1
|
Shin J, Kim DU, Bae GS, Han JY, Lim DW, Lee YM, Kim E, Kwon E, Han D, Kim S. Antidepressant-like Effects of Cannabis sativa L. Extract in an Lipopolysaccharide Model: Modulation of Mast Cell Activation in Deep Cervical Lymph Nodes and Dura Mater. Pharmaceuticals (Basel) 2024; 17:1409. [PMID: 39459047 PMCID: PMC11510560 DOI: 10.3390/ph17101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS)-induced neuroinflammation is a well-established model for studying depression-like behavior, driven by pro-inflammatory cytokines such as TNF-α and IL-1β. Mast cells (MCs) contribute to neuroinflammation by releasing mediators that exacerbate depressive-like symptoms. This study evaluates the antidepressant-like and anti-inflammatory effects of Cannabis sativa L. inflorescence extract (CSL) in an LPS-induced neuroinflammation model. METHODS Male C57BL/6 mice were intraperitoneally injected with CSL at doses of 10, 20, and 30 mg/kg, 30 min prior to LPS (0.83 mg/kg) administration. Depressive behaviors were assessed using the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). The neutrophil-to-lymphocyte ratio (NLR) was measured to assess systemic inflammation. Cytokine levels in the prefrontal cortex (PFC) were measured, and mast cell degranulation in the lymph nodes and dura mater was analyzed histologically (approval number: WKU24-64). RESULTS CSL significantly improved depressive-like behaviors and decreased the NLR, indicating reduced systemic inflammation. CSL also significantly reduced TNF-α and IL-1β levels in the PFC. Furthermore, CSL inhibited MC degranulation in the deep cervical lymph nodes and dura mater, with the strongest effects observed at 30 mg/kg. CONCLUSIONS CSL demonstrated antidepressant-like and anti-inflammatory effects in an LPS-induced neuroinflammation model, likely through the modulation of cytokine expression and mast cell activity. These results suggest the potential of CSL as a therapeutic option for treating inflammation-related depression.
Collapse
Affiliation(s)
- Joonyoung Shin
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (D.H.)
| | - Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (G.-S.B.)
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (G.-S.B.)
| | - Ji-Ye Han
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (D.-W.L.); (Y.-M.L.)
| | - Do-Won Lim
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (D.-W.L.); (Y.-M.L.)
| | - Young-Mi Lee
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (D.-W.L.); (Y.-M.L.)
| | - Eunjae Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (E.K.)
| | - Eunjeong Kwon
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (E.K.)
| | - Dongwoon Han
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (D.H.)
- Department of Global Health and Development, Hanyang University, Seoul 04763, Republic of Korea
| | - Sungchul Kim
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (D.H.)
| |
Collapse
|
2
|
Park S, Jang J, Kim HJ, Jung Y. Unveiling multifaceted roles of myeloid innate immune cells in the pathogenesis of psoriasis. Mol Aspects Med 2024; 99:101306. [PMID: 39191143 DOI: 10.1016/j.mam.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide. Initially viewed as a keratinocyte disorder, psoriasis is now recognized to involve a complex interplay between genetic predisposition, environmental triggers, and a dysregulated immune system, with a significant role of CD4+ T cells producing IL-17. Recent genetic studies have identified susceptibility loci that underscore the importance of innate immune responses, particularly the roles of myeloid cells, such as dendritic cells, macrophages, and neutrophils. These cells initiate and sustain inflammation through cytokine production triggered by external stimuli. They influence keratinocyte behavior and interact with adaptive immune cells. Recent techniques have further revealed the heterogeneity of myeloid cells in psoriatic lesions, highlighting the contributions of less-studied subsets, such as eosinophils and mast cells. This review examines the multifaceted roles of myeloid innate immune cells in psoriasis, emphasizing their functional diversity in promoting psoriatic inflammation. It also describes current treatment targeting myeloid innate immune cells and explores potential new therapeutic strategies based on the functional characteristics of these subsets. Future research should focus on the detailed characterization of myeloid subsets and their interactions to develop targeted treatments that address the complex immune landscape of psoriasis.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea.
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, South Korea.
| |
Collapse
|
3
|
Scholaert M, Peries M, Braun E, Martin J, Serhan N, Loste A, Bruner A, Basso L, Chaput B, Merle E, Descargues P, Pagès E, Gaudenzio N. Multimodal profiling of biostabilized human skin modules reveals a coordinated ecosystem response to injected mRNA-1273 COVID-19 vaccine. Allergy 2024. [PMID: 39157907 DOI: 10.1111/all.16273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The field of drug development is witnessing a remarkable surge in the development of innovative strategies. There is a need to develop technological platforms capable of generating human data prior to progressing to clinical trials. METHODS Here we introduce a new flexible solution designed for the comprehensive monitoring of the natural human skin ecosystem's response to immunogenic drugs over time. Based on unique bioengineering to preserve surgical resections in a long survival state, it allows for the first time a comprehensive analysis of resident immune cells response at both organ and single-cell levels. RESULTS Upon injection of the mRNA-1273 COVID-19 vaccine, we characterized precise sequential molecular events triggered upon detection of the exogenous substance. The vaccine consistently targets DC/macrophages and mast cells, regardless of the administration route, while promoting specific cell-cell communications in surrounding immune cell subsets. CONCLUSION Given its direct translational relevance, this approach provides a multiscale vision of genuine human tissue immunity that could pave the way toward the development of new vaccination and drug development strategies.
Collapse
Affiliation(s)
- Manon Scholaert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-CNRS UMR5051, University Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | | | | | - Jeremy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Alexia Loste
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Audrey Bruner
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Benoît Chaput
- Department of Plastic, Reconstructive and Aesthetic Surgery, Rangueil Hospital, CHU Toulouse, Toulouse, France
| | | | | | | | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291-CNRS UMR5051, University Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| |
Collapse
|
4
|
Li X, Huang X, Zhao Y, Zheng Z, Guo M, Chen Z, Chen P, Li X, Liao J, Jiang M, Cho WJ, Cho YC, Zeng R, Tang Q, Liang G. Design, synthesis and bioactivity evaluation of 4-hydroxycoumarin derivatives as potential anti-inflammatory agents against acute lung injury and colitis. Eur J Med Chem 2024; 272:116487. [PMID: 38759452 DOI: 10.1016/j.ejmech.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Acute lung injury (ALI) and inflammatory bowel disease (IBD) are common inflammatory illnesses that seriously affect people's health. Herein, a series of 4-hydroxylcoumarin (4-HC) derivatives were designed and synthesized. The inhibitory effects of these compounds on LPS-induced interleukin-6 (IL-6) release from J774A.1 cells were then screened via ELISA assay, compound B8 showed 3 times more active than the lead compound 4-HC. The most active compound B8 had the IC50 values of 4.57 μM and 6.51 μM for IL-6 release on mouse cells J774A.1 and human cells THP-1, respectively. Furthermore, we also found that B8 could act on the MAPK pathway. Based on the target prediction results of computer virtual docking, kinase inhibitory assay was carried out, and it revealed that targeting IRAK1 was a key mechanism for B8 to exert anti-inflammatory activity. Moreover, B8 exerted a good therapeutic effect on the dextran sulfate sodium (DSS)-induced colitis model and liposaccharide (LPS)-induced ALI mouse models. The acute toxicity experiments indicated that high-dose B8 caused no adverse reactions in mice, confirming its safety in vivo. Additionally, the preliminary pharmacokinetic (PK) parameters of B8 in SD rats were also examined, revealing a bioavailability (F) of 28.72 %. In conclusion, B8 is a potential candidate of drug for the treatment of ALI and colitis.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyi Huang
- Department of Nursing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yunxi Zhao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiwei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mi Guo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhicao Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pan Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jing Liao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Miao Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Ruifeng Zeng
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Qidong Tang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Peoples Hospital, Affiliated Peoples Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Friedel J, Pierre S, Kolbinger A, Schäufele TJ, Aliraj B, Weigert A, Scholich K. Mast cell-derived interleukin-4 mediates activation of dendritic cell during toll-like receptor 2-mediated inflammation. Front Immunol 2024; 15:1353922. [PMID: 38745645 PMCID: PMC11091258 DOI: 10.3389/fimmu.2024.1353922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction During an innate inflammation, immune cells form distinct pro- and anti-inflammatory regions around pathogen-containing core-regions. Mast cells are localized in an anti-inflammatory microenvironment during the resolution of an innate inflammation, suggesting antiinflammatory roles of these cells. Methods High-content imaging was used to investigated mast cell-dependent changes in the regional distribution of immune cells during an inflammation, induced by the toll-like receptor (TLR)-2 agonist zymosan. Results The distance between the zymosan-containing core-region and the anti-inflammatory region, described by M2-like macrophages, increased in mast cell-deficient mice. Absence of mast cells abolished dendritic cell (DC) activation, as determined by CD86-expression and localized the DCs in greater distance to zymosan particles. The CD86- DCs had a higher expression of the pro-inflammatory interleukins (IL)-1β and IL-12/23p40 as compared to activated CD86+ DCs. IL-4 administration restored CD86 expression, cytokine expression profile and localization of the DCs in mast cell-deficient mice. The IL-4 effects were mast cell-specific, since IL-4 reduction by eosinophil depletion did not affect activation of DCs. Discussion We found that mast cells induce DC activation selectively at the site of inflammation and thereby determine their localization within the inflammation. Overall, mast cells have antiinflammatory functions in this inflammation model and limit the size of the pro-inflammatory region surrounding the zymosan-containing core region.
Collapse
Affiliation(s)
- Joschua Friedel
- Institute of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Anja Kolbinger
- Institute of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Tim J. Schäufele
- Institute of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Blerina Aliraj
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Frankfurt, Germany
| |
Collapse
|
6
|
Ligan C, Ma XH, Zhao SL, Zhao W. The regulatory role and mechanism of mast cells in tumor microenvironment. Am J Cancer Res 2024; 14:1-15. [PMID: 38323271 PMCID: PMC10839313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
Mast cells (MCs) have emerged as pivotal contributors to both the defensive immune response and immunomodulation. They also exhibit regulatory functions in modulating pathological processes across various allergic diseases. The impact of MC presence within tumor tissues has garnered considerable attention, yielding conflicting findings. While some studies propose that MCs within tumor tissues promote tumor initiation and progression, others advocate an opposing perspective. Notably, evidence emphasizes the dual role of MCs in cancer, both as promoters and suppressors, is crucial for optimizing cancer treatment strategies. These conflicting viewpoints have generated substantial controversy, underscoring the need for a comprehensive understanding of MC's role in tumor immune responses.
Collapse
Affiliation(s)
- Caryl Ligan
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Xin-Hua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Shu-Li Zhao
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical UniversityNanjing, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
7
|
Wang J, Dong D, Zhao W, Wang J. Intravital microscopy visualizes innate immune crosstalk and function in tissue microenvironment. Eur J Immunol 2024; 54:e2350458. [PMID: 37830252 DOI: 10.1002/eji.202350458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Significant advances have been made in the field of intravital microscopy (IVM) on myeloid cells due to the growing number of validated fluorescent probes and reporter mice. IVM provides a visualization platform to directly observe cell behavior and deepen our understanding of cellular dynamics, heterogeneity, plasticity, and cell-cell communication in native tissue environments. This review outlines the current studies on the dynamic interaction and function of innate immune cells with a focus on those that are studied with IVM and covers the advances in data analysis with emerging artificial intelligence-based algorithms. Finally, the prospects of IVM on innate immune cells are discussed.
Collapse
Affiliation(s)
- Jin Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Dong
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenying Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Tung CC, Rathore APS, St. John AL. Conventional and non-conventional antigen presentation by mast cells. DISCOVERY IMMUNOLOGY 2023; 2:kyad016. [PMID: 38567067 PMCID: PMC10917180 DOI: 10.1093/discim/kyad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/23/2023] [Accepted: 09/16/2023] [Indexed: 04/04/2024]
Abstract
Mast cells (MCs) are multifunctional immune cells that express a diverse repertoire of surface receptors and pre-stored bioactive mediators. They are traditionally recognized for their involvement in allergic and inflammatory responses, yet there is a growing body of literature highlighting their contributions to mounting adaptive immune responses. In particular, there is growing evidence that MCs can serve as antigen-presenting cells, owing to their often close proximity to T cells in both lymphoid organs and peripheral tissues. Recent studies have provided compelling support for this concept, by demonstrating the presence of antigen processing and presentation machinery in MCs and their ability to engage in classical and non-classical pathways of antigen presentation. However, there remain discrepancies and unresolved questions regarding the extent of the MC's capabilities with respect to antigen presentation. In this review, we discuss our current understanding of the antigen presentation by MCs and its influence on adaptive immunity.
Collapse
Affiliation(s)
- Chi-Ching Tung
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ashley L St. John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
9
|
Carmona-Rocha E, Puig L. The biological basis of disease recurrence in psoriasis. Ital J Dermatol Venerol 2023; 158:279-291. [PMID: 37404193 DOI: 10.23736/s2784-8671.23.07583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Despite the amazing advances produced in our understanding of the pathogenesis of psoriasis, which have led to a therapeutic revolution, our knowledge of the mechanisms of relapse and elicitation of lesions is just starting to unravel. This narrative review tours the different cell types and mechanisms involved in the priming, maintenance, and relapse of psoriasis vulgaris. Our discussion includes dendritic cells, T cells, tissue resident memory cells and mast cells, with a foray into the epigenetic mechanisms of inflammatory memory in keratinocytes. Increasing knowledge is providing a glimpse of a potential therapeutic window of opportunity in psoriasis, providing long term remission and eventual modification of the natural history of the disease.
Collapse
Affiliation(s)
- Elena Carmona-Rocha
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lluís Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain -
| |
Collapse
|
10
|
Hackler Y, Siebenhaar F, Maurer M, Muñoz M. Virus-infected mast cells activate virus-specific CD8 + T cells. Scand J Immunol 2023; 98:e13272. [PMID: 38441354 DOI: 10.1111/sji.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 04/18/2023] [Indexed: 03/07/2024]
Abstract
Efficient anti-viral responses of CD8+ T cells require signals that promote their effector cell differentiation, that are mainly provided by dendritic cells (DCs). Mast cells (MCs) are key drivers of DC maturation, but also influence their migration and antigen presenting properties and therefore indirectly mediate CD8+ T cell activation. MCs initiate innate immune responses at pathogen entry sites, promote the development of adaptive immune responses after infection, and release mediators including chemokines that recruit and activate immune cells including T cells during viral infections. However, whether MCs can directly activate virus-specific CD8+ T cells remains largely unknown. Here, we used an in vitro viral infection model with lymphocytic choriomeningitis virus (LCMV)-infected MCs or DCs co-cultured with either LCMV-specific CD8+ T cells or with WT (unspecific) CD8+ T cells. Similar to LCMV-infected DCs, LCMV-infected MCs clustered with virus-specific CD8+ T cells and induced their activation and production of antiviral cytokines. In addition, the co-stimulatory molecules CD86 and OX40L, but not CD80, were upregulated on MCs and an increased production of IL-6 and type I interferons after LCMV infection was shown. Our findings suggest that MCs can promote CD8+ T cell activation during viral infections. MC-mediated CD8+ T cell activation might be especially important within infected tissues where direct cellular interaction can take place. A better understanding of anti-viral functions of MCs may help developing new strategies to better treat viral infections.
Collapse
Affiliation(s)
- Yana Hackler
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Frank Siebenhaar
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Melba Muñoz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| |
Collapse
|
11
|
Mihele DM, Nistor PA, Bruma G, Mitran CI, Mitran MI, Condrat CE, Tovaru M, Tampa M, Georgescu SR. Mast Cell Activation Syndrome Update-A Dermatological Perspective. J Pers Med 2023; 13:1116. [PMID: 37511729 PMCID: PMC10381535 DOI: 10.3390/jpm13071116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Mast cells (MCs) are infamous for their role in potentially fatal anaphylaxis reactions. In the last two decades, a more complex picture has emerged, as it has become obvious that MCs are much more than just IgE effectors of anaphylaxis. MCs are defenders against a host of infectious and toxic aggressions (their interactions with other components of the immune system are not yet fully understood) and after the insult has ended, MCs continue to play a role in inflammation regulation and tissue repair. Unfortunately, MC involvement in pathology is also significant. Apart from their role in allergies, MCs can proliferate clonally to produce systemic mastocytosis. They have also been implicated in excessive fibrosis, keloid scaring, graft rejection and chronic inflammation, especially at the level of the skin and gut. In recent years, the term MC activation syndrome (MCAS) was proposed to account for symptoms caused by MC activation, and clear diagnostic criteria have been defined. However, not all authors agree with these criteria, as some find them too restrictive, potentially leaving much of the MC-related pathology unaccounted for. Here, we review the current knowledge on the physiological and pathological roles of MCs, with a dermatological emphasis, and discuss the MCAS classification.
Collapse
Affiliation(s)
- Dana Mihaela Mihele
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Paul Andrei Nistor
- Internal Medicine Department, Emergency University Hospital Bucharest, 169 Independence Blvd, 050098 Bucharest, Romania
| | - Gabriela Bruma
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Cristina Iulia Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Madalina Irina Mitran
- Microbiology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Carmen Elena Condrat
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Mihaela Tovaru
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Mircea Tampa
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Simona Roxana Georgescu
- Dermatology Department, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Dermatology Department, Victor Babes Clinical Hospital of Infectious and Tropical Diseases, 030303 Bucharest, Romania
| |
Collapse
|
12
|
Msallam R, Redegeld FA. Mast cells-fetal mast cells crosstalk with maternal interfaces during pregnancy: Friend or foe? Pediatr Allergy Immunol 2023; 34:e13943. [PMID: 37102389 DOI: 10.1111/pai.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 04/28/2023]
Abstract
Mast cells (MC) are hematopoietic immune cells that play a major role during allergic reactions in adults by releasing a myriad of vasoactive and inflammatory mediators. MC seed all vascularized tissues and are most prominent in organs with a barrier function such as skin, lungs, and intestines. These secreted molecules cause mild symptoms such as localized itchiness and sneezing to life-threatening symptoms (i.e., anaphylactic shock). Presently, despite the extensive research on Th2-mediated immune responses in allergic diseases in adults, we are still unable to determine the mechanisms of the role of MC in developing pediatric allergic (PA) disorders. In this review, we will summarize the most recent findings on the origin of MC and discuss the underappreciated contribution of MC in the sensitization phase to maternal antibodies during pregnancy in allergic reactions and other diseases such as infectious diseases. Then, we will lay out potential MC-dependent therapeutic strategies to be considered in future investigations to understand the remaining gaps in MC research for a better quality of life for these young patients.
Collapse
Affiliation(s)
- Rasha Msallam
- Next Gen of Immunology (NGIg) Consultancy, Dubai, UAE
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Bates M, Mohamed BM, Ward MP, Kelly TE, O'Connor R, Malone V, Brooks R, Brooks D, Selemidis S, Martin C, O'Toole S, O'Leary JJ. Circulating tumour cells: The Good, the Bad and the Ugly. Biochim Biophys Acta Rev Cancer 2023; 1878:188863. [PMID: 36796527 DOI: 10.1016/j.bbcan.2023.188863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
This review is an overview of the current knowledge regarding circulating tumour cells (CTCs), which are potentially the most lethal type of cancer cell, and may be a key component of the metastatic cascade. The clinical utility of CTCs (the "Good"), includes their diagnostic, prognostic, and therapeutic potential. Conversely, their complex biology (the "Bad"), including the existence of CD45+/EpCAM+ CTCs, adds insult to injury regarding their isolation and identification, which in turn hampers their clinical translation. CTCs are capable of forming microemboli composed of both non-discrete phenotypic populations such as mesenchymal CTCs and homotypic and heterotypic clusters which are poised to interact with other cells in the circulation, including immune cells and platelets, which may increase their malignant potential. These microemboli (the "Ugly") represent a prognostically important CTC subset, however, phenotypic EMT/MET gradients bring additional complexities to an already challenging situation.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland.
| | - Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Tanya E Kelly
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Roisin O'Connor
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Victoria Malone
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Robert Brooks
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Doug Brooks
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC 3083, Australia
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin 2, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| |
Collapse
|
14
|
Zhou XY, Chen K, Zhang JA. Mast cells as important regulators in the development of psoriasis. Front Immunol 2022; 13:1022986. [PMID: 36405690 PMCID: PMC9669610 DOI: 10.3389/fimmu.2022.1022986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 08/22/2023] Open
Abstract
Psoriasis is a chronic inflammatory immune skin disease mediated by genetic and environmental factors. As a bridge between innate and adaptive immunity, mast cells are involved in the initiation, development, and maintenance of psoriasis by interactions and communication with a variety of cells. The current review describes interactions of mast cells with T cells, Tregs, keratinocytes, adipocytes, and sensory neurons in psoriasis to emphasize the important role of mast cell-centered cell networks in psoriasis.
Collapse
Affiliation(s)
| | | | - Jia-An Zhang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| |
Collapse
|
15
|
Sakita JY, Elias-Oliveira J, Carlos D, de Souza Santos E, Almeida LY, Malta TM, Brunaldi MO, Albuquerque S, Araújo Silva CL, Andrade MV, Bonato VLD, Garcia SB, Cunha FQ, Cebinelli GCM, Martins RB, Matthews J, Colli L, Martin FL, Uyemura SA, Kannen V. Mast cell-T cell axis alters development of colitis-dependent and colitis-independent colorectal tumours: potential for therapeutically targeting via mast cell inhibition. J Immunother Cancer 2022; 10:jitc-2022-004653. [PMID: 36220303 PMCID: PMC9557261 DOI: 10.1136/jitc-2022-004653] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background Colorectal cancer (CRC) has a high mortality rate and can develop in either colitis-dependent (colitis-associated (CA)-CRC) or colitis-independent (sporadic (s)CRC) manner. There has been a significant debate about whether mast cells (MCs) promote or inhibit the development of CRC. Herein we investigated MC activity throughout the multistepped development of CRC in both human patients and animal models. Methods We analyzed human patient matched samples of healthy colon vs CRC tissue alongside conducting a The Cancer Genome Atlas-based immunogenomic analysis and multiple experiments employing genetically engineered mouse (GEM) models. Results Analyzing human CRC samples revealed that MCs can be active or inactive in this disease. An activated MC population decreased the number of tumor-residing CD8 T cells. In mice, MC deficiency decreased the development of CA-CRC lesions, while it increased the density of tumor-based CD8 infiltration. Furthermore, co-culture experiments revealed that tumor-primed MCs promote apoptosis in CRC cells. In MC-deficient mice, we found that MCs inhibited the development of sCRC lesions. Further exploration of this with several GEM models confirmed that different immune responses alter and are altered by MC activity, which directly alters colon tumorigenesis. Since rescuing MC activity with bone marrow transplantation in MC-deficient mice or pharmacologically inhibiting MC effects impacts the development of sCRC lesions, we explored its therapeutic potential against CRC. MC activity promoted CRC cell engraftment by inhibiting CD8+ cell infiltration in tumors, pharmacologically blocking it inhibits the ability of allograft tumors to develop. This therapeutic strategy potentiated the cytotoxic activity of fluorouracil chemotherapy. Conclusion Therefore, we suggest that MCs have a dual role throughout CRC development and are potential druggable targets against this disease.
Collapse
Affiliation(s)
- Juliana Y Sakita
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Daniela Carlos
- Department of Biochemistry and Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Emerson de Souza Santos
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Tathiane M Malta
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariângela O Brunaldi
- Department of Pathology and Forensic Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Albuquerque
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Marcus V Andrade
- Department of Clinical Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vania L D Bonato
- Department of Biochemistry and Immunology, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Britto Garcia
- Department of Pathology and Forensic Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Ronaldo B Martins
- Department of Cell and Molecular Biology, Virology Research Center, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Jason Matthews
- Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Nutrition, University of Oslo, Oslo, Norway
| | - Leandro Colli
- Medical Imaging, Hematology, and Oncology, University of Sao Paulo, Sao Paulo, Brazil
| | - Francis L Martin
- Biocel Ltd, Hull, UK,Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, UK
| | - Sergio A Uyemura
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinicius Kannen
- Department of Clinical Analyses, Toxicology and Food Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirao Preto, Brazil,Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Mattei F, Andreone S, Spadaro F, Noto F, Tinari A, Falchi M, Piconese S, Afferni C, Schiavoni G. Trogocytosis in innate immunity to cancer is an intimate relationship with unexpected outcomes. iScience 2022; 25:105110. [PMID: 36185368 PMCID: PMC9515589 DOI: 10.1016/j.isci.2022.105110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Trogocytosis is a cellular process whereby a cell acquires a membrane fragment from a donor cell in a contact-dependent manner allowing for the transfer of surface proteins with functional integrity. It is involved in various biological processes, including cell-cell communication, immune regulation, and response to pathogens and cancer cells, with poorly defined molecular mechanisms. With the exception of eosinophils, trogocytosis has been reported in most immune cells and plays diverse roles in the modulation of anti-tumor immune responses. Here, we report that eosinophils acquire membrane fragments from tumor cells early after contact through the CD11b/CD18 integrin complex. We discuss the impact of trogocytosis in innate immune cells on cancer progression in the context of the evidence that eosinophils can engage in trogocytosis with tumor cells. We also discuss shared and cell-specific mechanisms underlying this process based on in silico modeling and provide a hypothetical molecular model for the stabilization of the immunological synapse operating in granulocytes and possibly other innate immune cells that enables trogocytosis. Trogocytosis in innate immune cells can regulate immune responses to cancer Eosinophils engage in trogocytosis with tumor cells via CD11b/CD18 integrin complex CD11b/CD18 integrin, focal adhesion molecules and actin network enable trogocytosis
Collapse
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Spadaro
- Core Facilities, Microscopy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Noto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Tinari
- Center for Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Corresponding author
| |
Collapse
|
17
|
Kalkusova K, Smite S, Darras E, Taborska P, Stakheev D, Vannucci L, Bartunkova J, Smrz D. Mast Cells and Dendritic Cells as Cellular Immune Checkpoints in Immunotherapy of Solid Tumors. Int J Mol Sci 2022; 23:ijms231911080. [PMID: 36232398 PMCID: PMC9569882 DOI: 10.3390/ijms231911080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The immune checkpoint inhibitors have revolutionized cancer immunotherapy. These inhibitors are game changers in many cancers and for many patients, sometimes show unprecedented therapeutic efficacy. However, their therapeutic efficacy is largely limited in many solid tumors where the tumor-controlled immune microenvironment prevents the immune system from efficiently reaching, recognizing, and eliminating cancer cells. The tumor immune microenvironment is largely orchestrated by immune cells through which tumors gain resistance against the immune system. Among these cells are mast cells and dendritic cells. Both cell types possess enormous capabilities to shape the immune microenvironment. These capabilities stage these cells as cellular checkpoints in the immune microenvironment. Regaining control over these cells in the tumor microenvironment can open new avenues for breaking the resistance of solid tumors to immunotherapy. In this review, we will discuss mast cells and dendritic cells in the context of solid tumors and how these immune cells can, alone or in cooperation, modulate the solid tumor resistance to the immune system. We will also discuss how this modulation could be used in novel immunotherapeutic modalities to weaken the solid tumor resistance to the immune system. This weakening could then help other immunotherapeutic modalities engage against these tumors more efficiently.
Collapse
Affiliation(s)
- Katerina Kalkusova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Sindija Smite
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Elea Darras
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Pavla Taborska
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Dmitry Stakheev
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06 Prague, Czech Republic
- Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
- Correspondence: ; Tel.: +420-224-435-968; Fax: +420-224-435-962
| |
Collapse
|
18
|
Shi Y, Lu Y, You J. Antigen transfer and its effect on vaccine-induced immune amplification and tolerance. Am J Cancer Res 2022; 12:5888-5913. [PMID: 35966588 PMCID: PMC9373810 DOI: 10.7150/thno.75904] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 12/13/2022] Open
Abstract
Antigen transfer refers to the process of intercellular information exchange, where antigenic components including nucleic acids, antigen proteins/peptides and peptide-major histocompatibility complexes (p-MHCs) are transmitted from donor cells to recipient cells at the thymus, secondary lymphoid organs (SLOs), intestine, allergic sites, allografts, pathological lesions and vaccine injection sites via trogocytosis, gap junctions, tunnel nanotubes (TNTs), or extracellular vesicles (EVs). In the context of vaccine inoculation, antigen transfer is manipulated by the vaccine type and administration route, which consequently influences, even alters the immunological outcome, i.e., immune amplification and tolerance. Mainly focused on dendritic cells (DCs)-based antigen receptors, this review systematically introduces the biological process, molecular basis and clinical manifestation of antigen transfer.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
19
|
Honda T, Keith YH. Novel Insights Into the Immune-Regulatory Functions of Mast Cells in the Cutaneous Immune Response. Front Immunol 2022; 13:898419. [PMID: 35634300 PMCID: PMC9134104 DOI: 10.3389/fimmu.2022.898419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Skin is a frontline organ that is continuously exposed to external stimuli, including pathogens. Various immune cells reside in the skin under physiological conditions and protect the body from the entry of pathogens/antigens by interacting with each other and orchestrating diverse cutaneous immune responses. To avoid unnecessary inflammation and tissue damage during the elimination of external pathogens and antigens, skin possesses regulatory systems that fine-tune these immune reactions. Mast cells (MCs) are one of the skin-resident immune cell populations that play both effector and regulatory functions in the cutaneous immune response. So far, the interleukin-10-mediated mechanisms have mostly been investigated as the regulatory mechanisms of MCs. Recent studies have elucidated other regulatory mechanisms of MCs, such as the maintenance of regulatory T/B cells and the programmed cell death protein-1/programmed cell death-ligand 1-mediated inhibitory pathway. These regulatory pathways of MCs have been suggested to play important roles in limiting the excessive inflammation in inflammatory skin diseases, such as contact and atopic dermatitis. The regulatory functions of MCs may also be involved in the escape mechanisms of antitumor responses in skin cancers, such as melanoma. Understanding and controlling the regulatory functions of skin MCs may lead to novel therapeutic strategies for inflammatory skin diseases and skin cancers.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- *Correspondence: Tetsuya Honda,
| | - Yuki Honda Keith
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Skin immunity: dissecting the complex biology of our body's outer barrier. Mucosal Immunol 2022; 15:551-561. [PMID: 35361906 DOI: 10.1038/s41385-022-00505-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Our skin contributes critically to health via its role as a barrier tissue, carefully regulating passage of key substrates while also providing defense against exogenous threats. Immunological processes are integral to almost every skin function and paramount to our ability to live symbiotically with skin commensal microbes and other environmental stimuli. While many parallels can be drawn to immunobiology at other mucosal sites, skin immunity demonstrates unique features that relate to its distinct topography, chemical composition and microbial ecology. Here we provide an overview of skin as an immune organ, with reference to the broader context of mucosal immunology. We review paradigms of innate as well as adaptive immune function and highlight how skin-specific structures such as hair follicles and sebaceous glands interact and contribute to these processes. Finally, we highlight for the mucosal immunology community a few emerging areas of interest for the skin immunity field moving forward.
Collapse
|
21
|
Virtanen T. Inhalant Mammal-Derived Lipocalin Allergens and the Innate Immunity. FRONTIERS IN ALLERGY 2022; 2:824736. [PMID: 35387007 PMCID: PMC8974866 DOI: 10.3389/falgy.2021.824736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
A major part of important mammalian respiratory allergens belongs to the lipocalin family of proteins. By this time, 19 respiratory mammalian lipocalin allergens have been registered in the WHO/IUIS Allergen Nomenclature Database. Originally, lipocalins, small extracellular proteins (molecular mass ca. 20 kDa), were characterized as transport proteins but they are currently known to exert a variety of biological functions. The three-dimensional structure of lipocalins is well-preserved, and lipocalin allergens can exhibit high amino acid identities, in several cases more than 50%. Lipocalins contain an internal ligand-binding site where they can harbor small principally hydrophobic molecules. Another characteristic feature is their capacity to bind to specific cell-surface receptors. In all, the physicochemical properties of lipocalin allergens do not offer any straightforward explanations for their allergenicity. Allergic sensitization begins at epithelial barriers where diverse insults through pattern recognition receptors awaken innate immunity. This front-line response is manifested by epithelial barrier-associated cytokines which together with other components of immunity can initiate the sensitization process. In the following, the crucial factor in allergic sensitization is interleukin (IL)-4 which is needed for stabilizing and promoting the type 2 immune response. The source for IL-4 has been searched widely. Candidates for it may be non-professional antigen-presenting cells, such as basophils or mast cells, as well as CD4+ T cells. The synthesis of IL-4 by CD4+ T cells requires T cell receptor engagement, i.e., the recognition of allergen peptides, which also provides the specificity for sensitization. Lipocalin and innate immunity-associated cell-surface receptors are implicated in facilitating the access of lipocalin allergens into the immune system. However, the significance of this for allergic sensitization is unclear, as the recognition by these receptors has been found to produce conflicting results. As to potential adjuvants associated with mammalian lipocalin allergens, the hydrophobic ligands transported by lipocalins have not been reported to enhance sensitization while it is justified to suppose that lipopolysaccharide plays a role in it. Taken together, type 2 immunity to lipocalin allergens appears to be a harmful immune response resulting from a combination of signals involving both the innate and adaptive immunities.
Collapse
Affiliation(s)
- Tuomas Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
22
|
Ogawa Y, Kinoshita M, Kawamura T, Shimada S. Intracellular TLRs of Mast Cells in Innate and Acquired Immunity. Handb Exp Pharmacol 2022; 276:133-159. [PMID: 34505203 DOI: 10.1007/164_2021_540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mast cells (MCs) distribute to interface tissues with environment, such as skin, airway, and gut mucosa, thereby functioning as the sentinel against invading allergens and pathogens. To respond to and exclude these external substances promptly, MCs possess granules containing inflammatory mediators, including heparin, proteases, tumor necrosis factor, and histamine, and produce these mediators as a consequence of degranulation within minutes of activation. As a delayed response to external substances, MCs de novo synthesize inflammatory mediators, such as cytokines and chemokines, by sensing pathogen- and damage-associated molecular patterns through their pattern recognition receptors, including Toll-like receptors (TLRs). A substantial number of studies have reported immune responses by MCs through surface TLR signaling, particularly TLR2 and TLR4. However, less attention has been paid to immune responses through nucleic acid-recognizing intracellular TLRs. Among intracellular TLRs, human and rodent MCs express TLR3, TLR7, and TLR9, but not TLR8. Some virus infections modulate intracellular TLR expression in MCs. MC-derived mediators, such as histamine, cysteinyl leukotrienes, LL-37, and the granulocyte-macrophage colony-stimulating factor, have also been reported to modulate intracellular TLR expression in an autocrine and/or paracrine fashion. Synthetic ligands for intracellular TLRs and some viruses are sensed by intracellular TLRs of MCs, leading to the production of inflammatory cytokines and chemokines including type I interferons. These MC responses initiate and facilitate innate responses and the subsequent recruitment of additional innate effector cells. MCs also associate with the regulation of adaptive immunity. In this overview, the expression of intracellular TLRs in MCs and the recognition of pathogens, including viruses, by intracellular TLRs in MCs were critically evaluated.
Collapse
Affiliation(s)
- Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Manao Kinoshita
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
23
|
Galli SJ, Gaudenzio N, Tsai M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu Rev Immunol 2021; 38:49-77. [PMID: 32340580 DOI: 10.1146/annurev-immunol-071719-094903] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mast cells have existed long before the development of adaptive immunity, although they have been given different names. Thus, in the marine urochordate Styela plicata, they have been designated as test cells. However, based on their morphological characteristics (including prominent cytoplasmic granules) and mediator content (including heparin, histamine, and neutral proteases), test cells are thought to represent members of the lineage known in vertebrates as mast cells. So this lineage presumably had important functions that preceded the development of antibodies, including IgE. Yet mast cells are best known, in humans, as key sources of mediators responsible for acute allergic reactions, notably including anaphylaxis, a severe and potentially fatal IgE-dependent immediate hypersensitivity reaction to apparently harmless antigens, including many found in foods and medicines. In this review, we briefly describe the origins of tissue mast cells and outline evidence that these cells can have beneficial as well as detrimental functions, both innately and as participants in adaptive immune responses. We also discuss aspects of mast cell heterogeneity and comment on how the plasticity of this lineage may provide insight into its roles in health and disease. Finally, we consider some currently open questions that are yet unresolved.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), INSERM UMR 1056, Université de Toulouse, 31 059 Toulouse CEDEX 9, France;
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| |
Collapse
|
24
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
25
|
Hackler Y, Siebenhaar F, Löhning M, Maurer M, Muñoz M. Mast Cells Modulate Antigen-Specific CD8 + T Cell Activation During LCMV Infection. Front Immunol 2021; 12:688347. [PMID: 34194439 PMCID: PMC8236703 DOI: 10.3389/fimmu.2021.688347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Mast cells (MCs), strategically localized at mucosal surfaces, provide first-line defense against pathogens and shape innate and adaptive immune responses. Recent studies have shown that MCs are involved in pathogenic responses to several viruses including herpes simplex viruses, dengue virus, vaccinia virus and influenza virus. However, the underlying mechanisms of MCs in the activation of CD8+ T cells during viral infections are not fully understood. Therefore, we investigate the role of MCs in the development of virus-specific CD8+ T cell responses using the well-characterized murine lymphocytic choriomeningitis virus (LCMV) model and the transgenic MasTRECK mice that contain the human diphtheria toxin receptor as an inducible MC-deficient model. Here, we report that MCs are essential for the activation and expansion of virus-specific CD8+ T cells. After MC depletion and subsequent intradermal LCMV infection, the CD8 + T cell effector phenotype and antiviral cytokine production were impaired at the peak of infection (day 8 p.i.). Importantly, MC-deficient mice were unable to control the infection and exhibited significantly higher viral loads in the spleen and in the ear draining lymph nodes compared to that of wild type control mice. In the absence of MCs, dendritic cell (DC) activation was impaired upon LCMV infection. In addition, type-I interferon (IFN) levels in the serum and in the spleen of MC-deficient mice were reduced during the first days of infection. Interestingly, depletion of MCs after intradermal LCMV infection did not impair virus-specific CD8+ T cell expansion, activation or antiviral cytokine production. In summary, our results indicate that MCs play a pivotal role in the activation and antiviral functions of CD8+ T cells through proper DC activation. A better understanding of the impact of MCs on CD8+ T cell responses is mandatory to improve antiviral immune responses.
Collapse
Affiliation(s)
- Yana Hackler
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Siebenhaar
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melba Muñoz
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
26
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
27
|
Miyake K, Karasuyama H. The Role of Trogocytosis in the Modulation of Immune Cell Functions. Cells 2021; 10:cells10051255. [PMID: 34069602 PMCID: PMC8161413 DOI: 10.3390/cells10051255] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Trogocytosis is an active process, in which one cell extracts the cell fragment from another cell, leading to the transfer of cell surface molecules, together with membrane fragments. Recent reports have revealed that trogocytosis can modulate various biological responses, including adaptive and innate immune responses and homeostatic responses. Trogocytosis is evolutionally conserved from protozoan parasites to eukaryotic cells. In some cases, trogocytosis results in cell death, which is utilized as a mechanism for antibody-dependent cytotoxicity (ADCC). In other cases, trogocytosis-mediated intercellular protein transfer leads to both the acquisition of novel functions in recipient cells and the loss of cellular functions in donor cells. Trogocytosis in immune cells is typically mediated by receptor–ligand interactions, including TCR–MHC interactions and Fcγ receptor-antibody-bound molecule interactions. Additionally, trogocytosis mediates the transfer of MHC molecules to various immune and non-immune cells, which confers antigen-presenting activity on non-professional antigen-presenting cells. In this review, we summarize the recent advances in our understanding of the role of trogocytosis in immune modulation.
Collapse
|
28
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
29
|
Mast Cells and Skin and Breast Cancers: A Complicated and Microenvironment-Dependent Role. Cells 2021; 10:cells10050986. [PMID: 33922465 PMCID: PMC8146516 DOI: 10.3390/cells10050986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are important sentinel cells in host defense against infection and major effector cells in allergic disease. The role of these cells in cancer settings has been widely debated. The diverse range of mast cell functions in both immunity and tissue remodeling events, such as angiogenesis, provides multiple opportunities for mast cells to modify the tumor microenvironment. In this review, we consider both skin and breast cancer settings to address the controversy surrounding the importance of mast cells in the host response to tumors. We specifically address the key mediators produced by mast cells which impact tumor development. The role of environmental challenges in modifying mast cell responses and opportunities to modify mast cell responses to enhance anti-tumor immunity are also considered. While the mast cell's role in many cancer contexts is complicated and poorly understood, the activities of these tissue resident and radioresistant cells can provide important opportunities to enhance anti-cancer responses and limit cancer development.
Collapse
|
30
|
Thapsigargin-Stimulated LAD2 Human Mast Cell Line Is a Potent Cellular Adjuvant for the Maturation of Monocyte-Derived Dendritic Cells for Adoptive Cellular Immunotherapy. Int J Mol Sci 2021; 22:ijms22083978. [PMID: 33921475 PMCID: PMC8069665 DOI: 10.3390/ijms22083978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
The preparation of dendritic cells (DCs) for adoptive cellular immunotherapy (ACI) requires the maturation of ex vivo-produced immature(i) DCs. This maturation ensures that the antigen presentation triggers an immune response towards the antigen-expressing cells. Although there is a large number of maturation agents capable of inducing strong DC maturation, there is still only a very limited number of these agents approved for use in the production of DCs for ACI. In seeking novel DC maturation agents, we used differentially activated human mast cell (MC) line LAD2 as a cellular adjuvant to elicit or modulate the maturation of ex vivo-produced monocyte-derived iDCs. We found that co-culture of iDCs with differentially activated LAD2 MCs in serum-containing media significantly modulated polyinosinic:polycytidylic acid (poly I:C)-elicited DC maturation as determined through the surface expression of the maturation markers CD80, CD83, CD86, and human leukocyte antigen(HLA)-DR. Once iDCs were generated in serum-free conditions, they became refractory to the maturation with poly I:C, and the LAD2 MC modulatory potential was minimized. However, the maturation-refractory phenotype of the serum-free generated iDCs was largely overcome by co-culture with thapsigargin-stimulated LAD2 MCs. Our data suggest that differentially stimulated mast cells could be novel and highly potent cellular adjuvants for the maturation of DCs for ACI.
Collapse
|
31
|
PD-L1 on mast cells suppresses effector CD8 + T-cell activation in the skin in murine contact hypersensitivity. J Allergy Clin Immunol 2021; 148:563-573.e7. [PMID: 33581199 DOI: 10.1016/j.jaci.2020.12.654] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The programmed cell death-1 (PD-1)/programmed death ligand 1 (PD-L1) pathway is known to inhibit the activation of effector CD8+ T cells. However, just how this regulatory pathway is involved in the pathophysiology of CD8+ T-cell-mediated inflammatory skin diseases remains unclear. OBJECTIVE Our aim was to elucidate the mechanisms by which the PD-1/PD-L1 pathway exerts its regulatory roles in CD8+ T-cell-mediated cutaneous immune responses. METHODS PD-L1-deficient (Pdl1-/-) mice were used for the murine contact hypersensitivity model. Inflammatory responses such as IFN-γ production from CD8+ T cells in the skin was evaluated by flow cytometry. RESULTS Compared with wild-type mice, Pdl1-/- mice exhibited exacerbated ear swelling and increased numbers of IFN-γ+ CD8+ T cells in the skin. Adoptive T-cell transfer experiments revealed the involvement of the PD-1/PD-L1 pathway in the elicitation phase of contact hypersensitivity. Bone marrow chimera experiments showed that PD-L1 on radioresistant cells was responsible for this regulatory pathway. Flow cytometric analysis revealed that among the radioresistant cells in the skin, PD-L1 was most highly expressed on mast cells (MCs) before and after elicitation. Administration of anti-PD-L1 blocking antibody during the elicitation phase significantly enhanced ear swelling responses and increased the number of IFN-γ+CD8+ T cells in the skin of wild-type mice, whereas no significant effects were observed in MC-deficient (WBB6F1/J-KitW/KitW-v/J and C57BL/6-KitW-sh/W-sh) mice. The high level of expression of PD-L1 on human skin MCs was confirmed by database analysis and immunohistochemical analysis. CONCLUSION PD-L1 on MCs negatively regulates CD8+ T-cell activation in the skin.
Collapse
|
32
|
Manresa MC. Animal Models of Contact Dermatitis: 2,4-Dinitrofluorobenzene-Induced Contact Hypersensitivity. Methods Mol Biol 2021; 2223:87-100. [PMID: 33226589 DOI: 10.1007/978-1-0716-1001-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Allergic contact dermatitis (ACD) is a common skin disease with high prevalence in work environments. Human allergic contact dermatitis is triggered by the exposure to haptens that leads to an initial phase known as sensitization. During this phase, hapten-protein complexes presented by antigen-presenting cells activate a T-cell-mediated response, leading to the generation of memory cells against the hapten. Upon re-exposure to the same hapten, the elicitation phase is initiated. This phase is characterized by a quicker acute inflammatory response involving activation and/or infiltration of a variety of immune cell populations. Human ACD can be studied through the use of animal models of contact hypersensitivity (CHS). The 2,4-dinitrofluorobenzene (DNFB)-induced CHS model is a commonly used mouse model that has been helpful in the study of the mechanisms as well as potential therapeutic interventions of ACD. In this chapter I will provide a detailed protocol to develop acute DNFB-induced CHS in mice in a period of 7 days. In addition, I will discuss several key considerations for experimental design including best controls, potential expected outcomes, and sample collection.
Collapse
Affiliation(s)
- Mario C Manresa
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Mast Cell Functions Linking Innate Sensing to Adaptive Immunity. Cells 2020; 9:cells9122538. [PMID: 33255519 PMCID: PMC7761480 DOI: 10.3390/cells9122538] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although mast cells (MCs) are known as key drivers of type I allergic reactions, there is increasing evidence for their critical role in host defense. MCs not only play an important role in initiating innate immune responses, but also influence the onset, kinetics, and amplitude of the adaptive arm of immunity or fine-tune the mode of the adaptive reaction. Intriguingly, MCs have been shown to affect T-cell activation by direct interaction or indirectly, by modifying the properties of antigen-presenting cells, and can even modulate lymph node-borne adaptive responses remotely from the periphery. In this review, we provide a summary of recent findings that explain how MCs act as a link between the innate and adaptive immunity, all the way from sensing inflammatory insult to orchestrating the final outcome of the immune response.
Collapse
|
34
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
35
|
Falduto GH, Pfeiffer A, Luker A, Metcalfe DD, Olivera A. Emerging mechanisms contributing to mast cell-mediated pathophysiology with therapeutic implications. Pharmacol Ther 2020; 220:107718. [PMID: 33130192 DOI: 10.1016/j.pharmthera.2020.107718] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Mast cells are tissue-resident immune cells that play key roles in the initiation and perpetuation of allergic inflammation, usually through IgE-mediated mechanisms. Mast cells are, however, evolutionary ancient immune cells that can be traced back to urochordates and before the emergence of IgE antibodies, suggesting their involvement in antibody-independent biological functions, many of which are still being characterized. Herein, we summarize recent advances in understanding the roles of mast cells in health and disease, partly through the study of emerging non-IgE receptors such as the Mas-related G protein-coupled receptor X2, implicated in pseudo-allergic reactions as well as in innate defense and neuronal sensing; the mechano-sensing adhesion G protein-coupled receptor E2, variants of which are associated with familial vibratory urticaria; and purinergic receptors, which orchestrate tissue damage responses similarly to the IL-33 receptor. Recent evidence also points toward novel mechanisms that contribute to mast cell-mediated pathophysiology. Thus, in addition to releasing preformed mediators contained in granules and synthesizing mediators de novo, mast cells also secrete extracellular vesicles, which convey biological functions. Understanding their release, composition and uptake within a variety of clinical conditions will contribute to the understanding of disease specific pathology and likely lead the way to novel therapeutic approaches. We also discuss recent advances in the development of therapies targeting mast cell activity, including the ligation of inhibitory ITIM-containing receptors, and other strategies that suppress mast cells or responses to mediators for the management of mast cell-related diseases.
Collapse
Affiliation(s)
- Guido H Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Luker
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Focardi M, Bugelli V, Venturini M, Bianchi I, Defraia B, Pinchi V, Bacci S. Increased expression of iNOS by Langerhans cells in hanging marks. AUST J FORENSIC SCI 2020. [DOI: 10.1080/00450618.2020.1817556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M. Focardi
- Department of Health Sciences, Section of Forensic Medicine, University of Florence, Florence, Italy
| | - V. Bugelli
- Department of Health Sciences, Section of Forensic Medicine, University of Florence, Florence, Italy
| | - M. Venturini
- Department of Biology, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - I. Bianchi
- Department of Health Sciences, Section of Forensic Medicine, University of Florence, Florence, Italy
| | - B. Defraia
- Department of Health Sciences, Section of Forensic Medicine, University of Florence, Florence, Italy
| | - V. Pinchi
- Department of Health Sciences, Section of Forensic Medicine, University of Florence, Florence, Italy
| | - S. Bacci
- Department of Biology, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| |
Collapse
|
37
|
Pal S, Nath S, Meininger CJ, Gashev AA. Emerging Roles of Mast Cells in the Regulation of Lymphatic Immuno-Physiology. Front Immunol 2020; 11:1234. [PMID: 32625213 PMCID: PMC7311670 DOI: 10.3389/fimmu.2020.01234] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are abundant in almost all vascularized tissues. Furthermore, their anatomical proximity to lymphatic vessels and their ability to synthesize, store and release a large array of inflammatory and vasoactive mediators emphasize their significance in the regulation of the lymphatic vascular functions. As a major secretory cell of the innate immune system, MCs maintain their steady-state granule release under normal physiological conditions; however, the inflammatory response potentiates their ability to synthesize and secrete these mediators. Activation of MCs in response to inflammatory signals can trigger adaptive immune responses by dendritic cell-directed T cell activation. In addition, through the secretion of various mediators, cytokines and growth factors, MCs not only facilitate interaction and migration of immune cells, but also influence lymphatic permeability, contractility, and vascular remodeling as well as immune cell trafficking through the lymphatic vessels. In summary, the consequences of these events directly affect the lymphatic niche, influencing inflammation at multiple levels. In this review, we have summarized the recent advancements in our understanding of the MC biology in the context of the lymphatic vascular system. We have further highlighted the MC-lymphatic interaction axis from the standpoint of the tumor microenvironment.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Anatoliy A Gashev
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| |
Collapse
|
38
|
Intravital imaging of cutaneous immune responses. Cell Immunol 2020; 350:103813. [DOI: 10.1016/j.cellimm.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022]
|
39
|
Medyukhina A, Figge MT. DeconvTest: Simulation framework for quantifying errors and selecting optimal parameters of image deconvolution. JOURNAL OF BIOPHOTONICS 2020; 13:e201960079. [PMID: 31957214 DOI: 10.1002/jbio.201960079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Deconvolution is an essential step of image processing that aims to compensate for the image blur caused by the microscope's point spread function. With many existing deconvolution methods, it is challenging to choose the method and its parameters most appropriate for particular image data at hand. To facilitate this task, we developed DeconvTest: an open-source Python-based framework for generating synthetic microscopy images, deconvolving them with different algorithms, and quantifying reconstruction errors. In contrast to existing software, DeconvTest combines all components required to analyze deconvolution performance in a systematic, high-throughput and quantitative manner. We demonstrate the power of the framework by using it to identify the optimal deconvolution settings for synthetic and real image data. Based on this, we provide a guideline for (a) choosing optimal values of deconvolution parameters for image data at hand and (b) optimizing imaging conditions for best results in combination with subsequent image deconvolution.
Collapse
Affiliation(s)
- Anna Medyukhina
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
40
|
Abstract
The skin is the outermost organ of the body and is exposed to many kinds of external pathogens. To manage this, the skin contains multiple types of immune cells. To achieve sufficient induction of cutaneous adaptive immune responses, the antigen presentation/recognition in the skin is an essential process. Recent studies have expanded our knowledge of how T cells survey their cognate antigens in the skin. In addition, the formation of a lymphoid cluster, named inducible skin-associated lymphoid tissue (iSALT), has been reported during skin inflammation. Although iSALT may not be classified as a typical tertiary lymphoid organ, it provides specific antigen presentation sites in the skin. In this article, we provide an overview of the antigen presentation mechanism in the skin, with a focus on the development of iSALT and its function.
Collapse
Affiliation(s)
- Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
41
|
Hagemann PM, Nsiah-Dosu S, Hundt JE, Hartmann K, Orinska Z. Modulation of Mast Cell Reactivity by Lipids: The Neglected Side of Allergic Diseases. Front Immunol 2019; 10:1174. [PMID: 31191542 PMCID: PMC6549522 DOI: 10.3389/fimmu.2019.01174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
Mast cells (MCs) have long been mainly regarded as effector cells in IgE-associated allergic disorders with potential immunoregulatory roles. Located close to the allergen entry sites in the skin and mucosa, MCs can capture foreign substances such as allergens, toxins, or noxious substances and are exposed to the danger signals produced by epithelial cells. MC reactivity shaped by tissue-specific factors is crucial for allergic responses ranging from local skin reactions to anaphylactic shock. Development of Th2 response leading to allergen-specific IgE production is a prerequisite for MC sensitization and induction of FcεRI-mediated MC degranulation. Up to now, IgE production has been mainly associated with proteins, whereas lipids present in plant pollen grains, mite fecal particles, insect venoms, or food have been largely overlooked regarding their immunostimulatory and immunomodulatory properties. Recent studies, however, have now demonstrated that lipids affect the sensitization process by modulating innate immune responses of epithelial cells, dendritic cells, and NK-T cells and thus crucially contribute to the outcome of sensitization. Whether and how lipids affect also MC effector functions in allergic reactions has not yet been fully clarified. Here, we discuss how lipids can affect MC responses in the context of allergic inflammation. Direct effects of immunomodulatory lipids on MC degranulation, changes in local lipid composition induced by allergens themselves and changes in lipid transport affecting MC reactivity are possible mechanisms by which the function of MC might be modulated.
Collapse
Affiliation(s)
- Philipp M Hagemann
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | | | | | - Karin Hartmann
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Division of Allergy, Department of Dermatology, University of Basel, Basel, Switzerland
| | - Zane Orinska
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lungenzentrum, Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
42
|
Boo B, Kamath R, Arriaga-Gomez E, Landry J, Emanuel E, Joo S, Saldías Montivero M, Martinov T, Fife BT, Chatterjea D. Tetrahydrocannabinol Reduces Hapten-Driven Mast Cell Accumulation and Persistent Tactile Sensitivity in Mouse Model of Allergen-Provoked Localized Vulvodynia. Int J Mol Sci 2019; 20:ijms20092163. [PMID: 31052404 PMCID: PMC6539044 DOI: 10.3390/ijms20092163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
Vulvodynia is a remarkably prevalent chronic pain condition of unknown etiology. An increase in numbers of vulvar mast cells often accompanies a clinical diagnosis of vulvodynia and a history of allergies amplifies the risk of developing this condition. We previously showed that repeated exposures to oxazolone dissolved in ethanol on the labiar skin of mice led to persistent genital sensitivity to pressure and a sustained increase in labiar mast cells. Here we sensitized female mice to the hapten dinitrofluorobenzene (DNFB) dissolved in saline on their flanks, and subsequently challenged them with the same hapten or saline vehicle alone for ten consecutive days either on labiar skin or in the vaginal canal. We evaluated tactile ano-genital sensitivity, and tissue inflammation at serial timepoints. DNFB-challenged mice developed significant, persistent tactile sensitivity. Allergic sites showed mast cell accumulation, infiltration of resident memory CD8+CD103+ T cells, early, localized increases in eosinophils and neutrophils, and sustained elevation of serum Immunoglobulin E (IgE). Therapeutic intra-vaginal administration of Δ9-tetrahydrocannabinol (THC) reduced mast cell accumulation and tactile sensitivity. Mast cell-targeted therapeutic strategies may therefore provide new ways to manage and treat vulvar pain potentially instigated by repeated allergenic exposures.
Collapse
Affiliation(s)
- Beebie Boo
- Biology Department, Macalester College, Saint Paul, MN 55105, USA.
| | - Rohit Kamath
- Biology Department, Macalester College, Saint Paul, MN 55105, USA.
| | | | - Jasmine Landry
- Biology Department, Macalester College, Saint Paul, MN 55105, USA.
| | | | - Sookyong Joo
- Biology Department, Macalester College, Saint Paul, MN 55105, USA.
| | | | - Tijana Martinov
- Center for Immunology, University of Minnesota, Minnesota, MN 55455, USA.
| | - Brian T Fife
- Center for Immunology, University of Minnesota, Minnesota, MN 55455, USA.
| | | |
Collapse
|
43
|
The Dynamics of the Skin's Immune System. Int J Mol Sci 2019; 20:ijms20081811. [PMID: 31013709 PMCID: PMC6515324 DOI: 10.3390/ijms20081811] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The skin is a complex organ that has devised numerous strategies, such as physical, chemical, and microbiological barriers, to protect the host from external insults. In addition, the skin contains an intricate network of immune cells resident to the tissue, crucial for host defense as well as tissue homeostasis. In the event of an insult, the skin-resident immune cells are crucial not only for prevention of infection but also for tissue reconstruction. Deregulation of immune responses often leads to impaired healing and poor tissue restoration and function. In this review, we will discuss the defensive components of the skin and focus on the function of skin-resident immune cells in homeostasis and their role in wound healing.
Collapse
|
44
|
Shane HL, Long CM, Anderson SE. Novel cutaneous mediators of chemical allergy. J Immunotoxicol 2019; 16:13-27. [PMID: 30822179 DOI: 10.1080/1547691x.2018.1515279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chemical allergy can manifest into allergic contact dermatitis and asthma and the importance of skin sensitization in both of these diseases is increasingly being recognized. Given the unique characteristics of chemical allergy, coupled with the distinct immunological microenvironment of the skin research is still unraveling the mechanisms through which sensitization and elicitation occur. This review first describes the features of chemical sensitization and the known steps that must occur to develop a chemical allergy. Next, the unique immunological properties of the skin - which may influence chemical sensitization - are highlighted. Additionally, mediators involved with the development of allergy are reviewed, starting with early ones - including the properties of haptens, skin integrity, the microbiome, the inflammasome, and toll-like receptors (TLR). Novel cellular mediators of chemical sensitization are highlighted, including innate lymphoid cells, mast cells, T-helper (TH) cell subsets, and skin intrinsic populations including γδ T-cells and resident memory T-cells. Finally, this review discusses two epigenetic mechanisms that can influence chemical sensitization, microRNAs and DNA methylation. Overall, this review highlights recent research investigating novel mediators of chemical allergy that are present in the skin. It also emphasizes the need to further explore these mediators to gain a better understanding of what makes a chemical an allergen, and how best to prevent the development of chemical-induced allergic diseases.
Collapse
Affiliation(s)
- Hillary L Shane
- Health Effects Laboratory Division, National Institute of Occupational Safety and Health, Morgantown, WV, USA
| | - Carrie M Long
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Stacey E Anderson
- Health Effects Laboratory Division, National Institute of Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
45
|
Stassen M, Hartmann AK, Delgado SJ, Dehmel S, Braun A. Mast cells within cellular networks. J Allergy Clin Immunol 2019; 144:S46-S54. [PMID: 30731122 DOI: 10.1016/j.jaci.2019.01.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/27/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
Abstract
Mast cells are highly versatile in terms of their mode of activation by a host of stimuli and their ability to flexibly release a plethora of biologically highly active mediators. Within the immune system, mast cells can best be designated as an active nexus interlinking innate and adaptive immunity. Here we try to draw an arc from initiation of acute inflammatory reactions to microbial pathogens to development of adaptive immunity and allergies. This multifaceted nature of mast cells is made possible by interaction with multiple cell types of immunologic and nonimmunologic origin. Examples for the former include neutrophils, eosinophils, T cells, and professional antigen-presenting cells. These interactions allow mast cells to orchestrate inflammatory innate reactions and complex adaptive immunity, including the pathogenesis of allergies. Important partners of nonimmunologic origin include cells of the sensory neuronal system. The intimate association between mast cells and sensory nerve fibers allows bidirectional communication, leading to neurogenic inflammation. Evidence is accumulating that this mast cell/nerve crosstalk is of pathophysiologic relevance in patients with allergic diseases, such as asthma.
Collapse
Affiliation(s)
- Michael Stassen
- Institute for Immunology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Ann-Kathrin Hartmann
- Institute for Immunology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sharon Jiménez Delgado
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) research network, Member of the Cluster of Excellence Regenerative Biology to Reconstructive Therapy (REBIRTH), Hannover, Germany; Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) research network, Member of the Cluster of Excellence Regenerative Biology to Reconstructive Therapy (REBIRTH), Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH) research network, Member of the Cluster of Excellence Regenerative Biology to Reconstructive Therapy (REBIRTH), Hannover, Germany; Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
46
|
Kritikou E, van der Heijden T, Swart M, van Duijn J, Slütter B, Wezel A, Smeets HJ, Maffia P, Kuiper J, Bot I. Hypercholesterolemia Induces a Mast Cell-CD4 + T Cell Interaction in Atherosclerosis. THE JOURNAL OF IMMUNOLOGY 2019; 202:1531-1539. [PMID: 30683705 DOI: 10.4049/jimmunol.1800648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022]
Abstract
Mast cells (MCs) are potent innate immune cells that aggravate atherosclerosis through the release of proinflammatory mediators inside atherosclerotic plaques. Similarly, CD4+ T cells are constituents of the adaptive immune response and accumulate within the plaques following lipid-specific activation by APCs. Recently it has been proposed that these two cell types can interact in a direct manner. However, no indication of such an interaction has been investigated in the context of atherosclerosis. In our study, we aimed to examine whether MCs can act as APCs in atherosclerosis, thereby modulating CD4+ T cell responses. We observed that MCs increased their MHC class II expression under hyperlipidemic conditions both in vivo and in vitro. Furthermore, we showed that MCs can present Ags in vivo via MHC class II molecules. Serum from high-fat diet-fed mice also enhanced the expression of the costimulatory molecule CD86 on cultured MCs, whereas OVA peptide-loaded MCs increased OT-II CD4+ T cell proliferation in vitro. The aortic CD4+ and TH1 cell content of atherosclerotic mice that lack MCs was reduced as compared with their wild-type counterparts. Importantly, we identified MCs that express HLA-DR in advanced human atheromata, indicating that these cells are capable of Ag presentation within human atherosclerotic plaques. Therefore, in this artice, we show that MCs may directly modulate adaptive immunity by acting as APCs in atherosclerosis.
Collapse
Affiliation(s)
- Eva Kritikou
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands;
| | - Thomas van der Heijden
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Maarten Swart
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Janine van Duijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center Westeinde, 2501 CK The Hague, the Netherlands
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center Westeinde, 2501 CK The Hague, the Netherlands
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom; and.,Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, the Netherlands
| |
Collapse
|
47
|
Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight 2019; 4:123947. [PMID: 30626752 DOI: 10.1172/jci.insight.123947] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the skin, complex cellular networks maintain barrier function and immune homeostasis. Tightly regulated multicellular cascades are required to initiate innate and adaptive immune responses. Innate immune cells, particularly DCs and mast cells, are central to these networks. Early studies evaluated the function of these cells in isolation, but recent studies clearly demonstrate that cutaneous DCs (dermal DCs and Langerhans cells) physically interact with neighboring cells and are receptive to activation signals from surrounding cells, such as mast cells. These interactions amplify immune activation. In this review, we discuss the known functions of cutaneous DC populations and mast cells and recent studies highlighting their roles within cellular networks that determine cutaneous immune responses.
Collapse
Affiliation(s)
| | | | - Daniel H Kaplan
- Department of Dermatology and.,Department of Immunology, University of Pittsburgh School of Medicine,Pittsburgh, Pennsylvania, USA
| |
Collapse
|
48
|
Schuijs MJ, Hammad H, Lambrecht BN. Professional and 'Amateur' Antigen-Presenting Cells In Type 2 Immunity. Trends Immunol 2018; 40:22-34. [PMID: 30502024 DOI: 10.1016/j.it.2018.11.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/19/2018] [Accepted: 11/03/2018] [Indexed: 01/21/2023]
Abstract
Dendritic cells (DCs) are critical for the activation of naïve CD4+ T cells and are considered professional antigen-presenting cells (APCs), as are macrophages and B cells. Recently, several innate type 2 immune cells, such as basophils, mast cells (MCs), eosinophils, and innate type 2 lymphocytes (ILC2), have also emerged as harboring APC behavior. Through surface expression or transfer of peptide-loaded MHCII, expression of costimulatory and co-inhibitory molecules, as well as the secretion of polarizing cytokines, these innate cells can extensively communicate with effector and regulatory CD4+ T cells. An exciting new concept is that the complementary tasks of these 'amateur' APCs contribute to shaping and regulating adaptive immunity to allergens and helminths, often in collaboration with professional APCs.
Collapse
Affiliation(s)
- Martijn J Schuijs
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Mast cells as protectors of health. J Allergy Clin Immunol 2018; 144:S4-S18. [PMID: 30468774 DOI: 10.1016/j.jaci.2018.10.054] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs), which are well known for their effector functions in TH2-skewed allergic and also autoimmune inflammation, have become increasingly acknowledged for their role in protection of health. It is now clear that they are also key modulators of immune responses at interface organs, such as the skin or gut. MCs can prime tissues for adequate inflammatory responses and cooperate with dendritic cells in T-cell activation. They also regulate harmful immune responses in trauma and help to successfully orchestrate pregnancy. This review focuses on the beneficial effects of MCs on tissue homeostasis and elimination of toxins or venoms. MCs can enhance pathogen clearance in many bacterial, viral, and parasitic infections, such as through Toll-like receptor 2-triggered degranulation, secretion of antimicrobial cathelicidins, neutrophil recruitment, or provision of extracellular DNA traps. The role of MCs in tumors is more ambiguous; however, encouraging new findings show they can change the tumor microenvironment toward antitumor immunity when adequately triggered. Uterine tissue remodeling by α-chymase (mast cell protease [MCP] 5) is crucial for successful embryo implantation. MCP-4 and the tryptase MCP-6 emerge to be protective in central nervous system trauma by reducing inflammatory damage and excessive scar formation, thereby protecting axon growth. Last but not least, proteases, such as carboxypeptidase A, released by FcεRI-activated MCs detoxify an increasing number of venoms and endogenous toxins. A better understanding of the plasticity of MCs will help improve these advantageous effects and hint at ways to cut down detrimental MC actions.
Collapse
|
50
|
|