon restrains Staphylococcus aureus skin host defense. PLoS Pathog 2021; 17:e1009387. [PMID: 33690673 PMCID: PMC7984627 DOI: 10.1371/journal.ppat.1009387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/22/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
The skin innate immune response to methicillin-resistant Staphylococcus aureus (MRSA) culminates in the formation of an abscess to prevent bacterial spread and tissue damage. Pathogen recognition receptors (PRRs) dictate the balance between microbial control and injury. Therefore, intracellular brakes are of fundamental importance to tune the appropriate host defense while inducing resolution. The intracellular inhibitor suppressor of cytokine signaling 1 (SOCS-1), a known JAK/STAT inhibitor, prevents the expression and actions of PRR adaptors and downstream effectors. Whether SOCS-1 is a molecular component of skin host defense remains to be determined. We hypothesized that SOCS-1 decreases type I interferon production and IFNAR-mediated antimicrobial effector functions, limiting the inflammatory response during skin infection. Our data show that MRSA skin infection enhances SOCS-1 expression, and both SOCS-1 inhibitor peptide-treated and myeloid-specific SOCS-1 deficient mice display decreased lesion size, bacterial loads, and increased abscess thickness when compared to wild-type mice treated with the scrambled peptide control. SOCS-1 deletion/inhibition increases phagocytosis and bacterial killing, dependent on nitric oxide release. SOCS-1 inhibition also increases the levels of type I and type II interferon levels in vivo. IFNAR deletion and antibody blockage abolished the beneficial effects of SOCS-1 inhibition in vivo. Notably, we unveiled that hyperglycemia triggers aberrant SOCS-1 expression that correlates with decreased overall IFN signatures in the infected skin. SOCS-1 inhibition restores skin host defense in the highly susceptible hyperglycemic mice. Overall, these data demonstrate a role for SOCS-1-mediated type I interferon actions in host defense and inflammation during MRSA skin infection.
Collapse
Affiliation(s)
- Nathan Klopfenstein
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Stephanie L Brandt
- Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sydney Castellanos
- Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Hufelandstrasse Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS -e.V, Dortmund, Germany
| | - Amondrea Blackman
- Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - C Henrique Serezani
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
45
|
Rossi B, Santos-Lima B, Terrabuio E, Zenaro E, Constantin G. Common Peripheral Immunity Mechanisms in Multiple Sclerosis and Alzheimer's Disease. Front Immunol 2021; 12:639369. [PMID: 33679799 PMCID: PMC7933037 DOI: 10.3389/fimmu.2021.639369] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are closely related to inflammatory and autoimmune events, suggesting that the dysregulation of the immune system is a key pathological factor. Both multiple sclerosis (MS) and Alzheimer's disease (AD) are characterized by infiltrating immune cells, activated microglia, astrocyte proliferation, and neuronal damage. Moreover, MS and AD share a common pro-inflammatory signature, characterized by peripheral leukocyte activation and transmigration to the central nervous system (CNS). MS and AD are both characterized by the accumulation of activated neutrophils in the blood, leading to progressive impairment of the blood–brain barrier. Having migrated to the CNS during the early phases of MS and AD, neutrophils promote local inflammation that contributes to pathogenesis and clinical progression. The role of circulating T cells in MS is well-established, whereas the contribution of adaptive immunity to AD pathogenesis and progression is a more recent discovery. Even so, blocking the transmigration of T cells to the CNS can benefit both MS and AD patients, suggesting that common adaptive immunity mechanisms play a detrimental role in each disease. There is also growing evidence that regulatory T cells are beneficial during the initial stages of MS and AD, supporting the link between the modulatory immune compartments and these neurodegenerative disorders. The number of resting regulatory T cells declines in both diseases, indicating a common pathogenic mechanism involving the dysregulation of these cells, although their precise role in the control of neuroinflammation remains unclear. The modulation of leukocyte functions can benefit MS patients, so more insight into the role of peripheral immune cells may reveal new targets for pharmacological intervention in other neuroinflammatory and neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Barbara Rossi
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Bruno Santos-Lima
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Eleonora Terrabuio
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Elena Zenaro
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy.,The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| |
Collapse
|
46
|
Leal JM, Huang JY, Kohli K, Stoltzfus C, Lyons-Cohen MR, Olin BE, Gale M, Gerner MY. Innate cell microenvironments in lymph nodes shape the generation of T cell responses during type I inflammation. Sci Immunol 2021; 6:eabb9435. [PMID: 33579750 PMCID: PMC8274717 DOI: 10.1126/sciimmunol.abb9435] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/21/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Microanatomical organization of innate immune cells within lymph nodes (LNs) is critical for the generation of adaptive responses. In particular, steady-state LN-resident dendritic cells (Res cDCs) are strategically localized to intercept lymph-draining antigens. Whether myeloid cell organization changes during inflammation and how that might affect the generation of immune responses are unknown. Here, we report that during type I, but not type II, inflammation after adjuvant immunization or viral infection, antigen-presenting Res cDCs undergo CCR7-dependent intranodal repositioning from the LN periphery into the T cell zone (TZ) to elicit T cell priming. Concurrently, inflammatory monocytes infiltrate the LNs via local blood vessels, enter the TZ, and cooperate with Res cDCs by providing polarizing cytokines to optimize T cell effector differentiation. Monocyte infiltration is nonuniform across LNs, generating distinct microenvironments with varied local innate cell composition. These spatial microdomains are associated with divergent early T cell effector programming, indicating that innate microenvironments within LNs play a critical role in regulating the quality and heterogeneity of T cell responses. Together, our findings reveal that dynamic modulation of innate cell microenvironments during type I inflammation leads to optimized generation of adaptive immune responses to vaccines and infections.
Collapse
Affiliation(s)
- Joseph M Leal
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jessica Y Huang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Karan Kohli
- Department of Surgery, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Caleb Stoltzfus
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Miranda R Lyons-Cohen
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Brandy E Olin
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Michael Y Gerner
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
47
|
Mamareli P, Kruse F, Lu CW, Guderian M, Floess S, Rox K, Allan DSJ, Carlyle JR, Brönstrup M, Müller R, Berod L, Sparwasser T, Lochner M. Targeting cellular fatty acid synthesis limits T helper and innate lymphoid cell function during intestinal inflammation and infection. Mucosal Immunol 2021; 14:164-176. [PMID: 32355319 DOI: 10.1038/s41385-020-0285-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/04/2023]
Abstract
CD4+ T cells contribute critically to a protective immune response during intestinal infections, but have also been implicated in the aggravation of intestinal inflammatory pathology. Previous studies suggested that T helper type (Th)1 and Th17 cells depend on de novo fatty acid (FA) synthesis for their development and effector function. Here, we report that T-cell-specific targeting of the enzyme acetyl-CoA carboxylase 1 (ACC1), a major checkpoint controlling FA synthesis, impaired intestinal Th1 and Th17 responses by limiting CD4+ T-cell expansion and infiltration into the lamina propria in murine models of colitis and infection-associated intestinal inflammation. Importantly, pharmacological inhibition of ACC1 by the natural compound soraphen A mirrored the anti-inflammatory effects of T-cell-specific targeting, but also enhanced susceptibility toward infection with C. rodentium. Further analysis revealed that deletion of ACC1 in RORγt+ innate lymphoid cells (ILC), but not dendritic cells or macrophages, decreased resistance to infection by interfering with IL-22 production and intestinal barrier function. Together, our study suggests pharmacological targeting of ACC1 as an effective approach for metabolic immune modulation of T-cell-driven intestinal inflammatory responses, but also reveals an important role of ACC1-mediated lipogenesis for the function of RORγt+ ILC.
Collapse
Affiliation(s)
- Panagiota Mamareli
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Friederike Kruse
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Chia-Wen Lu
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Melanie Guderian
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Stefan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - David S J Allan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - James R Carlyle
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research, Saarland University, Saarbrücken, Germany.,Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany. .,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
48
|
Son JW, Shin JJ, Kim MG, Kim J, Son SW. Keratinocyte-specific knockout mice models via Cre–loxP recombination system. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-020-00115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Abstract
Gut mucosal immune cells play an essential role in health due to their ability to orchestrate host signaling events in response to exogenous antigens. These antigens may originate from microorganisms including viruses, commensal or pathogenic bacteria, or single-celled eukaryotes, as well as from dietary foodstuff-derived proteins or products. A critical technological capacity to understand host responses to antigens is the ability to efficiently isolate and functionally characterize immune cells from intestinal tissues. Additionally, after characterization, it is of paramount importance to understand the exact functions of these immune cells under different disease states or genetic variables. Here, we outline methods for immune cell isolation from murine small and large intestines with the goal of undertaking a functional analysis of isolated cell types using antibody array platforms.
Collapse
Affiliation(s)
- Joshua A Owens
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Rheinallt M Jones
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
50
|
Corbin AL, Gomez-Vazquez M, Berthold DL, Attar M, Arnold IC, Powrie FM, Sansom SN, Udalova IA. IRF5 guides monocytes toward an inflammatory CD11c + macrophage phenotype and promotes intestinal inflammation. Sci Immunol 2020; 5:5/47/eaax6085. [PMID: 32444476 DOI: 10.1126/sciimmunol.aax6085] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
Mononuclear phagocytes (MNPs) are vital for maintaining intestinal homeostasis but, in response to acute microbial stimulation, can also trigger immunopathology, accelerating recruitment of Ly6Chi monocytes to the gut. The regulators that control monocyte tissue adaptation in the gut remain poorly understood. Interferon regulatory factor 5 (IRF5) is a transcription factor previously shown to play a key role in maintaining the inflammatory phenotype of macrophages. Here, we investigate the impact of IRF5 on the MNP system and physiology of the gut at homeostasis and during inflammation. We demonstrate that IRF5 deficiency has a limited impact on colon physiology at steady state but ameliorates immunopathology during Helicobacter hepaticus-induced colitis. Inhibition of IRF5 activity in MNPs phenocopies global IRF5 deficiency. Using a combination of bone marrow chimera and single-cell RNA-sequencing approaches, we examined the intrinsic role of IRF5 in controlling colonic MNP development. We demonstrate that IRF5 promotes differentiation of Ly6Chi monocytes into CD11c+ macrophages and controls the production of antimicrobial and inflammatory mediators by these cells. Thus, we identify IRF5 as a key transcriptional regulator of the colonic MNP system during intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | - Moustafa Attar
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Isabelle C Arnold
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,Institut für Molekulare Krebsforschung, University of Zurich, Zurich, Switzerland
| | - Fiona M Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|