1
|
Nakamura A, Kimura Y, Tanaka Y, Tsuchimoto D, Naruse A, Kanematsu T, Takeuchi K, Tomita N, Miyazawa K, Fukuoka T, Mori A, Tamaki S, Fujioka A, Yokoyama S, Ikeda Y, Nagai H. Favorable Prognosis in Patients With Multiple Myeloma and Lenalidomide-Induced Skin Rash: A Multicenter Retrospective Study. Eur J Haematol 2025; 114:267-275. [PMID: 39439083 DOI: 10.1111/ejh.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Although lenalidomide is an essential treatment for multiple myeloma (MM), skin rashes are a common adverse event. This retrospective study aimed to examine the association between skin rash development during lenalidomide treatment and the prognosis of relapsed/refractory MM. All patients who received lenalidomide at 10 hospitals between July 2009 and December 2015 were included in the study. The relationship of skin rash development with disease progression and survival was evaluated. Multivariate analysis was performed to identify factors affecting disease progression or survival, including skin rash. Of the 245 patients analyzed, 70 developed skin rashes. The median progression-free survival (PFS) of patients with skin rashes was 22.4 months, whereas the median PFS for patients who did not develop skin rashes was 10.5 months (p = 0.003). The median overall survival for patients with and without skin rash was 42.6 and 24.6 months, respectively (p = 0.013). Multivariate regression analysis showed that skin rash was an independent prognostic factor for PFS (p = 0.009). In this study, patients with skin rashes during lenalidomide treatment had significantly better PFS than those without such symptoms, indicating that lenalidomide-associated skin rashes may be a predictor of clinical outcomes in patients with MM.
Collapse
Affiliation(s)
- Ayumi Nakamura
- Department of Pharmacy, National Hospital Organization Higashinagoya National Hospital, Nagoya, Japan
| | - Yuta Kimura
- Department of Pharmacy, National Hospital Organization Hokkaido Cancer Center, Sapporo City, Japan
| | - Yuka Tanaka
- Department of Pharmacy, Gifu Municipal Hospital, Gifu, Japan
| | | | - Atsuhiko Naruse
- Department of Pharmacy, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Tetsufumi Kanematsu
- Department of Pharmacy, Japan Community Health Care Organization Chukyo Hospital, Nagoya-shi, Japan
| | - Kento Takeuchi
- Department of Pharmacy, Matsusaka Chuo General Hospital, Nagoya, Japan
| | - Nobukazu Tomita
- Department of Pharmacy, Kouseiren Konan Kosei Hospital, Japan
| | - Kenji Miyazawa
- Department of Pharmacy, National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan
| | | | - Akiya Mori
- Department of Pharmacy, Suzuka General Hospital, Suzuka-shi, Mie, Japan
| | - Shinya Tamaki
- Department of Pharmacy, KKR Sapporo Medical Center, Sapporo, Japan
| | - Aiko Fujioka
- Department of Pharmacy, Takai Hospital, Gifu, Japan
| | | | - Yoshiaki Ikeda
- College of Pharmacy, Kinjyo Gakuin University, Nagoya, Japan
| | - Hirokazu Nagai
- Department of Hematology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
2
|
Carreras-Gallo N, Chen Q, Balagué-Dobón L, Aparicio A, Giosan IM, Dargham R, Phelps D, Guo T, Mendez KM, Chen Y, Carangan A, Vempaty S, Hassouneh S, McGeachie M, Mendez T, Comite F, Suhre K, Smith R, Dwaraka VB, Lasky-Su JA. Leveraging DNA methylation to create Epigenetic Biomarker Proxies that inform clinical care: A new framework for Precision Medicine. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.06.24318612. [PMID: 39677461 PMCID: PMC11643242 DOI: 10.1101/2024.12.06.24318612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The lack of accurate, cost-effective, and clinically relevant biomarkers remains a major barrier to incorporating omic data into clinical practice. Previous studies have shown that DNA methylation algorithms have utility as surrogate measures for selected proteins and metabolites. We expand upon this work by creating DNAm surrogates, termed epigenetic biomarker proxies (EBPs), across clinical laboratories, the metabolome, and the proteome. After screening >2,500 biomarkers, we trained and tested 1,694 EBP models and assessed their incident relationship with 12 chronic diseases and mortality, followed up to 15 years. We observe broad clinical relevance: 1) there are 1,292 and 4,863 FDR significant incident and prevalent associations, respectively; 2) most of these associations are replicated when looking at the lab-based counterpart, and > 62% of the shared associations have higher odds and hazard ratios to disease outcomes than their respective observed measurements; 3) EBPs of current clinical biochemistries detect deviations from normal with high sensitivity and specificity. Longitudinal EBPs also demonstrate significant changes corresponding to the changes observed in lab-based counterparts. Using two cohorts and > 30,000 individuals, we found that EBPs validate across healthy and sick populations. While further study is needed, these findings highlight the potential of implementing EBPs in a simple, low-cost, high-yield framework that benefits clinical medicine.
Collapse
Affiliation(s)
| | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Andrea Aparicio
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | - Tao Guo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin M. Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulu Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | - Michael McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Florence Comite
- Comite Center for Precision Medicine & Health, New York, NY, United States
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Education City, 24144 Doha, Qatar
| | | | | | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
L'Orphelin JM, Da Silva A, Cabon J, Alexandre J, Dolladille C. Immune checkpoint inhibitor rechallenge after immune-related adverse events: a retrospective study from VigiBase update in 2024 looking for emergent safety signals. BMJ Open 2024; 14:e091708. [PMID: 39627133 PMCID: PMC11624719 DOI: 10.1136/bmjopen-2024-091708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES Limited information is available on the safety of a rechallenge with an immune checkpoint inhibitor (ICI) after occurrence of an immune-related adverse event (irAE). We aim to identify potential emergent safety signals. DESIGN This is an update of our observational pharmacovigilance cohort study. SETTING We exanimated individual case safety reports from the WHO database VigiBase. PARTICIPANTS We included all individual case safety reports with ICI and rechallenged ICI. INTERVENTIONS We identified that incident irAE cases using the Medical Dictionary for Regulatory Activities V.26.1 related with at least one ICI administration were systematically collected until 1 March 2024. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was the recurrence rate (expressed as a percentage with its 95% CI) of the initial irAE postrechallenge with the same ICI. RESULTS We identified 1016 irAEs cases from ICI rechallenges. Of these, 323 irAEs recurrences occurred (31.8%, 95% CI 28.1 to 34.0). The most common postrechallenge irAEs were nephritis (recurrence rate: 50%, 95% CI 25 to 75), skin irAEs (44%, 95% CI 31 to 58) and colitis (39%, 95% CI 33 to 44). CONCLUSIONS In this updated, largest cohort study on rechallenge (NCT04696250), we observed a 31.8% recurrence rate of the same irAE postrechallenge with the same ICI, building on our previous findings. TRIAL REGISTRATION NUMBER NCT04696250.
Collapse
Affiliation(s)
| | - Angélique Da Silva
- Departments of Pharmacology & Oncology, University of Caen Normandy, Caen, France
| | - Jean Cabon
- University of Caen Normandy, Caen, France
| | - Joachim Alexandre
- PICARO Cardio-Oncology Program, Department of Pharmacology, CHRU de Caen, Caen, France
- EA4650, Signalisation, Électrophysiologie et Imagerie des Lésions d'Ischémie-reperfusion Myocardique, Université de Caen Normandie, Caen, France
| | | |
Collapse
|
4
|
Tzang CC, Lee YW, Lin WC, Lin LH, Kang YF, Lin TY, Wu WT, Chang KV. Evaluation of immune checkpoint inhibitors for colorectal cancer: A network meta‑analysis. Oncol Lett 2024; 28:569. [PMID: 39390977 PMCID: PMC11465421 DOI: 10.3892/ol.2024.14702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Colorectal cancer (CRC) is challenging to treat due to its high metastatic rate. Recent strategies have focused on combining immune checkpoint inhibitors (ICIs) with other treatments. The aim of the present study was to conduct a network meta-analysis of randomized controlled trials (RCTs) to assess the efficacy and adverse effects of different ICI treatments for CRC. A literature search for RCTs was conducted using PubMed, the Cochrane Library, Embase, ClinicalTrials.gov and Web of Science databases, covering the period from the inception of each database until April 2024. A total of 12 RCTs involving 2,050 participants were selected for inclusion in the analysis. The network meta-analysis employed the MetaInsight tool to assess multiple endpoints. The criteria for study selection were based on the Population, Intervention, Comparison, Outcome and Studies framework as follows: i) Population, patients with CRC; ii) intervention, studies using ICI to treat CRC; iii) comparison, active comparators, including placebo; iv) outcome, overall survival, progression-free survival, objective response rate and adverse events; and v) study design, RCTs. The results of the analysis revealed that programmed cell death-ligand 1 (PD-L1) inhibitors significantly improved overall survival time [mean difference (MD), 2.28 months; 95% confidence interval (CI), 0.44 to 4.11], while programmed cell death protein 1 (PD-1) inhibitors exhibited a superior progression-free survival time (MD, 4.79 months; 95% CI, 3.18 to 6.40) compared with active comparators. However, none of the ICI treatments had significant differences in odds ratios for the objective response rate and adverse events compared with active comparators. These findings indicate that treatment with PD-L1 and PD-1 inhibitors improved the overall survival time and delayed disease progression in patients with CRC. These findings offer valuable insights for future research aimed at improving CRC patient outcomes.
Collapse
Affiliation(s)
- Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Yen-Wei Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
| | - Wei-Chen Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Long-Huei Lin
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Yuan-Fu Kang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Ting-Yu Lin
- Department of Physical Medicine and Rehabilitation, Lo-Hsu Medical Foundation, Inc., Lotung Poh-Ai Hospital, Yilan 265, Taiwan, R.O.C
| | - Wei-Ting Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 108, Taiwan, R.O.C
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 108, Taiwan, R.O.C
- Center for Regional Anesthesia and Pain Medicine, Wang-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan, R.O.C
| |
Collapse
|
5
|
Suzuki K, Yokokawa T, Kawaguchi T, Takada S, Tamaki S, Kawasaki Y, Yamaguchi T, Koizumi K, Matsumoto T, Sakata Y, Arakawa Y, Ayuhara H, Hosonaga M, Yamaguchi M, Tsuji D. A multicenter, phase II trial of triplet antiemetic therapy with palonosetron, aprepitant, and olanzapine for highly emetogenic chemotherapy in breast cancer (PATROL-II). Sci Rep 2024; 14:28271. [PMID: 39550497 PMCID: PMC11569132 DOI: 10.1038/s41598-024-79781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024] Open
Abstract
Dexamethasone is an antiemetic drug widely used to prevent nausea and vomiting caused by anticancer drugs. However, dexamethasone can cause several side effects even after short-term administration. Therefore, the development of dexamethasone-free antiemetic therapies has been recognized as an important challenge. The objective of this study was to investigate the efficacy and safety of palonosetron, aprepitant, and olanzapine. Patients who were chemotherapy-naïve and scheduled to receive highly emetogenic chemotherapy for breast cancer were enrolled and assessed for nausea and vomiting occurring within 120 h after the start of chemotherapy. The primary endpoint was the total control (TC) rate of overall phases. Secondary endpoints included the complete response (CR) rate, which was evaluated during the acute, delayed, and overall phases. A total of 88 patients were enrolled from eight centers in Japan, of whom 84 were included in the analysis. The proportion of patients achieving TC throughout the overall period was 17.1%. Similarly, CR and CC rates for the overall period were 43.4% and 39.5%, respectively. Frequently reported adverse events were loss of appetite and constipation, with rates of 52.4% and 50.0%, respectively. The primary endpoint was not achieved. Therefore, antiemetic therapy without dexamethasone shows an inadequate effect on nausea, and it is generally advisable to avoid omitting dexamethasone. However, in the overall period, both CR and CC were comparable to conventional three-drug combination therapy. Thus, in patients unable to use dexamethasone, replacing it with olanzapine could be an option.Trial registration number: UMIN 000038644, November 20, 2019. The date of first trial registration: 13/03/2020.
Collapse
Affiliation(s)
- Kenichi Suzuki
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takashi Yokokawa
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Kawaguchi
- Department of Clinical Assessment, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shinya Takada
- Department of Pharmacy, Hokkaido Cancer Center, Hokkaido, Japan
| | - Shinya Tamaki
- Department of Pharmacy, KKR Sapporo Medical Center, Sapporo, Hokkaido, Japan
| | - Yohei Kawasaki
- Department of Biostatistics, Graduate School of Medicine, Saitama Medical University, Saitama, Japan
| | | | - Kei Koizumi
- Division of Breast Surgery, Hamamatsu University Hospital, Hamamatsu, Shizuoka, Japan
| | - Takuma Matsumoto
- Department of Pharmacy, NHO Iwakuni Clinical Center, Yamaguchi, Japan
- Department of Pharmacy, NHO Shikoku Cancer Center, Ehime, Japan
| | - Yukio Sakata
- Department of Pharmacy, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Yuichiro Arakawa
- Department of Pharmacy, Tochigi Cancer Center, Utsunomiya, Tochigi, Japan
| | - Hideaki Ayuhara
- Department of Pharmacy, Tokyo Medical University Hospital, Tokyo, Japan
| | - Mari Hosonaga
- Breast Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masakazu Yamaguchi
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daiki Tsuji
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8002, Japan.
| |
Collapse
|
6
|
Tehseen A, Kumar D, Dubey A, Sarkar R, Singh S, Sehrawat S. Glucocorticoid-mediated Suppression of Effector Programming Assists the Memory Transition of Virus-specific CD8+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1170-1186. [PMID: 39212406 DOI: 10.4049/jimmunol.2300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
We demonstrate the role of signaling via the glucocorticoid receptor, NR3C1, in differentiation of CD8+ T cell memory. Pharmacological inhibition as well as the short hairpin RNA-mediated knockdown of the receptor hindered memory transition and limited the homeostatic turnover of the activated CD8+ T cells. Dexamethasone exposure of CD8+ T cells expanded during a resolving infection with influenza A virus or a γ-herpesvirus promoted conversion of effector cells into memory cells by modulating cellular metabolism and lowering the accumulation of reactive oxygen species. Reduced reactive oxygen species levels in the responding effector cells upregulated Bcl2 and enhanced survival. The generated virus-specific memory CD8+ T cells were efficiently recalled following challenge of animals with a secondary infection to control it better. The memory-enhancing effect was predominantly evident at low doses of dexamethasone. Therefore, controlled glucocorticoid signaling within the effector CD8+ T cells is crucial for optimal memory differentiation.
Collapse
Affiliation(s)
- Azeez Tehseen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| | - Dhaneshwar Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| | - Abhishek Dubey
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| | - Roman Sarkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| | - Sudhakar Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| |
Collapse
|
7
|
Hwang SY, Hsieh P, Zhang W. Steroid-refractory immune checkpoint inhibitor (ICI) hepatitis and ICI rechallenge: A systematic review and meta-analysis. Hepatol Commun 2024; 8:e0525. [PMID: 39298568 PMCID: PMC11412713 DOI: 10.1097/hc9.0000000000000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND In recent years, the use of immune checkpoint inhibitors (ICIs) has become a cornerstone in cancer treatment. However, this has also resulted in the emergence of immune-related adverse events, notably ICI hepatitis, posing a significant clinical challenge. While steroids are the primary treatment, there are increasing cases of steroid-refractory ICI hepatitis. Our objective is to investigate the management of ICI hepatitis and its response to steroid treatment. METHODS PubMed/MEDLINE, EMBASE, and CENTRAL databases were searched in July 2023 based on keywords including ICIs (anti-Programmed cell death protein 1/Programmed Death-Ligand 1, anti-CTLA-4, and anti-LAG3) and hepatitis. RESULTS A total of 4358 studies were screened, and 44 studies were included in this systematic review. One thousand eight hundred fifty-six patients with ICI hepatitis were included (grade 1-2: 31.7%, grade 3-4: 56.0%, and unknown: 12.3%) with 1184 patients who received corticosteroid treatment. The duration of treatment and dosage varied considerably across the studies. Mycophenolate mofetil was the predominant agent used in 68 out of 82 cases (82.9%), followed by infliximab and azathioprine. A summary estimate of the proportion of steroid-refractory hepatitis in a random effects model was 16% (95% CI: 11%-23%). An estimated 40% (95% CI: 30%-51%) of patients of all patients with ICI hepatitis were rechallenged with an ICI, and of those rechallenged, there was an estimated 22% (95% CI: 15%-30%) recurrence. CONCLUSIONS Corticosteroids are the primary treatment for ICI hepatitis, with mycophenolate mofetil used as a secondary option for steroids-refractory cases. Current practices mostly rely on expert consensus, highlighting the need for further research to validate and optimize these treatments, particularly for steroid-resistant cases.
Collapse
Affiliation(s)
- Soo Young Hwang
- Department of Internal Medicine, University of Maryland Midtown Campus, Baltimore, Maryland, USA
- Gastroenterology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pinghsin Hsieh
- Department of Internal Medicine, University of Maryland Midtown Campus, Baltimore, Maryland, USA
| | - Wei Zhang
- Gastroenterology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Mabrut E, Mainbourg S, Peron J, Maillet D, Dalle S, Fontaine Delaruelle C, Grolleau E, Clezardin P, Bonnelye E, Confavreux C, Massy E. Synergistic effect between denosumab and immune checkpoint inhibitors (ICI)? A retrospective study of 268 patients with ICI and bone metastases. J Bone Oncol 2024; 48:100634. [PMID: 39381634 PMCID: PMC11460504 DOI: 10.1016/j.jbo.2024.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Background Bone metastasis is a significant concern in advanced solid tumors, contributing to diminished patient survival and quality of life due to skeletal-related events (SREs). Denosumab (DMAB), a monoclonal antibody targeting the receptor activator of nuclear factor kappa-B ligand (RANKL), is used to prevent SREs in such cases. The RANK/RANKL axis, crucial in immunological processes, has garnered attention, especially with the expanding use of immune checkpoint inhibitors (ICI) in modern oncology. Objective Our study aims to explore the potential synergistic antitumor effects of combining immunotherapy with denosumab, as suggested by anecdotal evidence, small cohort studies, and preclinical research. Methods We conducted a retrospective analysis using the IMMUCARE database, encompassing patients receiving ICI treatment since 2014 and diagnosed with bone metastases. We examined overall survival (OS), progression-free survival (PFS) and switch of treatment line based on denosumab usage. Patients were stratified into groups: without denosumab, ICI followed by denosumab, and denosumab followed by ICI. Survival curves and multivariate Cox regression analyses were performed. Results Among the 268 patients with bone metastases, 154 received treatment with ICI alone, while 114 received ICI in combination with denosumab at some point during their oncological history. No significant differences were observed in overall survival (OS) or progression-free survival (PFS) between patients receiving ICI monotherapy and those receiving ICI with denosumab (p = 0.29 and p = 0.79, respectively). However, upon analyzing patients who received denosumab following ICI initiation (17 patients), a notable difference emerged. The group receiving ICI followed by denosumab exhibited a significant advantage compared to those without denosumab (154 patients) or those receiving denosumab before ICI initiation (72 patients) (p = 0.022). Conclusion This retrospective investigation supports the notion of potential benefits associated with sequential administration of ICI and denosumab, although statistical significance was not achieved. Future studies, including prospective trials or updated retrospective analyses, focusing on cancers treated with first-line immunotherapy, could provide further insights into this therapeutic approach.
Collapse
Affiliation(s)
- E. Mabrut
- Université de Lyon, France
- Centre Expert des Métastases Osseuses (CEMOS) - Service de Rhumatologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - S. Mainbourg
- Service universitaire de Pharmacotoxicologie, Hospices Civils de Lyon, France
| | - J. Peron
- Service d’Oncologie Médicale. Institut de Cancérologie des Hospices Civils de Lyon (IC-HCL), Hôpital Lyon Sud-HCL, Pierre-Bénite, France
| | - D. Maillet
- Service d’Oncologie Médicale. Institut de Cancérologie des Hospices Civils de Lyon (IC-HCL), Hôpital Lyon Sud-HCL, Pierre-Bénite, France
| | - S. Dalle
- Service de Dermatologie, Hôpital Lyon Sud - HC L, Pierre-Bénite, France
| | | | - E. Grolleau
- Service de Pneumologie, Hôpital Lyon Sud - HC L, Pierre-Bénite, France
| | - P. Clezardin
- INSERM UMR 1033-LYOS, Lyon, France
- Université de Lyon, France
| | - E. Bonnelye
- Université de Lille, France
- INSERM UMR9020-UMR127, Lille, France
| | - C.B. Confavreux
- INSERM UMR 1033-LYOS, Lyon, France
- Université de Lyon, France
- Centre Expert des Métastases Osseuses (CEMOS) - Service de Rhumatologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - E. Massy
- INSERM UMR 1033-LYOS, Lyon, France
- Université de Lyon, France
- Centre Expert des Métastases Osseuses (CEMOS) - Service de Rhumatologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
9
|
Pichon S, Aigrain P, Lacombe C, Lemarchant B, Ledoult E, Koether V, Leurs A, Zebian G, Launay D, Gachet B, Levy C. Immune checkpoint inhibitors-associated cranial nerves involvement: a systematic literature review on 136 patients. J Neurol 2024; 271:6514-6525. [PMID: 39225744 PMCID: PMC11446990 DOI: 10.1007/s00415-024-12660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Describe the demographic data and clinical phenotype of cranial palsy induced by immune checkpoint inhibitors (CNP-ICI). METHODS A systematic literature review of the literature was performed in Pubmed, Web of Science, and Embase, including 68 articles and 136 patients (PROSPERO no. CRD42024517262). RESULTS Out of the 1205 articles screened, 68 articles were included after fulfilling the inclusion criteria, for a total of 136 patients. All articles were case reports and case series. In the cohort studied, 52% of patients were treated with anti PD-1/PDL-1 therapies, 14% with anti CTLA-4 therapies, and 34% with a combination of anti CTLA-4 and anti PD-1/PDL-1 therapies. The facial nerve was the most affected cranial nerve, involved in 38% of cases, followed by the optic nerve (35%), the cochleovestibular nerve (12%), and the abducens nerve (10%). The median time from the initial immune checkpoint inhibitor (ICI) injection to the onset CNP-ICI was 10 weeks (IQR 4-20). Magnetic resonance imaging demonstrated contrast enhancement or abnormal signal of the affected nerve in 43% of cases. Cerebrospinal fluid analysis indicated lymphocytic pleocytosis in 59% of cases. At the onset of immune-related adverse events, 89% of patients discontinued immunotherapy, and 92% received treatment for CNP-ICI. Treatment regimens included corticosteroids in 86% of cases, intravenous immunoglobulin in 21%, and plasma exchange in 5.1%. Among the whole population, 33% achieved recovery, 52% showed clinical improvement, 16% remained stable, and 3% experienced worsening of their condition. Rechallenge with immunotherapy was significantly associated with the emergence of new immune-related Adverse Events (irAEs). CONCLUSION ICI therapy may lead to cranial nerve involvement, particularly affecting the facial nerve, typically presenting around 10 weeks after treatment initiation. While corticosteroid therapy often resulted in patient improvement, rechallenging with ICIs were associated with new irAEs.
Collapse
Affiliation(s)
- Samuel Pichon
- Service de Médecine Interne, Centre de Référence des Maladies Auto-Immunes et Auto-Inflammatoires Systémiques Rares de L'Adulte du Nord, Nord-Ouest, Université de Lille, CHU Lille, Méditerranée et Guadeloupe (CeRAINOM), Pointe-à-Pitre, France.
| | - Pauline Aigrain
- Pôle de Réanimation, Université de Lille, CHU Lille, 59000, Lille, France
| | - Charlotte Lacombe
- Pôle de Réanimation, Université de Lille, CHU Lille, 59000, Lille, France
| | - Bruno Lemarchant
- Département de Neurologie, CRC-SEP, Université de Lille, CHU Lille, 59000, Lille, France
| | - Emmanuel Ledoult
- Service de Médecine Interne, Centre de Référence des Maladies Auto-Immunes et Auto-Inflammatoires Systémiques Rares de L'Adulte du Nord, Nord-Ouest, Université de Lille, CHU Lille, Méditerranée et Guadeloupe (CeRAINOM), Pointe-à-Pitre, France
- U1286-INFINITE-Institute for Translational Research in Inflammation, INSERM, Université de Lille, CHU Lille, Lille, France
| | - Vincent Koether
- Service de Médecine Interne, Centre de Référence des Maladies Auto-Immunes et Auto-Inflammatoires Systémiques Rares de L'Adulte du Nord, Nord-Ouest, Université de Lille, CHU Lille, Méditerranée et Guadeloupe (CeRAINOM), Pointe-à-Pitre, France
| | - Amélie Leurs
- Département de Médecine Interne et Maladies Infectieuses, CH Dunkerque, 59240, Dunkerqu, France
| | - Ghadi Zebian
- Pôle de Réanimation, Université de Lille, CHU Lille, 59000, Lille, France
| | - David Launay
- Service de Médecine Interne, Centre de Référence des Maladies Auto-Immunes et Auto-Inflammatoires Systémiques Rares de L'Adulte du Nord, Nord-Ouest, Université de Lille, CHU Lille, Méditerranée et Guadeloupe (CeRAINOM), Pointe-à-Pitre, France
- U1286-INFINITE-Institute for Translational Research in Inflammation, INSERM, Université de Lille, CHU Lille, Lille, France
| | - Benoit Gachet
- Service de Maladies Infectieuses, CH Gustave Dron, Université de Lille, 59200, Tourcoing, France
- ULR 2694 METRICS Evaluation des Technologies de Santé et des Pratiques Médicales, CH de Tourcoing, Université de Lille, 59000, Lille, France
| | - Clémentine Levy
- Pôle de Réanimation, Université de Lille, CHU Lille, 59000, Lille, France
| |
Collapse
|
10
|
Hendriksen JD, Locallo A, Maarup S, Debnath O, Ishaque N, Hasselbach B, Skjøth-Rasmussen J, Yde CW, Poulsen HS, Lassen U, Weischenfeldt J. Immunotherapy drives mesenchymal tumor cell state shift and TME immune response in glioblastoma patients. Neuro Oncol 2024; 26:1453-1466. [PMID: 38695342 PMCID: PMC11300009 DOI: 10.1093/neuonc/noae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Glioblastoma is a highly aggressive type of brain tumor for which there is no curative treatment available. Immunotherapies have shown limited responses in unselected patients, and there is an urgent need to identify mechanisms of treatment resistance to design novel therapy strategies. METHODS Here we investigated the phenotypic and transcriptional dynamics at single-cell resolution during nivolumab immune checkpoint treatment of glioblastoma patients. RESULTS We present the integrative paired single-cell RNA-seq analysis of 76 tumor samples from patients in a clinical trial of the PD-1 inhibitor nivolumab and untreated patients. We identify a distinct aggressive phenotypic signature in both tumor cells and the tumor microenvironment in response to nivolumab. Moreover, nivolumab-treatment was associated with an increased transition to mesenchymal stem-like tumor cells, and an increase in TAMs and exhausted and proliferative T cells. We verify and extend our findings in large external glioblastoma dataset (n = 298), develop a latent immune signature and find 18% of primary glioblastoma samples to be latent immune, associated with mesenchymal tumor cell state and TME immune response. Finally, we show that latent immune glioblastoma patients are associated with shorter overall survival following immune checkpoint treatment (P = .0041). CONCLUSIONS We find a resistance mechanism signature in one fifth of glioblastoma patients associated with a tumor-cell transition to a more aggressive mesenchymal-like state, increase in TAMs and proliferative and exhausted T cells in response to immunotherapy. These patients may instead benefit from neuro-oncology therapies targeting mesenchymal tumor cells.
Collapse
Affiliation(s)
- Josephine D Hendriksen
- The Finsen Laboratory, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
| | - Alessio Locallo
- The Finsen Laboratory, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
| | - Simone Maarup
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
- Department of Radiation Biology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Olivia Debnath
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Naveed Ishaque
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Digital Health Center, Berlin, Germany
| | - Benedikte Hasselbach
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
- Department of Oncology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Jane Skjøth-Rasmussen
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
- Department of Neurosurgery, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Christina Westmose Yde
- Department of Genomic Medicine, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Hans S Poulsen
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
- Department of Radiation Biology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
- Department of Oncology, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Joachim Weischenfeldt
- The Finsen Laboratory, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Denmark
| |
Collapse
|
11
|
Wang Y, Guo L, Fan G, Han Y, Zhang Q, Wang W, Ren L, Zhang H, Wang G, Zhang X, Huang T, Chen L, Huang L, Gu X, Cui D, Wang X, Zhong J, Wang Y, Li H, Huang C, Wang J, Cao B. Effect of Corticosteroids on Long-Term Humoral and Memory T-Cell Responses in Follow-Up Visit of Hospitalized Patients With COVID-19. Chest 2024; 166:281-293. [PMID: 38431050 DOI: 10.1016/j.chest.2024.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Corticosteroids have beneficial effects in improving outcomes in hospitalized patients with severe COVID-19 by suppressing excessive immune responses. However, the effect of corticosteroids on the humoral and T-cell responses of survivors of COVID-19 1 year after infection remains uncertain, as it relates to the extent of immediate, antigen-specific defense provided by protective memory. RESEARCH QUESTION What is the effect of corticosteroids on long-term humoral and T-cell immune responses? STUDY DESIGN AND METHODS In this retrospective cohort study conducted at a single center, we analyzed data from a cohort who had survived COVID-19 to compare the 1-year seropositivity and titer changes in neutralizing antibodies (NAbs) and SARS-CoV-2-specific antibodies. Additionally, we evaluated the magnitude and rate of SARS-CoV-2-specific T-cell response in individuals who received corticosteroids during hospitalization and those who did not. RESULTS Our findings indicated that corticosteroids do not statistically influence the kinetics or seropositive rate of NAbs against the Wuhan strain of SARS-CoV-2 from 6 months to 1 year. However, subgroup analysis revealed a numerical increase of NAbs titers, from 20.0 to 28.2, in categories where long-term (> 15 days) and high-dose (> 560 mg) corticosteroids were administered. Similarly, corticosteroids showed no significant effect on nucleoprotein and receptor-binding domain IgG at 1 year, except for spike protein IgG (β, 0.08; 95% CI, 0.04-0.12), which demonstrated a delayed decline of titers. Regarding T-cell immunity, corticosteroids did not affect the rate or magnitude of T-cell responses significantly. However, functional assessment of memory T cells revealed higher interferon-γ responses in CD4 (β, 0.61; 95% CI, 0.10-1.12) and CD8 (β, 0.63; 95% CI, 0.11-1.15) memory T cells in the corticosteroids group at 1 year. INTERPRETATION Based on our findings, short-term and low-dose corticosteroid therapy during hospitalization does not appear to have a significant effect on long-term humoral kinetics or the magnitude and rate of memory T-cell responses to SARS-CoV-2 antigens. However, the potential harmful effects of long-term and high-dose corticosteroid use on memory immune responses require further investigation.
Collapse
Affiliation(s)
- Yeming Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing
| | - Li Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing
| | - Guohui Fan
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; National Clinical Research Center for Respiratory Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | | | - Qiao Zhang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing
| | - Weiyang Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing
| | - Lili Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing
| | - Hui Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing
| | - Geng Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing; Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xueyang Zhang
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing; Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing
| | - Tingxuan Huang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing; Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Chen
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing
| | | | - Xiaoying Gu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; National Clinical Research Center for Respiratory Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Dan Cui
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing
| | - Xinming Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing
| | - Jingchuan Zhong
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing
| | - Ying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing
| | - Hui Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing
| | | | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing; National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Clinical Research and Data Management, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing
| | - Bin Cao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; China-Japan Friendship Hospital, Beijing.
| |
Collapse
|
12
|
Tan R, Zhao J, Shubhra QTH. Eclipsing Toxicity, Enhancing Efficacy: Clofazimine's Vanguard in the Realm of Anti-PD-1 and CTLA-4 Immunotherapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0419. [PMID: 39156659 PMCID: PMC11328404 DOI: 10.34133/research.0419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 08/20/2024]
Affiliation(s)
- Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
- National Medical Products Administration (NMPA), Beijing 100038, China
| | - Quazi T. H. Shubhra
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-003 Katowice, Poland
| |
Collapse
|
13
|
Chan KK, Bass AR. Impact of Non-steroidal Anti-inflammatory Drugs, Glucocorticoids, and Disease-Modifying Anti-Rheumatic Drugs on Cancer Response to Immune Checkpoint Inhibitor Therapy. Rheum Dis Clin North Am 2024; 50:337-357. [PMID: 38670731 DOI: 10.1016/j.rdc.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapy for advanced malignancies often leads to off-target adverse events. Rheumatic immune-related adverse events can often linger beyond the duration of ICI therapy and sometimes requires the use of immunomodulator therapy. A key question, therefore, is if the commonly used therapies affect cancer outcomes. In this review, the authors summarize the state of the data as it currently stands, taking into consideration the limitations of the various source studies. The most information is known about glucocorticoids, which appear to be harmful especially when used early and at high doses.
Collapse
Affiliation(s)
- Karmela K Chan
- Department of Medicine, Division of Rheumatology, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA; Department of Medicine, Division of Rheumatology, Weill Cornell Medicine.
| | - Anne R Bass
- Department of Medicine, Division of Rheumatology, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA; Department of Medicine, Division of Rheumatology, Weill Cornell Medicine
| |
Collapse
|
14
|
Haratani K, Nakamura A, Mamesaya N, Sawa K, Shiraishi Y, Saito R, Tanizaki J, Tamura Y, Hata A, Tsuruno K, Sakamoto T, Teraoka S, Oki M, Watanabe H, Tokito T, Nagata K, Masuda T, Nakamura Y, Sakai K, Chiba Y, Ito A, Nishio K, Yamamoto N, Nakagawa K, Hayashi H. Association of immune-related adverse events with durvalumab efficacy after chemoradiotherapy in patients with unresectable Stage III non-small cell lung cancer. Br J Cancer 2024; 130:1783-1794. [PMID: 38519705 PMCID: PMC11130152 DOI: 10.1038/s41416-024-02662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Immune-related adverse events (irAEs) have been found to predict PD-L1 inhibitor efficacy in metastatic NSCLC. However, the relation of irAEs to clinical outcome for nonmetastatic NSCLC has remained unknown. METHODS In this multicenter prospective study of Stage III NSCLC treated with PACIFIC regimen, the relation of irAEs to PFS was evaluated by 8-week landmark analysis to minimise lead-time bias as well as by multivariable analysis adjusted for baseline factors. irAEs were categorised as mild or nonmild according to whether they were treated with systemic steroid. RESULTS Median PFS was 16.0 months, not reached, and 9.7 months for patients without (85 cases) or with mild (21 cases) or nonmild (21 cases) irAEs, respectively. Multivariable analysis indicated that nonmild irAEs were associated with poor PFS, with HRs of 3.86 (95% CI, 1.31-11.38) compared with no irAEs and 11.58 (95% CI, 2.11-63.63) compared with mild irAEs. This pattern was consistent after irAE grade, the number of durvalumab doses and immune profiles (PD-L1 score, CD8+ tumour-infiltrating lymphocyte density, and tumour mutation burden) were taken into consideration. CONCLUSIONS The development of mild irAEs might predict a better survival outcome, whereas immunosuppressive steroid-treated irAEs were associated with a worse outcome, regardless of baseline clinical and immune profiles.
Collapse
Affiliation(s)
- Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan.
| | - Atsushi Nakamura
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Miyagi, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, Japan
| | - Kenji Sawa
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Yoshimasa Shiraishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Ryota Saito
- Department of Respiratory Medicine, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Junko Tanizaki
- Division of Medical Oncology, Kishiwada City Hospital, Kishiwada, Osaka, Japan
| | - Yosuke Tamura
- Respiratory Medicine and Thoracic Oncology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Akito Hata
- Division of Thoracic Oncology, Kobe Minimally Invasive Cancer Center, Kobe, Hyogo, Japan
| | - Kosuke Tsuruno
- Department of Respiratory Medicine, Iizuka Hospital, Iizuka, Fukuoka, Japan
| | - Tomohiro Sakamoto
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Shunsuke Teraoka
- Internal Medicine III, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Masahide Oki
- Department of Respiratory Medicine, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Hiroshi Watanabe
- Department of Respiratory Medicine, Saka General Hospital, Shiogama, Miyagi, Japan
| | - Takaaki Tokito
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kenji Nagata
- Department of Respiratory Medicine, Itami City Hospital, Itami, Hyogo, Japan
| | - Takeshi Masuda
- Department of Respiratory Medicine, Hiroshima University Hospital, Hiroshima, Hiroshima, Japan
| | - Yasushi Nakamura
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Nobuyuki Yamamoto
- Internal Medicine III, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
15
|
Abstract
Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Guido Kroemer
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Poiret T, Vikberg S, Schoutrop E, Mattsson J, Magalhaes I. CAR T cells and T cells phenotype and function are impacted by glucocorticoid exposure with different magnitude. J Transl Med 2024; 22:273. [PMID: 38475830 PMCID: PMC10935894 DOI: 10.1186/s12967-024-05063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy is associated with high risk of adverse events. Glucocorticoids (GCs) are cornerstone in the management of high-grade cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Given the potentially deleterious effects of GCs on CAR T cells anti-tumor activity, increasing our understanding of GCs impact on CAR T cells is crucial. METHODS Using several CAR T cells i.e., CD19, mesothelin (MSLN)-CD28 and MSLN-41BB CAR T cells (M28z and MBBz), we compared phenotypical, functional, changes and anti-tumor activity between i) transduced CD19 CAR T cells with untransduced T cells, ii) M28z with MBBz CAR T cells induced by Dexamethasone (Dx) or Methylprednisolone (MP) exposures. RESULTS Higher levels of GC receptor were found in less differentiated CAR T cells. Overall, Dx and MP showed a similar impact on CAR T cells. Compared to untreated condition, GCs exposure increased the expression of PD-1 and TIM-3 and reduced the expression of LAG3 and function of T cells and CAR T cells. GC exposures induced more exhausted (LAG3 + PD1 + TIM3 +) and dysfunctional (CD107a-INFγ-TNF-IL2-) untransduced T cells in comparison to CD19 CAR T cells. GC exposure impaired more CD4 + than CD8 + CD19 CAR T cells. GC exposures increased more PD-1 expression associated with reduced proliferative capacity and function of M28z as compared to MBBz CAR T cells. CAR T cells anti-tumor activity was greatly affected by repeated GC exposure but partly recovered within 48h after GCs withdrawal. CONCLUSIONS In summary, GCs impacted phenotype and function of untransduced and CAR T cell with different magnitude. The nature of the CAR costimulatory domain influenced the magnitude of CAR T cell response to GCs.
Collapse
Affiliation(s)
- Thomas Poiret
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Sara Vikberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Esther Schoutrop
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Princess Margaret Cancer Centre and University of Toronto; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Lin X, Xie M, Yao J, Ma X, Qin L, Zhang X, Song J, Bao X, Zhang X, Zhang Y, Liu Y, Han W, Liang Y, Jing Y, Xue X. Immune-related adverse events in non-small cell lung cancer: Occurrence, mechanisms and therapeutic strategies. Clin Transl Med 2024; 14:e1613. [PMID: 38451000 PMCID: PMC10918746 DOI: 10.1002/ctm2.1613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/08/2024] Open
Abstract
The emergence of immune checkpoint inhibitors (ICIs) has heralded a transformative era in the therapeutic landscape of non-small cell lung cancer (NSCLC). While ICIs have demonstrated clinical efficacy in a portion of patients with NSCLC, these treatments concurrently precipitate a spectrum of immune-related adverse events (irAEs), encompassing mild to severe manifestations, collectively posing a risk of significant organ damage. Consequently, there exists an imperative to augment our comprehension of the pathophysiological underpinnings of irAEs and to formulate more efficacious preventive and ameliorative strategies. In this comprehensive review, we delineate the clinical presentation of organ-specific irAEs in patients with NSCLC and provide an in-depth analysis of recent advancements in understanding the mechanisms driving ICI-induced toxicity. Furthermore, we discuss potential strategies and targets for ameliorating these irAEs. Ultimately, this review aims to furnish valuable insights to guide further research endeavours in the context of irAEs in NSCLC patients.
Collapse
Affiliation(s)
- Xuwen Lin
- Department of Respiratory and Critical CareEmergency and Critical Care Medical CenterBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Mei Xie
- Department of Respiratory and Critical CareChinese PLA General HospitalBeijingChina
| | - Jie Yao
- Department of Respiratory and Critical CareEmergency and Critical Care Medical CenterBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Xidong Ma
- Department of Respiratory and Critical CareEmergency and Critical Care Medical CenterBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Lin Qin
- Department of Endoscopic Diagnosis and TreatmentTuberculosis and Thoracic Tumor InstituteBeijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Xu‐Mei Zhang
- Department of PathologyAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Jialin Song
- Department of Respiratory and Critical CareShandong Second Medical UniversityShandongChina
| | - Xinyu Bao
- Department of Respiratory and Critical CareShandong Second Medical UniversityShandongChina
| | - Xin Zhang
- Department of Respiratory and Critical CareShandong Second Medical UniversityShandongChina
| | - Yinguang Zhang
- Department of Thoracic SurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yiming Liu
- Department of Thoracic SurgeryChinese PLA General HospitalBeijingChina
| | - Wenya Han
- Department of Respiratory and Critical CareTaihe HospitalHubei University of MedicineShiyanChina
| | - Yiran Liang
- Department of Respiratory and Critical CareEmergency and Critical Care Medical CenterBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Ying Jing
- Center for Intelligent MedicineGreater Bay Area Institute of Precision Medicine (Guangzhou)School of Life SciencesFudan UniversityGuangzhouGuangdongChina
| | - Xinying Xue
- Department of Respiratory and Critical CareEmergency and Critical Care Medical CenterBeijing Shijitan HospitalCapital Medical UniversityBeijingChina
- Department of Respiratory and Critical CareShandong Second Medical UniversityShandongChina
| |
Collapse
|
18
|
Tsuji D, Nakagaki S, Yonezawa I, Suzuki K, Yokokawa T, Kawasaki Y, Yamaguchi T, Kawaguchi T, Hatori M, Matsumoto T, Sakata Y, Yamamoto K, Nishimura T, Kogure Y, Hayashi T, Osawa M, Itoh K, Watanabe M. A multicenter phase II trial of the triplet antiemetic therapy with palonosetron, aprepitant, and olanzapine for a cisplatin-containing regimen. - PATROL-I. Invest New Drugs 2024; 42:44-52. [PMID: 38055127 DOI: 10.1007/s10637-023-01414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Dexamethasone is one of the key antiemetic agents and is widely used even now. However, dexamethasone has been associated with several adverse reactions even after short-term administration. Therefore, developing a steroid-free antiemetic regimen is an important issue to consider. Thus, the purpose of this study was to investigate the efficacy and safety of palonosetron, aprepitant, and olanzapine in a multi-institutional phase II study. Chemotherapy-naive patients scheduled to receive cisplatin were enrolled and evaluated for the occurrence of chemotherapy-induced nausea and vomiting during 120 h after chemotherapy. The primary endpoint of the study was total control (TC) in the overall phase. The key secondary endpoint was complete response (CR), which was assessed in the acute, delayed, and overall phase, respectively. Adverse events were evaluated according to the Common Terminology Criteria for Adverse Events. Eighty-five patients were enrolled from 8 centers in Japan, of which 83 were evaluable for analyses. The percentage of patients who achieved TC during the overall phase was 31.3%. CR was achieved in 61.4%, 84.3%, and 65.1% of patients during the overall, acute, and delayed phases, respectively. The most frequently reported adverse event was anorexia. The primary endpoint was below the threshold and we could not find benefit in the dexamethasone-free regimen, but CR during the overall phase was similar to that of the conventional three-drug regimen. This antiemetic regimen without dexamethasone might be an option for patients for whom corticosteroids should not be an active application.
Collapse
Affiliation(s)
- Daiki Tsuji
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan.
| | - Shigeru Nakagaki
- Department of Pharmacy, Shizuoka General Hospital, Shizuoka, Japan
| | - Itsuki Yonezawa
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Kenichi Suzuki
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takashi Yokokawa
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yohei Kawasaki
- Faculty of Nursing, Japanese Red Cross College of Nursing, Tokyo, Japan
| | - Takumi Yamaguchi
- Institute for Assistance of Academic and Education, IAAE, Kanagawa, Japan
| | - Takashi Kawaguchi
- Department of Practical Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masahiro Hatori
- Department of Pharmacy, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuma Matsumoto
- Pharmaceutical Department, National Hospital Organization Iwakuni Clinical Center, Yamaguchi, Japan
| | - Yukio Sakata
- Department of Pharmacy, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Keisuke Yamamoto
- Department of Pharmacy, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Tomoyasu Nishimura
- Department of Pharmacy, Wakayama Medical University Hospital, Wakayama, Japan
| | - Yuki Kogure
- Department of Pharmacy, National Hospital Organization Higashihiroshima Medical Center, Hiroshima, Japan
| | - Toshinobu Hayashi
- Department of Pharmaceutical and Health Care Management, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Misa Osawa
- Department of Pharmacy, Shizuoka General Hospital, Shizuoka, Japan
| | - Kunihiko Itoh
- Department of Clinical Pharmacology & Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Masaya Watanabe
- Department of Gastroenterological Surgery, Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
19
|
NISHIKAWA H. Establishment of immune suppression by cancer cells in the tumor microenvironment. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:114-122. [PMID: 38346752 PMCID: PMC10978970 DOI: 10.2183/pjab.100.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 02/15/2024]
Abstract
With the clinical success of immune checkpoint inhibitors (ICIs), cancer immunotherapy has become an important pillar of cancer treatment in various types of cancer. However, more than half of patients fail to respond to ICIs, even in combination, uncovering a limited window of clinical responses. Therefore, it is essential to develop more effective cancer immunotherapies and to define biomarkers for stratifying responders and nonresponders by exploring the immunological landscape in the tumor microenvironment (TME). It has become clear that differences in immune responses in the TME determine the clinical efficacy of cancer immunotherapies. Additionally, gene alterations in cancer cells contribute to the development of the immunological landscape, particularly immune suppression in the TME. Therefore, integrated analyses of immunological and genomic assays are key for understanding diverse immune suppressive mechanisms in the TME. Developing novel strategies to control immune suppression in the TME from the perspective of immunology and the cancer genome is crucial for effective cancer immunotherapy (immune-genome precision medicine).
Collapse
Affiliation(s)
- Hiroyoshi NISHIKAWA
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
20
|
Van Buren I, Madison C, Kohn A, Berry E, Kulkarni RP, Thompson RF. Survival Among Veterans Receiving Steroids for Immune-Related Adverse Events After Immune Checkpoint Inhibitor Therapy. JAMA Netw Open 2023; 6:e2340695. [PMID: 37906189 PMCID: PMC10618850 DOI: 10.1001/jamanetworkopen.2023.40695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
Importance Systemic steroids are commonly used to manage immune-related adverse events (irAEs), but it remains unclear whether they may undermine immune checkpoint inhibitor (ICI) therapy outcomes. Few studies have assessed the impact of steroid timing and its association with continuation or cessation of ICI therapy. Objective To characterize how systemic steroids and steroid timing for irAEs are associated with survival in patients receiving ICI therapy. Design, Setting, and Participants This multicenter retrospective cohort study encompassed veterans receiving ICI for cancer between January 1, 2010, and December 31, 2021. Data analysis was conducted September 8, 2023. Exposures Identifiable primary diagnosis of cancer. Patients were categorized into 3 cohorts: those receiving no steroids, systemic steroids for irAEs, and steroids for non-irAE-associated reasons. All eligible patients received 1 or more doses of an ICI (atezolizumab, avelumab, cemiplimab, durvalumab, ipilimumab, nivolumab, or pembrolizumab). Eligible patients in the steroid group received at least 1 dose (intravenous, intramuscular, or oral) of dexamethasone, hydrocortisone, methylprednisolone, prednisone, or prednisolone. Steroid use at baseline for palliation or infusion prophylaxis or delivered as a single dose was deemed to be non-irAE associated. All other patterns of steroid use were assumed to be for irAEs. Main Outcomes and Measures The primary outcome was overall survival, with a 5-year follow-up after ICI initiation. Kaplan-Meier survival analyses were performed with pairwise log-rank tests to determine significance. Risk was modeled with Cox proportional hazard regression. Results The cohort consisted of 20 163 veterans receiving ICI therapy including 12 221 patients (mean [SD] age, 69.5 [8.0] years; 11 830 male patients [96.8%]; 9394 White patients [76.9%]) who received systemic steroids during ICI treatment and 7942 patients (mean [SD] age, 70.3 [8.5] years; 7747 male patients [97.5%]; 6085 White patients [76.6%]) who did not. Patients with an irAE diagnosis had significantly improved overall survival (OS) compared with those without (median [IQR] OS, 17.4 [6.6 to 48.5] months vs 10.5 [3.5 to 36.8] months; adjusted hazard ratio, 0.84; 95% CI, 0.81-0.84; P < .001). For patients with irAEs, systemic steroids for irAEs were associated with significantly improved survival compared with those who received steroids for non-irAE-related reasons or no steroid treatment (median [IQR] OS, 21.3 [9.3 to 58.2] months vs 13.6 [5.5 to 33.7] months vs 15.8 [4.9 to not reached] months; P <.001). However, among those who received steroids for irAEs, early steroid use (<2 months after ICI initiation) was associated with reduced relative survival benefit vs later steroid use, regardless of ICI continuation or cessation following steroid initiation (median [IQR] OS after ICI cessation 4.4 [1.9 to 19.5] months vs 16.0 [8.0 to 42.2] months; median [IQR] OS after ICI continuation, 16.0 [7.1 to not reached] months vs 29.2 [16.5 to 53.5] months; P <.001). Conclusions and Relevance This study suggests that steroids for irAE management may not abrogate irAE-associated survival benefits. However, early steroid administration within 2 months of ICI initiation is associated with shorter survival despite continuation of ICI therapy.
Collapse
Affiliation(s)
- Inga Van Buren
- Graduate Medical Education, St Joseph’s Medical Center, Stockton, California
| | - Cecelia Madison
- Research and Development, VA Portland Healthcare System, Portland, Oregon
| | - Aimee Kohn
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland
| | - Elizabeth Berry
- Department of Dermatology, Oregon Health & Science University, Portland
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland
- Operative Care Division, VA Portland Healthcare System, Portland, Oregon
| | - Reid F. Thompson
- Department of Radiation Medicine, Oregon Health & Science University, Portland
- Division of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, Oregon
| |
Collapse
|
21
|
Chamoto K, Yaguchi T, Tajima M, Honjo T. Insights from a 30-year journey: function, regulation and therapeutic modulation of PD1. Nat Rev Immunol 2023; 23:682-695. [PMID: 37185300 DOI: 10.1038/s41577-023-00867-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
PD1 was originally discovered in 1992 as a molecule associated with activation-induced cell death in T cells. Over the past 30 years, it was found that PD1 has a critical role in avoiding overactivation-induced cell death and autoimmunity, whereas its inhibition unleashes anticancer immunity. Here, we outline the journey from the discovery of PD1 to its role as a breakthrough target in cancer immunotherapy. We describe its regulation and function and examine how a mechanistic understanding of PD1 signalling suggests a central function in setting the T cell activation threshold, thereby controlling T cell proliferation, differentiation, exhaustion and metabolic status. This threshold theory, in combination with new insights into T cell metabolism and a better understanding of immune cell modulation by the microbiota, can provide guidance for the development of efficient combination therapies. Moreover, we discuss the mechanisms underlying immune-related adverse events after PD1-targeted therapy and their possible treatment.
Collapse
Affiliation(s)
- Kenji Chamoto
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Yaguchi
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tasuku Honjo
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
22
|
Goto Y, Nagafuchi H, Kaga Y, Kawahata K. Association between glucocorticoid discontinuation and incidence of infection in older adults with rheumatoid arthritis: A retrospective cohort study. Int J Rheum Dis 2023; 26:1987-1995. [PMID: 37504066 DOI: 10.1111/1756-185x.14851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/24/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
AIM Old age and glucocorticoid (GC) use increase the susceptibility to infection in patients with rheumatoid arthritis (RA). Accordingly, we investigated whether GC discontinuation reduces the incidence of infection in older adults with RA and analyzed factors associated with GC discontinuation. METHODS Medical records of patients with RA aged ≥60 years were retrieved, and the association between GC use and the incidence of infection was investigated. The participants were divided into three groups: GC-continued, GC-discontinued, and non-GC; the incidence of infection was statistically analyzed. Furthermore, patient treatments and comorbidities were examined. RESULTS Among 389 patients with RA included in the study (n = 122, n = 126, and n = 141 in the GC-discontinued, GC-continued, and non-GC groups, respectively), 65 (16.7%) patients developed infection, and the incidence of infection was significantly higher in the GC-continued group than in the GC-discontinued (p = .021) and non-GC (p = .0003) groups; there was no significant difference between the non-GC and GC-discontinued groups (p = .659). The GC-discontinued group was more likely to require biologic use throughout the disease course than the other two groups. Comorbidities, especially malignancies (p = .004), were more common in the GC-continued group than in the GC-discontinued group (p = .007). CONCLUSION In patients with RA aged ≥60 years receiving GCs, GC discontinuation reduced the incidence of infection. Therefore, a further analysis of factors that help reduce GC use is necessary.
Collapse
Affiliation(s)
- Yutaka Goto
- Division of Rheumatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroko Nagafuchi
- Division of Rheumatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasuyuki Kaga
- Department of Practical Management of Medical Information, St. Marianna University School of Medicine, Kawasaki, Japan
- EPS Corporation, Tokyo, Japan
| | - Kimito Kawahata
- Division of Rheumatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
23
|
Kramer S, van Hee K, Blokzijl H, van der Heide F, Visschedijk MC. Immune Checkpoint Inhibitor-related Pancreatitis: A Case Series, Review of the Literature and an Expert Opinion. J Immunother 2023; 46:271-275. [PMID: 37216403 PMCID: PMC10405787 DOI: 10.1097/cji.0000000000000472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of various malignancies, but are associated with serious adverse events like pancreatitis. Current guidelines are limited to the first step in treating acute ICI-related pancreatitis with steroids but lack treatment advices for steroid dependent pancreatitis. We describe a case series of 3 patients who developed ICI-related pancreatitis with chronic features such as exocrine insufficiency and pancreatic atrophy at imaging. Our first case developed after treatment with pembrolizumab. The pancreatitis responded well after discontinuation of immunotherapy but imaging showed pancreatic atrophy and exocrine pancreatic insufficiency persisted. Cases 2 and 3 developed after treatment with nivolumab. In both, pancreatitis responded well to steroids. However during steroid tapering, pancreatitis recurred and the latter developed exocrine pancreatic insufficiency and pancreatic atrophy at imaging. Our cases demonstrate resemblances with autoimmune pancreatitis based on clinical and imaging findings. In line, both diseases are T-cell mediated and for autoimmune pancreatitis azathioprine is considered as maintenance therapy. Guidelines of other T-cell mediated diseases like ICI-related hepatitis suggest tacrolimus. After adding tacrolimus in case 2 and azathioprine in case 3, steroids could be completely tapered and no new episodes of pancreatitis have occurred. These findings support the idea that the treatment modalities for other T-cell mediated diseases are worthwhile options for steroid dependent ICI-related pancreatitis.
Collapse
Affiliation(s)
- Sjoerd Kramer
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Koen van Hee
- Department of Gastroenterology and Hepatology, Jeroen Bosch Hospital, GZ ‘s-Hertogenbosch, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Frans van der Heide
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marijn C. Visschedijk
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Wang J, Zhang B, Peng L, Liu X, Sun J, Su C, Wang H, Zhao Z, Si L, Duan J, Zhang H, Li M, Zhu B, Zhang L, Li J, Guo J, Luo R, Qiu W, Ye D, Chu Q, Cui J, Dong X, Fan Y, Gao Q, Guo Y, He Z, Li W, Lin G, Liu L, Liu Y, Qin H, Ren S, Ren X, Wang Y, Xue J, Yang Y, Yang Z, Yue L, Zhan X, Zhang J, Ma J, Qin S, Wang B. Chinese expert consensus recommendations for the administration of immune checkpoint inhibitors to special cancer patient populations. Ther Adv Med Oncol 2023; 15:17588359231187205. [PMID: 37484525 PMCID: PMC10357053 DOI: 10.1177/17588359231187205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting programmed cell death 1, programmed cell death ligand 1, and cytotoxic T lymphocyte-associated antigen-4 have shown significantly durable clinical benefits and tolerable toxicities and have improved the survival of patients with various types of cancer. Since 2018, the National Medical Products Administration of China has approved 17 ICIs as the standard treatment for certain advanced or metastatic solid tumors. As ICIs represent a broad-spectrum antitumor strategy, the populations eligible for cancer immunotherapy are rapidly expanding. However, the clinical applications of ICIs in cancer patient populations with special issues, a term that refers to complex subgroups of patients with comorbidities, special clinical conditions, or concomitant medications who are routinely excluded from prospective clinical trials of ICIs or are underrepresented in these trials, represent a great real-world challenge. Although the Chinese Society of Clinical Oncology (CSCO) has provided recommendations for screening before the use of ICIs in special populations, the recommendations for full-course management remain insufficient. The CSCO Expert Committee on Immunotherapy organized leading medical oncology and multidisciplinary experts to develop a consensus that will serve as an important reference for clinicians to guide the proper application of ICIs in special patient populations. This article is a translation of a study first published in Chinese in The Chinese Clinical Oncology (ISSN 1009-0460, CN 32-1577/R) in May 2022 (27(5):442-454). The publisher of the original paper has provided written confirmation of permission to publish this translation in Therapeutic Advances in Medical Oncology.
Collapse
Affiliation(s)
- Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Shandong Key Laboratory of Rheumatic Disease and Translational Medicine; Shandong Lung Cancer Institute, Jinan 250014, China
| | - Bicheng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Peng
- Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiufeng Liu
- Department of Hepatobiliary Oncology, Qinhuai Medical District, Eastern Theater Command General Hospital, Nanjing, China
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Huijuan Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zheng Zhao
- Department of Oncology, Shannxi Cancer Hospital, Xi’an, China
| | - Lu Si
- Department of Melanoma, Cancer Hospital and Institute, Peking University, Beijing, China
| | - Jianchun Duan
- Department of Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongmei Zhang
- Department of Oncology, Xijing Hospital, Air Force Medical University, Xian, China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Army Medical University, Chongqing, China
| | - Bo Zhu
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Jun Guo
- Department of Melanoma, Cancer Hospital and Institute, Peking University, Beijing, China
| | - Rongcheng Luo
- Cancer Center, Jinshazhou Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dingwei Ye
- Department of Urology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiuwei Cui
- Department of Oncology, The First Hospital of Jilin University, Changchun, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Fan
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Quanli Gao
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ye Guo
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhiyong He
- Department of Thoracic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Wenfeng Li
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gen Lin
- Department of Thoracic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Lian Liu
- Department of Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yutao Liu
- Department of Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haifeng Qin
- Department of Oncology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Shengxiang Ren
- Department of Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xiubao Ren
- Department of Immunology and Biotherapy, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yongsheng Wang
- GCP Center/Institute of Clinical Pharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhou Yang
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yue
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Junping Zhang
- Department of Cancer Biotherapy, Shanxi Bethune Hospital, Taiyuan, China
| | - Jun Ma
- Harbin Institute of Hematology and Oncology, Harbin, China
| | - Shukui Qin
- Department of Hepatobiliary Oncology, Qinhuai Medical District, Eastern Theater Command General Hospital, Nanjing 210008, China
| | - Baocheng Wang
- Department of Oncology, The 960th Hospital, The People’s Liberation Army, Jinan 250031, China
| |
Collapse
|
25
|
Goodman RS, Johnson DB, Balko JM. Corticosteroids and Cancer Immunotherapy. Clin Cancer Res 2023; 29:2580-2587. [PMID: 36648402 PMCID: PMC10349688 DOI: 10.1158/1078-0432.ccr-22-3181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023]
Abstract
Despite revolutionizing cancer management, immunotherapies dysregulate the immune system, leading to immune-mediated adverse events. These common and potentially dangerous toxicities are often treated with corticosteroids, which are among the most prescribed drugs in oncology for a wide range of cancer and noncancer indications. While steroids exert several mechanisms to reduce immune activity, immunotherapies, such as immune checkpoint inhibitors (ICI), are designed to enhance the immune system's inherent antitumor activity. Because ICI requires an intact and robust immune response, the immunosuppressive properties of steroids have led to a widespread concern that they may interfere with antitumor responses. However, the existing data of the effect of systemic steroids on immunotherapy efficacy remain somewhat conflicted and unclear. To inform clinical decision-making and improve outcomes, we review the impact of steroids on antitumor immunity, recent advances in the knowledge of their impact on ICI efficacy in unique populations and settings, associated precautions, and steroid-sparing treatment approaches.
Collapse
Affiliation(s)
| | - Douglas B. Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Justin M. Balko
- Department of Medicine, Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
26
|
Bar-Hai N, Ben-Betzalel G, Stoff R, Grynberg S, Schachter J, Shapira-Frommer R, Asher N. Better Late Than Never: The Impact of Steroidal Treatment on the Outcome of Melanoma Patients Treated with Immunotherapy. Cancers (Basel) 2023; 15:cancers15113041. [PMID: 37297003 DOI: 10.3390/cancers15113041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Successful treatment with Immune Checkpoint Inhibitors (ICI) requires the balanced activation of the immune system. Over-activation may result in immune-related adverse events (irAEs), which often require steroidal treatment. This study examined the possible impact of steroids on treatment efficacy in melanoma patients concerning initiation timing and dosage. METHODS A retrospective, single-center analysis of patients with advanced melanoma who underwent first-line ICI therapy during 2014-2020 was conducted. RESULTS Among the 415 patients, two-hundred patients (48.3%) were exposed to steroids during the first line, most of them due to irAEs (n = 169, 84.5%). Nearly a quarter of them were exposed to steroids within the first four weeks of treatment. Surprisingly, steroidal exposure was associated with better progression-free survival (PFS; HR = 0.74, p = 0.015); however, early exposure (within four weeks of treatment) resulted in a significantly shorter PFS compared to late exposure (adjusted HR 3.2, p < 0.001). CONCLUSIONS Early exposure to corticosteroids during the priming phase of ICI therapy could impede the establishment of an effective immune response. These results suggest that caution should be exercised when considering the use of steroids for the management of early-onset irAEs.
Collapse
Affiliation(s)
- Neta Bar-Hai
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Guy Ben-Betzalel
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Ronen Stoff
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Shirly Grynberg
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ronnie Shapira-Frommer
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Nethanel Asher
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Ramat Gan 52621, Israel
| |
Collapse
|
27
|
Resztak JA, Wei J, Zilioli S, Sendler E, Alazizi A, Mair-Meijers HE, Wu P, Wen X, Slatcher RB, Zhou X, Luca F, Pique-Regi R. Genetic control of the dynamic transcriptional response to immune stimuli and glucocorticoids at single-cell resolution. Genome Res 2023; 33:839-856. [PMID: 37442575 PMCID: PMC10519413 DOI: 10.1101/gr.276765.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/08/2023] [Indexed: 07/15/2023]
Abstract
Synthetic glucocorticoids, such as dexamethasone, have been used as a treatment for many immune conditions, such as asthma and, more recently, severe COVID-19. Single-cell data can capture more fine-grained details on transcriptional variability and dynamics to gain a better understanding of the molecular underpinnings of inter-individual variation in drug response. Here, we used single-cell RNA-seq to study the dynamics of the transcriptional response to glucocorticoids in activated peripheral blood mononuclear cells from 96 African American children. We used novel statistical approaches to calculate a mean-independent measure of gene expression variability and a measure of transcriptional response pseudotime. Using these approaches, we showed that glucocorticoids reverse the effects of immune stimulation on both gene expression mean and variability. Our novel measure of gene expression response dynamics, based on the diagonal linear discriminant analysis, separated individual cells by response status on the basis of their transcriptional profiles and allowed us to identify different dynamic patterns of gene expression along the response pseudotime. We identified genetic variants regulating gene expression mean and variability, including treatment-specific effects, and showed widespread genetic regulation of the transcriptional dynamics of the gene expression response.
Collapse
Affiliation(s)
- Justyna A Resztak
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Samuele Zilioli
- Department of Psychology, Wayne State University, Detroit, Michigan 48201, USA
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan 48201, USA
| | - Edward Sendler
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Henriette E Mair-Meijers
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA
| | - Peijun Wu
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Richard B Slatcher
- Department of Psychology, University of Georgia, Athens, Georgia 30602, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA;
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201, USA
- Department of Biology, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA;
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
28
|
Greenstein AE, Hunt HJ. The glucocorticoid receptor modulator relacorilant reverses the immunosuppressive effects of cortisol. Int Immunopharmacol 2023; 120:110312. [PMID: 37230031 DOI: 10.1016/j.intimp.2023.110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
Cortisol, an endogenous glucocorticoid receptor (GR) agonist, controls a broad transcriptional program that affects T-cell activation, pro-inflammatory cytokine secretion, apoptosis, and immune-cell trafficking. The degree to which endogenous cortisol blunts the anti-tumor immune response checkpoint inhibitors stimulate had not been assessed. We addressed this question using relacorilant, a selective GR modulator (SGRM) that competitively antagonizes the effects of cortisol activity. GR expression in human tumor and immune cells positively correlated with PD-L1 expression and tumor infiltration of Th2 and Treg cells, and negatively correlated with Th1-cell infiltration. In vitro, cortisol inhibited, and relacorilant restored, T-cell activation and pro-inflammatory cytokine secretion in human peripheral blood mononuclear cells. In the ovalbumin-expressing EG7 and MC38 immune-competent tumor models, relacorilant significantly improved anti-PD-1 antibody efficacy and showed favorable effects on antigen-specific T-cells and systemic TNFα and IL-10. These data characterize the broad immunosuppressive effects of endogenous cortisol and highlight the potential of combining an SGRM with an immune checkpoint inhibitor.
Collapse
Affiliation(s)
| | - Hazel J Hunt
- Corcept Therapeutics, 149 Commonwealth Dr, Menlo Park, CA 94025, USA.
| |
Collapse
|
29
|
Song SH, Ghosh T, You DG, Joo H, Lee J, Lee J, Kim CH, Jeon J, Shin S, Park JH. Functionally Masked Antibody to Uncouple Immune-Related Toxicities in Checkpoint Blockade Cancer Therapy. ACS NANO 2023. [PMID: 37184643 DOI: 10.1021/acsnano.2c12532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Of the existing immunotherapy drugs in oncology, monoclonal antibodies targeting the immune checkpoint axis are preferred because of the durable responses observed in selected patients. However, the associated immune-related adverse events (irAEs), causing uncommon fatal events, often require specialized management and medication discontinuation. The study aim was to investigate our hypothesis that masking checkpoint antibodies with tumor microenvironment (TME)-responsive polymer chains can mitigate irAEs and selectively target tumors by limiting systemic exposure to patients. We devised a broadly applicable strategy that functionalizes immune checkpoint-blocking antibodies with a mildly acidic pH-cleavable poly(ethylene glycol) (PEG) shell to prevent inflammatory side effects in normal tissues. Conjugation of pH-sensitive PEG to anti-CD47 antibodies (αCD47) minimized antibody-cell interactions by inhibiting their binding ability and functionality at physiological pH, leading to prevention of αCD47-induced anemia in tumor-bearing mice. When conjugated to anti-CTLA-4 and anti-PD-1 antibodies, double checkpoint blockade-induced colitis was also ameliorated. Notably, removal of the protective shell in response to an acidic TME restored the checkpoint antibody activities, accompanied by effective tumor regression and long-term survival in the mouse model. Our results support a feasible strategy for antibody-based therapies to uncouple toxicity from efficacy and show the translational potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Seok Ho Song
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Torsha Ghosh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Gil You
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyeyeon Joo
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongjin Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jaeah Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jueun Jeon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sol Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
30
|
Verheijden RJ, van Eijs MJM, May AM, van Wijk F, Suijkerbuijk KPM. Immunosuppression for immune-related adverse events during checkpoint inhibition: an intricate balance. NPJ Precis Oncol 2023; 7:41. [PMID: 37173424 PMCID: PMC10182067 DOI: 10.1038/s41698-023-00380-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed perspectives for patients with cancer, but come with severe immune-related adverse events (irAEs). To prevent fatality or chronicity, these irAEs are often promptly treated with high-dose immunosuppressants. Until recently, evidence on the effects of irAE management on ICI efficacy has been sparse. As a result, algorithms for irAE management are mostly expert-opinion based and barely consider possible detrimental effects of immunosuppressants on ICI efficacy. However, recent growing evidence suggests that vigorous immunosuppressive management of irAEs comes with unfavourable effects on ICI efficacy and survival. With expansion of the indications of ICIs, evidence-based treatment of irAEs without hampering tumour control becomes more and more important. In this review, we discuss novel evidence from pre-clinical and clinical studies on the effects of different irAE management regimens including corticosteroids, TNF inhibition and tocilizumab on cancer control and survival. We provide recommendations for pre-clinical research, cohort studies and clinical trials that can help clinicians in tailored irAE management, minimising patients' burden while maintaining ICI efficacy.
Collapse
Affiliation(s)
- Rik J Verheijden
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Mick J M van Eijs
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Watowich MB, Gilbert MR, Larion M. T cell exhaustion in malignant gliomas. Trends Cancer 2023; 9:270-292. [PMID: 36681605 PMCID: PMC10038906 DOI: 10.1016/j.trecan.2022.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023]
Abstract
Despite advances in understanding tumor biology, malignant gliomas remain incurable. While immunotherapy has improved outcomes in other cancer types, comparable efficacy has not yet been demonstrated for primary cancers of the central nervous system (CNS). T cell exhaustion, defined as a progressive decrease in effector function, sustained expression of inhibitory receptors, metabolic dysfunction, and distinct epigenetic and transcriptional alterations, contributes to the failure of immunotherapy in the CNS. Herein, we describe recent advances in understanding the drivers of T cell exhaustion in the glioma microenvironment. We discuss the extrinsic and intrinsic factors that contribute to exhaustion and highlight potential avenues for reversing this phenotype. Our ability to directly target specific immunosuppressive drivers in brain cancers would be a major advance in immunotherapy.
Collapse
Affiliation(s)
- Matthew B Watowich
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mioara Larion
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Kreissl FK, Banki MA, Droujinine IA. Molecular methods to study protein trafficking between organs. Proteomics 2023; 23:e2100331. [PMID: 36478633 DOI: 10.1002/pmic.202100331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Interorgan communication networks are key regulators of organismal homeostasis, and their dysregulation is associated with a variety of pathologies. While mass spectrometry proteomics identifies circulating proteins and can correlate their abundance with disease phenotypes, the tissues of origin and destinations of these secreted proteins remain largely unknown. In vitro approaches to study protein secretion are valuable, however, they may not mimic the complexity of in vivo environments. More recently, the development of engineered promiscuous BirA* biotin ligase derivatives has enabled tissue-specific tagging of cellular secreted proteomes in vivo. The use of biotin as a molecular tag provides information on the tissue of origin and destination, and enables the enrichment of low-abundance hormone proteins. Therefore, promiscuous protein biotinylation is a valuable tool to study protein secretion in vivo.
Collapse
Affiliation(s)
- Felix K Kreissl
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Michael A Banki
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Ilia A Droujinine
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
33
|
T Cell Energy Metabolism Is a Target of Glucocorticoids in Mice, Healthy Humans, and MS Patients. Cells 2023; 12:cells12030450. [PMID: 36766792 PMCID: PMC9914408 DOI: 10.3390/cells12030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Glucocorticoids (GCs) are used to treat inflammatory disorders such as multiple sclerosis (MS) by exerting prominent activities in T cells including apoptosis induction and suppression of cytokine production. However, little is known about their impact on energy metabolism, although it is widely accepted that this process is a critical rheostat of T cell activity. We thus tested the hypothesis that GCs control genes and processes involved in nutrient transport and glycolysis. Our experiments revealed that escalating doses of dexamethasone (Dex) repressed energy metabolism in murine and human primary T cells. This effect was mediated by the GC receptor and unrelated to both apoptosis induction and Stat1 activity. In contrast, treatment of human T cells with rapamycin abolished the repression of metabolic gene expression by Dex, unveiling mTOR as a critical target of GC action. A similar phenomenon was observed in MS patients after intravenous methylprednisolon (IVMP) pulse therapy. The expression of metabolic genes was reduced in the peripheral blood T cells of most patients 24 h after GC treatment, an effect that correlated with disease activity. Collectively, our results establish the regulation of T cell energy metabolism by GCs as a new immunomodulatory principle.
Collapse
|
34
|
Dinarello A, Mills TS, Tengesdal IW, Powers NE, Azam T, Dinarello CA. Dexamethasone and OLT1177 Cooperate in the Reduction of Melanoma Growth by Inhibiting STAT3 Functions. Cells 2023; 12:294. [PMID: 36672229 PMCID: PMC9856388 DOI: 10.3390/cells12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The NLRP3 inflammasome is a multimolecular complex that processes inactive IL-1β and IL-18 into proinflammatory cytokines. OLT1177 is an orally active small compound that specifically inhibits NLRP3. Here, B16F10 melanoma were implanted in mice and treated with OLT1177 as well as combined with the glucocorticoid dexamethasone. At sacrifice, OLT1177 treated mice had significantly smaller tumors compared to tumor-bearing mice treated with vehicle. However, the combined treatment of OLT1177 plus dexamethasone revealed a greater suppression of tumor growth. This reduction was accompanied by a downregulation of nuclear and mitochondrial STAT3-dependent gene transcription and by a significant reduction of STAT3 Y705 and S727 phosphorylations in the tumors. In vitro, the human melanoma cell line 1205Lu, stimulated with IL-1α, exhibited significantly lower levels of STAT3 Y705 phosphorylation by the combination treatment, thus affecting the nuclear functions of STAT3. In the same cells, STAT3 serine 727 phosphorylation was also lower, affecting the mitochondrial functions of STAT3. In addition, metabolic analyses revealed a marked reduction of ATP production rate and glycolytic reserve in cells treated with the combination of OLT1177 plus dexamethasone. These findings demonstrate that the combination of OLT1177 and dexamethasone reduces tumor growth by targeting nuclear as well as mitochondrial functions of STAT3.
Collapse
Affiliation(s)
- Alberto Dinarello
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Taylor S. Mills
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Isak W. Tengesdal
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Nicholas E. Powers
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Tania Azam
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado, Aurora, Denver, CO 80045, USA
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
35
|
Melia A, Fockens E, Sfumato P, Zemmour C, Madroszyk A, Lafforgue P, Pham T. Musculoskeletal immune-related adverse events in 927 patients treated with immune checkpoint inhibitors for solid cancer. Joint Bone Spine 2023; 90:105457. [PMID: 36116771 DOI: 10.1016/j.jbspin.2022.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/31/2022] [Accepted: 08/17/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The prevalence of the musculoskeletal immune-related adverse events (irAEs) is probably underestimated, as most studies report only severe side effects. Our aim was to describe and characterize all musculoskeletal irAEs in a large cohort of patients treated with immune checkpoint inhibitors (ICI). METHODS We conducted a retrospective study among patients who received ICI from 07/27/2014 to 05/08/2020 at the medical oncology department of the Institut Paoli-Calmettes, Marseille, France. All medical files were systemically reviewed by a rheumatologist who collected clinical features, time of occurrence, treatment regimen, irAEs management, course and outcomes. We also assessed tumor response 3 months after introduction of ICI, according to severity and treatments used to manage musculoskeletal irAEs. RESULTS Among 927 patients treated with ICI for a solid tumor, 118 patients (12.7%) presented a musculoskeletal irAE. Their median age was 66.5, 61% were male, and they mainly had a lung (57.6%) or urological cancer (27.1%). The most frequently involved ICI was an anti PD-1. Arthralgias and myalgias were the most frequent musculoskeletal irAEs (9.8%) and inflammatory rheumatic features were reported in 36 patients (3.9%) with elevated acute phase reactants and negative immunological markers. The median time of onset was 2 months (IC 95% 1.8; 2.7). Tumor response at 3 months did not differ according to musculoskeletal irAE severity, type of manifestation (arthralgias/myalgias versus inflammatory rheumatic features), pain patterns (mechanical versus inflammatory) or irAE treatments. CONCLUSION Musculoskeletal irAEs in this large cohort of patients treated with ICI were frequent (12.7%), mostly mild and well tolerated.
Collapse
Affiliation(s)
- Angélique Melia
- Department of Rheumatology, University Hospital of Marseille Sainte-Marguerite, Aix Marseille University, AP-HM, Marseille, France.
| | - Emilie Fockens
- Department of Rheumatology, University Hospital of Marseille Sainte-Marguerite, Aix Marseille University, AP-HM, Marseille, France
| | - Patrick Sfumato
- Biostatistics department, Institut Paoli-Calmettes, Marseille, France
| | | | - Anne Madroszyk
- Oncology department, Institut Paoli-Calmettes, Marseille, France
| | - Pierre Lafforgue
- Department of Rheumatology, University Hospital of Marseille Sainte-Marguerite, Aix Marseille University, AP-HM, Marseille, France
| | - Thao Pham
- Department of Rheumatology, University Hospital of Marseille Sainte-Marguerite, Aix Marseille University, AP-HM, Marseille, France
| |
Collapse
|
36
|
Moaddabi A, Cernera M, Armogida NG, Soltani P, Spagnuolo G. Actinomycotic Sinomaxillary Infection in a COVID-19 Patient: A Case Report and Review of the Literature. J Investig Med High Impact Case Rep 2023; 11:23247096231217823. [PMID: 38102073 PMCID: PMC10725094 DOI: 10.1177/23247096231217823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023] Open
Abstract
Individuals with COVID-19 are prone to a variety of infections due to immune dysregulation. The present report presents a case of actinomycotic infection in the maxillary bone and sinus region in a patient with a history of COVID-19. This case report highlights the importance of considering bacterial infections including actinomycosis when encountering destructive lesions resembling more prevalent fungal infections due to different therapeutic medication protocols. In addition, a literature review of the existing reports of similar post-COVID-19 actinomycotic infection is presented.
Collapse
Affiliation(s)
- Amirhossein Moaddabi
- Department of Oral and Maxillofacial Surgery, Dental Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mariangela Cernera
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
| | - Niccolò Giuseppe Armogida
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
| | - Parisa Soltani
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
- Department of Oral and Maxillofacial Radiology, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
37
|
Khadka S, Druffner SR, Duncan BC, Busada JT. Glucocorticoid regulation of cancer development and progression. Front Endocrinol (Lausanne) 2023; 14:1161768. [PMID: 37143725 PMCID: PMC10151568 DOI: 10.3389/fendo.2023.1161768] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Glucocorticoids are steroid hormones that regulate a host of cellular and physiological functions. However, they are arguably best known for their potent anti-inflammatory properties. Chronic inflammation is well-known to promote the development and progression of numerous types of cancer, and emerging evidence suggests that glucocorticoid regulation of inflammation affects cancer development. However, the timing, intensity, and duration of glucocorticoid signaling have important but often contradictory effects on cancer development. Moreover, glucocorticoids are widely used in parallel with radiation and chemotherapy to control pain, dyspnea, and swelling, but their use may compromise anti-tumor immunity. This review will explore the effects of glucocorticoids on cancer development and progression with particular focus on pro and anti-tumor immunity.
Collapse
|
38
|
Siewe N, Friedman A. Optimal timing of steroid initiation in response to CTLA-4 antibody in metastatic cancer: A mathematical model. PLoS One 2022; 17:e0277248. [PMID: 36355837 PMCID: PMC9648769 DOI: 10.1371/journal.pone.0277248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022] Open
Abstract
Immune checkpoint inhibitors, introduced in recent years, have revolutionized the treatment of many cancers. However, the toxicity associated with this therapy may cause severe adverse events. In the case of advanced lung cancer or metastatic melanoma, a significant number (10%) of patients treated with CTLA-4 inhibitor incur damage to the pituitary gland. In order to reduce the risk of hypophysitis and other severe adverse events, steroids may be combined with CTLA-4 inhibitor; they reduce toxicity, but they also diminish the anti-cancer effect of the immunotherapy. This trade-off between tumor reduction and the risk of severe adverse events poses the following question: What is the optimal time to initiate treatment with steroid. We address this question with a mathematical model from which we can also evaluate the comparative benefits of each schedule of steroid administration. In particular, we conclude that treatment with steroid should not begin too early, but also not very late, after immunotherapy began; more precisely, it should start as soon as tumor volume, under the effect of CTLA-4 inhibitor alone, begins to decrease. We can also compare the benefits of short term treatment of steroid at high doses to a longer term treatment with lower doses.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America
- * E-mail:
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
39
|
Steroid hormone regulation of immune responses in cancer. IMMUNOMETABOLISM (COBHAM (SURREY, ENGLAND)) 2022; 4:e00012. [PMID: 36337733 PMCID: PMC9622373 DOI: 10.1097/in9.0000000000000012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Steroid hormones are derived from cholesterol and can be classified into sex hormones (estrogens, androgens, progesterone) that are primarily synthesized in the gonads and adrenal hormones (glucocorticoids and mineralocorticoids) that are primarily synthesized in the adrenal gland. Although, it has long been known that steroid hormones have potent effects on the immune system, recent studies have led to renewed interest in their role in regulating anti-tumor immunity. Extra-glandular cells, such as epithelial cells and immune cells, have been shown to synthesize glucocorticoids and thereby modulate immune responses in the tumor microenvironment. Additionally, new insight into the role of androgens on immune cell responses have shed light on mechanisms underpinning the observed sex bias in cancer survival outcomes. Here, we review the role of steroid hormones, specifically glucocorticoids and androgens, in regulating anti-tumor immunity and discuss how their modulation could pave the way for designing novel therapeutic strategies to improve anti-tumor immune responses.
Collapse
|
40
|
Dietrich A, Sturm G, Merotto L, Marini F, Finotello F, List M. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition. Bioinformatics 2022; 38:ii141-ii147. [PMID: 36124800 DOI: 10.1093/bioinformatics/btac499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION As complex tissues are typically composed of various cell types, deconvolution tools have been developed to computationally infer their cellular composition from bulk RNA sequencing (RNA-seq) data. To comprehensively assess deconvolution performance, gold-standard datasets are indispensable. Gold-standard, experimental techniques like flow cytometry or immunohistochemistry are resource-intensive and cannot be systematically applied to the numerous cell types and tissues profiled with high-throughput transcriptomics. The simulation of 'pseudo-bulk' data, generated by aggregating single-cell RNA-seq expression profiles in pre-defined proportions, offers a scalable and cost-effective alternative. This makes it feasible to create in silico gold standards that allow fine-grained control of cell-type fractions not conceivable in an experimental setup. However, at present, no simulation software for generating pseudo-bulk RNA-seq data exists. RESULTS We developed SimBu, an R package capable of simulating pseudo-bulk samples based on various simulation scenarios, designed to test specific features of deconvolution methods. A unique feature of SimBu is the modeling of cell-type-specific mRNA bias using experimentally derived or data-driven scaling factors. Here, we show that SimBu can generate realistic pseudo-bulk data, recapitulating the biological and statistical features of real RNA-seq data. Finally, we illustrate the impact of mRNA bias on the evaluation of deconvolution tools and provide recommendations for the selection of suitable methods for estimating mRNA content. SimBu is a user-friendly and flexible tool for simulating realistic pseudo-bulk RNA-seq datasets serving as in silico gold-standard for assessing cell-type deconvolution methods. AVAILABILITY AND IMPLEMENTATION SimBu is freely available at https://github.com/omnideconv/SimBu as an R package under the GPL-3 license. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexander Dietrich
- Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lorenzo Merotto
- Institute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria.,Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.,Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Francesca Finotello
- Institute of Molecular Biology, University of Innsbruck, 6020 Innsbruck, Austria.,Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus List
- Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
41
|
Bruera S, Suarez-Almazor ME. The effects of glucocorticoids and immunosuppressants on cancer outcomes in checkpoint inhibitor therapy. Front Oncol 2022; 12:928390. [PMID: 36081549 PMCID: PMC9445222 DOI: 10.3389/fonc.2022.928390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of checkpoint inhibitors has created a paradigm shift for the treatment of various malignancies. However, although these therapies are associated with improved survival rates, they also carry the risk of immune-related adverse events (irAEs). Moderate to severe irAEs are typically treated with glucocorticoids, sometimes with the addition of immunosuppressants as steroid-sparing therapy. However, it is unclear how glucocorticoids and immunosuppressants may impact cancer survival and the efficacy of immune checkpoint therapy on cancer. In this narrative review, we discuss the effects of glucocorticoids and immunosuppressants including methotrexate, hydroxychloroquine, azathioprine, mycophenolate mofetil, tumor-necrosis factor (TNF)-inhibitors, interleukin-6 inhibitors, interleukin-1 inhibitors, abatacept, rituximab, and Janus kinase inhibitors (JAKi) on cancer-specific outcomes in the setting of immune checkpoint inhibitor use.
Collapse
Affiliation(s)
- Sebastian Bruera
- Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, TX, United States
| | - Maria E. Suarez-Almazor
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Maria E. Suarez-Almazor,
| |
Collapse
|
42
|
Abstract
Gene transfer using adeno-associated viral (AAV) vectors has made tremendous progress in the last decade and has achieved cures of debilitating diseases such as hemophilia A and B. Nevertheless, progress is still being hampered by immune responses against the AAV capsid antigens or the transgene products. Immunosuppression designed to blunt T cell responses has shown success in some patients but failed in others especially if they received very high AAV vectors doses. Although it was initially thought that AAV vectors induce only marginal innate responses below the threshold of systemic symptoms recent trials have shown that complement activation can results in serious adverse events. Dorsal root ganglia toxicity has also been identified as a complication of high vector doses as has severe hepatotoxicity. Most of the critical complications occur in patients who are treated with very high vector doses indicating that the use of more efficient AAV vectors to allow for dose sparing or giving smaller doses repeatedly, the latter in conjunction with antibody or B cell depleting measures, should be explored.
Collapse
Affiliation(s)
- Hildegund C. J. Ertl
- Ertl Laboratory, Vaccine Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
43
|
Aging-associated and CD4 T-cell–dependent ectopic CXCL13 activation predisposes to anti–PD-1 therapy-induced adverse events. Proc Natl Acad Sci U S A 2022; 119:e2205378119. [PMID: 35858347 PMCID: PMC9303859 DOI: 10.1073/pnas.2205378119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immune-related adverse events (irAEs) induced by immune-checkpoint blockade including antiprogrammed death receptor (PD)-1 therapy are a major problematic issue in cancer immunotherapy. Preclinical models for more physiologically occurring irAEs are potentially useful for the clarification of fundamental causes and natural developmental course of irAEs. Here, we found that in tumor-bearing aged, but not young, mice, anti–PD-(L)1 therapy alone induces irAE-like multiorgan toxicities through CD4 T-cell–derived interleukin (IL)-21 and subsequent age-specific CXCL13 expression in tertiary lymphoid structure. Consistent with this animal model, a systemic increase in CXCL13 correlates with irAE incidence in cancer patients. These findings provide insight into the development of management strategies for irAE that balance both irAE-related immune response and antitumor immune surveillance. Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell–derived interleukin (IL)-21 upregulated B-cell–homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti–PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management.
Collapse
|
44
|
Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them. Br J Cancer 2022; 127:976-987. [DOI: 10.1038/s41416-022-01864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
|
45
|
Kitsou K, Askiti V, Mitsioni A, Spoulou V. The immunopathogenesis of idiopathic nephrotic syndrome: a narrative review of the literature. Eur J Pediatr 2022; 181:1395-1404. [PMID: 35098401 DOI: 10.1007/s00431-021-04357-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
UNLABELLED Idiopathic nephrotic syndrome (INS) is a common glomerular disease in childhood, and the immunological involvement in the pathogenesis of non-genetic INS, although not fully elucidated, is evident. This narrative review aims to offer a concise and in-depth view of the current knowledge on the immunological mechanisms of the development of INS as well as the role of the immunological components of the disease in the responsiveness to treatment. T cell immunity appears to play a major role in the INS immunopathogenesis and has been the first to be linked to the disease. Various T cell immunophenotypes are implicated in INS, including T-helper-1, T-helper-2, T-helper-17, and T regulatory cells, and various cytokines have been proposed as surrogate biomarkers of the disease; however, no distinct T helper or cytokine profile has been conclusively linked to the disease. More recently, the recognition of the role of B cell mediated immunity and the various B cell subsets that are dysregulated in patients with INS have led to new hypotheses on the underlying immunological causes of INS. Finally, the disambiguation of the exact mechanisms of the INS development in the future may be the key to the development of more targeted personalized approaches in managing INS. CONCLUSIONS INS demonstrates particularly interesting immunopathogenetic pathways, in which multiple interactions between T cell and B cell immunity and the podocyte are involved. The disambiguation of these pathways will provide promising novel therapeutic targets in INS. WHAT IS KNOWN • INS is the most common glomerular disease in the paediatric population, and its onset and relapses have been linked to various immunological triggers. • Multiple immunological mechanisms have been implicated in the pathogenesis of INS; however, no single distinct immunological profile has been recognized. WHAT IS NEW • Th17 cells and Treg cells play an important role in the immune dysregulation in INS. • Transitional B cell levels as well as the transitional/memory B cell ratio have been correlated to nephrotic relapses and have been proposed as biomarkers of INS relapses in SSNS patients.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Varvara Askiti
- Department of Nephrology, "P. and A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andromachi Mitsioni
- Department of Nephrology, "P. and A. Kyriakou" Children's Hospital, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Kawai T, Taguchi S, Nakagawa T, Kamei J, Nakamura Y, Obinata D, Yamaguchi K, Kaneko T, Kakutani S, Tokunaga M, Uemura Y, Sato Y, Enomoto Y, Nishimatsu H, Fujimura T, Fukuhara H, Takahashi S, Kume H. Impact of immune-related adverse events on the therapeutic efficacy of pembrolizumab in urothelial carcinoma: a multicenter retrospective study using time-dependent analysis. J Immunother Cancer 2022; 10:jitc-2021-003965. [PMID: 35210308 PMCID: PMC8883255 DOI: 10.1136/jitc-2021-003965] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 01/18/2023] Open
Abstract
Background Several studies have reported the incidence of immune-related adverse events (irAEs) as a predictor of the efficacy of anti-programmed cell death protein 1 antibodies in patients with cancer. However, immortal time bias has not always been fully addressed in these studies. In this retrospective multicenter study, we assessed the association between the incidence of irAEs and the efficacy of pembrolizumab in urothelial carcinoma (UC) using time-dependent analysis, an established statistical method to minimize immortal time bias. Methods The study included 176 patients with advanced UC who underwent pembrolizumab treatment at seven affiliated institutions between January 2018 and July 2020. Patients with irAEs were compared with those without irAEs in terms of overall survival (OS) and cancer-specific survival (CSS). Immortal time bias was eliminated by using time-dependent analysis. Results Of the 176 patients, irAEs occurred in 77 patients (43.8%), with a median of 60 days. The irAEs (+) cohort showed significantly favorable OS and CSS compared with the irAEs (−) cohort (p=0.018 and p=0.005, respectively), especially in the cohort with grade 1–2 irAEs (OS and CSS; p=0.003 and p=0.002, respectively). Multivariate analyses identified any irAEs and grade 1–2 irAEs as independent favorable prognostic factors for OS and CSS. Conclusion Even after minimizing immortal time bias by time-dependent analysis, the incidence of irAEs, especially grade 1–2 irAEs, could be a significant predictor of favorable prognoses in patients with UC who have undergone pembrolizumab treatment.
Collapse
Affiliation(s)
- Taketo Kawai
- Department of Urology, The University of Tokyo, Tokyo, Japan
| | - Satoru Taguchi
- Department of Urology, The University of Tokyo, Tokyo, Japan .,Department of Urology, Kyorin University School of Medicine, Tokyo, Japan
| | - Tohru Nakagawa
- Department of Urology, Teikyo University School of Medicine, Tokyo, Japan
| | - Jun Kamei
- Department of Urology, Jichi Medical University, Shimotsuke, Japan
| | - Yu Nakamura
- Department of Urology, Kyorin University School of Medicine, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Kenya Yamaguchi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomoyuki Kaneko
- Department of Urology, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Mayuko Tokunaga
- Department of Urology, The Fraternity Memorial Hospital, Tokyo, Japan
| | - Yukari Uemura
- Department of Data Science, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yusuke Sato
- Department of Urology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Enomoto
- Division of Urology, Mitsui Memorial Hospital, Tokyo, Japan
| | | | - Tetsuya Fujimura
- Department of Urology, Jichi Medical University, Shimotsuke, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Kono M, Yamaki H, Komatsuda H, Kumai T, Hayashi R, Wakisaka R, Sato R, Ohara K, Kishibe K, Takahara M, Katada A, Hayashi T, Harabuchi Y. IL-2 complex recovers steroid-induced inhibition in immunochemotherapy for head and neck cancer. Transl Oncol 2022; 18:101358. [PMID: 35123188 PMCID: PMC8819385 DOI: 10.1016/j.tranon.2022.101358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Steroid diminished the antitumor effect of combination therapy with anti-PD-1 Ab and CDDP in an HNSCC mouse model by reducing the T cell proliferation and suppressing memory T cells. In vitro assessment using antigen-specific T cells demonstrated that steroid induced apoptosis, decreased proliferation, and reduced tumor cytotoxicity. IL-2 or IL-2 Cx restored steroid-induced immunosuppression of T cells by restoring the proliferation and function of T cells in vitro and in vivo.
Background: A combination therapy with immune checkpoint inhibitors (ICIs) and platinum-based chemotherapy has become the first-line treatment for recurrent or metastatic head and neck squamous carcinoma (HNSCC). Although steroids are often used as anti-emetic medications during chemotherapy, their adverse effects on immune-combined chemotherapy are unclear in HNSCC. Methods: The effects of dexamethasone on tumor growth and immune cell population were evaluated in a mouse HNSCC model treated with PD-1 blockade combined with cisplatin. The effect of various doses of dexamethasone on cell proliferation, survival, surface markers, IFN-γ production, and antitumor effects in antigen-specific T cells was examined in vitro. The recovery of T cell dysfunction by IL-2 was assessed in vitro and in vivo. Results: In a mouse HNSCC model, dexamethasone showed limited antitumor effects on immunochemotherapy. Dexamethasone decreased the number of T cells and inhibited T cell differentiation into effector and central memory T cells. In the in vitro assessment, dexamethasone induced cell death, limited proliferation, and reduced the reactivity against HNSCC cell lines of antigen-specific T cells in a dose-dependent manner. The expression of inhibitory receptors on T cells was not affected by steroids. This inhibition was recovered by IL-2 and IL-2/anti-IL-2 complexes (IL-2 Cx) in vitro and in vivo, respectively. Conclusion: Our preclinical data indicate that dexamethasone diminishes the antitumor effects of immunochemotherapy in patients with HNSCC. IL-2 Cx recovered the inhibition of antitumor immunity by steroids and might be a potent immune adjuvant for patients who require steroids during PD-1 blockade and chemotherapy.
Collapse
Affiliation(s)
- Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; Department of Innovative Head and Neck Cancer Research and Treatment, Asahikawa Medical University, Japan
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; Department of Innovative Head and Neck Cancer Research and Treatment, Asahikawa Medical University, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| |
Collapse
|
48
|
Konishi A, Suzuki J, Kuwahara M, Matsumoto A, Nomura S, Soga T, Yorozuya T, Yamashita M. Glucocorticoid imprints a low glucose metabolism onto CD8 T cells and induces the persistent suppression of the immune response. Biochem Biophys Res Commun 2022; 588:34-40. [PMID: 34942532 DOI: 10.1016/j.bbrc.2021.12.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs), immunosuppressive, and anti-inflammatory agents have various effects on T cells. However, the long-term influence of GCs on the T cell-mediated immune response remain to be elucidated. We demonstrated that the administration of GC during the TCR-mediated activation phase induced long-lasting suppression of glycolysis, even after the withdrawal of GC. The acquisition of the effector functions was inhibited, while the expression of PD-1 was increased in CD8 T cells activated in the presence of GC. Furthermore, adoptive transfer experiments revealed that GC-treated CD8 T cells reduced memory T cell formation and anti-tumor activity. These findings reveal that GCs have long-lasting influence on the T cell-mediated immune response via modulation of T cell metabolism.
Collapse
Affiliation(s)
- Amane Konishi
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan; Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Junpei Suzuki
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Makoto Kuwahara
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Akira Matsumoto
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Shunsuke Nomura
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Bioscience, Keio University, Tsuruoka City, Yamagata, 997-0052, Japan
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime, 791-0295, Japan; Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa 454, Toon City, Ehime, 791-0295, Japan; Department of Translational Immunology, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon City, Ehime, 791-0295, Japan.
| |
Collapse
|
49
|
Lambert N, Dauby S, Dive D, Sadzot B, Maquet P. Atezolizumab Treatment for Progressive Multifocal Leukoencephalopathy. Emerg Infect Dis 2022; 28. [PMID: 34856110 PMCID: PMC8714204 DOI: 10.3201/eid2801.204809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Atezolizumab successfully reinvigorated JC virus immunity in a patient in Belgium with progressive multifocal leukoencephalopathy, as demonstrated by clinical, virologic, and radiologic response to treatment. However, the treatment also resulted in immune reconstitution inflammatory syndrome and life-threatening immune-related adverse events. These conditions were treated with corticosteroids, leading to treatment resistance.
Collapse
|
50
|
Iwai T, Sugimoto M, Patel H, Yorozu K, Kurasawa M, Kondoh O. Anti-VEGF Antibody Protects against Alveolar Exudate Leakage Caused by Vascular Hyperpermeability, Resulting in Mitigation of Pneumonitis Induced by Immunotherapy. Mol Cancer Ther 2021; 20:2519-2526. [PMID: 34552009 PMCID: PMC9306403 DOI: 10.1158/1535-7163.mct-21-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/26/2021] [Accepted: 09/16/2021] [Indexed: 01/07/2023]
Abstract
Immune-related pneumonitis is an important toxicity associated with checkpoint inhibitor therapy with anti-PD-1 or anti-PD-L1 antibodies, often necessitating discontinuation of treatment. Development of methods to mitigate checkpoint inhibitor-related pneumonitis is required.The contributions of PD-L1, PD-L2, and VEGF to the pathogenesis of pneumonitis were examined in an IL2- plus IL18-induced mouse pneumonitis model (IL pneumonitis model). Furthermore, the incidences of pneumonitis were retrospectively examined in patients with non-small cell lung cancer treated with the anti-PD-L1 mAb atezolizumab plus chemotherapy, with or without the anti-VEGF mAb bevacizumab, in the phase III IMpower150 trial. PD-1 signal blockade by anti-PD-L1 and anti-PD-L2 antibodies aggravated pneumonitis in the IL pneumonitis model. An anti-VEGF antibody prevented PD-1 signal blockade from aggravating pneumonitis in this model. PD-1 signal blockade induced interstitial T-cell infiltration in the lungs, but VEGF blockade did not affect this T-cell infiltration. The anti-VEGF antibody protected against vascular-to-alveolar leakage of protein and fluid due to PD-1 signal blockade in a murine model. In the IMpower150 trial, incidence rates of pneumonitis of any grade were 4.3% in the group without bevacizumab and 2.8% in the group with bevacizumab. In patients with pneumonitis, outcomes of "Not recovered/Not resolved" were reported for 29.4% in the group without bevacizumab compared with 9.1% in the group with bevacizumab. Our findings suggest that anti-VEGF antibodies in combination with checkpoint inhibitors may be a treatment method that can control checkpoint inhibitor-related pneumonitis.
Collapse
Affiliation(s)
- Toshiki Iwai
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan.
| | - Masamichi Sugimoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Hina Patel
- Safety Science Oncology, Genentech, Inc., South San Francisco, California
| | - Keigo Yorozu
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Mitsue Kurasawa
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Osamu Kondoh
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kanagawa, Japan
| |
Collapse
|