1
|
Shafiei-Jahani P, Yan S, Kazemi MH, Li X, Akbari A, Sakano K, Sakano Y, Hurrell BP, Akbari O. CB2 stimulation of adipose resident ILC2s orchestrates immune balance and ameliorates type 2 diabetes mellitus. Cell Rep 2024; 43:114434. [PMID: 38963763 PMCID: PMC11317174 DOI: 10.1016/j.celrep.2024.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
Development of type 2 diabetes mellitus (T2DM) is associated with low-grade chronic type 2 inflammation and disturbance of glucose homeostasis. Group 2 innate lymphoid cells (ILC2s) play a critical role in maintaining adipose homeostasis via the production of type 2 cytokines. Here, we demonstrate that CB2, a G-protein-coupled receptor (GPCR) and member of the endocannabinoid system, is expressed on both visceral adipose tissue (VAT)-derived murine and human ILC2s. Moreover, we utilize a combination of ex vivo and in vivo approaches to explore the functional and therapeutic impacts of CB2 engagement on VAT ILC2s in a T2DM model. Our results show that CB2 stimulation of ILC2s protects against insulin-resistance onset, ameliorates glucose tolerance, and reverses established insulin resistance. Our mechanistic studies reveal that the therapeutic effects of CB2 are mediated through activation of the AKT, ERK1/2, and CREB pathways on ILC2s. The results reveal that the CB2 agonist can serve as a candidate for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shi Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mohammad H Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Amitis Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
2
|
Wang Y, Liu G, Wang J, Zhou P, Zhang L, Liu Q, Zhou J. NRP1 downregulation correlates with enhanced ILC2 responses during IL-33 challenge. Immunology 2024; 172:226-234. [PMID: 38409805 DOI: 10.1111/imm.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) play critical roles in driving the pathogenesis of allergic airway inflammation. The mechanisms underlying the regulation of ILC2s remain to be fully understood. Here, we identified neuropilin-1 (NRP1) as a surface marker of ILC2s in response to IL-33 stimulation. NRP1 was abundantly expressed in ILC2s from lung under steady state, which was significantly reduced upon IL-33 stimulation. ILC2s with high expression of NRP1 (NRP1high) displayed lower response to IL-33, as compared with NRP1low ILC2s. Transcriptional profiling and flow cytometric analysis showed that downregulation of AKT-mTOR signalling participated in the diminished functionality of NRP1high ILC2s. These observations revealed a potential role of NRP1 in ILC2s responses under allergic inflammatory condition.
Collapse
Affiliation(s)
- Ying Wang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gaoyu Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jianye Wang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijuan Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Liu
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin Institute of Immunology, Tianjin, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Hurrell BP, Shen S, Li X, Sakano Y, Kazemi MH, Quach C, Shafiei-Jahani P, Sakano K, Ghiasi H, Akbari O. Piezo1 channels restrain ILC2s and regulate the development of airway hyperreactivity. J Exp Med 2024; 221:e20231835. [PMID: 38530239 PMCID: PMC10965393 DOI: 10.1084/jem.20231835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Mechanosensitive ion channels sense force and pressure in immune cells to drive the inflammatory response in highly mechanical organs. Here, we report that Piezo1 channels repress group 2 innate lymphoid cell (ILC2)-driven type 2 inflammation in the lungs. Piezo1 is induced on lung ILC2s upon activation, as genetic ablation of Piezo1 in ILC2s increases their function and exacerbates the development of airway hyperreactivity (AHR). Conversely, Piezo1 agonist Yoda1 reduces ILC2-driven lung inflammation. Mechanistically, Yoda1 inhibits ILC2 cytokine secretion and proliferation in a KLF2-dependent manner, as we found that Piezo1 engagement reduces ILC2 oxidative metabolism. Consequently, in vivo Yoda1 treatment reduces the development of AHR in experimental models of ILC2-driven allergic asthma. Human-circulating ILC2s express and induce Piezo1 upon activation, as Yoda1 treatment of humanized mice reduces human ILC2-driven AHR. Our studies define Piezo1 as a critical regulator of ILC2s, and we propose the potential of Piezo1 activation as a novel therapeutic approach for the treatment of ILC2-driven allergic asthma.
Collapse
Affiliation(s)
- Benjamin P. Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Homayon Ghiasi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Sakano Y, Sakano K, Hurrell BP, Helou DG, Shafiei-Jahani P, Kazemi MH, Li X, Shen S, Hilser JR, Hartiala JA, Allayee H, Barbers R, Akbari O. Blocking CD226 regulates type 2 innate lymphoid cell effector function and alleviates airway hyperreactivity. J Allergy Clin Immunol 2024; 153:1406-1422.e6. [PMID: 38244725 DOI: 10.1016/j.jaci.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Type 2 innate lymphoid cells (ILC2s) play a pivotal role in type 2 asthma. CD226 is a costimulatory molecule involved in various inflammatory diseases. OBJECTIVE We aimed to investigate CD226 expression and function within human and mouse ILC2s, and to assess the impact of targeting CD226 on ILC2-mediated airway hyperreactivity (AHR). METHODS We administered IL-33 intranasally to wild-type mice, followed by treatment with anti-CD226 antibody or isotype control. Pulmonary ILC2s were sorted for ex vivo analyses through RNA sequencing and flow cytometry. Next, we evaluated the effects of CD226 on AHR and lung inflammation in wild-type and Rag2-/- mice. Additionally, we compared peripheral ILC2s from healthy donors and asthmatic patients to ascertain the role of CD226 in human ILC2s. RESULTS Our findings demonstrated an inducible expression of CD226 in activated ILC2s, enhancing their cytokine secretion and effector functions. Mechanistically, CD226 alters intracellular metabolism and enhances PI3K/AKT and MAPK signal pathways. Blocking CD226 ameliorates ILC2-dependent AHR in IL-33 and Alternaria alternata-induced models. Interestingly, CD226 is expressed and inducible in human ILC2s, and its blocking reduces cytokine production. Finally, we showed that peripheral ILC2s in asthmatic patients exhibited elevated CD226 expression compared to healthy controls. CONCLUSION Our findings underscore the potential of CD226 as a novel therapeutic target in ILC2s, presenting a promising avenue for ameliorating AHR and allergic asthma.
Collapse
Affiliation(s)
- Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Mohammad H Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - James R Hilser
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Jaana A Hartiala
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Hooman Allayee
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Richard Barbers
- Department of Clinical Medicine, Division of Pulmonary and Critical Care Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif.
| |
Collapse
|
5
|
Xie X, Li Y, Yan B, Peng Q, Yao R, Deng Q, Li J, Wu Y, Chen S, Yang X, Ma P. Mediation of the JNC/ILC2 pathway in DBP-exacerbated allergic asthma: A molecular toxicological study on neuroimmune positive feedback mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133360. [PMID: 38157815 DOI: 10.1016/j.jhazmat.2023.133360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Dibutyl phthalate (DBP), a commonly used plasticizer, has been found to be strongly linked to a consistently high prevalence of allergic diseases, particularly allergic asthma. Previous animal experiments have demonstrated that exposure to DBP can worsen asthma by triggering the production of calcitonin gene-related peptide (CGRP), a neuropeptide in the lung tissue. However, the precise neuroimmune mechanism and pathophysiology of DBP-exacerbated allergic asthma with the assistance of CGRP remain unclear. OBJECTIVE The present study was to investigate the potential pathophysiological mechanism in DBP-exacerbated asthma from the perspective of neural-immune interactions. METHODS AND RESULTS C57BL/6 mice were orally exposed to different concentrations (0.4, 4, 40 mg/kg) of DBP for 28 days. They were then sensitized with OVA and nebulized with OVA for 7 consecutive excitations. To investigate whether DBP exacerbates allergic asthma in OVA induced mice, we analyzed airway hyperresponsiveness and lung histopathology. To investigate the activation of JNC and TRPV1 neurons and the release of CGRP by JNC cells, we measured the levels of TRPV1 channels, calcium inward flow, and downstream neuropeptide CGRP. Results showed that TRPV1 expression, inward calcium flux, and CGRP levels were significantly elevated in the lung tissues of the 40DBP + OVA group, suggesting the release of CGRP by JNC cells. To counteract the detrimental effects of DBP mediated by CGRP, we employed olcegepant (also known as BIBN-4096), a CGRP receptor specific antagonist. Results revealed that 40DBP + OVA + olcegepant led to notable decreases in TRPV1, calcium inward flow, and CGRP expression in lung tissues compare with 40DBP + OVA, further supporting the efficacy of olcegepant. Additionally, we also conducted ILC2 flow sorting and observed that neuropeptide CGRP-activated ILC2 cells have a crucial role as key effector cells in DBP-induced neuroimmune positive feedback regulation. Finally, we examined the protein expression of CGRP, GATA3 and P-GATA3, and found that significant upregulations of CGRP and P-GATA3 in the 40DBP + OVA group, suggest that GATA3 acted as a key regulator of CGRP-activated ILC2. CONCLUSION The aforementioned studies indicate that exposure to DBP can exacerbate allergic asthma, leading to airway inflammation. This exacerbation occurs through the activation of TRPV1 in JNC, resulting in the release of CGRP. The excessive release of CGRP further promotes the release of Th2 cytokines by inducing the activation of ILC2 through GATA phosphorylation. Consequently, this process contributes to the development of airway inflammation and allergic asthma. The increased production of Th2 cytokines also triggers the production of IgE, which interacts with FcεRI on JNC neurons, thereby mediating neuro-immune positive feedback regulation.
Collapse
Affiliation(s)
- Xiaomin Xie
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yan Li
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Department of Pharmacy, Ezhou Central Hospital, Ezhou 436000, China
| | - Biao Yan
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qi Peng
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Runming Yao
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yang Wu
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shaohui Chen
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
6
|
Xu H, Yi X, Cui Z, Li H, Zhu L, Zhang L, Chen J, Fan X, Zhou P, Li MJ, Yu Y, Liu Q, Huang D, Yao Z, Zhou J. Maternal antibiotic exposure enhances ILC2 activation in neonates via downregulation of IFN1 signaling. Nat Commun 2023; 14:8332. [PMID: 38097561 PMCID: PMC10721923 DOI: 10.1038/s41467-023-43903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Microbiota have an important function in shaping and priming neonatal immunity, although the cellular and molecular mechanisms underlying these effects remain obscure. Here we report that prenatal antibiotic exposure causes significant elevation of group 2 innate lymphoid cells (ILC2s) in neonatal lungs, in both cell numbers and functionality. Downregulation of type 1 interferon signaling in ILC2s due to diminished production of microbiota-derived butyrate represents the underlying mechanism. Mice lacking butyrate receptor GPR41 (Gpr41-/-) or type 1 interferon receptor IFNAR1 (Ifnar1-/-) recapitulate the phenotype of neonatal ILC2s upon maternal antibiotic exposure. Furthermore, prenatal antibiotic exposure induces epigenetic changes in ILC2s and has a long-lasting deteriorative effect on allergic airway inflammation in adult offspring. Prenatal supplementation of butyrate ameliorates airway inflammation in adult mice born to antibiotic-exposed dams. These observations demonstrate an essential role for the microbiota in the control of type 2 innate immunity at the neonatal stage, which suggests a therapeutic window for treating asthma in early life.
Collapse
Affiliation(s)
- Haixu Xu
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xianfu Yi
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhaohai Cui
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Li
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lin Zhu
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lijuan Zhang
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - JiaLe Chen
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xutong Fan
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Pan Zhou
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mulin Jun Li
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Qiang Liu
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dandan Huang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Zhi Yao
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Jie Zhou
- Department of Immunology, Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
7
|
Emami Fard N, Xiao M, Sehmi R. Regulatory ILC2-Role of IL-10 Producing ILC2 in Asthma. Cells 2023; 12:2556. [PMID: 37947634 PMCID: PMC10650705 DOI: 10.3390/cells12212556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
Over the past two decades, a growing body of evidence observations have shown group two innate lymphoid cells (ILC2) to be critical drivers of Type 2 (T2) inflammatory responses associated with allergic inflammatory conditions such as asthma. ILC2 releases copious amounts of pro-inflammatory T2 cytokines-interleukin (IL)-4, IL-5, IL-9, and IL-13. This review provides a comprehensive overview of the newly discovered regulatory subtype of ILC2 described in murine and human mucosal tissue and blood. These KLRG1+ILC2 have the capacity to produce the anti-inflammatory cytokine IL-10. Papers compiled in this review were based on queries of PubMed and Google Scholar for articles published from 2000 to 2023 using keywords "IL-10" and "ILC2". Studies with topical relevance to IL-10 production by ILC2 were included. ILC2 responds to microenvironmental cues, including retinoic acid (RA), IL-2, IL-4, IL-10, and IL-33, as well as neuropeptide mediators such as neuromedin-U (NMU), prompting a shift towards IL-10 and away from T2 cytokine production. In contrast, TGF-β attenuates IL-10 production by ILC2. Immune regulation provided by IL-10+ILC2s holds potential significance for the management of T2 inflammatory conditions. The observation of context-specific cues that alter the phenotype of ILC warrants examining characteristics of ILC subsets to determine the extent of plasticity or whether the current classification of ILCs requires refinement.
Collapse
Affiliation(s)
| | | | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (N.E.F.)
| |
Collapse
|
8
|
Xu G(B, Pan YX, Mei W, Chen H. Single-Cell RNA Sequencing (scRNA-seq) Identifies L1CAM as a Key Mediator between Epithelial Tuft Cell and Innate Lymphoid Cell in the Colon of Hnrnp I Knockout Mice. Biomedicines 2023; 11:2734. [PMID: 37893107 PMCID: PMC10604312 DOI: 10.3390/biomedicines11102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Knockout (KO) of heterogeneous nuclear ribonucleoprotein I (Hnrnp I) in mouse intestinal epithelial cells (IECs) induced a severe inflammatory response in the colon, followed by hyperproliferation. This study aimed to investigate the epithelial lineage dynamics and cell-cell communications that underlie inflammation and colitis. (2) Methods: Single cells were isolated from the colons of wildtype (WT) and KO mice and used in scRNA-seq. Whole colons were collected for immunofluorescence staining and cytokine assays. (3) Results: from scRNA-seq, the number of DCLK1 + colonic tuft cells was significantly higher in the Hnrnp I KO mice compared to the WT mice. This was confirmed by immunofluorescent staining of DCLK1. The DCLK1 + colonic tuft cells in KO mice developed unique communications with lymphocytes via interactions between surface L1 cell adhesion molecule (L1CAM) and integrins. In the KO mice colons, a significantly elevated level of inflammatory cytokines IL4, IL6, and IL13 were observed, which marks type-2 immune responses directed by group 2 innate lymphoid cells (ILC2s). (4) Conclusions: This study demonstrates one critical cellular function of colonic tuft cells, which facilitates type-2 immune responses by communicating with ILC2s via the L1CAM-integrins interaction. This communication promotes pro-inflammatory signaling pathways in ILC2, leading to the increased secretion of inflammatory cytokines.
Collapse
Affiliation(s)
- Guanying (Bianca) Xu
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenyan Mei
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hong Chen
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.X.); (Y.-X.P.)
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Cui G, Shimba A, Jin J, Hojo N, Asahi T, Abe S, Ejima A, Okada S, Ohira K, Kato R, Tani-ichi S, Yamada R, Ebihara T, Shiroguchi K, Ikuta K. CD45 alleviates airway inflammation and lung fibrosis by limiting expansion and activation of ILC2s. Proc Natl Acad Sci U S A 2023; 120:e2215941120. [PMID: 37639581 PMCID: PMC10483638 DOI: 10.1073/pnas.2215941120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are critical for the immune response against parasite infection and tissue homeostasis and involved in the pathogenesis of allergy and inflammatory diseases. Although multiple molecules positively regulating ILC2 development and activation have been extensively investigated, the factors limiting their population size and response remain poorly studied. Here, we found that CD45, a membrane-bound tyrosine phosphatase essential for T cell development, negatively regulated ILC2s in a cell-intrinsic manner. ILC2s in CD45-deficient mice exhibited enhanced proliferation and maturation in the bone marrow and hyperactivated phenotypes in the lung with high glycolytic capacity. Furthermore, CD45 signaling suppressed the type 2 inflammatory response by lung ILC2s and alleviated airway inflammation and pulmonary fibrosis. Finally, the interaction with galectin-9 influenced CD45 signaling in ILC2s. These results demonstrate that CD45 is a cell-intrinsic negative regulator of ILC2s and prevents lung inflammation and fibrosis via ILC2s.
Collapse
Affiliation(s)
- Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Jianshi Jin
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research, Osaka565-0874, Japan
| | - Nozomi Hojo
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research, Osaka565-0874, Japan
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Shinri Okada
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Keizo Ohira
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Ryoma Kato
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Shizue Tani-ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Ryo Yamada
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Takashi Ebihara
- Department of Medical Biology, Graduate School of Medicine, Akita University, Akita010-8543, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research, Osaka565-0874, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| |
Collapse
|
10
|
Thio CLP, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors. Exp Mol Med 2023; 55:1872-1884. [PMID: 37696890 PMCID: PMC10545775 DOI: 10.1038/s12276-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 09/13/2023] Open
Abstract
A dysregulated type 2 immune response is one of the fundamental causes of allergic asthma. Although Th2 cells are undoubtedly central to the pathogenesis of allergic asthma, the discovery of group 2 innate lymphoid cells (ILC2s) has added another layer of complexity to the etiology of this chronic disease. Through their inherent innate type 2 responses, ILC2s not only contribute to the initiation of airway inflammation but also orchestrate the recruitment and activation of other members of innate and adaptive immunity, further amplifying the inflammatory response. Moreover, ILC2s exhibit substantial cytokine plasticity, as evidenced by their ability to produce type 1- or type 17-associated cytokines under appropriate conditions, underscoring their potential contribution to nonallergic, neutrophilic asthma. Thus, understanding the mechanisms of ILC2 functions is pertinent. In this review, we present an overview of the current knowledge on ILC2s in asthma and the regulatory factors that modulate lung ILC2 functions in various experimental mouse models of asthma and in humans.
Collapse
Affiliation(s)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
11
|
Luo Y, Wang C, Du Z, Wang C, Wu Y, Lei A. Nitric Oxide-Producing Polymorphonuclear Neutrophils Confer Protection Against Chlamydia psittaci in Mouse Lung Infection. J Infect Dis 2023; 228:453-463. [PMID: 36961856 DOI: 10.1093/infdis/jiad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Whether polymorphonuclear neutrophils (PMN) exert a protective role upon chlamydial infection by expressing inducible nitric oxide (NO) synthase (iNOS) and producing NO remains unclear. METHODS This issue was addressed using BALB/c mice infected with Chlamydia psittaci 6BC strain. Methods included flow cytometry, immunofluorescence, qRT-PCR, and western blot. RESULTS The number of PMN was significantly increased during C. psittaci infection, which was accompanied by increased iNOS expression and NO production in the mouse lungs. PMN were the major source of NO during pulmonary C. psittaci infection and inhibited C. psittaci multiplication in an iNOS/NO-dependent manner. Depletion of PMN aggravated C. psittaci-induced disease and increased C. psittaci burden. Nuclear factor-κB (NF-κB) and STAT1 signaling pathways, but not MAPK signaling pathways, were required for the induction of iNOS expression and NO production in PMN by C. psittaci infection. Thus, our findings highlight the protective role of NO-producing PMN in C. psittaci infection. CONCLUSIONS NO-producing PMN confer a protective role during pulmonary C. psittaci infection in mice, and thus our study sheds new light on PMN function during Chlamydia infection.
Collapse
Affiliation(s)
- Ying Luo
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Cui Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Zhaoxiang Du
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yimou Wu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| |
Collapse
|
12
|
Wang C, Du Z, Li R, Luo Y, Zhu C, Ding N, Lei A. Interferons as negative regulators of ILC2s in allergic lung inflammation and respiratory viral infections. J Mol Med (Berl) 2023; 101:947-959. [PMID: 37414870 DOI: 10.1007/s00109-023-02345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s), characterized by a lack of antigen receptors, have been regarded as an important component of type 2 pulmonary immunity. Analogous to Th2 cells, ILC2s are capable of releasing type 2 cytokines and amphiregulin, thus playing an essential role in a variety of diseases, such as allergic diseases and virus-induced respiratory diseases. Interferons (IFNs), an important family of cytokines with potent antiviral effects, can be triggered by microbial products, microbial exposure, and pathogen infections. Interestingly, the past few years have witnessed encouraging progress in revealing the important role of IFNs and IFN-producing cells in modulating ILC2 responses in allergic lung inflammation and respiratory viral infections. This review underscores recent progress in understanding the role of IFNs and IFN-producing cells in shaping ILC2 responses and discusses disease phenotypes, mechanisms, and therapeutic targets in the context of allergic lung inflammation and infections with viruses, including influenza virus, rhinovirus (RV), respiratory syncytial virus (RSV), and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Cui Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zhaoxiang Du
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ranhui Li
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ying Luo
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Nan Ding
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
13
|
Erdem S, Haskologlu S, Haliloglu Y, Çelikzencir H, Arik E, Keskin O, Eltan SB, Yucel E, Canatan H, Avcilar H, Yilmaz E, Ozcan A, Unal E, Karakukcu M, Celiksoy MH, Kilic SS, Demir A, Genel F, Gulez N, Koker MY, Ozen AO, Baris S, Metin A, Guner SN, Reisli I, Keles S, Dogu EF, Ikinciogullari KA, Eken A. Defective Treg generation and increased type 3 immune response in leukocyte adhesion deficiency 1. Clin Immunol 2023:109691. [PMID: 37433423 DOI: 10.1016/j.clim.2023.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
In 15 Turkish LAD-1 patients and controls, we assessed the impact of pathogenic ITGB2 mutations on Th17/Treg differentiation and functions, and innate lymphoid cell (ILC) subsets. The percentage of peripheral blood Treg cells, in vitro-generated induced Tregs differentiated from naive CD4+ T cells were decreased despite the elevated absolute counts of CD4+ cells in LAD1 patients. Serum IL-23 levels were elevated in LAD1 patients. Post-curdlan stimulation, LAD1 patient-derived PBMCs produced more IL-17A. Additionally, the percentages of CD18-deficient Th17 cells expanded from total or naïve CD4+ T cells were higher. The blood ILC3 subset was significantly elevated in LAD1. Finally, LAD1 PBMCs showed defects in trans-well migration and proliferation and were more resistant to apoptosis. Defects in de novo generation of Tregs from CD18-deficient naïve T cells and elevated Th17s, and ILC3s in LAD1 patients' peripheral blood suggest a type 3-skewed immunity and may contribute to LAD1-associated autoimmune symptoms.
Collapse
Affiliation(s)
- Serife Erdem
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Sule Haskologlu
- Ankara University School of Medicine, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | - Yesim Haliloglu
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Huriye Çelikzencir
- Erciyes University School of Medicine, Department of Immunology, Kayseri, Turkey.
| | - Elif Arik
- Gaziantep University School of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep, Turkey
| | - Ozlem Keskin
- Gaziantep University School of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Esra Yucel
- Istanbul University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Halit Canatan
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Huseyin Avcilar
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Ebru Yilmaz
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Alper Ozcan
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Ekrem Unal
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Musa Karakukcu
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Mehmet Halil Celiksoy
- İstanbul Başakşehir Çam ve Sakura City Hospital, Pediatric Allergy and Immunology Clinic Istanbul, Turkey
| | - Sara Sebnem Kilic
- Bursa Uludag University, Department of Pediatric Immunology and Rheumatology, Bursa, Turkey.
| | - Ayca Demir
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Ferah Genel
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Nesrin Gulez
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Mustafa Yavuz Koker
- Erciyes University School of Medicine, Department of Immunology, Kayseri, Turkey.
| | - Ahmet Oguzhan Ozen
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Safa Baris
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ayse Metin
- Ankara City Hospital, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | - Sukru Nail Guner
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Ismail Reisli
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Sevgi Keles
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Esin Figen Dogu
- Ankara University School of Medicine, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | | | - Ahmet Eken
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.
| |
Collapse
|
14
|
Wang Z, Yan C, Du Q, Huang Y, Li X, Zeng D, Mao R, Gurram RK, Cheng S, Gu W, Zhu L, Fan W, Ma L, Ling Z, Qiu J, Li D, Liu E, Zhang Y, Fang Y, Zhu J, Sun B. HTR2A agonists play a therapeutic role by restricting ILC2 activation in papain-induced lung inflammation. Cell Mol Immunol 2023; 20:404-418. [PMID: 36823235 PMCID: PMC10066198 DOI: 10.1038/s41423-023-00982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are a category of heterogeneous cells that produce the cytokines IL-5 and IL-13, which mediate the type 2 immune response. However, specific drug targets on lung ILC2s have rarely been reported. Previous studies have shown that type 2 cytokines, such as IL-5 and IL-13, are related to depression. Here, we demonstrated the negative correlation between the depression-associated monoamine neurotransmitter serotonin and secretion of the cytokines IL-5 and IL-13 by ILC2s in individuals with depression. Interestingly, serotonin ameliorates papain-induced lung inflammation by suppressing ILC2 activation. Our data showed that the serotonin receptor HTR2A was highly expressed on ILC2s from mouse lungs and human PBMCs. Furthermore, an HTR2A selective agonist (DOI) impaired ILC2 activation and alleviated the type 2 immune response in vivo and in vitro. Mice with ILC2-specific depletion of HTR2A (Il5cre/+·Htr2aflox/flox mice) abolished the DOI-mediated inhibition of ILC2s in a papain-induced mouse model of inflammation. In conclusion, serotonin and DOI could restrict the type 2 lung immune response, indicating a potential treatment strategy for type 2 lung inflammation by targeting HTR2A on ST2+ ILC2s.
Collapse
Affiliation(s)
- Zhishuo Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Chenghua Yan
- College of Life Sciences, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Qizhen Du
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yuying Huang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xuezhen Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Dan Zeng
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Department of Allergy, Chongqing General Hospital, Chongqing, China
| | - Ruizhi Mao
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Rama Krishna Gurram
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Wangpeng Gu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Lin Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Weiguo Fan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Liyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zhiyang Ling
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dangsheng Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Enmei Liu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Yiru Fang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 201108, China.
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Bing Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
15
|
Cao Y, Li Y, Wang X, Liu S, Zhang Y, Liu G, Ye S, Zheng Y, Zhao J, Zhu X, Chen Y, Xu H, Feng D, Chen D, Chen L, Liu W, Zhou W, Zhang Z, Zhou P, Deng K, Ye L, Yu Y, Yao Z, Liu Q, Xu H, Zhou J. Dopamine inhibits group 2 innate lymphoid cell-driven allergic lung inflammation by dampening mitochondrial activity. Immunity 2023; 56:320-335.e9. [PMID: 36693372 DOI: 10.1016/j.immuni.2022.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023]
Abstract
Neuronal signals have emerged as pivotal regulators of group 2 innate lymphoid cells (ILC2s) that regulate tissue homeostasis and allergic inflammation. The molecular pathways underlying the neuronal regulation of ILC2 responses in lungs remain to be fully elucidated. Here, we found that the abundance of neurotransmitter dopamine was negatively correlated with circulating ILC2 numbers and positively associated with pulmonary function in humans. Dopamine potently suppressed lung ILC2 responses in a DRD1-receptor-dependent manner. Genetic deletion of Drd1 or local ablation of dopaminergic neurons augmented ILC2 responses and allergic lung inflammation. Transcriptome and metabolic analyses revealed that dopamine impaired the mitochondrial oxidative phosphorylation (OXPHOS) pathway in ILC2s. Augmentation of OXPHOS activity with oltipraz antagonized the inhibitory effect of dopamine. Local administration of dopamine alleviated allergen-induced ILC2 responses and airway inflammation. These findings demonstrate that dopamine represents an inhibitory regulator of ILC2 responses in allergic airway inflammation.
Collapse
Affiliation(s)
- Yingjiao Cao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yu Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Xiangyang Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Shaorui Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Yongmei Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Gaoyu Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shusen Ye
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yuhao Zheng
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jiacong Zhao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Chen
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Haixu Xu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Dubo Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Sun Yet-san University, Guangzhou 510080, China
| | - Ling Chen
- Department of Neurology, First Affiliated Hospital of Sun Yet-san University, Guangzhou 510080, China
| | - Wangkai Liu
- Department of Pediatrics, First Affiliated Hospital of Sun Yet-san University, Guangzhou 510080, China
| | - Wenjie Zhou
- Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230026, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kai Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China.
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
16
|
Sun X, Zhou J, Huang W, Wang B, Zhang Y, Duan L, Chen W. Association between IL-38 and inflammatory indicators in patients with bacterial pneumonia. Cytokine 2023; 161:156052. [PMID: 36375397 DOI: 10.1016/j.cyto.2022.156052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND IL-38, a recently discovered cytokine of IL-1 family, exerts immunoregulatory activities in multi-type inflammatory diseases. However, its expression level and underlying clinical importance for IL-38 in respiratory bacterial infections remain unknown. METHODS Thirty-five patients with bacterial pneumonia and twenty age- and gender- matched healthy individuals were enrolled in the study to determine serum IL-38 concentrations by ELISA. Then, the correlation between serum IL-38 levels and clinical features were analyzed and ROC curve was used to evaluate the potential diagnostic value for bacterial infections. In vitro, LPS-stimulated human respiratory epithelial cell model was employed to explore immunomodulatory mechanism of IL-38 in pulmonary infections. RESULTS Elevated serum levels of IL-38 were determined in patients with bacterial pneumonia when compared with healthy controls. In addition, serum IL-38 levels were negatively correlated with clinical inflammation parameters, including WBC count, CRP, PCT and proinflammatory IL-6 and IL-8. In vitro, we demonstrated that recombinant IL-38 was able to remarkably inhibit expression of proinflammatory IL-6, IL-8, IL-1β and TNF-α as well as adhesion molecule ICAM-1, which were partially mediated by attenuated activation of STAT3 and NF-κB signal cascades in BEAS-2B cells. Furthermore, we identified the diagnostic efficiency of IL-38 in discriminating patients with bacterial pneumonia from healthy individuals. CONCLUSIONS Our study indicates higher serum IL-38 levels in patients with bacterial pneumonia are involved in anti-inflammatory activities in respiratory infections revealing a critical role of IL-38 in attenuating excessive pulmonary inflammation against exogenous pathogens. More importantly, IL-38 exhibited a potential novel biomarker for bacterial pneumonia. Thus, our data may provide useful insights for both clinical and basic research for bacterial pneumonia diagnosis.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yu Zhong District, Chongqing, PR China
| | - Jie Zhou
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Wenjuan Huang
- Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Chongqing 400010, PR China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yu Zhong District, Chongqing, PR China
| | - Yi Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yu Zhong District, Chongqing, PR China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yu Zhong District, Chongqing, PR China.
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Yu Zhong District, Chongqing, PR China.
| |
Collapse
|
17
|
Peng H, Wu S, Wang S, Yang Q, Wang L, Zhang S, Huang M, Li Y, Xiong P, Zhang Z, Cai Y, Li L, Deng Y, Deng Y. Sex differences exist in adult heart group 2 innate lymphoid cells. BMC Immunol 2022; 23:52. [PMCID: PMC9620621 DOI: 10.1186/s12865-022-00525-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Group 2 innate lymphoid cells (ILC2s) are the most dominant ILCs in heart tissue, and sex-related differences exist in mouse lung ILC2 phenotypes and functions; however, it is still unclear whether there are sex differences in heart ILC2s.
Results Compared with age-matched wild-type (WT) male mice, 8-week-old but not 3-week-old WT female mice harbored an obviously greater percentage and number of heart ILC2s in homeostasis. However, the percentage of killer-cell lectin-like receptor G1 (Klrg1)− ILC2s was higher, but the Klrg1+ ILC2s were lower in female mice than in male mice in both heart tissues of 3- and 8-week-old mice. Eight-week-old Rag2−/− mice also showed sex differences similar to those of age-matched WT mice. Regarding surface marker expression, compared to age-matched male mice, WT female mice showed higher expression of CD90.2 and Ki67 and lower expression of Klrg1 and Sca-1 in heart total ILC2s. There was no sex difference in IL-4 and IL-5 secretion by male and female mouse heart ILC2s. Increased IL-33 mRNA levels within the heart tissues were also found in female mice compared with male mice. By reanalyzing published single-cell RNA sequencing data, we found 2 differentially expressed genes between female and male mouse heart ILC2s. Gene set variation analysis revealed that the glycine, serine and threonine metabolism pathway was upregulated in female heart ILC2s. Subcluster analysis revealed that one cluster of heart ILC2s with relatively lower expression of Semaphorin 4a and thioredoxin interacting protein but higher expression of hypoxia-inducible lipid droplet-associated. Conclusions These results revealed greater numbers of ILC2s, higher expression of CD90.2, reduced Klrg1 and Sca-1 expression in the hearts of female mice than in male mice and no sex difference in IL-4 and IL-5 production in male and female mouse heart ILC2s. These sex differences in heart ILC2s might be due to the heterogeneity of IL-33 within the heart tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00525-0.
Collapse
Affiliation(s)
- Hongyan Peng
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Shuting Wu
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Shanshan Wang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060 People’s Republic of China
| | - Qinglan Yang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Lili Wang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Shuju Zhang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Minghui Huang
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Yana Li
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Peiwen Xiong
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Zhaohui Zhang
- grid.410570.70000 0004 1760 6682Institute of Materia Medica, College of Pharmacy and Laboratory Medicine Science, Army Medical University (Third Military Medical University), Chongqing, 400038 China
| | - Yue Cai
- grid.233520.50000 0004 1761 4404Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 China
| | - Liping Li
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| | - Youcai Deng
- grid.410570.70000 0004 1760 6682Institute of Materia Medica, College of Pharmacy and Laboratory Medicine Science, Army Medical University (Third Military Medical University), Chongqing, 400038 China ,grid.410570.70000 0004 1760 6682Department of Hematology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing, 400038 China
| | - Yafei Deng
- grid.440223.30000 0004 1772 5147Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, 410007 China ,grid.440223.30000 0004 1772 5147Hunan Provincial Key Laboratory of Children’s Emergency Medicine, Hunan Children’s Hospital, Changsha, 410007 China
| |
Collapse
|
18
|
CD226 Deficiency Alleviates Murine Allergic Rhinitis by Suppressing Group 2 Innate Lymphoid Cell Responses. Mediators Inflamm 2022; 2022:1756395. [PMID: 35846105 PMCID: PMC9283078 DOI: 10.1155/2022/1756395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Allergic rhinitis (AR) is an immunoglobulin E-mediated type 2 inflammation of the nasal mucosa that is mainly driven by type 2 helper T cells (Th2) and type 2 innate lymphoid cells (ILC2s). CD226 is a costimulatory molecule associated with inflammatory response and is mainly expressed on T cells, natural killer cells, and monocytes. This study is aimed at elucidating the role of CD226 in allergic inflammatory responses in murine AR using global and CD4+ T cell-specific Cd226 knockout (KO) mice. AR nasal symptoms were assessed based on the frequency of nose rubbing and sneezing. Hematoxylin and eosin and periodic acid–Schiff staining and quantitative real-time PCR methods were used to determine eosinophils, goblet cells, and ILC2-associated mRNA levels in the nasal tissues of mice. CD226 levels on ILC2s were detected using flow cytometry, and an immunofluorescence double staining assay was employed to determine the number of ILC2s in the nasal mucosa. The results showed that global Cd226 KO mice, but not CD4+ T cell-specific Cd226 KO mice, exhibited attenuated AR nasal symptoms. Eosinophil recruitment, goblet cell proliferation, and Th2-inflammatory cytokines were significantly reduced, which resulted in the alleviation of allergic and inflammatory responses. ILC2s in the murine nasal mucosa expressed higher levels of CD226 after ovalbumin stimulation, and CD226 deficiency led to a reduction in the proportion of nasal ILC2s and ILC2-related inflammatory gene expression. Hence, the effect of CD226 on the AR mouse model may involve the regulation of ILC2 function rather than CD4+ T cells.
Collapse
|
19
|
DJ-1 governs airway progenitor cell/eosinophil interactions to promote allergic inflammation. J Allergy Clin Immunol 2022; 150:1178-1193.e13. [PMID: 35724763 DOI: 10.1016/j.jaci.2022.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND DJ-1 is an antioxidant protein known to regulate mast cell mediated allergic response, but its role in airway eosinophilic interactions and allergic inflammation is not known. OBJECTIVE The aim of this study was to investigate the role of DJ-1 in airway eosinophilic inflammation in vitro and in vivo. METHODS Ovalbumin-induced airway allergic inflammation was established in mice. ELISA was adopted to analyze DJ-1 and cytokine levels in mouse bronchoalveolar lavage fluid. Transcriptional profiling of mouse lung tissues was conducted by single-cell RNA sequencing technology. The role of DJ-1 in the differentiation of airway progenitor cells into goblet cells was examined by organoid cultures, immunofluorescence staining, quantitative PCR, and cell transplantation in normal, DJ-1 knockout (KO), or conditional DJ-1 KO mice. RESULTS We observed that DJ-1 was increased in the lung tissues of ovalbumin-sensitized and challenged mice. DJ-1 KO mice exhibited reduced airway eosinophil infiltration and goblet cell differentiation. Mechanistically, we discovered that eosinophil-club cell interactions are reduced in the absence of DJ-1. Organoid cultures indicated that eosinophils impair the proliferative potential of club cells. Intratracheal transplantation of DJ-1-deficient eosinophils suppresses airway goblet cell differentiation. Loss of DJ-1 inhibits the metabolism of arachidonic acid into cysteinyl leukotrienes in eosinophils while these secreted metabolites promote airway goblet cell fate in organoid cultures and in vivo. CONCLUSION DJ-1-mediated interactions between airway epithelial progenitor cells and immune cells are essential in controlling airway goblet cell metaplasia and eosinophilia. Blockade of the DJ-1 pathway is protective against airway allergic inflammation.
Collapse
|
20
|
Hurrell BP, Helou DG, Shafiei-Jahani P, Howard E, Painter JD, Quach C, Akbari O. Cannabinoid receptor 2 engagement promotes group 2 innate lymphoid cell expansion and enhances airway hyperreactivity. J Allergy Clin Immunol 2022; 149:1628-1642.e10. [PMID: 34673048 PMCID: PMC9013728 DOI: 10.1016/j.jaci.2021.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cannabinoids modulate the activation of immune cells and physiologic processes in the lungs. Group 2 innate lymphoid cells (ILC2s) are central players in type 2 asthma, but how cannabinoids modulate ILC2 activation remains to be elucidated. OBJECTIVE Our goal was to investigate the effects of cannabinoids on ILC2s and their role in asthma. METHODS A combination of cannabinoid receptor (CB)2 knockout (KO) mice, CB2 antagonist and agonist were used in the mouse models of IL-33, IL-25, and Alternaria alternata ILC2-dependent airway inflammation. RNA sequencing was performed to assess transcriptomic changes in ILC2s, and humanized mice were used to assess the role of CB2 signaling in human ILC2s. RESULTS We provide evidence that CB2 signaling in ILC2s is important for the development of ILC2-driven airway inflammation in both mice and human. We showed that both naive and activated murine pulmonary ILC2s express CB2. CB2 signaling did not affect ILC2 homeostasis at steady state, but strikingly it stimulated ILC2 proliferation and function upon activation. As a result, ILC2s lacking CB2 induced lower lung inflammation, as we made similar observations using a CB2 antagonist. Conversely, CB2 agonism remarkably exacerbated ILC2-driven airway hyperreactivity and lung inflammation. Mechanistically, transcriptomic and protein analysis revealed that CB2 signaling induced cyclic adenosine monophosphate-response element binding protein (CREB) phosphorylation in ILC2s. Human ILC2s expressed CB2, as CB2 antagonism and agonism showed opposing effects on ILC2 effector function and development of airway hyperreactivity in humanized mice. CONCLUSION Collectively, our results define CB2 signaling in ILC2s as an important modulator of airway inflammation.
Collapse
Affiliation(s)
- Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
21
|
Liu G, Chen Y, Wang Y, Deng X, Xiao Q, Zhang L, Xu H, Han X, Lei A, He J, Li X, Cao Y, Zhou P, He C, Wu P, Jiang W, Tan M, Chen C, Yang Q, Lu L, Deng K, Yao Z, Zhou J. Angiotensin II enhances group 2 innate lymphoid cell responses via AT1a during airway inflammation. J Exp Med 2022; 219:212967. [PMID: 35044462 PMCID: PMC8932533 DOI: 10.1084/jem.20211001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) have emerged as critical mediators in driving allergic airway inflammation. Here, we identified angiotensin (Ang) II as a positive regulator of ILC2s. ILC2s expressed higher levels of the Ang II receptor AT1a, and colocalized with lung epithelial cells expressing angiotensinogen. Administration of Ang II significantly enhanced ILC2 responses both in vivo and in vitro, which were almost completely abrogated in AT1a-deficient mice. Deletion of AT1a or pharmacological inhibition of the Ang II–AT1 axis resulted in a remarkable remission of airway inflammation. The regulation of ILC2s by Ang II was cell intrinsic and dependent on interleukin (IL)-33, and was associated with marked changes in transcriptional profiling and up-regulation of ERK1/2 phosphorylation. Furthermore, higher levels of plasma Ang II correlated positively with the abundance of circulating ILC2s as well as disease severity in asthmatic patients. These observations reveal a critical role for Ang II in regulating ILC2 responses and airway inflammation.
Collapse
Affiliation(s)
- Gaoyu Liu
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Division of Hematology/Oncology, Department of Pediatrics, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yingying Chen
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohui Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xiao
- Department of Clinical Laboratory, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lijuan Zhang
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haixu Xu
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xu Han
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Aihua Lei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Juan He
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xing Li
- Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingjiao Cao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pan Zhou
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chunhui He
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Peiqiong Wu
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wenhui Jiang
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Meizheng Tan
- Department of Child Health Care, Guangzhou Institute of Pediatrics, Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Quan Yang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, Shenzhen Hospital, University of Hong Kong, Hong Kong, China
| | - Kai Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
22
|
Zhang X, Chen Z, Zuo S, Sun H, Li X, Lu X, Xing Z, Chen M, Liu J, Xiao G, He Y. Endothelin-A Receptor Antagonist Alleviates Allergic Airway Inflammation via the Inhibition of ILC2 Function. Front Immunol 2022; 13:835953. [PMID: 35222426 PMCID: PMC8873101 DOI: 10.3389/fimmu.2022.835953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Allergic airway inflammation is a universal airway disease that is driven by hyperresponsiveness to inhaled allergens. Group 2 innate lymphoid cells (ILC2s) produce copious amounts of type 2 cytokines, which lead to allergic airway inflammation. Here, we discovered that both peripheral blood of human and mouse lung ILC2s express the endothelin-A receptor (ETAR), and the expression level of ETAR was dramatically induced upon interleukin-33 (IL-33) treatment. Subsequently, both preventive and therapeutic effects of BQ123, an ETAR antagonist, on allergic airway inflammation were observed, which were associated with decreased proliferation and type 2 cytokine productions by ILC2s. Furthermore, ILC2s from BQ123 treatment were found to be functionally impaired in response to an interleukin IL-33 challenged. And BQ123 treatment also affected the phosphorylation level of the extracellular signal-regulated kinase (ERK), as well as the level of GATA binding protein 3 (GATA3) in activated ILC2s. Interestingly, after BQ123 treatment, both mouse and human ILC2s in vitro exhibited decreased function and downregulation of ERK signaling and GATA3 stability. These observations imply that ETAR is an important regulator of ILC2 function and may be involved in ILC2-driven pulmonary inflammation. Therefore, blocking ETAR may be a promising therapeutic strategy for allergic airway inflammation.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziyang Chen
- Department of Neurosurgery Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hengbiao Sun
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Gang Xiao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yumei He
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Bilirubin represents a negative regulator of ILC2 in allergic airway inflammation. Mucosal Immunol 2022; 15:314-326. [PMID: 34686839 DOI: 10.1038/s41385-021-00460-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 02/04/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) play an important role in allergic airway inflammation. Despite recent advances in defining molecular mechanisms that control ILC2 development and function, the role of endogenous metabolites in the regulation of ILC2s remains poorly understood. Herein, we demonstrated that bilirubin, an end product of heme catabolism, was a potent negative regulator of ILC2s. Bilirubin metabolism was found to be significantly induced during airway inflammation in mouse models. The administration of unconjugated bilirubin (UCB) dramatically suppressed ILC2 responses to interleukin (IL)-33 in mice, including cell proliferation and the production of effector cytokines. Furthermore, UCB significantly alleviated ILC2-driven airway inflammation, which was aggravated upon clearance of endogenous UCB. Mechanistic studies showed that the effects of bilirubin on ILC2s were associated with downregulation of ERK phosphorylation and GATA3 expression. Clinically, newborns with hyperbilirubinemia displayed significantly lower levels of ILC2 with impaired function and suppressed ERK signaling. Together, these findings indicate that bilirubin serves as an endogenous suppressor of ILC2s and might have potential therapeutic value in the treatment of allergic airway inflammation.
Collapse
|
24
|
Zhang L, Meng W, Chen X, Ning Y, Sun M, Wang R. MiR-150-5p regulates the functions of type 2 innate lymphoid cells via the ICAM-1/p38 MAPK axis in allergic rhinitis. Mol Cell Biochem 2022; 477:1009-1022. [PMID: 34988856 DOI: 10.1007/s11010-021-04346-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
Type 2 innate lymphoid cells (ILC2s) exert an increasingly important influence on the pathological process of allergic rhinitis (AR), which is affected by microRNAs-mediated post-transcriptional regulation. This study aims to investigate the function of miR-150-5p in AR patients and the mouse model of AR. The mouse model of AR was established using the OVA challenge. The expressions of miR-150-5p, ICAM-1, p-p38 and p-GATA-3 were evaluated via RT-qPCR and western blot analysis. The level of ILC2s was examined with flow cytometry. Concentrations of OVA-specific IgE, IL-13 and IL-5 in serum were evaluated using ELISA. Histopathological examination was conducted through H&E staining. The interplay between ICAM-1 and miR-150-5p was determined through the DLR assay. The decreased miR-150-5p expression and increased ICAM-1, p-p38 and p-GATA-3 expressions and ILC2s levels were detected in AR patients and AR mice compared with controls. Treatment with miR-150-5p lentivirus alleviated AR symptoms (sneezing, rubbing, mucosa inflammation, serum type 2 cytokines and OVA-specific IgE) and lowered the ILC2s level in AR mice. MiR-150-5p was found to directly bind to 3'-UTR of ICAM-1 and downregulate ICAM-1 expression, thereby descending the level of p-p38, p-GATA-3 and suppressing ILC2s function to alleviate AR symptoms. Treatment with Lenti-ICAM-1 counteracted these protective effects of miR-150-5p. Upregulation of miR-150-5p repressed the ICAM-1/p38 axis which was vital to ILC2s development and function, thereby alleviating allergic symptoms of AR.
Collapse
Affiliation(s)
- Lifeng Zhang
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Wei Meng
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Xiangjing Chen
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Yunhong Ning
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Meng Sun
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China
| | - Renzhong Wang
- Department of ENT, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42, Wenhua West Road, Lixia District, Jinan City, 250011, Shandong Province, China.
| |
Collapse
|
25
|
Orimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy 2021; 76:3332-3348. [PMID: 33866593 DOI: 10.1111/all.14863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Discovery of innate lymphoid cells (ILCs), which are non-T and non-B lymphocytes that have no antigen-specific receptors, changed the classical concept of the mechanism of allergy, which had been explained mainly as antigen-specific acquired immunity based on IgE and Th2 cells. The discovery led to dramatic improvement in our understanding of the mechanism of non-IgE-mediated allergic inflammation. Numerous studies conducted in the past decade have elucidated the characteristics of each ILC subset in various organs and tissues and their ontogeny. We now know that each ILC subset exhibits heterogeneity. Moreover, the functions and activating/suppressing factors of each ILC subset were found to differ among both organs and types of tissue. Therefore, in this review, we summarize our current knowledge of ILCs by focusing on the organ/tissue-specific features of each subset to understand their roles in various organs. We also discuss ILCs' involvement in human inflammatory diseases in various organs and potential therapeutic/preventive strategies that target ILCs.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency Saitama Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| |
Collapse
|
26
|
Dou Y, Maurer K, Conrad M, Patel T, Shraim R, Sullivan KE, Kelsen J. Mucosal Invariant T cells are Diminished in Very Early-Onset Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2021; 73:529-536. [PMID: 34117197 PMCID: PMC8713142 DOI: 10.1097/mpg.0000000000003189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Very early-onset inflammatory bowel disease (VEO-IBD) arises in children less than 6 years old, a critical time for immunologic development and maturation of the intestinal microbiome. Non-conventional lymphocytes, defined here as mucosal-associated invariant T cells and innate lymphocytes, require microbial products for either development or expansion, aspects that could be altered in very early-onset inflammatory bowel disease. Our objective was to define conventional leukocyte and non-conventional lymphocyte populations in controls and patients using multiparameter flow cytometry to test the hypothesis that their frequencies would be altered in a chronic inflammatory state associated with significant dysbiosis. METHODS Multiparameter flow cytometry was used in a control cohort of 105 subjects to define age-effects, not previously comprehensively examined for these cell types in humans. Differences were defined between 263 unique age-matched patients with VEO-IBD and 105 controls using Student t-test. Subjects were divided into two age groups at the time of sampling to control for age-related changes in immune composition. RESULTS Intermediate monocytes were consistently decreased in patients with VEO-IBD compared to controls. Mucosal-associated invariant T cells were significantly lower in patients with long-standing disease. Levels were less than half of those seen in the age-matched control cohort. The innate lymphoid cells type 2 population was expanded in the youngest patients. CONCLUSION Mucosal-associated invariant T cells are diminished years after presentation with inflammatory bowel disease. This durable effect of early life intestinal inflammation may have long-term consequences. Diminished mucosal-associated invariant T cells could impact host defense of intestinal infections.
Collapse
Affiliation(s)
- Ying Dou
- Division of Allergy Immunology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kelly Maurer
- Division of Allergy Immunology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Maire Conrad
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Trusha Patel
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Rawan Shraim
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Judith Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
27
|
Painter JD, Akbari O. Type 2 Innate Lymphoid Cells: Protectors in Type 2 Diabetes. Front Immunol 2021; 12:727008. [PMID: 34489979 PMCID: PMC8416625 DOI: 10.3389/fimmu.2021.727008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2) are the innate counterparts of Th2 cells and are critically involved in the maintenance of homeostasis in a variety of tissues. Instead of expressing specific antigen receptors, ILC2s respond to external stimuli such as alarmins released from damage. These cells help control the delicate balance of inflammation in adipose tissue, which is a determinant of metabolic outcome. ILC2s play a key role in the pathogenesis of type 2 diabetes mellitus (T2DM) through their protective effects on tissue homeostasis. A variety of crosstalk takes place between resident adipose cells and ILC2s, with each interaction playing a key role in controlling this balance. ILC2 effector function is associated with increased browning of adipose tissue and an anti-inflammatory immune profile. Trafficking and maintenance of ILC2 populations are critical for tissue homeostasis. The metabolic environment and energy source significantly affect the number and function of ILC2s in addition to affecting their interactions with resident cell types. How ILC2s react to changes in the metabolic environment is a clear determinant of the severity of disease. Treating sources of metabolic instability via critical immune cells provides a clear avenue for modulation of systemic homeostasis and new treatments of T2DM.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
28
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
29
|
Zheng H, Zhang Y, Pan J, Liu N, Qin Y, Qiu L, Liu M, Wang T. The Role of Type 2 Innate Lymphoid Cells in Allergic Diseases. Front Immunol 2021; 12:586078. [PMID: 34177881 PMCID: PMC8220221 DOI: 10.3389/fimmu.2021.586078] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Allergic diseases are significant diseases that affect many patients worldwide. In the past few decades, the incidence of allergic diseases has increased significantly due to environmental changes and social development, which has posed a substantial public health burden and even led to premature death. The understanding of the mechanism underlying allergic diseases has been substantially advanced, and the occurrence of allergic diseases and changes in the immune system state are known to be correlated. With the identification and in-depth understanding of innate lymphoid cells, researchers have gradually revealed that type 2 innate lymphoid cells (ILC2s) play important roles in many allergic diseases. However, our current studies of ILC2s are limited, and their status in allergic diseases remains unclear. This article provides an overview of the common phenotypes and activation pathways of ILC2s in different allergic diseases as well as potential research directions to improve the understanding of their roles in different allergic diseases and ultimately find new treatments for these diseases.
Collapse
Affiliation(s)
- Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiachuang Pan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nannan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Qin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Qiu
- Journal Press of Global Traditional Chinese Medicine, Beijing, China
| | - Min Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Sun H, Wu Y, Zhang Y, Ni B. IL-10-Producing ILCs: Molecular Mechanisms and Disease Relevance. Front Immunol 2021; 12:650200. [PMID: 33859642 PMCID: PMC8042445 DOI: 10.3389/fimmu.2021.650200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Innate lymphoid cells (ILCs) are mainly composed of natural killer (NK) cells and helper-like lymphoid cells, which play a vital role in maintaining tissue homeostasis, enhancing adaptive immunity and regulating tissue inflammation. Alteration of the distribution and function of ILCs subgroups are closely related to the pathogenesis of inflammatory diseases and cancers. Interleukin-10 (IL-10) is a highly pleiotropic cytokine, and can be secreted by several cell types, among of which ILCs are recently verified to be a key source of IL-10. So far, the stable production of IL-10 can only be observed in certain NK subsets and ILC2s. Though the regulatory mechanisms for ILCs to produce IL-10 are pivotal for understanding ILCs and potential intervenes of diseases, which however is largely unknown yet. The published studies show that ILCs do not share exactly the same mechanisms for IL-10 production with helper T cells. In this review, the molecular mechanisms regulating IL-10 production in NK cells and ILC2s are discussed in details for the first time, and the role of IL-10-producing ILCs in diseases such as infections, allergies, and cancers are summarized.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Chongqing International Institute for Immunology, Chongqing, China
| | - Yi Zhang
- Chongqing International Institute for Immunology, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
31
|
Xiao Q, He J, Lei A, Xu H, Zhang L, Zhou P, Jiang G, Zhou J. PPARγ enhances ILC2 function during allergic airway inflammation via transcription regulation of ST2. Mucosal Immunol 2021; 14:468-478. [PMID: 32811992 DOI: 10.1038/s41385-020-00339-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) represent the major player during hyperresponsive airway inflammation. Peroxisome proliferator-activated receptor-γ (PPARγ) was highly expressed on ILC2 and its potential role in asthma has been suggested. However, the detailed mechanism underlying the effects of PPARγ on ILC2-induced airway inflammation remains to be fully understood. Here we identified PPARγ as a positive regulator of lung ILC2. Expression of PPARγ on ILC2 was dramatically induced upon interleukin-33 (IL-33) challenge. Deficiency of PPARγ in hematopoietic system in mice (PPARγfl/fl Vav1Cre) significantly impaired the function of ILC2 in lung, which led to apparent alleviation of airway inflammation in response to IL-33 or Papain challenge, when compared with those in PPARγfl/fl littermates control. Mechanistic studies identified IL-33 receptor ST2 as a transcriptional target of PPARγ. Overexpression of ST2 rescued the functional defects of ILC2 lacking PPARγ. Collectively, these results demonstrated PPARγ as an important regulator of ILC2 during allergic airway inflammation, which sheds new lights on the importance of PPARγ in asthma.
Collapse
Affiliation(s)
- Qiang Xiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin, China.,Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Juan He
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin, China.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Aihua Lei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Haixu Xu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin, China
| | - Lijuan Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin, China
| | - Pan Zhou
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin, China
| | - Guanmin Jiang
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jie Zhou
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin, China.
| |
Collapse
|
32
|
Wang L, Luo Y, Luo L, Wu D, Ding X, Zheng H, Wu H, Liu B, Yang X, Silva F, Wang C, Zhang X, Zheng X, Chen J, Brigman J, Mandell M, Zhou Z, Liu F, Yang XO, Liu M. Adiponectin restrains ILC2 activation by AMPK-mediated feedback inhibition of IL-33 signaling. J Exp Med 2021; 218:e20191054. [PMID: 33104171 PMCID: PMC7590510 DOI: 10.1084/jem.20191054] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/20/2019] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
ILC2s are present in adipose tissue and play a critical role in regulating adipose thermogenesis. However, the mechanisms underlying the activation of adipose-resident ILC2s remain poorly defined. Here, we show that IL-33, a potent ILC2 activator, stimulates phosphorylation of AMPK at Thr172 via TAK1 in primary ILC2s, which provides a feedback mechanism to inhibit IL-33-induced NF-κB activation and IL-13 production. Treating ILC2s with adiponectin or an adiponectin receptor agonist (AdipoRon) activated AMPK and decreased IL-33-NF-κB signaling. AdipoRon also suppressed cold-induced thermogenic gene expression and energy expenditure in vivo. In contrast, adiponectin deficiency increased the ILC2 fraction and activation, leading to up-regulated thermogenic gene expression in adipose tissue of cold-exposed mice. ILC2 deficiency or blocking ILC2 function by neutralization of the IL-33 receptor with anti-ST2 diminished the suppressive effect of adiponectin on cold-induced adipose thermogenesis and energy expenditure. Taken together, our study reveals that adiponectin is a negative regulator of ILC2 function in adipose tissue via AMPK-mediated negative regulation of IL-33 signaling.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Dandan Wu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xiaofeng Ding
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Handong Zheng
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Haisha Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bilian Liu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Floyd Silva
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Xianyun Zheng
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jonathan Brigman
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Mandell
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Zhiguang Zhou
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX
| | - Xuexian O. Yang
- Department of Microbiology and Molecular Genetics, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
33
|
Meyer AR, Engevik AC, Madorsky T, Belmont E, Stier MT, Norlander AE, Pilkinton MA, McDonnell WJ, Weis JA, Jang B, Mallal SA, Peebles RS, Goldenring JR. Group 2 Innate Lymphoid Cells Coordinate Damage Response in the Stomach. Gastroenterology 2020; 159:2077-2091.e8. [PMID: 32891625 PMCID: PMC7726005 DOI: 10.1053/j.gastro.2020.08.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Severe injury to the lining of the stomach leads to changes in the epithelium (reprogramming) that protect and promote repair of the tissue, including development of spasmolytic polypeptide-expressing metaplasia (SPEM) and tuft and foveolar cell hyperplasia. Acute gastric damage elicits a type-2 inflammatory response that includes production of type-2 cytokines and infiltration by eosinophils and alternatively activated macrophages. Stomachs of mice that lack interleukin 33 (IL33) or interleukin 13 (IL13) did not undergo epithelial reprogramming after drug-induced injury. We investigated the role of group 2 innate lymphoid cells (ILC2s) in gastric epithelial repair. METHODS Acute gastric injury was induced in C57BL/6J mice (wild-type and RAG1 knockout) by administration of L635. We isolated ILC2s by flow cytometry from stomachs of mice that were and were not given L635 and performed single-cell RNA sequencing. ILC2s were depleted from wild-type and RAG1-knockout mice by administration of anti-CD90.2. We assessed gastric cell lineages, markers of metaplasia, inflammation, and proliferation. Gastric tissue microarrays from patients with gastric adenocarcinoma were analyzed by immunostaining. RESULTS There was a significant increase in the number of GATA3-positive ILC2s in stomach tissues from wild-type mice after L635-induced damage, but not in stomach tissues from IL33-knockout mice. We characterized a marker signature of gastric mucosal ILC2s and identified a transcription profile of metaplasia-associated ILC2s, which included changes in expression of Il5, Il13, Csf2, Pd1, and Ramp3; these changes were validated by quantitative polymerase chain reaction and immunocytochemistry. Depletion of ILC2s from mice blocked development of metaplasia after L635-induced injury in wild-type and RAG1-knockout mice and prevented foveolar and tuft cell hyperplasia and infiltration or activation of macrophages after injury. Numbers of ILC2s were increased in stomach tissues from patients with SPEM compared with patients with normal corpus mucosa. CONCLUSIONS In analyses of stomach tissues from mice with gastric tissue damage and patients with SPEM, we found evidence of type 2 inflammation and increased numbers of ILC2s. Our results suggest that ILC2s coordinate the metaplastic response to severe gastric injury.
Collapse
Affiliation(s)
- Anne R Meyer
- Department of Cell and Developmental Biology, Nashville, Tennessee; Epithelial Biology Center, Nashville, Tennessee
| | - Amy C Engevik
- Epithelial Biology Center, Nashville, Tennessee; Section of Surgical Sciences, Nashville, Tennessee
| | | | | | - Matthew T Stier
- Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee
| | - Allison E Norlander
- Division of Allergy, Pulmonary and Critical Care Medicine, Nashville, Tennessee
| | - Mark A Pilkinton
- Division of Infectious Disease, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wyatt J McDonnell
- Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee
| | - Jared A Weis
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Bogun Jang
- Department of Pathology, Jeju National University School of Medicine, Jeju, Korea
| | - Simon A Mallal
- Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee; Division of Infectious Disease, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - R Stokes Peebles
- Department of Pathology, Microbiology, and Immunology, Nashville, Tennessee; Division of Allergy, Pulmonary and Critical Care Medicine, Nashville, Tennessee; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Department of Cell and Developmental Biology, Nashville, Tennessee; Epithelial Biology Center, Nashville, Tennessee; Section of Surgical Sciences, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
34
|
Maggi E, Veneziani I, Moretta L, Cosmi L, Annunziato F. Group 2 Innate Lymphoid Cells: A Double-Edged Sword in Cancer? Cancers (Basel) 2020; 12:cancers12113452. [PMID: 33233582 PMCID: PMC7699723 DOI: 10.3390/cancers12113452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Group 2 Innate Lymphoid Cells (ILC2s) belong to the family of helper ILCs which provide host defense against infectious agents, participate in inflammatory responses and mediate lymphoid organogenesis and tissue repair, mainly at the skin and mucosal level. Based on their transcriptional, phenotypic and functional profile, ILC2s mirror the features of the adaptive CD4+ Th2 cell subset, both contributing to the so-called type 2 immune response. Similar to other ILCs, ILC2s are rapidly activated by signals deriving from tissue and/or other tissue-resident immune cells. The biologic activity of ILCs needs to be tightly regulated in order to prevent them from contributing to severe inflammation and damage in several organs. Indeed, ILC2s display both enhancing and regulatory roles in several pathophysiological conditions, including tumors. In this review, we summarize the actual knowledge about ILC2s ability to induce or impair a protective immune response, their pro- or antitumor activity in murine models, human (children and adults) pathologies and the potential strategies to improve cancer immunotherapy by exploiting the features of ILC2s.
Collapse
Affiliation(s)
- Enrico Maggi
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
- Correspondence: ; Tel.: +39-06-6859-3617
| | - Irene Veneziani
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Moretta
- Immunology Department, Bambino Gesù Children Hospital, 00165 Rome, Italy; (I.V.); (L.M.)
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.C.); (F.A.)
| |
Collapse
|
35
|
Liu Y, Chen Y, Deng X, Zhou J. ATF3 Prevents Stress-Induced Hematopoietic Stem Cell Exhaustion. Front Cell Dev Biol 2020; 8:585771. [PMID: 33195236 PMCID: PMC7652754 DOI: 10.3389/fcell.2020.585771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Protection of hematopoietic stem cells (HSCs) from exhaustion and effective regeneration of the HSC pool after bone marrow transplantation or irradiation therapy is an urgent clinical need. Here, we investigated the role of activating transcription factor 3 (ATF3) in steady-state and stress hematopoiesis using conditional knockout mice (Atf3fl/flVav1Cre mice). Deficiency of ATF3 in the hematopoietic system displayed no noticeable effects on hematopoiesis under steady-state conditions. Expression of ATF3 was significantly down-regulated in long-term HSCs (LT-HSCs) after exposure to stresses such as 5-fluorouracil challenge or irradiation. Atf3fl/flVav1Cre mice displayed enhanced proliferation and expansion of LT-HSCs upon short-term chemotherapy or irradiation compared with those in Atf3fl/fl littermate controls; however, the long-term reconstitution capability of LT-HSCs from Atf3fl/flVav1Cre mice was dramatically impaired after a series of bone marrow transplantations. These observations suggest that ATF3 plays an important role in preventing stress-induced exhaustion of HSCs.
Collapse
Affiliation(s)
- Yufeng Liu
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingying Chen
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohui Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
36
|
Hurrell BP, Howard E, Galle-Treger L, Helou DG, Shafiei-Jahani P, Painter JD, Akbari O. Distinct Roles of LFA-1 and ICAM-1 on ILC2s Control Lung Infiltration, Effector Functions, and Development of Airway Hyperreactivity. Front Immunol 2020; 11:542818. [PMID: 33193309 PMCID: PMC7662114 DOI: 10.3389/fimmu.2020.542818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 10/08/2020] [Indexed: 12/19/2022] Open
Abstract
Asthma is a heterogeneous airway inflammatory disease characterized by increased airway hyperreactivity (AHR) to specific and unspecific stimuli. Group 2 innate lymphoid cells (ILC2)s are type-2 cytokine secreting cells capable of inducing eosinophilic lung inflammation and AHR independent of adaptive immunity. Remarkably, reports show that ILC2s are increased in the blood of human asthmatics as compared to healthy donors. Nevertheless, whether ILC2 expression of adhesion molecules regulates ILC2 trafficking remains unknown. Our results show that IL-33-activated ILC2s not only express LFA-1 but also strikingly LFA-1 ligand ICAM-1. Both LFA-1-/- and ICAM-1-/- mice developed attenuated AHR in response to IL-33 intranasal challenge, associated with a lower airway inflammation and less lung ILC2 accumulation compared to controls. Our mixed bone marrow chimera studies however revealed that ILC2 expression of LFA-1 - but not ICAM-1 - was required for their accumulation in the inflamed lungs. Importantly, we found that LFA-1 remarkably controlled ILC2 homing to the lungs, suggesting that LFA-1 is involved in ILC2 trafficking to the lungs. Our exploratory transcriptomic analysis further revealed that ICAM-1 deficiency on ILC2s significantly affects their effector functions. While it downregulated pro-inflammatory cytokines such as Il5, Il9, Il13, and Csf2, it however notably also upregulated cytokines including Il10 both at the transcriptomic and protein levels. These findings provide novel avenues for future investigations, as modulation of LFA-1 and/or ICAM-1 represents an unappreciated regulatory mechanism for ILC2 trafficking and cytokine production respectively, potentially serving as therapeutic target for ILC2-dependent diseases such as allergic asthma.
Collapse
Affiliation(s)
- Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
37
|
He J, Yang Q, Xiao Q, Lei A, Li X, Zhou P, Liu T, Zhang L, Shi K, Yang Q, Dong J, Zhou J. IRF-7 Is a Critical Regulator of Type 2 Innate Lymphoid Cells in Allergic Airway Inflammation. Cell Rep 2020; 29:2718-2730.e6. [PMID: 31775040 DOI: 10.1016/j.celrep.2019.10.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Allergic asthma is a highly prevalent airway disease triggered by hyperresponsiveness to inhaled allergens. Interferon regulatory factor 7 (IRF7) has been shown to be highly expressed in nasal aspirates from children with asthma. Type 2 innate lymphoid cells (ILC2s) represent the major player in allergic airway inflammation. The role of IRF7 in ILC2-driven asthma remains to be explored. Here, we report that IRF7 expression in murine lung ILC2s is dramatically induced upon papain or interleukin-33 (IL-33) stimulation. ILC2s from asthma patients display a much higher level of IRF7 than those from healthy donors. Deficiency of IRF7 in mice significantly impairs the expansion and function of lung ILC2s in multiple models of allergic asthma. Furthermore, the regulation of ILC2s by IRF7 is cell intrinsic and mediated by the transcription factor Bcl11b. These observations identify IRF7 as a regulator of lung ILC2s, which may have immunotherapeutic value in allergic asthma.
Collapse
Affiliation(s)
- Juan He
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xiao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aihua Lei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xing Li
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pan Zhou
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Zhang
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Shi
- Department of Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Quan Yang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Junchao Dong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhou
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
38
|
Xie TA, Han MY, Su XR, Li HH, Chen JC, Guo XG. Identification of Hub genes associated with infection of three lung cell lines by SARS-CoV-2 with integrated bioinformatics analysis. J Cell Mol Med 2020; 24:12225-12230. [PMID: 32924263 PMCID: PMC7579704 DOI: 10.1111/jcmm.15862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tian-Ao Xie
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Meng-Yi Han
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Rui Su
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Hou-He Li
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Ji-Chun Chen
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xu-Guang Guo
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China.,Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Lei A, He Y, Yang Q, Li X, Li R. Role of myeloid cells in the regulation of group 2 innate lymphoid cell-mediated allergic inflammation. Immunology 2020; 161:18-24. [PMID: 32609880 DOI: 10.1111/imm.13232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are an important component of the innate immune system that execute important effector functions at barrier surfaces, such as lung and skin. Like T helper type 2 cells, ILC2s are able to release high amounts of type 2 cytokines that are essential in inducing allergic inflammation and eliminating helminth infections. The past few years have contributed to our better understanding of the interactions between ILC2s and other cells of the immune system via soluble factors or in a cell-cell contact manner. Myeloid cells, including mononuclear leukocytes and polymorphonuclear leukocytes, are excellent sensors of tissue damage and infection and can influence ILC2 responses in the process of allergic inflammation. In this review, we summarize recent insights on how myeloid cell subsets regulate ILC2 activation with focus on soluble factors in the context of allergic inflammation.
Collapse
Affiliation(s)
- Aihua Lei
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yumei He
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiong Yang
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaofang Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Ranhui Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
40
|
Schulz-Kuhnt A, Wirtz S, Neurath MF, Atreya I. Regulation of Human Innate Lymphoid Cells in the Context of Mucosal Inflammation. Front Immunol 2020; 11:1062. [PMID: 32655549 PMCID: PMC7324478 DOI: 10.3389/fimmu.2020.01062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since their identification as a unique cell population, innate lymphoid cells (ILCs) have revolutionized our understanding of immune responses, leaving their impact on multiple inflammatory and fibrotic pathologies without doubt. Thus, a tightly controlled regulation of local ILC numbers and their activity is of crucial importance. Even though this has been extensively studied in murine ILCs in the last few years, our knowledge of human ILCs is still lagging behind. Our review article will therefore summarize recent insights into the function of human ILCs and will particularly focus on their regulation under inflammatory conditions. The quality and intensity of ILC involvement into local immune responses at mucosal sites of the human body can potentially be modulated via three different axes: (1) activation of tissue-resident mature ILCs, (2) plasticity and local transdifferentiation of specific ILC subsets, and (3) tissue migration and accumulation of peripheral ILCs. Despite a still ongoing scientific effort in this field, already existing data on the fate of human ILCs under different pathologic conditions clearly indicate that all three of these mechanisms are of relevance for the clinical course of chronic inflammatory and autoimmune diseases and might likewise provide new target structures for future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
41
|
Liu Y, Perego M, Xiao Q, He Y, Fu S, He J, Liu W, Li X, Tang Y, Li X, Yuan W, Zhou W, Wu F, Jia C, Cui Q, Worthen GS, Jensen EA, Gabrilovich DI, Zhou J. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice. J Clin Invest 2020; 129:4261-4275. [PMID: 31483289 DOI: 10.1172/jci128164] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammation plays a critical role in the development of severe neonatal morbidities. Myeloid-derived suppressor cells (MDSCs) were recently implicated in the regulation of immune responses in newborns. Here, we report that the presence of MDSCs and their functional activity in infants are closely associated with the maturity of newborns and the presence of lactoferrin (LF) in serum. Low amounts of MDSCs at birth predicted the development of severe pathology in preterm infants - necrotizing enterocolitis (NEC). In vitro treatment of newborn neutrophils and monocytes with LF converted these cells to MDSCs via the LRP2 receptor and activation of the NF-κB transcription factor. Decrease in the expression of LRP2 was responsible for the loss of sensitivity of adult myeloid cells to LF. LF-induced MDSCs (LF-MDSCs) were effective in the treatment of newborn mice with NEC, acting by blocking inflammation, resulting in increased survival. LF-MDSCs were more effective than treatment with LF protein alone. In addition to affecting NEC, LF-MDSCs demonstrated potent ability to control ovalbumin-induced (OVA-induced) lung inflammation, dextran sulfate sodium-induced (DSS-induced) colitis, and concanavalin A-induced (ConA-induced) hepatitis. These results suggest that cell therapy with LF-MDSCs may provide potent therapeutic benefits in infants with various pathological conditions associated with dysregulated inflammation.
Collapse
Affiliation(s)
- Yufeng Liu
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | | | - Qiang Xiao
- Institute of Human Virology, Zhongshan School of Medicine
| | - Yumei He
- Institute of Human Virology, Zhongshan School of Medicine
| | - Shuyu Fu
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Juan He
- Institute of Human Virology, Zhongshan School of Medicine
| | | | - Xing Li
- Third Affiliated Hospital, Sun Yat-sen University (SYSU), Guangzhou, China
| | | | | | - Weiming Yuan
- Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Wei Zhou
- Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Fan Wu
- Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chunhong Jia
- Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiliang Cui
- Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - George S Worthen
- Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | - Erik A Jensen
- Children's Hospital of Philadelphia (CHOP), Philadelphia, Pennsylvania, USA
| | | | - Jie Zhou
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
42
|
Boberg E, Johansson K, Malmhäll C, Calvén J, Weidner J, Rådinger M. Interplay Between the IL-33/ST2 Axis and Bone Marrow ILC2s in Protease Allergen-Induced IL-5-Dependent Eosinophilia. Front Immunol 2020; 11:1058. [PMID: 32582171 PMCID: PMC7280539 DOI: 10.3389/fimmu.2020.01058] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/01/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Eosinophils develop from CD34+ progenitor cells in the bone marrow under the influence of interleukin (IL)-5. Several cell types produce IL-5, including type 2 innate lymphoid cells (ILC2s). The alarmin cytokine IL-33 is known to activate ILC2s in mucosal tissues, but little is known about IL-33-responsive ILC2s in the bone marrow in allergen-induced airway inflammation. Methods: Wild type (WT) and Rag1 deficient (Rag1−/−) mice, which lack mature T and B cells, received intranasal doses of papain to induce acute allergic inflammation. In some experiments, mice were pre-treated with anti-IL-5 prior to the papain challenge. Furthermore, recombinant IL-33 was administered to WT mice, Rag1−/− mice, lymphocyte deficient mice (Rag2−/−Il2rg−/−) and to ex vivo whole bone marrow cultures. Bone marrow eosinophils and ILC2s were analyzed by flow cytometry. Eosinophil count was assessed by differential cell count and secreted IL-5 from bone marrow cells by ELISA. Results: Intranasal administration of papain or IL-33 increased the number of mature eosinophils in the bone marrow despite the absence of adaptive immune cells in Rag1−/− mice. In parallel, an increased number of eosinophils was observed in the airways together with elevated levels of Eotaxin-2/CCL24. Bone marrow ILC2s were increased after papain or IL-33 administration, whereas ILC2s was found to be increased at baseline in Rag1−/− mice compared to WT mice. An upregulation of the IL-33 receptor (ST2) expression on bone marrow ILC2s was observed after papain challenge in both Rag1−/− and WT mice which correlated to increased number of bone marrow eosinophilia. Furthermore, an increased number of ST2+ mature eosinophils in the bone marrow was observed after papain challenge, which was further dependent on IL-5. In addition, bone marrow-derived ILC2s from both mouse strains produced large amounts of IL-5 ex vivo after IL-33 stimulation of whole bone marrow cultures. In contrast, IL-33-induced bone marrow and airway eosinophilia were abolished in the absence of ILC2s in Rag2−/−Il2rg−/− mice and no production of IL-5 was detected in IL-33-stimulated bone marrow cultures. Conclusion: These findings establish bone marrow ILC2s and the IL-33/ST2 axis as promising targets for modulation of uncontrolled IL-5-dependent eosinophilic diseases including asthma.
Collapse
Affiliation(s)
- Emma Boberg
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Johansson
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Calvén
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julie Weidner
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
43
|
Liu GY, Deng XH, Li X, Cao YJ, Xing YF, Zhou P, Lei AH, Yang Q, Deng K, Zhang H, Zhou J. Expansion of Group 2 Innate Lymphoid Cells in Patients with End-Stage Renal Disease and Their Clinical Significance. THE JOURNAL OF IMMUNOLOGY 2020; 205:36-44. [PMID: 32444391 DOI: 10.4049/jimmunol.1901095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/22/2020] [Indexed: 12/30/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) play an important role in the control of tissue inflammation and homeostasis. However, the role of ILC2s in patients with end-stage renal disease (ESRD) has never been illustrated. In this study, we investigated ILC2s in ESRD patients and their clinical significance. Results showed that the frequencies and absolute numbers of ILC2s, not group 1 innate lymphoid cells or innate lymphoid cell precursors, were significantly elevated in the peripheral blood of ESRD patients when compared with those from healthy donor controls. Moreover, ILC2s from ESRD patients displayed enhanced type 2 cytokine production and cell proliferation. Plasma from ESRD patients significantly increased ILC2 levels and enhanced their effector function after in vitro treatment. The expression of phosphorylation of STAT5 in ILC2s, as well as the amounts of IL-2 in plasma, were increased in ESRD patients when compared with those from healthy donors. Clinically, ESRD patients with higher ILC2 frequencies displayed lower incidence of infectious complications during a mean of 21 month follow-up study. The proportions of ILC2s were negatively correlated with the prognostic biomarkers of chronic kidney disease, including serum parathyroid hormone, creatinine, and phosphorus, whereas they were positively correlated with serum calcium. These observations indicate that ILC2s may play a protective role in ESRD.
Collapse
Affiliation(s)
- Gao-Yu Liu
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Hui Deng
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xing Li
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ying-Jiao Cao
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan-Fang Xing
- Department of Nephrology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Pan Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ai-Hua Lei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421008, China; and
| | - Quan Yang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Kai Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China; .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
44
|
Oyesola OO, Duque C, Huang LC, Larson EM, Früh SP, Webb LM, Peng SA, Tait Wojno ED. The Prostaglandin D 2 Receptor CRTH2 Promotes IL-33-Induced ILC2 Accumulation in the Lung. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1001-1011. [PMID: 31900341 PMCID: PMC6994842 DOI: 10.4049/jimmunol.1900745] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are rare innate immune cells that accumulate in tissues during allergy and helminth infection, performing critical effector functions that drive type 2 inflammation. ILC2s express ST2, the receptor for the cytokine IL-33, and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2), a receptor for the bioactive lipid prostaglandin D2 (PGD2). The IL-33-ST2 and the PGD2-CRTH2 pathways have both been implicated in promoting ILC2 accumulation during type 2 inflammation. However, whether these two pathways coordinate to regulate ILC2 population size in the tissue in vivo remains undefined. In this study, we show that ILC2 accumulation in the murine lung in response to systemic IL-33 treatment was partially dependent on CRTH2. This effect was not a result of reduced ILC2 proliferation, increased apoptosis or cell death, or differences in expression of the ST2 receptor in the absence of CRTH2. Rather, data from adoptive transfer studies suggested that defective accumulation of CRTH2-deficient ILC2s in response to IL-33 was due to altered ILC2 migration patterns. Whereas donor wild-type ILC2s preferentially accumulated in the lungs compared with CRTH2-deficient ILC2s following transfer into IL-33-treated recipients, wild-type and CRTH2-deficient ILC2s accumulated equally in the recipient mediastinal lymph node. These data suggest that CRTH2-dependent effects lie downstream of IL-33, directly affecting the migration of ILC2s into inflamed lung tissues. A better understanding of the complex interactions between the IL-33 and PGD2-CRTH2 pathways that regulate ILC2 population size will be useful in understanding how these pathways could be targeted to treat diseases associated with type 2 inflammation.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Cell Movement/immunology
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Female
- Humans
- Hypersensitivity/immunology
- Hypersensitivity/pathology
- Immunity, Innate
- Interleukin-33/administration & dosage
- Interleukin-33/immunology
- Lung/cytology
- Lung/immunology
- Lung/pathology
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Mice
- Mice, Knockout
- Nippostrongylus/immunology
- Primary Cell Culture
- Prostaglandin D2/immunology
- Prostaglandin D2/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/immunology
- Receptors, Prostaglandin/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/immunology
- Strongylida Infections/immunology
- Strongylida Infections/parasitology
- Strongylida Infections/pathology
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Carolina Duque
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
| | - Linda C Huang
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
| | - Elisabeth M Larson
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
| | - Simon P Früh
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
| | - Lauren M Webb
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Seth A Peng
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
| | - Elia D Tait Wojno
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14850;
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14850; and
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
45
|
Liu S, Sirohi K, Verma M, McKay J, Michalec L, Sripada A, Danhorn T, Rollins D, Good J, Gorska MM, Martin RJ, Alam R. Optimal identification of human conventional and nonconventional (CRTH2 -IL7Rα -) ILC2s using additional surface markers. J Allergy Clin Immunol 2020; 146:390-405. [PMID: 32032632 DOI: 10.1016/j.jaci.2020.01.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin-) cells. Type 2 cytokine production by CRTH2-IL7Rα- innate lymphoid cells (ILCs) is unknown. OBJECTIVE We sought to identify CRTH2-IL7Rα- type 2 cytokine-producing ILCs and their disease relevance. METHODS We studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent. RESULTS We found that IL-5 and IL-13 were expressed not only by CRTH2+ but also by CRTH2-IL7Rα+ and CRTH2-IL7Rα- (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine-positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population. CONCLUSIONS The commonly used surface markers for human ILC2s leave a majority of type 2 cytokine-producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface-expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma.
Collapse
Affiliation(s)
- Sucai Liu
- Division of Allergy and Immunology, Department of Medicine, Denver, Colo
| | - Kapil Sirohi
- Division of Allergy and Immunology, Department of Medicine, Denver, Colo
| | - Mukesh Verma
- Division of Allergy and Immunology, Department of Medicine, Denver, Colo
| | - Jerome McKay
- Division of Allergy and Immunology, Department of Medicine, Denver, Colo
| | - Lidia Michalec
- Division of Allergy and Immunology, Department of Medicine, Denver, Colo
| | - Anand Sripada
- Division of Allergy and Immunology, Department of Medicine, Denver, Colo
| | - Tomas Danhorn
- Center for Genes and Environment, National Jewish Health, Denver, Colo
| | - Donald Rollins
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo
| | - James Good
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo
| | - Magdalena M Gorska
- Division of Allergy and Immunology, Department of Medicine, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo
| | - Richard J Martin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo
| | - Rafeul Alam
- Division of Allergy and Immunology, Department of Medicine, Denver, Colo; School of Medicine, University of Colorado Denver, Denver, Colo.
| |
Collapse
|
46
|
Hurrell BP, Galle-Treger L, Jahani PS, Howard E, Helou DG, Banie H, Soroosh P, Akbari O. TNFR2 Signaling Enhances ILC2 Survival, Function, and Induction of Airway Hyperreactivity. Cell Rep 2019; 29:4509-4524.e5. [PMID: 31875557 PMCID: PMC6940205 DOI: 10.1016/j.celrep.2019.11.102] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) can initiate pathologic inflammation in allergic asthma by secreting copious amounts of type 2 cytokines, promoting lung eosinophilia and airway hyperreactivity (AHR), a cardinal feature of asthma. We discovered that the TNF/TNFR2 axis is a central immune checkpoint in murine and human ILC2s. ILC2s selectively express TNFR2, and blocking the TNF/TNFR2 axis inhibits survival and cytokine production and reduces ILC2-dependent AHR. The mechanism of action of TNFR2 in ILC2s is through the non-canonical NF-κB pathway as an NF-κB-inducing kinase (NIK) inhibitor blocks the costimulatory effect of TNF-α. Similarly, human ILC2s selectively express TNFR2, and using hILC2s, we show that TNFR2 engagement promotes AHR through a NIK-dependent pathway in alymphoid murine recipients. These findings highlight the role of the TNF/TNFR2 axis in pulmonary ILC2s, suggesting that targeting TNFR2 or relevant signaling is a different strategy for treating patients with ILC2-dependent asthma.
Collapse
Affiliation(s)
- Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Homayon Banie
- Janssen Research and Development, San Diego, CA, USA
| | | | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Lei A, Zhou J. Cell-surface molecule-mediated cell-cell interactions in the regulation of ILC2-driven allergic inflammation. Cell Mol Life Sci 2019; 76:4503-4510. [PMID: 31312878 PMCID: PMC11105661 DOI: 10.1007/s00018-019-03228-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a subset of innate immune cells that do not express antigen receptors. ILC2-mediated type 2 responses, which are mainly characterized by the production of interleukin (IL)-5 and IL-13, play key roles in inducing inflammation, protecting against infection, and maintaining tissue homeostasis. Although recent years have largely enhanced our understanding of the transcriptional networks and soluble mediators that regulate ILC2 development or function, emerging evidence suggests that ILC2s express a variety of cell-surface molecules and interact with themselves or other immune cells. These cell-cell interactions are essential in the modulation of ILC2 number and their type 2 cytokine production during ILC2-driven allergic inflammation. In this review, we summarize the extensive array of cell-surface molecules on ILC2s that mediate cell-cell interactions and their role in regulating ILC2 generation or function in the context of ILC2-induced allergic inflammation.
Collapse
Affiliation(s)
- Aihua Lei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, Hunan, China
| | - Jie Zhou
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin, 300070, China.
| |
Collapse
|
48
|
Rana BMJ, Jou E, Barlow JL, Rodriguez-Rodriguez N, Walker JA, Knox C, Jolin HE, Hardman CS, Sivasubramaniam M, Szeto A, Cohen ES, Scott IC, Sleeman MA, Chidomere CI, Cruz Migoni S, Caamano J, Jorgensen HF, Carobbio S, Vidal-Puig A, McKenzie ANJ. A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue. J Exp Med 2019; 216:1999-2009. [PMID: 31248899 PMCID: PMC6719433 DOI: 10.1084/jem.20190689] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/19/2022] Open
Abstract
Group-2 innate lymphoid cells (ILC2), type-2 cytokines, and eosinophils have all been implicated in sustaining adipose tissue homeostasis. However, the interplay between the stroma and adipose-resident immune cells is less well understood. We identify that white adipose tissue-resident multipotent stromal cells (WAT-MSCs) can act as a reservoir for IL-33, especially after cell stress, but also provide additional signals for sustaining ILC2. Indeed, we demonstrate that WAT-MSCs also support ICAM-1-mediated proliferation and activation of LFA-1-expressing ILC2s. Consequently, ILC2-derived IL-4 and IL-13 feed back to induce eotaxin secretion from WAT-MSCs, supporting eosinophil recruitment. Thus, MSCs provide a niche for multifaceted dialogue with ILC2 to sustain a type-2 immune environment in WAT.
Collapse
Affiliation(s)
- Batika M J Rana
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Eric Jou
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jillian L Barlow
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jennifer A Walker
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Claire Knox
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Helen E Jolin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Clare S Hardman
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Aydan Szeto
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - E Suzanne Cohen
- Department of Respiratory, Inflammation and Autoimmunity, AstraZeneca, Cambridge, UK
| | - Ian C Scott
- Department of Respiratory, Inflammation and Autoimmunity, AstraZeneca, Cambridge, UK
| | - Matthew A Sleeman
- Department of Respiratory, Inflammation and Autoimmunity, AstraZeneca, Cambridge, UK
| | - Chiamaka I Chidomere
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sara Cruz Migoni
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Jorge Caamano
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Helle F Jorgensen
- Cardiovascular Medicine Division, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Stefania Carobbio
- Wellcome Trust Sanger Institute, Hinxton, UK
- Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Hinxton, UK
- Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
49
|
Xiong J, Wang H, He J, Wang Q. Functions of Group 2 Innate Lymphoid Cells in Tumor Microenvironment. Front Immunol 2019; 10:1615. [PMID: 31354745 PMCID: PMC6635601 DOI: 10.3389/fimmu.2019.01615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Innate lymphoid cells (ILCs), defined as a heterogeneous population of lymphocytes, have received much attention over recent years. They can be categorized into three subsets according to the expression profiles of transcription factors and differing levels of cytokine production. These cells are widely distributed in human organs and tissues, especially in mucosal tissue. The ILCs are involved in various physiological and pathological processes, including inflammation, worm expulsion, autoimmune disease and tumor progression, many of which have been investigated and clarified in recent studies. In the tumor microenvironment, group 2 innate lymphoid cells (ILC2s) have been proved to be able to either promote or inhibit tumor progression by producing different cytokines, recruiting diverse types of immune cells, expressing immunosuppressive molecules and by regulating the expression of certain inflammatory factors. This review summarizes recent research progress on the immunomodulatory functions of ILC2s in the tumor microenvironment and puts forward some perspectives for future study.
Collapse
Affiliation(s)
- Jia Xiong
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Haofei Wang
- Department of Pharmacology, China Medical University School of Pharmacy, Shenyang, China
| | - Jia He
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Puttur F, Denney L, Gregory LG, Vuononvirta J, Oliver R, Entwistle LJ, Walker SA, Headley MB, McGhee EJ, Pease JE, Krummel MF, Carlin LM, Lloyd CM. Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans. Sci Immunol 2019; 4:eaav7638. [PMID: 31175176 PMCID: PMC6744282 DOI: 10.1126/sciimmunol.aav7638] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are enriched in mucosal tissues (e.g., lung) and respond to epithelial cell-derived cytokines initiating type 2 inflammation. During inflammation, ILC2 numbers are increased in the lung. However, the mechanisms controlling ILC2 trafficking and motility within inflamed lungs remain unclear and are crucial for understanding ILC2 function in pulmonary immunity. Using several approaches, including lung intravital microscopy, we demonstrate that pulmonary ILC2s are highly dynamic, exhibit amoeboid-like movement, and aggregate in the lung peribronchial and perivascular spaces. They express distinct chemokine receptors, including CCR8, and actively home to CCL8 deposits located around the airway epithelium. Within lung tissue, ILC2s were particularly motile in extracellular matrix-enriched regions. We show that collagen-I drives ILC2 to markedly change their morphology by remodeling their actin cytoskeleton to promote environmental exploration critical for regulating eosinophilic inflammation. Our study provides previously unappreciated insights into ILC2 migratory patterns during inflammation and highlights the importance of environmental guidance cues in the lung in controlling ILC2 dynamics.
Collapse
Affiliation(s)
- Franz Puttur
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Laura Denney
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Lisa G Gregory
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Juho Vuononvirta
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert Oliver
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Lewis J Entwistle
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Simone A Walker
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark B Headley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ewan J McGhee
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, UK
| | - James E Pease
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA, USA
| | - Leo M Carlin
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Clare M Lloyd
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|