1
|
Allman A, Gaudette BT, Kelly S, Alouche N, Carrington LJ, Perkey E, Brandstadter JD, Outen R, Vanderbeck A, Lederer K, Zhou Y, Faryabi RB, Robertson TF, Burkhardt JK, Tikhonova A, Aifantis I, Scarpellino L, Koch U, Radtke F, Lütge M, De Martin A, Ludewig B, Tveriakhina L, Gossler A, Mosteiro L, Siebel CW, Gómez Atria D, Luther SA, Allman D, Maillard I. Splenic fibroblasts control marginal zone B cell movement and function via two distinct Notch2-dependent regulatory programs. Immunity 2025; 58:143-161.e8. [PMID: 39731910 PMCID: PMC11735314 DOI: 10.1016/j.immuni.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024]
Abstract
Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function. Dll1 could not be replaced by the alternative Notch ligand Dll4. Dll1-Notch2 signaling regulated a Myc-dependent gene expression program fostering cell growth and a Myc-independent program controlling cell-movement regulators such as sphingosine-1 phosphate receptor 1 (S1PR1). S1pr1-deficient B cells experienced Notch signaling within B cell follicles without entering the MZ and were retained in the spleen upon Notch deprivation. Key elements of the mouse B cell Notch regulome were preserved in subsets of human memory B cells and B cell lymphomas. Thus, specialized niches program the poised state and patrolling behavior of MZB cells via conserved Myc-dependent and Myc-independent Notch2-regulated mechanisms.
Collapse
Affiliation(s)
- Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha Kelly
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nagham Alouche
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Léolène J Carrington
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Perkey
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua D Brandstadter
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Outen
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Katlyn Lederer
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanner F Robertson
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Anastasia Tikhonova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | | | | | - Mechthild Lütge
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lena Tveriakhina
- Institute for Molecular Biology, Medizinische Hochschule, Hannover, Germany
| | - Achim Gossler
- Institute for Molecular Biology, Medizinische Hochschule, Hannover, Germany
| | | | | | - Daniela Gómez Atria
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Roosma J. A comprehensive review of oncogenic Notch signaling in multiple myeloma. PeerJ 2024; 12:e18485. [PMID: 39619207 PMCID: PMC11608568 DOI: 10.7717/peerj.18485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/16/2024] [Indexed: 12/13/2024] Open
Abstract
Multiple myeloma remains an incurable plasma cell cancer with radical case-by-case heterogeneity. Because of this, personalized and disease-specific biology of multiple myeloma must be understood for the discovery of effective molecular targets. The highly evolutionarily conserved Notch signaling pathway has been extensively described as a multifaceted driver of the multiple myeloma disease process-contributing to both intrinsic effects of malignant cells and to widespread remodeling of the tumor microenvironment that further facilitates disease progression. Namely, Notch signaling amongst malignant cells promotes increased proliferation, tumor-initiating capacity, drug resistance, and invasiveness. Moreover, Notch signaling between malignant cells and cells of the tumor microenvironment leads to increased osteodegenerative disease and angiogenesis. This comprehensive review will discuss both the intrinsic implications of pathological Notch signaling in multiple myeloma and the extrinsic implications of Notch signaling in the multiple myeloma tumor microenvironment. Additionally, the genetic origins of Notch signaling dysregulation in multiple myeloma and current attempts at targeting Notch therapeutically will be reviewed. While the subject has been reviewed previously, recent developments in the intervening years demand a revised synthesis of the literature. The aim of this work is to introduce and thoroughly synthesize the current state of knowledge in this vein of research and to highlight future directions for both new and in-the-field scientists.
Collapse
Affiliation(s)
- Justin Roosma
- Biology, Eastern Washington University, Cheney, Washington, United States
| |
Collapse
|
3
|
Cruz Tleugabulova M, Melo SP, Wong A, Arlantico A, Liu M, Webster JD, Lau J, Lechner A, Corak B, Hodgins JJ, Garlapati VS, De Simone M, Korin B, Avraham S, Lund J, Jeet S, Reiss A, Bender H, Austin CD, Darmanis S, Modrusan Z, Brightbill H, Durinck S, Diamond MS, Schneider C, Shaw AS, Nitschké M. Induction of a distinct macrophage population and protection from lung injury and fibrosis by Notch2 blockade. Nat Commun 2024; 15:9575. [PMID: 39505846 PMCID: PMC11541919 DOI: 10.1038/s41467-024-53700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
Macrophages are pleiotropic and diverse cells that populate all tissues of the body. Besides tissue-specific resident macrophages such as alveolar macrophages, Kupffer cells, and microglia, multiple organs harbor at least two subtypes of other resident macrophages at steady state. During certain circumstances, like tissue insult, additional subtypes of macrophages are recruited to the tissue from the monocyte pool. Previously, a recruited macrophage population marked by expression of Spp1, Cd9, Gpnmb, Fabp5, and Trem2, has been described in several models of organ injury and cancer, and has been linked to fibrosis in mice and humans. Here, we show that Notch2 blockade, given systemically or locally, leads to an increase in this putative pro-fibrotic macrophage in the lung and that this macrophage state can only be adopted by monocytically derived cells and not resident alveolar macrophages. Using a bleomycin and COVID-19 model of lung injury and fibrosis, we find that the expansion of these macrophages before lung injury does not promote fibrosis but rather appears to ameliorate it. This suggests that these damage-associated macrophages are not, by themselves, drivers of fibrosis in the lung.
Collapse
Affiliation(s)
- Mayra Cruz Tleugabulova
- Department of Cancer Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Sandra P Melo
- Department of Bioinformatics, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| | - Aaron Wong
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Joshua D Webster
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Julia Lau
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Antonie Lechner
- Department of Physiology, University of Zürich, Zürich, Switzerland
| | - Basak Corak
- Department of Physiology, University of Zürich, Zürich, Switzerland
| | - Jonathan J Hodgins
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Venkata S Garlapati
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Marco De Simone
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Ben Korin
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Shimrit Avraham
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Jessica Lund
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Alexander Reiss
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Hannah Bender
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Cary D Austin
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Spyros Darmanis
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Hans Brightbill
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Steffen Durinck
- Department of Bioinformatics, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Molecular Microbiology Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | | | - Andrey S Shaw
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| | - Maximilian Nitschké
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| |
Collapse
|
4
|
Xu T, Zhang T, Xu C, Yang F, Zhang W, Huang C. Notch2 signaling governs activated B cells to form memory B cells. Cell Rep 2024; 43:114454. [PMID: 38990721 DOI: 10.1016/j.celrep.2024.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Memory B cells (MBCs) are essential for humoral immunological memory and can emerge during both the pre-germinal center (GC) and GC phases. However, the transcription regulators governing MBC development remain poorly understood. Here, we report that the transcription regulator Notch2 is highly expressed in MBCs and their precursors at the pre-GC stage and required for MBC development without influencing the fate of GC and plasma cells. Mechanistically, Notch2 signaling promotes the expression of complement receptor CD21 and augments B cell receptor (BCR) signaling. Reciprocally, BCR activation up-regulates Notch2 surface expression in activated B cells via a translation-dependent mechanism. Intriguingly, Notch2 is dispensable for GC-derived MBC formation. In summary, our findings establish Notch2 as a pivotal transcription regulator orchestrating MBC development through the reciprocal enforcement of BCR signaling during the pre-GC phase and suggest that the generation of GC-independent and -dependent MBCs is governed by distinct transcriptional mechanisms.
Collapse
Affiliation(s)
- Tingting Xu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyu Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuqiao Xu
- Departments of Dermatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Yang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqian Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanxin Huang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Xiao H, Ulmert I, Bach L, Huber J, Narasimhan H, Kurochkin I, Chang Y, Holst S, Mörbe U, Zhang L, Schlitzer A, Pereira CF, Schraml BU, Baumjohann D, Lahl K. Genomic deletion of Bcl6 differentially affects conventional dendritic cell subsets and compromises Tfh/Tfr/Th17 cell responses. Nat Commun 2024; 15:3554. [PMID: 38688934 PMCID: PMC11061177 DOI: 10.1038/s41467-024-46966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/13/2024] [Indexed: 05/02/2024] Open
Abstract
Conventional dendritic cells (cDC) play key roles in immune induction, but what drives their heterogeneity and functional specialization is still ill-defined. Here we show that cDC-specific deletion of the transcriptional repressor Bcl6 in mice alters the phenotype and transcriptome of cDC1 and cDC2, while their lineage identity is preserved. Bcl6-deficient cDC1 are diminished in the periphery but maintain their ability to cross-present antigen to CD8+ T cells, confirming general maintenance of this subset. Surprisingly, the absence of Bcl6 in cDC causes a complete loss of Notch2-dependent cDC2 in the spleen and intestinal lamina propria. DC-targeted Bcl6-deficient mice induced fewer T follicular helper cells despite a profound impact on T follicular regulatory cells in response to immunization and mounted diminished Th17 immunity to Citrobacter rodentium in the colon. Our findings establish Bcl6 as an essential transcription factor for subsets of cDC and add to our understanding of the transcriptional landscape underlying cDC heterogeneity.
Collapse
Affiliation(s)
- Hongkui Xiao
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Isabel Ulmert
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Luisa Bach
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Johanna Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Hamsa Narasimhan
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximillians-Universität München, Planegg-Martinsried, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Ilia Kurochkin
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Signe Holst
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Urs Mörbe
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark
| | - Lili Zhang
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Carlos-Filipe Pereira
- Cell Reprogramming in Hematopoiesis and Immunity Laboratory, Lund Stem Cell Center, Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Barbara U Schraml
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, Ludwig-Maximillians-Universität München, Planegg-Martinsried, Munich, Germany
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany.
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany.
| | - Katharina Lahl
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), 2800, Kongens, Lyngby, Denmark.
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
- Immunology Section, Lund University, Lund, 221 84, Sweden.
| |
Collapse
|
6
|
Morrison AI, Mikula AM, Spiekstra SW, de Kok M, Affandi AJ, Roest HP, van der Laan LJW, de Winde CM, Koning JJ, Gibbs S, Mebius RE. An Organotypic Human Lymph Node Model Reveals the Importance of Fibroblastic Reticular Cells for Dendritic Cell Function. Tissue Eng Regen Med 2024; 21:455-471. [PMID: 38114886 PMCID: PMC10987465 DOI: 10.1007/s13770-023-00609-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Human lymph node (HuLN) models have emerged with invaluable potential for immunological research and therapeutic application given their fundamental role in human health and disease. While fibroblastic reticular cells (FRCs) are instrumental to HuLN functioning, their inclusion and recognition of importance for organotypic in vitro lymphoid models remain limited. METHODS Here, we established an in vitro three-dimensional (3D) model in a collagen-fibrin hydrogel with primary FRCs and a dendritic cell (DC) cell line (MUTZ-3 DC). To study and characterise the cellular interactions seen in this 3D FRC-DC organotypic model compared to the native HuLN; flow cytometry, immunohistochemistry, immunofluorescence and cytokine/chemokine analysis were performed. RESULTS FRCs were pivotal for survival, proliferation and localisation of MUTZ-3 DCs. Additionally, we found that CD1a expression was absent on MUTZ-3 DCs that developed in the presence of FRCs during cytokine-induced MUTZ-3 DC differentiation, which was also seen with primary monocyte-derived DCs (moDCs). This phenotype resembled HuLN-resident DCs, which we detected in primary HuLNs, and these CD1a- MUTZ-3 DCs induced T cell proliferation within a mixed leukocyte reaction (MLR), indicating a functional DC status. FRCs expressed podoplanin (PDPN), CD90 (Thy-1), CD146 (MCAM) and Gremlin-1, thereby resembling the DC supporting stromal cell subset identified in HuLNs. CONCLUSION This 3D FRC-DC organotypic model highlights the influence and importance of FRCs for DC functioning in a more realistic HuLN microenvironment. As such, this work provides a starting point for the development of an in vitro HuLN.
Collapse
Affiliation(s)
- Andrew I Morrison
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Aleksandra M Mikula
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Sander W Spiekstra
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Michael de Kok
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Alsya J Affandi
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Charlotte M de Winde
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jasper J Koning
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Susan Gibbs
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Babushku T, Lechner M, Ehrenberg S, Rambold U, Schmidt-Supprian M, Yates AJ, Rane S, Zimber-Strobl U, Strobl LJ. Notch2 controls developmental fate choices between germinal center and marginal zone B cells upon immunization. Nat Commun 2024; 15:1960. [PMID: 38438375 PMCID: PMC10912316 DOI: 10.1038/s41467-024-46024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Sustained Notch2 signals induce trans-differentiation of Follicular B (FoB) cells into Marginal Zone B (MZB) cells in mice, but the physiology underlying this differentiation pathway is still elusive. Here, we demonstrate that most B cells receive a basal Notch signal, which is intensified in pre-MZB and MZB cells. Ablation or constitutive activation of Notch2 upon T-cell-dependent immunization reveals an interplay between antigen-induced activation and Notch2 signaling, in which FoB cells that turn off Notch2 signaling enter germinal centers (GC), while high Notch2 signaling leads to generation of MZB cells or to initiation of plasmablast differentiation. Notch2 signaling is dispensable for GC dynamics but appears to be re-induced in some centrocytes to govern expansion of IgG1+ GCB cells. Mathematical modelling suggests that antigen-activated FoB cells make a Notch2 dependent binary fate-decision to differentiate into either GCB or MZB cells. This bifurcation might serve as a mechanism to archive antigen-specific clones into functionally and spatially diverse B cell states to generate robust antibody and memory responses.
Collapse
Affiliation(s)
- Tea Babushku
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Einsteinstraße 25, D-81675, Munich, Germany
| | - Markus Lechner
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany
| | - Stefanie Ehrenberg
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany
| | - Ursula Rambold
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany
| | - Marc Schmidt-Supprian
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Einsteinstraße 25, D-81675, Munich, Germany
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Sanket Rane
- Irving Institute for Cancer Dynamics, Columbia University, 1190 Amsterdam Ave, New York, 10027, USA
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany.
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Lothar J Strobl
- Research Unit Gene Vectors, Research Group B Cell Development and Activation, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, D-81377, Munich, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| |
Collapse
|
8
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
9
|
De Martin A, Stanossek Y, Pikor NB, Ludewig B. Protective fibroblastic niches in secondary lymphoid organs. J Exp Med 2024; 221:e20221220. [PMID: 38038708 PMCID: PMC10691961 DOI: 10.1084/jem.20221220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) are specialized fibroblasts of secondary lymphoid organs that provide the structural foundation of the tissue. Moreover, FRCs guide immune cells to dedicated microenvironmental niches where they provide lymphocytes and myeloid cells with homeostatic growth and differentiation factors. Inflammatory processes, including infection with pathogens, induce rapid morphological and functional adaptations that are critical for the priming and regulation of protective immune responses. However, adverse FRC reprogramming can promote immunopathological tissue damage during infection and autoimmune conditions and subvert antitumor immune responses. Here, we review recent findings on molecular pathways that regulate FRC-immune cell crosstalk in specialized niches during the generation of protective immune responses in the course of pathogen encounters. In addition, we discuss how FRCs integrate immune cell-derived signals to ensure protective immunity during infection and how therapies for inflammatory diseases and cancer can be developed through improved understanding of FRC-immune cell interactions.
Collapse
Affiliation(s)
- Angelina De Martin
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Natalia Barbara Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
10
|
Schneider M, Allman A, Maillard I. Regulation of immune cell development, differentiation and function by stromal Notch ligands. Curr Opin Cell Biol 2023; 85:102256. [PMID: 37806295 PMCID: PMC10873072 DOI: 10.1016/j.ceb.2023.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
In multicellular organisms, cell-to-cell communication is critical for the regulation of tissue organization. Notch signaling relies on direct interactions between Notch receptors on signal-receiving cells and Notch ligands on adjacent cells. Notch evolved to mediate local cellular interactions that are responsive to spatial cues via dosage-sensitive short-lived signals. Immune cells utilize these unique properties of Notch signaling to direct their development, differentiation, and function. In this review, we explore how immune cells interact through Notch receptors with stromal cells in specialized niches of lymphohematopoietic organs that express Notch-activating ligands. We emphasize factors that control these interactions and focus on how Notch signals communicate spatial, quantitative, and temporal information to program the function of signal-receiving cells in the immune system.
Collapse
Affiliation(s)
- Michael Schneider
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Liu Q, Chen C, He Y, Mai W, Ruan S, Ning Y, Li Y. Notch Signaling Regulates the Function and Phenotype of Dendritic Cells in Helicobacter pylori Infection. Microorganisms 2023; 11:2818. [PMID: 38004829 PMCID: PMC10673485 DOI: 10.3390/microorganisms11112818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Notch signaling manipulates the function and phenotype of dendritic cells (DCs), as well as the interaction between DCs and CD4+ T cells. However, the role of Notch signaling in Helicobacter pylori (H. pylori) infection remains elusive. Murine bone marrow-derived dendritic cells (BMDCs) were pretreated in the absence or presence of Notch signaling inhibitor DAPT prior to H. pylori stimulation and the levels of Notch components, cytokines and surface markers as well as the differentiation of CD4+ T cells in co-culture were measured using quantitative real-time PCR (qRT-PCR), Western blot, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Compared with the control, the mRNA expression of all Notch receptors and Notch ligands Dll4 and Jagged1 was up-regulated in H. pylori-stimulated BMDCs. The blockade of Notch signaling by DAPT influenced the production of IL-1β and IL-10 in H. pylori-pulsed BMDCs, and reduced the expression of Notch1, Notch3, Notch4, Dll1, Dll3 and Jagged2. In addition, DAPT pretreatment decreased the expression of maturation markers CD80, CD83, CD86, and major histocompatibility complex class II (MHC-II) of BMDCs, and further skewed Th17/Treg balance toward Treg. Notch signaling regulates the function and phenotype of DCs, thus mediating the differentiation of CD4+ T cells during H. pylori infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China (W.M.)
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China (W.M.)
| |
Collapse
|
12
|
Alexandre YO, Mueller SN. Splenic stromal niches in homeostasis and immunity. Nat Rev Immunol 2023; 23:705-719. [PMID: 36973361 DOI: 10.1038/s41577-023-00857-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
The spleen is a gatekeeper of systemic immunity where immune responses against blood-borne pathogens are initiated and sustained. Non-haematopoietic stromal cells construct microanatomical niches in the spleen that make diverse contributions to physiological spleen functions and regulate the homeostasis of immune cells. Additional signals from spleen autonomic nerves also modify immune responses. Recent insight into the diversity of the splenic fibroblastic stromal cells has revised our understanding of how these cells help to orchestrate splenic responses to infection and contribute to immune responses. In this Review, we examine our current understanding of how stromal niches and neuroimmune circuits direct the immunological functions of the spleen, with a focus on T cell immunity.
Collapse
Affiliation(s)
- Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Cox EM, El-Behi M, Ries S, Vogt JF, Kohlhaas V, Michna T, Manfroi B, Al-Maarri M, Wanke F, Tirosh B, Pondarre C, Lezeau H, Yogev N, Mittenzwei R, Descatoire M, Weller S, Weill JC, Reynaud CA, Boudinot P, Jouneau L, Tenzer S, Distler U, Rensing-Ehl A, König C, Staniek J, Rizzi M, Magérus A, Rieux-Laucat F, Wunderlich FT, Hövelmeyer N, Fillatreau S. AKT activity orchestrates marginal zone B cell development in mice and humans. Cell Rep 2023; 42:112378. [PMID: 37060566 DOI: 10.1016/j.celrep.2023.112378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 12/14/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
The signals controlling marginal zone (MZ) and follicular (FO) B cell development remain incompletely understood. Here, we show that AKT orchestrates MZ B cell formation in mice and humans. Genetic models that increase AKT signaling in B cells or abolish its impact on FoxO transcription factors highlight the AKT-FoxO axis as an on-off switch for MZ B cell formation in mice. In humans, splenic immunoglobulin (Ig) D+CD27+ B cells, proposed as an MZ B cell equivalent, display higher AKT signaling than naive IgD+CD27- and memory IgD-CD27+ B cells and develop in an AKT-dependent manner from their precursors in vitro, underlining the conservation of this developmental pathway. Consistently, CD148 is identified as a receptor indicative of the level of AKT signaling in B cells, expressed at a higher level in MZ B cells than FO B cells in mice as well as humans.
Collapse
Affiliation(s)
- Eva-Maria Cox
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Mohamed El-Behi
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Stefanie Ries
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, 10117 Berlin, Germany
| | - Johannes F Vogt
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Vivien Kohlhaas
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Thomas Michna
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Benoît Manfroi
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Mona Al-Maarri
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Florian Wanke
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Boaz Tirosh
- The Hebrew University of Jerusalem, Institute for Drug Research, Jerusalem, Israel
| | - Corinne Pondarre
- Service de Pédiatrie Générale, Centre de Référence de la Drépanocytose, Centre Intercommunal de Créteil, Créteil, France; Inserm U955, Université Paris XII, Créteil, France
| | - Harry Lezeau
- Service de Pédiatrie Générale, Centre de Référence de la Drépanocytose, Centre Intercommunal de Créteil, Créteil, France; Inserm U955, Université Paris XII, Créteil, France
| | - Nir Yogev
- Faculty of Medicine, Department of Dermatology, University of Cologne, 50931 Cologne, Germany
| | - Romy Mittenzwei
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany
| | - Marc Descatoire
- Laboratory of Immune Inherited Disorders, Department of Immunology and Allergology Lausanne Hospital CHUV, Lausanne, Switzerland
| | - Sandra Weller
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Jean-Claude Weill
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Claude-Agnès Reynaud
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Stefan Tenzer
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany; Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany; Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Centre of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph König
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; University of Freiburg, Faculty of Biology, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aude Magérus
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Frederic Rieux-Laucat
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP) Cologne, 50931 Cologne, Germany
| | - Nadine Hövelmeyer
- Institute for Molecular Medicine Mainz, University Hospital of Mainz, 55131 Mainz, Germany; Research Centre for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, 156-160, rue de Vaugirard, 75015 Paris, France; Université de Paris Cité, Paris Descartes, Faculté de Médecine, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Paris, France.
| |
Collapse
|
14
|
Notch Signaling in Acute Inflammation and Sepsis. Int J Mol Sci 2023; 24:ijms24043458. [PMID: 36834869 PMCID: PMC9967996 DOI: 10.3390/ijms24043458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. Besides, this pathway is also directly involved in the transmission of immune signals. Notch signaling per se does not have a clear pro- or anti-inflammatory effect, but rather its impact is highly dependent on the immune cell type and the cellular environment, modulating several inflammatory conditions including sepsis, and therefore significantly impacts the course of disease. In this review, we will discuss the contribution of Notch signaling on the clinical picture of systemic inflammatory diseases, especially sepsis. Specifically, we will review its role during immune cell development and its contribution to the modulation of organ-specific immune responses. Finally, we will evaluate to what extent manipulation of the Notch signaling pathway could be a future therapeutic strategy.
Collapse
|
15
|
Kirkling ME, Reizis B. In Vitro Generation of Murine CD8α + DEC205 + XCR1 + Cross-Presenting Dendritic Cells from Bone Marrow-Derived Hematopoietic Progenitors. Methods Mol Biol 2023; 2618:109-119. [PMID: 36905512 DOI: 10.1007/978-1-0716-2938-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells (DCs) comprise a heterogeneous population of antigen (Ag)-presenting cells that play a critical role in both innate and adaptive immunity. DCs orchestrate protective responses against pathogens and tumors while mediating tolerance to host tissues. Evolutionary conservation between species has allowed the successful use of murine models to identify and characterize DC types and functions relevant to human health. Among DCs, type 1 classical DCs (cDC1) are uniquely capable of inducing antitumor responses and therefore present a promising therapeutic target. However, the rarity of DCs, particularly cDC1, limits the number of cells that can be isolated for study. Despite significant effort, progress in the field has been hampered by inadequate methods to produce large quantities of functionally mature DCs in vitro. To overcome this challenge, we developed a culture system in which mouse primary bone marrow cells are cocultured with OP9 stromal cells expressing Notch ligand Delta-like 1 (OP9-DL1) to produce CD8α+ DEC205+ XCR1+ cDC1 (Notch cDC1). This novel method provides a valuable tool to facilitate the generation of unlimited cDC1 for functional studies and translational applications such as antitumor vaccination and immunotherapy.
Collapse
Affiliation(s)
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
16
|
Gómez Atria D, Gaudette BT, Londregan J, Kelly S, Perkey E, Allman A, Srivastava B, Koch U, Radtke F, Ludewig B, Siebel CW, Ryan RJ, Robertson TF, Burkhardt JK, Pear WS, Allman D, Maillard I. Stromal Notch ligands foster lymphopenia-driven functional plasticity and homeostatic proliferation of naïve B cells. J Clin Invest 2022; 132:158885. [PMID: 35579963 PMCID: PMC9246379 DOI: 10.1172/jci158885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
In lymphopenic environments, secondary lymphoid organs regulate the size of B and T-cell compartments by supporting homeostatic proliferation of mature lymphocytes. The molecular mechanisms underlying these responses and their functional consequences remain incompletely understood. To evaluate homeostasis of the mature B-cell pool during lymphopenia, we turned to an adoptive transfer model of purified follicular B-cells into Rag2-/- mouse recipients. Highly purified follicular B-cells transdifferentiated into marginal zone-like B-cells when transferred into Rag2-/- lymphopenic hosts, but not into wild-type hosts. In lymphopenic spleens, transferred B-cells gradually lost their follicular phenotype and acquired characteristics of marginal zone B-cells, as judged by cell surface phenotype, expression of integrins and chemokine receptors, positioning close to the marginal sinus, and an ability to rapidly generate functional plasma cells. Initiation of follicular to marginal zone B-cell transdifferentiation preceded proliferation. Furthermore, the transdifferentiation process was dependent on Notch2 receptors in B-cells and expression of Delta-like1 Notch ligands by splenic Ccl19-Cre+ fibroblastic stromal cells. Gene expression analysis showed rapid induction of Notch-regulated transcripts followed by upregulated Myc expression and acquisition of broad transcriptional features of marginal zone B-cells. Thus, naïve mature B-cells are endowed with plastic transdifferentiation potential in response to increased stromal Notch ligand availability during lymphopenia.
Collapse
Affiliation(s)
- Daniela Gómez Atria
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Jennifer Londregan
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, United States of America
| | - Samantha Kelly
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, United States of America
| | - Anneka Allman
- Department of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Bhaskar Srivastava
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Ute Koch
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Freddy Radtke
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, United States of America
| | - Russell Jh Ryan
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Tanner F Robertson
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, United States of America
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Ivan Maillard
- University of Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
17
|
The role of A Disintegrin and Metalloproteinase (ADAM)-10 in T helper cell biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119192. [PMID: 34982961 DOI: 10.1016/j.bbamcr.2021.119192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
A Disintegrin and Metalloproteinases (ADAM)-10 is a member of a family of membrane-anchored proteinases that regulate a broad range of cellular functions with central roles within the immune system. This has spurred the interest to modulate ADAM activity therapeutically in immunological diseases. CD4 T helper (Th) cells are the key regulators of adaptive immune responses. Their development and function is strongly dependent on Notch, a key ADAM-10 substrate. However, Th cells rely on a variety of additional ADAM-10 substrates regulating their functional activity at multiple levels. The complexity of both, the ADAM substrate expression as well as the functional consequences of ADAM-mediated cleavage of the various substrates complicates the analysis of cell type specific effects. Here we provide an overview on the major ADAM-10 substrates relevant for CD4 T cell biology and discuss the potential effects of ADAM-mediated cleavage exemplified for a selection of important substrates.
Collapse
|
18
|
Hirano KI, Hosokawa H, Yahata T, Ando K, Tanaka M, Imai J, Yazawa M, Ohtsuka M, Negishi N, Habu S, Sato T, Hozumi K. Dll1 Can Function as a Ligand of Notch1 and Notch2 in the Thymic Epithelium. Front Immunol 2022; 13:852427. [PMID: 35371023 PMCID: PMC8968733 DOI: 10.3389/fimmu.2022.852427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
T-cell development in the thymus is dependent on Notch signaling induced by the interaction of Notch1, present on immigrant cells, with a Notch ligand, delta-like (Dll) 4, on the thymic epithelial cells. Phylogenetic analysis characterizing the properties of the Dll4 molecule suggests that Dll4 emerged from the common ancestor of lobe- and ray-finned fishes and diverged into bony fishes and terrestrial organisms, including mammals. The thymus evolved in cartilaginous fishes before Dll4, suggesting that T-cell development in cartilaginous fishes is dependent on Dll1 instead of Dll4. In this study, we compared the function of both Dll molecules in the thymic epithelium using Foxn1-cre and Dll4-floxed mice with conditional transgenic alleles in which the Dll1 or Dll4 gene is transcribed after the cre-mediated excision of the stop codon. The expression of Dll1 in the thymic epithelium completely restored the defect in the Dll4-deficient condition, suggesting that Dll1 can trigger Notch signaling that is indispensable for T-cell development in the thymus. Moreover, using bone marrow chimeras with Notch1- or Notch2-deficient hematopoietic cells, we showed that Dll1 is able to activate Notch signaling, which is sufficient to induce T-cell development, with both the receptors, in contrast to Dll4, which works only with Notch1, in the thymic environment. These results strongly support the hypothesis that Dll1 regulates T-cell development via Notch1 and/or Notch2 in the thymus of cartilaginous fishes and that Dll4 has replaced Dll1 in inducing thymic Notch signaling via Notch1 during evolution.
Collapse
Affiliation(s)
- Ken-ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
- Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Takashi Yahata
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Masayuki Tanaka
- Support Center of Medical Research and Education, Tokai University School of Medicine, Isehara, Japan
| | - Jin Imai
- Divison of Gastroenterology and Hepatology, Tokai University School of Medicine, Isehara, Japan
| | - Masaki Yazawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Masato Ohtsuka
- Institute of Medical Sciences, Tokai University, Isehara, Japan
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Naoko Negishi
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehito Sato
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
- *Correspondence: Katsuto Hozumi,
| |
Collapse
|
19
|
Identification of Novel Prognostic Signatures for Clear Cell Renal Cell Carcinoma Based on ceRNA Network Construction and Immune Infiltration Analysis. DISEASE MARKERS 2022; 2022:4033583. [PMID: 35320950 PMCID: PMC8938059 DOI: 10.1155/2022/4033583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
Objective. Clear cell renal cell carcinoma (ccRCC) carries significant morbidity and mortality globally and is often resistant to conventional radiotherapy and chemotherapy. Immune checkpoint blockade (ICB) has received attention in ccRCC patients as a promising anticancer treatment. Furthermore, competitive endogenous RNA (ceRNA) networks are crucial for the occurrence and progression of various tumors. This study was aimed at identifying reliable prognostic signatures and exploring potential mechanisms between ceRNA regulation and immune cell infiltration in ccRCC patients. Methods and Results. Gene expression profiling and clinical information of ccRCC samples were obtained from The Cancer Genome Atlas (TCGA) database. Through comprehensive bioinformatic analyses, differentially expressed mRNAs (DEmRNAs;
), lncRNAs (DElncRNAs;
), and miRNAs (DEmiRNAs;
) were identified to establish ceRNA networks. The CIBERSORT algorithm was applied to calculate the proportion of 22 types of tumor-infiltrating immune cells (TIICs) in ccRCC tissues. Subsequently, univariate Cox, Lasso, and multivariate Cox regression analyses were employed to construct ceRNA-related and TIIC-related prognostic signatures. In addition, we explored the relationship between the crucial genes and TIICs via coexpression analysis, which revealed that the interactions between MALAT1, miR-1271-5p, KIAA1324, and follicular helper T cells might be closely correlated with the progression of ccRCC. Ultimately, we preliminarily validated that the potential MALAT1/miR-1271-5p/KIAA1324 axis was consistent with the ceRNA theory by qRT-PCR in the ccRCC cell lines. Conclusion. On the basis of the ceRNA networks and TIICs, we constructed two prognostic signatures with excellent predictive value and explored possible molecular regulatory mechanisms, which might contribute to the improvement of prognosis and individualized treatment for ccRCC patients.
Collapse
|
20
|
Liu D, Duan L, Cyster JG. Chemo- and mechanosensing by dendritic cells facilitate antigen surveillance in the spleen. Immunol Rev 2022; 306:25-42. [PMID: 35147233 PMCID: PMC8852366 DOI: 10.1111/imr.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022]
Abstract
Spleen dendritic cells (DC) are critical for initiation of adaptive immune responses against blood-borne invaders. Key to DC function is their positioning at sites of pathogen entry, and their abilities to selectively capture foreign antigens and promptly engage T cells. Focusing on conventional DC2 (cDC2), we discuss the contribution of chemoattractant receptors (EBI2 or GPR183, S1PR1, and CCR7) and integrins to cDC2 positioning and function. We give particular attention to a newly identified role in cDC2 for adhesion G-protein coupled receptor E5 (Adgre5 or CD97) and its ligand CD55, detailing how this mechanosensing system contributes to splenic cDC2 positioning and homeostasis. Additional roles of CD97 in the immune system are reviewed. The ability of cDC2 to be activated by circulating missing self-CD47 cells and to integrate multiple red blood cell (RBC)-derived inputs is discussed. Finally, we describe the process of activated cDC2 migration to engage and prime helper T cells. Throughout the review, we consider the insights into cDC function in the spleen that have emerged from imaging studies.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Lihui Duan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
21
|
Onder L, Cheng HW, Ludewig B. Visualization and functional characterization of lymphoid organ fibroblasts. Immunol Rev 2021; 306:108-122. [PMID: 34866192 PMCID: PMC9300201 DOI: 10.1111/imr.13051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Fibroblastic reticular cells (FRCs) are specialized stromal cells of lymphoid organs that generate the structural foundation of the tissue and actively interact with immune cells. Distinct FRC subsets position lymphocytes and myeloid cells in specialized niches where they present processed or native antigen and provide essential growth factors and cytokines for immune cell activation and differentiation. Niche‐specific functions of FRC subpopulations have been defined using genetic targeting, high‐dimensional transcriptomic analyses, and advanced imaging methods. Here, we review recent findings on FRC‐immune cell interaction and the elaboration of FRC development and differentiation. We discuss how imaging approaches have not only shaped our understanding of FRC biology, but have critically advanced the niche concept of immune cell maintenance and control of immune reactivity.
Collapse
Affiliation(s)
- Lucas Onder
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
22
|
Takeuchi A, Ozawa M, Cui G, Ikuta K, Katakai T. Lymph Node Stromal Cells: Diverse Meshwork Structures Weave Functionally Subdivided Niches. Curr Top Microbiol Immunol 2021; 434:103-121. [PMID: 34850284 DOI: 10.1007/978-3-030-86016-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lymph nodes (LNs) are secondary lymphoid organs that function as the first line of defense against invasive foreign substances. Within the LNs, different types of immune cells are strategically localized to induce immune responses efficiently. Such a sophisticated tissue structure is a complex of functionally specialized niches, constructed by a variety of fibroblastic stromal cells. Elucidating the characteristics and functions of the niches and stromal cells will facilitate comprehension of the immune response induced in the LNs. Three recent studies offered novel insights into specialized stromal cells. In our discussion of these surprisingly diverse stromal cells, we will integrate information from these studies to improve knowledge about the structure and niches of LN.
Collapse
Affiliation(s)
- Arata Takeuchi
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Madoka Ozawa
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
| |
Collapse
|
23
|
Cakala-Jakimowicz M, Kolodziej-Wojnar P, Puzianowska-Kuznicka M. Aging-Related Cellular, Structural and Functional Changes in the Lymph Nodes: A Significant Component of Immunosenescence? An Overview. Cells 2021; 10:cells10113148. [PMID: 34831371 PMCID: PMC8621398 DOI: 10.3390/cells10113148] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aging affects all tissues and organs. Aging of the immune system results in the severe disruption of its functions, leading to an increased susceptibility to infections, an increase in autoimmune disorders and cancer incidence, and a decreased response to vaccines. Lymph nodes are precisely organized structures of the peripheral lymphoid organs and are the key sites coordinating innate and long-term adaptive immune responses to external antigens and vaccines. They are also involved in immune tolerance. The aging of lymph nodes results in decreased cell transport to and within the nodes, a disturbance in the structure and organization of nodal zones, incorrect location of individual immune cell types and impaired intercellular interactions, as well as changes in the production of adequate amounts of chemokines and cytokines necessary for immune cell proliferation, survival and function, impaired naïve T- and B-cell homeostasis, and a diminished long-term humoral response. Understanding the causes of these stromal and lymphoid microenvironment changes in the lymph nodes that cause the aging-related dysfunction of the immune system can help to improve long-term immune responses and the effectiveness of vaccines in the elderly.
Collapse
Affiliation(s)
- Marta Cakala-Jakimowicz
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: (M.C.-J.); (M.P.-K.)
| | - Paulina Kolodziej-Wojnar
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Correspondence: (M.C.-J.); (M.P.-K.)
| |
Collapse
|
24
|
Gaudette BT, Roman CJ, Ochoa TA, Gómez Atria D, Jones DD, Siebel CW, Maillard I, Allman D. Resting innate-like B cells leverage sustained Notch2/mTORC1 signaling to achieve rapid and mitosis-independent plasma cell differentiation. J Clin Invest 2021; 131:e151975. [PMID: 34473651 DOI: 10.1172/jci151975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Little is known about how cells regulate and integrate distinct biosynthetic pathways governing differentiation and cell division. For B lineage cells it is widely accepted that activated cells must complete several rounds of mitosis before yielding antibody-secreting plasma cells. However, we report that marginal zone (MZ) B cells, innate-like naive B cells known to generate plasma cells rapidly in response to blood-borne bacteria, generate functional plasma cells despite cell-cycle arrest. Further, short-term Notch2 blockade in vivo reversed division-independent differentiation potential and decreased transcript abundance for numerous mTORC1- and Myc-regulated genes. Myc loss compromised plasma cell differentiation for MZ B cells, and reciprocally induced ectopic mTORC1 signaling in follicular B cells enabled division-independent differentiation and plasma cell-affiliated gene expression. We conclude that ongoing in situ Notch2/mTORC1 signaling in MZ B cells establishes a unique cellular state that enables rapid division-independent plasma cell differentiation.
Collapse
Affiliation(s)
| | - Carly J Roman
- The Department of Pathology and Laboratory Medicine and
| | - Trini A Ochoa
- The Department of Pathology and Laboratory Medicine and
| | - Daniela Gómez Atria
- The Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Derek D Jones
- The Department of Pathology and Laboratory Medicine and
| | - Christian W Siebel
- Department of Discovery Oncology, Genentech Inc., South San Francisco, California, USA
| | - Ivan Maillard
- The Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Allman
- The Department of Pathology and Laboratory Medicine and
| |
Collapse
|
25
|
Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proc Natl Acad Sci U S A 2021; 118:2111234118. [PMID: 34526403 DOI: 10.1073/pnas.2111234118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface-expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ). Mice with a CD11c-specific deletion of ADAM10 (ADAM10ΔCD11c) exhibited a complete loss of splenic ESAMhi cDC2A because ADAM10 regulated the commitment, differentiation, and survival of these cells. The major pathways controlled by ADAM10 in ESAMhi cDC2A are Notch, signaling pathways involved in cell proliferation and survival (e.g., mTOR, PI3K/AKT, and EIF2 signaling), and EBI2-mediated localization within the MZ. In addition, we discovered that ADAM10 is a molecular switch regulating cDC2 subset heterogeneity in the spleen, as the disappearance of ESAMhi cDC2A in ADAM10ΔCD11c mice was compensated for by the emergence of a Clec12a+ cDC2B subset closely resembling cDC2 generally found in peripheral lymph nodes. Moreover, in ADAM10ΔCD11c mice, terminal differentiation of cDC1 was abrogated, resulting in severely reduced splenic Langerin+ cDC1 numbers. Next to the disturbed splenic cDC compartment, ADAM10 deficiency on CD11c+ cells led to an increase in marginal metallophilic macrophage (MMM) numbers. In conclusion, our data identify ADAM10 as a molecular hub on both cDC and MMM regulating their transcriptional programming, turnover, homeostasis, and ability to shape the anatomical niche of the MZ.
Collapse
|
26
|
Yazawa M, Hosokawa H, Koizumi M, Hirano KI, Imai J, Hozumi K. Notch signaling supports the appearance of follicular helper T cells in the Peyer's patches concomitantly with the reduction of regulatory T cells. Int Immunol 2021; 33:469-478. [PMID: 34147033 DOI: 10.1093/intimm/dxab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
The intracellular fragment of Notch1, a mediator of Notch signaling that is frequently detected in thymic immigrants, is critical for specifying T cell fate in the thymus, where Delta-like 4 (Dll4) functions as a Notch ligand on the epithelium. However, as such Notch signaling has not been detected in mature T cells, how Notch signaling contributes to their response in secondary lymphoid organs has not yet been fully defined. Here, we detected the marked expression of Dll4 on the stromal cells and the active fragment of Notch1 (Notch1 intracellular domain, N1ICD) in CD4 + T cells in the follicle of Peyer's patches (PPs). In addition, N1ICD-bearing T cells were also found in the T-cell zone of PP, especially in the transcription factor Foxp3 + regulatory T (Treg) cells, with slight expression of Dll4 on the stromal cells. These fragments disappeared in Dll4-deficient conditions. It was also found that Notch1- and Notch2-deficient T cells preferentially differentiated into Treg cells in PPs, but not CXCR5 +PD-1 + follicular helper T (Tfh) cells. Moreover, these phenotypes were also observed in chimeric mice reconstituted with the control and T cell-specific Notch1/2-deficient bone marrow or Treg cells. These results demonstrated that Dll4-mediated Notch signaling in PPs is required for the efficient appearance of Tfh cells in a Treg cell-prone environment, which is common among the gut-associated lymphoid tissues, and is critical for the generation of Tfh-mediated germinal center B cells.
Collapse
Affiliation(s)
- Masaki Yazawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroyuki Hosokawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ken-Ichi Hirano
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jin Imai
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
27
|
Allen F, Maillard I. Therapeutic Targeting of Notch Signaling: From Cancer to Inflammatory Disorders. Front Cell Dev Biol 2021; 9:649205. [PMID: 34124039 PMCID: PMC8194077 DOI: 10.3389/fcell.2021.649205] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, the Notch signaling pathway has been investigated as a therapeutic target for the treatment of cancers, and more recently in the context of immune and inflammatory disorders. Notch is an evolutionary conserved pathway found in all metazoans that is critical for proper embryonic development and for the postnatal maintenance of selected tissues. Through cell-to-cell contacts, Notch orchestrates cell fate decisions and differentiation in non-hematopoietic and hematopoietic cell types, regulates immune cell development, and is integral to shaping the amplitude as well as the quality of different types of immune responses. Depriving some cancer types of Notch signals has been shown in preclinical studies to stunt tumor growth, consistent with an oncogenic function of Notch signaling. In addition, therapeutically antagonizing Notch signals showed preclinical potential to prevent or reverse inflammatory disorders, including autoimmune diseases, allergic inflammation and immune complications of life-saving procedures such allogeneic bone marrow and solid organ transplantation (graft-versus-host disease and graft rejection). In this review, we discuss some of these unique approaches, along with the successes and challenges encountered so far to target Notch signaling in preclinical and early clinical studies. Our goal is to emphasize lessons learned to provide guidance about emerging strategies of Notch-based therapeutics that could be deployed safely and efficiently in patients with immune and inflammatory disorders.
Collapse
Affiliation(s)
- Frederick Allen
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Ivan Maillard
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
28
|
Cinti I, Denton AE. Lymphoid stromal cells-more than just a highway to humoral immunity. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab011. [PMID: 36845565 PMCID: PMC9914513 DOI: 10.1093/oxfimm/iqab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
The generation of high-affinity long-lived antibody responses is dependent on the differentiation of plasma cells and memory B cells, which are themselves the product of the germinal centre (GC) response. The GC forms in secondary lymphoid organs in response to antigenic stimulation and is dependent on the coordinated interactions between many types of leucocytes. These leucocytes are brought together on an interconnected network of specialized lymphoid stromal cells, which provide physical and chemical guidance to immune cells that are essential for the GC response. In this review we will highlight recent advancements in lymphoid stromal cell immunobiology and their role in regulating the GC, and discuss the contribution of lymphoid stromal cells to age-associated immunosenescence.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London W12 0NN, UK
| | - Alice E Denton
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London W12 0NN, UK,Correspondence address. Alice E. Denton, Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College, London W12 0NN, UK. Tel:+44 (0)20 3313 8213. E-mail:
| |
Collapse
|
29
|
Bellomo A, Gentek R, Golub R, Bajénoff M. Macrophage-fibroblast circuits in the spleen. Immunol Rev 2021; 302:104-125. [PMID: 34028841 DOI: 10.1111/imr.12979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Macrophages are an integral part of all organs in the body, where they contribute to immune surveillance, protection, and tissue-specific homeostatic functions. This is facilitated by so-called niches composed of macrophages and their surrounding stroma. These niches structurally anchor macrophages and provide them with survival factors and tissue-specific signals that imprint their functional identity. In turn, macrophages ensure appropriate functioning of the niches they reside in. Macrophages thus form reciprocal, mutually beneficial circuits with their cellular niches. In this review, we explore how this concept applies to the spleen, a large secondary lymphoid organ whose primary functions are to filter the blood and regulate immunity. We first outline the splenic micro-anatomy, the different populations of splenic fibroblasts and macrophages and their respective contribution to protection of and key physiological processes occurring in the spleen. We then discuss firmly established and potential cellular circuits formed by splenic macrophages and fibroblasts, with an emphasis on the molecular cues underlying their crosstalk and their relevance to splenic functionality. Lastly, we conclude by considering how these macrophage-fibroblast circuits might be impaired by aging, and how understanding these changes might help identify novel therapeutic avenues with the potential of restoring splenic functions in the elderly.
Collapse
Affiliation(s)
- Alicia Bellomo
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Rachel Golub
- Inserm U1223, Institut Pasteur, Paris, France.,Lymphopoiesis Unit, Institut Pasteur, Paris, France
| | - Marc Bajénoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| |
Collapse
|
30
|
Notch activation is pervasive in SMZL and uncommon in DLBCL: implications for Notch signaling in B-cell tumors. Blood Adv 2021; 5:71-83. [PMID: 33570635 DOI: 10.1182/bloodadvances.2020002995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
Notch receptors participate in a signaling pathway in which ligand-induced proteolysis frees the Notch intracellular domain (NICD), allowing it to translocate to the nucleus, form a transcription complex, and induce target gene expression. Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), splenic marginal zone B-cell lymphoma (SMZL), and distinct subsets of diffuse large B-cell lymphoma (DLBCL) are strongly associated with mutations in the 3' end of NOTCH1 or NOTCH2 that disrupt a proline, glutamic acid, serine, and threonine (PEST) degron domain and stabilize NICD1 and NICD2. By contrast, mutations leading to constitutive Notch activation are rare in primary B-cell neoplasms, suggesting that Notch activation is confined to ligand-rich tumor microenvironments, or that cryptic strong gain-of-function mutations have been missed in prior analyses. To test these ideas, we used immunohistochemical stains to screen a broad range of B-cell tumors for Notch activation. Our analyses reveal that among small B-cell neoplasms, NICD2 is primarily detected in SMZL and is a common feature of both NOTCH2 wild-type and NOTCH2-mutated SMZLs, similar to prior findings with NOTCH1 in CLL/SLL. The greatest NOTCH2 activation was observed in NOTCH2-mutated SMZLs, particularly within splenic marginal zones. By contrast, little evidence of NOTCH2 activation was observed in DLBCL, even in NOTCH2-mutated tumors, suggesting that selective pressure for NOTCH2 activation is mainly confined to low-grade B-cell neoplasms, whereas DLBCLs with NOTCH1 mutations frequently showed evidence of ongoing NOTCH1 activation. These observations have important implications for the pathogenic role of Notch and its therapeutic targeting in B-cell lymphomas.
Collapse
|
31
|
Vanderkerken M, Baptista AP, De Giovanni M, Fukuyama S, Browaeys R, Scott CL, Norris PS, Eberl G, Di Santo JP, Vivier E, Saeys Y, Hammad H, Cyster JG, Ware CF, Tumanov AV, De Trez C, Lambrecht BN. ILC3s control splenic cDC homeostasis via lymphotoxin signaling. J Exp Med 2021; 218:e20190835. [PMID: 33724364 PMCID: PMC7970251 DOI: 10.1084/jem.20190835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα1β2-expressing Rorgt+ ILC3s, together with B cells, control the splenic cDC niche size and the terminal differentiation of Sirpα+CD4+Esam+ cDC2s, independently of the microbiota and of bone marrow pre-cDC output. Whereas the size of the splenic cDC niche depended on lymphotoxin signaling only during a restricted time frame, the homeostasis of Sirpα+CD4+Esam+ cDC2s required continuous lymphotoxin input. This latter property made Sirpα+CD4+Esam+ cDC2s uniquely susceptible to pharmacological interventions with LTβR agonists and antagonists and to ILC reconstitution strategies. Together, our findings demonstrate that LTα1β2-expressing Rorgt+ ILC3s drive splenic cDC differentiation and highlight the critical role of ILC3s as perpetual regulators of lymphoid tissue homeostasis.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Immunity, Innate
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphotoxin beta Receptor/genetics
- Lymphotoxin beta Receptor/immunology
- Lymphotoxin beta Receptor/metabolism
- Lymphotoxin-alpha/genetics
- Lymphotoxin-alpha/immunology
- Lymphotoxin-alpha/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Mice
Collapse
Affiliation(s)
- Matthias Vanderkerken
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Antonio P. Baptista
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Robin Browaeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paula S. Norris
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Gerard Eberl
- Institut Pasteur, Microenvironment and Immunity Unit, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1224, Paris, France
| | - James P. Di Santo
- Institut Pasteur, Innate Immunity Unit, Department of Immunology, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service d’Immunologie, Marseille-Immunopôle, Marseille, France
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Carl F. Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrij Universiteit Brussel, Brussels, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
32
|
Ferreira A, Aster JC. Notch signaling in cancer: Complexity and challenges on the path to clinical translation. Semin Cancer Biol 2021; 85:95-106. [PMID: 33862222 DOI: 10.1016/j.semcancer.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/11/2021] [Indexed: 12/22/2022]
Abstract
Notch receptors participate in a conserved pathway in which ligands expressed on neighboring cells trigger a series of proteolytic cleavages that allow the intracellular portion of the receptor to travel to the nucleus and form a short-lived transcription complex that turns on target gene expression. The directness and seeming simplicity of this signaling mechanism belies the complexity of the outcomes of Notch signaling in normal cells, which are highly context and dosage dependent. This complexity is reflected in the diverse roles of Notch in cancers of various types, in which Notch may be oncogenic or tumor suppressive and may have a wide spectrum of effects on tumor cells and stromal elements. This review provides an overview of the roles of Notch in cancer and discusses challenges to clinical translation of Notch targeting agents as well as approaches that may overcome these hurdles.
Collapse
Affiliation(s)
- Antonio Ferreira
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, United States.
| |
Collapse
|
33
|
Shen W, Huang J, Wang Y. Biological Significance of NOTCH Signaling Strength. Front Cell Dev Biol 2021; 9:652273. [PMID: 33842479 PMCID: PMC8033010 DOI: 10.3389/fcell.2021.652273] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved NOTCH signaling displays pleotropic functions in almost every organ system with a simple signaling axis. Different from many other signaling pathways that can be amplified via kinase cascades, NOTCH signaling does not contain any intermediate to amplify signal. Thus, NOTCH signaling can be activated at distinct signaling strength levels, disruption of which leads to various developmental disorders. Here, we reviewed mechanisms establishing different NOTCH signaling strengths, developmental processes sensitive to NOTCH signaling strength perturbation, and transcriptional regulations influenced by NOTCH signaling strength changes. We hope this could add a new layer of diversity to explain the pleotropic functions of NOTCH signaling pathway.
Collapse
Affiliation(s)
- Wei Shen
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Jiaxin Huang
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
34
|
Lechner M, Engleitner T, Babushku T, Schmidt-Supprian M, Rad R, Strobl LJ, Zimber-Strobl U. Notch2-mediated plasticity between marginal zone and follicular B cells. Nat Commun 2021; 12:1111. [PMID: 33597542 PMCID: PMC7889629 DOI: 10.1038/s41467-021-21359-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Follicular B (FoB) and marginal zone B (MZB) cells are functionally and spatially distinct mature B cell populations in the spleen, originating from a Notch2-dependent fate decision after splenic influx of immature transitional B cells. In the B cell follicle, a Notch2-signal is provided by DLL-1-expressing fibroblasts. However, it is unclear whether FoB cells, which are in close contact with these DLL-1 expressing fibroblasts, can also differentiate to MZB cells if they receive a Notch2-signal. Here, we show induced Notch2IC-expression in FoB cells re-programs mature FoB cells into bona fide MZB cells as is evident from the surface phenotype, localization, immunological function and transcriptome of these cells. Furthermore, the lineage conversion from FoB to MZB cells occurs in immunocompetent wildtype mice. These findings demonstrate plasticity between mature FoB and MZB cells that can be driven by a singular signaling event, the activation of Notch2.
Collapse
Affiliation(s)
- Markus Lechner
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany
| | - Thomas Engleitner
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, München, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tea Babushku
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany
| | - Marc Schmidt-Supprian
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, München, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland Rad
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, München, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lothar J Strobl
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany
| | - Ursula Zimber-Strobl
- Research Unit Gene Vectors, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, München, Germany.
| |
Collapse
|
35
|
Garis M, Garrett-Sinha LA. Notch Signaling in B Cell Immune Responses. Front Immunol 2021; 11:609324. [PMID: 33613531 PMCID: PMC7892449 DOI: 10.3389/fimmu.2020.609324] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
The Notch signaling pathway is highly evolutionarily conserved, dictating cell fate decisions and influencing the survival and growth of progenitor cells that give rise to the cells of the immune system. The roles of Notch signaling in hematopoietic stem cell maintenance and in specification of T lineage cells have been well-described. Notch signaling also plays important roles in B cells. In particular, it is required for specification of marginal zone type B cells, but Notch signaling is also important in other stages of B cell development and activation. This review will focus on established and new roles of Notch signaling during B lymphocyte lineage commitment and describe the function of Notch within mature B cells involved in immune responses.
Collapse
Affiliation(s)
- Matthew Garis
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
36
|
Tindemans I, van Schoonhoven A, KleinJan A, de Bruijn MJ, Lukkes M, van Nimwegen M, van den Branden A, Bergen IM, Corneth OB, van IJcken WF, Stadhouders R, Hendriks RW. Notch signaling licenses allergic airway inflammation by promoting Th2 cell lymph node egress. J Clin Invest 2021; 130:3576-3591. [PMID: 32255764 DOI: 10.1172/jci128310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Allergic asthma is mediated by Th2 responses to inhaled allergens. Although previous experiments indicated that Notch signaling activates expression of the key Th2 transcription factor Gata3, it remains controversial how Notch promotes allergic airway inflammation. Here we show that T cell-specific Notch deficiency in mice prevented house dust mite-driven eosinophilic airway inflammation and significantly reduced Th2 cytokine production, serum IgE levels, and airway hyperreactivity. However, transgenic Gata3 overexpression in Notch-deficient T cells only partially rescued this phenotype. We found that Notch signaling was not required for T cell proliferation or Th2 polarization. Instead, Notch-deficient in vitro-polarized Th2 cells showed reduced accumulation in the lungs upon in vivo transfer and allergen challenge, as Notch-deficient Th2 cells were retained in the lung-draining lymph nodes. Transcriptome analyses and sequential adoptive transfer experiments revealed that while Notch-deficient lymph node Th2 cells established competence for lung migration, they failed to upregulate sphingosine-1-phosphate receptor 1 (S1PR1) and its critical upstream transcriptional activator Krüppel-like factor 2 (KLF2). As this KLF2/S1PR1 axis represents the essential cell-intrinsic regulator of T cell lymph node egress, we conclude that the druggable Notch signaling pathway licenses the Th2 response in allergic airway inflammation via promoting lymph node egress.
Collapse
|
37
|
Ye J, Shi M, Chen W, Zhu F, Duan Q. Research Advances in the Molecular Functions and Relevant Diseases of TAOKs, Novel STE20 Kinase Family Members. Curr Pharm Des 2021; 26:3122-3133. [PMID: 32013821 DOI: 10.2174/1381612826666200203115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
As serine/threonine-protein kinases, Thousand and One Kinases(TAOKs) are members of the GCKlike superfamily, one of two well-known branches of the Ste20 kinase family. Within the last two decades, three functionally similar kinases, namely TAOK1-3, were identified. TAOKs are involved in many molecular and cellular events. Scholars widely believe that TAOKs act as kinases upstream of the MAPK cascade and as factors that interact with MST family kinases, the cytoskeleton, and apoptosis-associated proteins. Therefore, TAOKs are thought to function in tumorigenesis. Additionally, TAOKs participate in signal transduction induced by Notch, TCR, and IL-17. Recent studies found that TAOKs play roles in a series of diseases and conditions, such as the central nervous system dysfunction, herpes viral infection, immune system imbalance, urogenital system malformation during development, cardiovascular events, and childhood obesity. Therefore, inhibitory chemicals targeting TAOKs may be of great significance as potential drugs for these diseases.
Collapse
Affiliation(s)
- Junjie Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingjun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
38
|
Golub R. The Notch signaling pathway involvement in innate lymphoid cell biology. Biomed J 2020; 44:133-143. [PMID: 33863682 PMCID: PMC8178581 DOI: 10.1016/j.bj.2020.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
The role of Notch in the immune system was first described in the late 90s. Reports revealed that Notch is one of the most conserved developmental pathways involved in diverse biological processes such as the development, differentiation, survival and functions of many immune populations. Here, we provide an extended view of the pleiotropic effects of the Notch signaling on the innate lymphoid cell (ILC) biology. We review the current knowledge on Notch signaling in the regulation of ILC differentiation, plasticity and functions in diverse tissue types and at both the fetal and adult developmental stages. ILCs are early responder cells that secrete a large panel of cytokines after stimulation. By controlling the abundance of ILCs and the specificity of their release, the Notch pathway is also implicated in the regulation of their functions. The Notch pathway is therefore an important player in both ILC cell fate decision and ILC immune response.
Collapse
Affiliation(s)
- Rachel Golub
- Unit of Lymphocytes and Immunity, Department of Immunology, Institut Pasteur, Paris, France.
| |
Collapse
|
39
|
Vanderkerken M, Maes B, Vandersarren L, Toussaint W, Deswarte K, Vanheerswynghels M, Pouliot P, Martens L, Van Gassen S, Arthur CM, Kirkling ME, Reizis B, Conrad D, Stowell S, Hammad H, Lambrecht BN. TAO-kinase 3 governs the terminal differentiation of NOTCH2-dependent splenic conventional dendritic cells. Proc Natl Acad Sci U S A 2020; 117:31331-31342. [PMID: 33214146 PMCID: PMC7733863 DOI: 10.1073/pnas.2009847117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antigen-presenting conventional dendritic cells (cDCs) are broadly divided into type 1 and type 2 subsets that further adapt their phenotype and function to perform specialized tasks in the immune system. The precise signals controlling tissue-specific adaptation and differentiation of cDCs are currently poorly understood. We found that mice deficient in the Ste20 kinase Thousand and One Kinase 3 (TAOK3) lacked terminally differentiated ESAM+ CD4+ cDC2s in the spleen and failed to prime CD4+ T cells in response to allogeneic red-blood-cell transfusion. These NOTCH2- and ADAM10-dependent cDC2s were absent selectively in the spleen, but not in the intestine of Taok3-/- and CD11c-cre Taok3fl/fl mice. The loss of splenic ESAM+ cDC2s was cell-intrinsic and could be rescued by conditional overexpression of the constitutively active NOTCH intracellular domain in CD11c-expressing cells. Therefore, TAOK3 controls the terminal differentiation of NOTCH2-dependent splenic cDC2s.
Collapse
Affiliation(s)
- Matthias Vanderkerken
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Bastiaan Maes
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Lana Vandersarren
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Wendy Toussaint
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Kim Deswarte
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Philippe Pouliot
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Sofie Van Gassen
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Connie M Arthur
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322
| | - Margaret E Kirkling
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Daniel Conrad
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298
| | - Sean Stowell
- Department of Pathology and Laboratory Medicine, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA 30322
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus Medical Center, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Liu D, Wu J, An J, Cyster JG. Requirements for cDC2 positioning in blood-exposed regions of the neonatal and adult spleen. J Exp Med 2020; 217:152026. [PMID: 32808016 PMCID: PMC7596818 DOI: 10.1084/jem.20192300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/06/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
The marginal zone (MZ) of the spleen contains multiple cell types that are involved in mounting rapid immune responses against blood-borne pathogens, including conventional dendritic cells (cDCs) and MZ B cells. MZ B cells develop later than other B cell types and are sparse in neonatal mice. Here, we show that cDC2s are abundant in the MZ of neonatal compared with adult mice. We find that conditions associated with reduced MZ B cell numbers in adult mice cause increased cDC2 occupancy of the MZ. Treatment with the S1PR1-modulating drug, FTY720, causes cDC2 movement into the MZ through the indirect mechanism of displacing MZ B cells into follicles. Splenic cDC2s express high amounts of α4β1 and αLβ2 integrins and depend on these integrins and the adaptor Talin for their retention in blood-exposed regions of the spleen. Splenic CD4 T cell activation by particulate antigens is increased in mice with higher cDC2 density in the MZ, including in neonatal mice. Our work establishes requirements for homeostatic cDC2 positioning in the spleen and provides evidence that localization in blood-exposed regions around the white pulp augments cDC2 capture of particulate antigens. We suggest that MZ positioning of cDC2s partially compensates for the lack of MZ B cells during the neonatal period.
Collapse
Affiliation(s)
- Dan Liu
- Howard Hughes Medical Institute, San Francisco, CA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Jiaxi Wu
- Howard Hughes Medical Institute, San Francisco, CA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Jinping An
- Howard Hughes Medical Institute, San Francisco, CA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Jason G Cyster
- Howard Hughes Medical Institute, San Francisco, CA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
41
|
Misiak J, Jean R, Rodriguez S, Deleurme L, Lamy T, Tarte K, Amé-Thomas P. Human Lymphoid Stromal Cells Contribute to Polarization of Follicular T Cells Into IL-4 Secreting Cells. Front Immunol 2020; 11:559866. [PMID: 33133070 PMCID: PMC7562812 DOI: 10.3389/fimmu.2020.559866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Fibroblastic reticular cells (FRCs) are the specialized lymphoid stromal cells initially identified as triggering T-cell recruitment and dynamic motion in secondary lymphoid organs. Interestingly, FRCs also display antigen presentation capacities and support lymphocyte survival. CXCR5+CD4+ follicular T cells are important players of B-cell maturation and antibody response. Our study reported that in vitro-differentiated FRC-like cells enhanced the growth of the whole CXCR5+CD4+ T-cell compartment, while enhancing IL-4 secretion specifically by the PD1dimCXCR5+CD4+ cell subset, in a Notch- and ICAM1/LFA1-dependent manner. In addition, we revealed that in follicular lymphoma (FL) tissues, previously identified as enriched for PD1hiCXCR5hiCD4+ mature follicular helper T cells, PD1dimCXCR5+CD4+ T cells displayed an enrichment for Notch and integrin gene signatures, and a Notch and ICAM-1-dependent overexpression of IL-4 compared to their non-malignant counterparts. These findings suggest that the crosstalk between FRCs and CXCR5+PD1dimCD4+ T cells may contribute to the FL IL-4 rich environment, thus providing new insights in FL lymphomagenesis.
Collapse
Affiliation(s)
- Jan Misiak
- INSERM U1236, Univ Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Rachel Jean
- INSERM U1236, Univ Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,CHU de Rennes, Pôle Biologie, Rennes, France
| | - Stéphane Rodriguez
- INSERM U1236, Univ Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Laurent Deleurme
- INSERM U1236, Univ Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,Univ Rennes, CNRS, Inserm, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes)-Unité Mixte de Service 3480, Rennes, France
| | - Thierry Lamy
- INSERM U1236, Univ Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,CHU de Rennes, Service d'Hématologie Clinique, Rennes, France
| | - Karin Tarte
- INSERM U1236, Univ Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,CHU de Rennes, Pôle Biologie, Rennes, France
| | - Patricia Amé-Thomas
- INSERM U1236, Univ Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France.,CHU de Rennes, Pôle Biologie, Rennes, France
| |
Collapse
|
42
|
Grasseau A, Boudigou M, Le Pottier L, Chriti N, Cornec D, Pers JO, Renaudineau Y, Hillion S. Innate B Cells: the Archetype of Protective Immune Cells. Clin Rev Allergy Immunol 2020; 58:92-106. [PMID: 31183788 DOI: 10.1007/s12016-019-08748-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The innate B cell (IBC) population is heterogeneous and involved in the primary immune response. IBC functions include a high ability to produce natural antibodies with IgM isotype, the elimination of apoptotic cells, and a capacity to be cognate help to T cells. Among IBC subsets, B-1 cells and marginal zone B cells are the main producers of IgM, act as rapid immune responders that may relocate to follicular lymphoid and differentiate to cytokine and antibody-secreting cells shortly after infection. IBCs functions are highly dependent on their localization site and the nature of their B cell receptor repertoire, suggesting a high plasticity range of different immune responses. In this review, we will describe the nature and functions of the different innate-like B cell subsets, first in mice and then in humans. Besides this, we will emphasize the strong ability of these cells to undertake different protective functions from the first line of defense against pathogens to the regulatory role of the broader immune response.
Collapse
Affiliation(s)
- Alexis Grasseau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Marina Boudigou
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Laëtitia Le Pottier
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Nedra Chriti
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Divi Cornec
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Jacques-Olivier Pers
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France
| | - Yves Renaudineau
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France
| | - Sophie Hillion
- UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU Brest, Brest, France.
| |
Collapse
|
43
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Fletcher AL, Baker AT, Lukacs-Kornek V, Knoblich K. The fibroblastic T cell niche in lymphoid tissues. Curr Opin Immunol 2020; 64:110-116. [PMID: 32497868 DOI: 10.1016/j.coi.2020.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022]
Abstract
Fibroblastic reticular cells (FRCs) are a necessary immunological component for T cell health. These myofibroblasts are specialized for immune cell support and develop in locations where T and B lymphocyte priming occurs, usually secondary lymphoid organs, but also tertiary lymphoid structures and sites of chronic inflammation. This review describes their dual supportive and suppressive functions and emerging evidence on the co-ordination required to balance these competing roles.
Collapse
Affiliation(s)
- Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Australia; Institute of Immunology and Immunotherapy, University of Birmingham, UK.
| | - Alfie T Baker
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Australia
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, Rheinische-Friedrichs-Wilhelms University of Bonn, 53127, Bonn, Germany
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Australia; Institute of Immunology and Immunotherapy, University of Birmingham, UK
| |
Collapse
|
45
|
Lymph node stromal cells: cartographers of the immune system. Nat Immunol 2020; 21:369-380. [PMID: 32205888 DOI: 10.1038/s41590-020-0635-3] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/17/2020] [Indexed: 01/03/2023]
Abstract
Lymph nodes (LNs) are strategically positioned at dedicated sites throughout the body to facilitate rapid and efficient immunity. Central to the structural integrity and framework of LNs, and the recruitment and positioning of leukocytes therein, are mesenchymal and endothelial lymph node stromal cells (LNSCs). Advances in the last decade have expanded our understanding and appreciation of LNSC heterogeneity, and the role they play in coordinating immunity has grown rapidly. In this review, we will highlight the functional contributions of distinct stromal cell populations during LN development in maintaining immune homeostasis and tolerance and in the activation and control of immune responses.
Collapse
|
46
|
Transcriptional regulation of DC fate specification. Mol Immunol 2020; 121:38-46. [PMID: 32151907 PMCID: PMC7187805 DOI: 10.1016/j.molimm.2020.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells function in the immune system to instruct adaptive immune cells to respond accordingly to different threats. While conventional dendritic cells can be subdivided into two main subtypes, termed cDC1s and cDC2s, it is clear that further heterogeneity exists within these subtypes, particularly for cDC2s. Understanding the signals involved in specifying each of these lineages and subtypes thereof is crucial to (i) enable us to determine their specific functions and (ii) put us in a position to be able to target these cells to promote or prevent a specific function in any given disease setting. Although we still have much to learn regarding the specification of these cells, here we review the most recent advances in our understanding of this and highlight some of the next questions for the future.
Collapse
|
47
|
Kania G, Rudnik M, Distler O. Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol 2020; 15:288-302. [PMID: 30953037 DOI: 10.1038/s41584-019-0212-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disease of unknown aetiology that is characterized by vascular changes in the skin and visceral organs. Autologous haematopoietic stem cell transplantation can improve skin and organ fibrosis in patients with progressive disease and a high risk of organ failure, indicating that cells originating in the bone marrow are important contributors to the pathogenesis of SSc. Animal studies also indicate a pivotal function of myeloid cells in the development of fibrosis leading to changes in the tissue architecture and dysfunction in multiple organs such as the heart, lungs, liver and kidney. In this Review, we summarize current knowledge about the function of myeloid cells in fibrogenesis that occurs in patients with SSc. Targeted therapies currently in clinical studies for SSc might affect myeloid cell-related pathways. Therefore, myeloid cells might be used as cellular biomarkers of disease through the application of high-dimensional techniques such as mass cytometry and single-cell RNA sequencing.
Collapse
Affiliation(s)
- Gabriela Kania
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Michal Rudnik
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
48
|
Perkey E, Maurice De Sousa D, Carrington L, Chung J, Dils A, Granadier D, Koch U, Radtke F, Ludewig B, Blazar BR, Siebel CW, Brennan TV, Nolz J, Labrecque N, Maillard I. GCNT1-Mediated O-Glycosylation of the Sialomucin CD43 Is a Sensitive Indicator of Notch Signaling in Activated T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:1674-1688. [PMID: 32060138 DOI: 10.4049/jimmunol.1901194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Notch signaling is emerging as a critical regulator of T cell activation and function. However, there is no reliable cell surface indicator of Notch signaling across activated T cell subsets. In this study, we show that Notch signals induce upregulated expression of the Gcnt1 glycosyltransferase gene in T cells mediating graft-versus-host disease after allogeneic bone marrow transplantation in mice. To determine if Gcnt1-mediated O-glycosylation could be used as a Notch signaling reporter, we quantified the core-2 O-glycoform of CD43 in multiple T cell subsets during graft-versus-host disease. Pharmacological blockade of Delta-like Notch ligands abrogated core-2 O-glycosylation in a dose-dependent manner after allogeneic bone marrow transplantation, both in donor-derived CD4+ and CD8+ effector T cells and in Foxp3+ regulatory T cells. CD43 core-2 O-glycosylation depended on cell-intrinsic canonical Notch signals and identified CD4+ and CD8+ T cells with high cytokine-producing ability. Gcnt1-deficient T cells still drove lethal alloreactivity, showing that core-2 O-glycosylation predicted, but did not cause, Notch-dependent T cell pathogenicity. Using core-2 O-glycosylation as a marker of Notch signaling, we identified Ccl19-Cre+ fibroblastic stromal cells as critical sources of Delta-like ligands in graft-versus-host responses irrespective of conditioning intensity. Core-2 O-glycosylation also reported Notch signaling in CD8+ T cell responses to dendritic cell immunization, Listeria infection, and viral infection. Thus, we uncovered a role for Notch in controlling core-2 O-glycosylation and identified a cell surface marker to quantify Notch signals in multiple immunological contexts. Our findings will help refine our understanding of the regulation, cellular source, and timing of Notch signals in T cell immunity.
Collapse
Affiliation(s)
- Eric Perkey
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Dave Maurice De Sousa
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Léolène Carrington
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Jooho Chung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Alexander Dils
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - David Granadier
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Ute Koch
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Freddy Radtke
- École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | | | | | - Jeffrey Nolz
- Oregon Health and Sciences University, Portland, OR 97239; and
| | - Nathalie Labrecque
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
| |
Collapse
|
49
|
Perez-Shibayama C, Gil-Cruz C, Ludewig B. Fibroblastic reticular cells at the nexus of innate and adaptive immune responses. Immunol Rev 2020; 289:31-41. [PMID: 30977192 PMCID: PMC6850313 DOI: 10.1111/imr.12748] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
Lymphoid organs guarantee productive immune cell interactions through the establishment of distinct microenvironmental niches that are built by fibroblastic reticular cells (FRC). These specialized immune‐interacting fibroblasts coordinate the migration and positioning of lymphoid and myeloid cells in lymphoid organs and provide essential survival and differentiation factors during homeostasis and immune activation. In this review, we will outline the current knowledge on FRC functions in secondary lymphoid organs such as lymph nodes, spleen and Peyer's patches and will discuss how FRCs contribute to the regulation of immune processes in fat‐associated lymphoid clusters. Moreover, recent evidence indicates that FRC critically impact immune regulatory processes, for example, through cytokine deprivation during immune activation or through fostering the induction of regulatory T cells. Finally, we highlight how different FRC subsets integrate innate immunological signals and molecular cues from immune cells to fulfill their function as nexus between innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
50
|
ASTER JONC. NOTCH SIGNALING IN CONTEXT: BASIC AND TRANSLATIONAL IMPLICATIONS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:147-156. [PMID: 32675855 PMCID: PMC7358465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Notch receptors participate is a highly conserved signaling pathway that regulates numerous facets of cellular behavior, has protean roles during development and in adult tissue homeostasis, and is frequently dysregulated in human diseases, particularly cancer. These relationships to disease and the ability to modulate Notch signaling at multiple levels have engendered attempts to target Notch therapeutically, but incomplete understanding of the outcomes of Notch activation and on-target toxicity have stymied efforts to date. Using well-controlled experimental systems, we have pursued studies that seek to understand how Notch influences the behavior of different types of cancer cells. Our work suggests that Notch effects are defined by epigenetic landscapes that are "laid out" by upstream pioneer transcription factors, which act to delineate the outcome of Notch activation. These insights define some of the "rules" that govern Notch functions and constitute one step toward bringing safe and effective targeting of Notch to fruition.
Collapse
Affiliation(s)
- JON C. ASTER
- Correspondence and reprint requests: Jon C. Aster, MD, PhD, Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115617-525-4370617-525-4422
| |
Collapse
|