1
|
Fisher DG, Hoch MR, Gorick CM, Huchthausen C, Breza VR, Sharifi KA, Tvrdik P, Miller GW, Price RJ. Focused Ultrasound Impels the Delivery and Penetration of Model Therapeutics into Cerebral Cavernous Malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609060. [PMID: 39253521 PMCID: PMC11383029 DOI: 10.1101/2024.08.27.609060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are vascular neoplasms in the brain that can cause debilitating symptoms. Current treatments pose significant risks to some patients, motivating the development of new nonsurgical options. We recently discovered that focused ultrasound-mediated blood-brain barrier opening (FUS) arrests CCM formation and growth. Here, we build on this discovery and assess the ability of FUS to deliver model therapeutics into CCMs. METHODS Quantitative T1 mapping MRI sequences were used with 1 kDa (MultiHance; MH) and 17 kDa (GadoSpin D; GDS) contrast agents to assess the FUS-mediated delivery and penetration of model small molecule drugs and biologics, respectively, into CCMs of Krit1 mutant mice. RESULTS FUS elevated the rate of MH delivery to both the lesion core (4.6-fold) and perilesional space (6.7-fold). Total MH delivery more than doubled in the lesion core and tripled in the perilesional space when FUS was applied immediately prior to MH injection. For the model biologic drug (i.e. GDS), FUS was of greater relative benefit, resulting in 21.7-fold and 3.8-fold delivery increases to the intralesional and perilesional spaces, respectively. CONCLUSIONS FUS is capable of impelling the delivery and penetration of therapeutics into the complex and disorganized CCM microenvironment. Benefits to small molecule drug delivery are more evident in the perilesional space, while benefits to biologic delivery are more evident in CCM cores. These findings, when combined with ability of FUS alone to control CCMs, highlight the potential of FUS to serve as a powerful non-invasive therapeutic platform for CCM.
Collapse
Affiliation(s)
- Delaney G. Fisher
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Matthew R. Hoch
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Catherine M. Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | | | - Victoria R. Breza
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Khadijeh A. Sharifi
- Department of Neuroscience, University of Virginia, Charlottesville, VA
- Department of Neurosurgery, University of Virginia Health System, Charlottesville, VA
| | - Petr Tvrdik
- Department of Neuroscience, University of Virginia, Charlottesville, VA
- Department of Neurosurgery, University of Virginia Health System, Charlottesville, VA
| | - G. Wilson Miller
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA
| | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA
| |
Collapse
|
2
|
Yordanov TE, Keyser MS, Enriquez Martinez MA, Esposito T, Tefft JB, Morris EK, Labzin LI, Stehbens SJ, Rowan AE, Hogan BM, Chen CS, Lauko J, Lagendijk AK. Hyaluronic acid turnover controls the severity of cerebral cavernous malformations in bioengineered human micro-vessels. APL Bioeng 2024; 8:016108. [PMID: 38352162 PMCID: PMC10864035 DOI: 10.1063/5.0159330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly form in blood vessels of the central nervous system upon loss of the CCM multimeric protein complex. The endothelial cells within CCM lesions are characterized by overactive MEKK3 kinase and KLF2/4 transcription factor signaling, leading to pathological changes such as increased endothelial cell spreading and reduced junctional integrity. Concomitant to aberrant endothelial cell signaling, non-autonomous signals from the extracellular matrix (ECM) have also been implicated in CCM lesion growth and these factors might explain why CCM lesions mainly develop in the central nervous system. Here, we adapted a three-dimensional microfluidic system to examine CCM1 deficient human micro-vessels in distinctive extracellular matrices. We validate that pathological hallmarks are maintained in this model. We further show that key genes responsible for homeostasis of hyaluronic acid, a major extracellular matrix component of the central nervous system, are dysregulated in CCM. Supplementing the matrix in our model with distinct forms of hyaluronic acid inhibits pathological cell spreading and rescues barrier function. Hyaluronic acid acts by dampening cell-matrix adhesion signaling in CCM, either downstream or in parallel of KLF2/4. This study provides a proof-of-principle that ECM embedded 3D microfluidic models are ideally suited to identify how changes in ECM structure and signaling impact vascular malformations.
Collapse
Affiliation(s)
- Teodor E. Yordanov
- Centre for Cell Biology and Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Mikaela S. Keyser
- Centre for Cell Biology and Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Marco A. Enriquez Martinez
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Juliann B. Tefft
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA
| | - Elysse K. Morris
- Centre for Cell Biology and Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Alan E. Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | | | | - Jan Lauko
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
3
|
Li L, Ren AA, Gao S, Su YS, Yang J, Bockman J, Mericko-Ishizuka P, Griffin J, Shenkar R, Alcazar R, Moore T, Lightle R, DeBiasse D, Awad IA, Marchuk DA, Kahn ML, Burkhardt JK. mTORC1 Inhibitor Rapamycin Inhibits Growth of Cerebral Cavernous Malformation in Adult Mice. Stroke 2023; 54:2906-2917. [PMID: 37746705 PMCID: PMC10599232 DOI: 10.1161/strokeaha.123.044108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are vascular malformations that frequently cause stroke. CCMs arise due to loss of function in one of the genes that encode the CCM complex, a negative regulator of MEKK3-KLF2/4 signaling in vascular endothelial cells. Gain-of-function mutations in PIK3CA (encoding the enzymatic subunit of the PI3K (phosphoinositide 3-kinase) pathway associated with cell growth) synergize with CCM gene loss-of-function to generate rapidly growing lesions. METHODS We recently developed a model of CCM formation that closely reproduces key events in human CCM formation through inducible CCM loss-of-function and PIK3CA gain-of-function in mature mice. In the present study, we use this model to test the ability of rapamycin, a clinically approved inhibitor of the PI3K effector mTORC1, to treat rapidly growing CCMs. RESULTS We show that both intraperitoneal and oral administration of rapamycin arrests CCM growth, reduces perilesional iron deposition, and improves vascular perfusion within CCMs. CONCLUSIONS Our findings further establish this adult CCM model as a valuable preclinical model and support clinical testing of rapamycin to treat rapidly growing human CCMs.
Collapse
Affiliation(s)
- Lun Li
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Aileen A. Ren
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Siqi Gao
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Yourong S. Su
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jisheng Yang
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jenna Bockman
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Patricia Mericko-Ishizuka
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Joanna Griffin
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Roberto Alcazar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Dorothy DeBiasse
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Issam A. Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA 27708
| | - Mark L. Kahn
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| |
Collapse
|
4
|
Romanos SG, Srinath A, Li Y, Xie B, Chen C, Li Y, Moore T, Bi D, Sone JY, Lightle R, Hobson N, Zhang D, Koskimäki J, Shen L, McCurdy S, Lai CC, Stadnik A, Piedad K, Carrión-Penagos J, Shkoukani A, Snellings D, Shenkar R, Sulakhe D, Ji Y, Lopez-Ramirez MA, Kahn ML, Marchuk DA, Ginsberg MH, Girard R, Awad IA. Circulating Plasma miRNA Homologs in Mice and Humans Reflect Familial Cerebral Cavernous Malformation Disease. Transl Stroke Res 2023; 14:513-529. [PMID: 35715588 PMCID: PMC9758276 DOI: 10.1007/s12975-022-01050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/16/2023]
Abstract
Patients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients. Herein, homologous DE plasma miRNAs with mechanistic putative gene targets within the transcriptome of preclinical and human CCM lesions were identified. Several of these gene targets were additionally found to be associated with CCM-enriched pathways identified using the Kyoto Encyclopedia of Genes and Genomes. DE miRNAs were also identified in familial-CCM patients who developed new brain lesions within the year following blood sample collection. The miRNome results were then validated in an independent cohort of human subjects with real-time-qPCR quantification, a technique facilitating plasma assays. Finally, a Bayesian-informed machine learning approach showed that a combination of plasma levels of miRNAs and circulating proteins improves the association with familial-CCM disease in human subjects to 95% accuracy. These findings act as an important proof of concept for the future development of translatable circulating biomarkers to be tested in preclinical studies and human trials aimed at monitoring and restoring gene function in CCM and other diseases.
Collapse
Affiliation(s)
- Sharbel G Romanos
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Ying Li
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Chang Chen
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yan Li
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Thomas Moore
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dehua Bi
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Je Yeong Sone
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Nick Hobson
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dongdong Zhang
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Le Shen
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Sara McCurdy
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Catherine Chinhchu Lai
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Agnieszka Stadnik
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Kristina Piedad
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Julián Carrión-Penagos
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Abdallah Shkoukani
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Daniel Snellings
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Dinanath Sulakhe
- Bioinformatics Core, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yuan Ji
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Miguel A Lopez-Ramirez
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas A Marchuk
- Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Romuald Girard
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA
| | - Issam A Awad
- Department of Neurological Surgery, Neurovascular Surgery Program, University of Chicago Medicine and Biological Sciences, 5841 S. Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Qi C, Bujaroski RS, Baell J, Zheng X. Kinases in cerebral cavernous malformations: Pathogenesis and therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119488. [PMID: 37209718 DOI: 10.1016/j.bbamcr.2023.119488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Cerebral cavernous malformations (CCMs) are low-flow, hemorrhagic vascular lesions of the central nervous system of genetic origin, which can cause stroke-like symptoms and seizures. From the identification of CCM1, CCM2 and CCM3 as genes related to disease progression, molecular and cellular mechanisms for CCM pathogenesis have been established and the search for potential drugs to target CCM has begun. Broadly speaking, kinases are the major group signaling in CCM pathogenesis. These include the MEKK3/MEK5/ERK5 cascade, Rho/Rock signaling, CCM3/GCKIII signaling, PI3K/mTOR signaling, and others. Since the discovery of Rho/Rock in CCM pathogenesis, inhibitors for Rho signaling and subsequently other components in CCM signaling were discovered and applied in preclinical and clinical trials to ameliorate CCM progression. This review discusses the general aspects of CCM disease, kinase-mediated signaling in CCM pathogenesis and the current state of potential treatment options for CCM. It is suggested that kinase target drug development in the context of CCM might facilitate and meet the unmet requirement - a non-surgical option for CCM disease.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China
| | - Richard Sean Bujaroski
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria, Australia
| | - Jonathan Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China.
| |
Collapse
|
6
|
Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Sestili HH, Wirthlin ME, Phan BN, Prasad K, Brown AR, Zhang X, Foley K, Genereux DP, Karlsson EK, Lindblad-Toh K, Meyer WK, Pfenning AR. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning. Science 2023; 380:eabm7993. [PMID: 37104615 PMCID: PMC10322212 DOI: 10.1126/science.abm7993] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/23/2023] [Indexed: 04/29/2023]
Abstract
Protein-coding differences between species often fail to explain phenotypic diversity, suggesting the involvement of genomic elements that regulate gene expression such as enhancers. Identifying associations between enhancers and phenotypes is challenging because enhancer activity can be tissue-dependent and functionally conserved despite low sequence conservation. We developed the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with species' phenotypes using predictions from machine learning models trained on specific tissues. Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with neurological phenotypes revealed dozens of enhancer-phenotype associations, including brain size-associated enhancers that interact with genes implicated in microcephaly or macrocephaly. TACIT provides a foundation for identifying enhancers associated with the evolution of any convergently evolved phenotype in any large group of species with aligned genomes.
Collapse
Affiliation(s)
- Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Chaitanya Srinivasan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Heather H. Sestili
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kavya Prasad
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathleen Foley
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Diane P. Genereux
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Yang X, Wu ST, Gao R, Wang R, Wang Y, Dong Z, Wang L, Qi C, Wang X, Schmitz ML, Liu R, Han Z, Wang L, Zheng X. Release of STK24/25 suppression on MEKK3 signaling in endothelial cells confers cerebral cavernous malformation. JCI Insight 2023; 8:160372. [PMID: 36692953 PMCID: PMC10077477 DOI: 10.1172/jci.insight.160372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Loss-of-function mutations in cerebral cavernous malformation (CCM) genes and gain-of-function mutation in the MAP3K3 gene encoding MEKK3 cause CCM. Deficiency of CCM proteins leads to the activation of MEKK3-KLF2/4 signaling, but it is not clear how this occurs. Here, we demonstrate that deletion of the CCM3 interacting kinases STK24/25 in endothelial cells causes defects in vascular patterning during development as well as CCM lesion formation during postnatal life. While permanent deletion of STK24/25 in endothelial cells caused developmental defects of the vascular system, inducible postnatal deletion of STK24/25 impaired angiogenesis in the retina and brain. More importantly, deletion of STK24/25 in neonatal mice led to the development of severe CCM lesions. At the molecular level, a hybrid protein consisting of the STK kinase domain and the MEKK3 interacting domain of CCM2 rescued the vascular phenotype caused by the loss of ccm gene function in zebrafish. Our study suggests that CCM2/3 proteins act as adapters to allow recruitment of STK24/25 to limit the constitutive MEKK3 activity, thus contributing to vessel stability. Loss of STK24/25 causes MEKK3 activation, leading to CCM lesion formation.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Shi-Ting Wu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Rui Gao
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Rui Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Yixuan Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Zhenkun Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Chunxiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University, Member of the German Center for Lung Research, Giessen, Germany
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, and St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, and.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, and Center for Cardiovascular Diseases, Tianjin Medical University, China
| |
Collapse
|
8
|
Srinath A, Xie B, Li Y, Sone JY, Romanos S, Chen C, Sharma A, Polster S, Dorrestein PC, Weldon KC, DeBiasse D, Moore T, Lightle R, Koskimäki J, Zhang D, Stadnik A, Piedad K, Hagan M, Shkoukani A, Carrión-Penagos J, Bi D, Shen L, Shenkar R, Ji Y, Sidebottom A, Pamer E, Gilbert JA, Kahn ML, D'Souza M, Sulakhe D, Awad IA, Girard R. Plasma metabolites with mechanistic and clinical links to the neurovascular disease cavernous angioma. COMMUNICATIONS MEDICINE 2023; 3:35. [PMID: 36869161 PMCID: PMC9984539 DOI: 10.1038/s43856-023-00265-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Cavernous angiomas (CAs) affect 0.5% of the population, predisposing to serious neurologic sequelae from brain bleeding. A leaky gut epithelium associated with a permissive gut microbiome, was identified in patients who develop CAs, favoring lipid polysaccharide producing bacterial species. Micro-ribonucleic acids along with plasma levels of proteins reflecting angiogenesis and inflammation were also previously correlated with CA and CA with symptomatic hemorrhage. METHODS The plasma metabolome of CA patients and CA patients with symptomatic hemorrhage was assessed using liquid-chromatography mass spectrometry. Differential metabolites were identified using partial least squares-discriminant analysis (p < 0.05, FDR corrected). Interactions between these metabolites and the previously established CA transcriptome, microbiome, and differential proteins were queried for mechanistic relevance. Differential metabolites in CA patients with symptomatic hemorrhage were then validated in an independent, propensity matched cohort. A machine learning-implemented, Bayesian approach was used to integrate proteins, micro-RNAs and metabolites to develop a diagnostic model for CA patients with symptomatic hemorrhage. RESULTS Here we identify plasma metabolites, including cholic acid and hypoxanthine distinguishing CA patients, while arachidonic and linoleic acids distinguish those with symptomatic hemorrhage. Plasma metabolites are linked to the permissive microbiome genes, and to previously implicated disease mechanisms. The metabolites distinguishing CA with symptomatic hemorrhage are validated in an independent propensity-matched cohort, and their integration, along with levels of circulating miRNAs, enhance the performance of plasma protein biomarkers (up to 85% sensitivity and 80% specificity). CONCLUSIONS Plasma metabolites reflect CAs and their hemorrhagic activity. A model of their multiomic integration is applicable to other pathologies.
Collapse
Affiliation(s)
- Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Ying Li
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, 150001, Harbin, Heilongjiang, China
| | - Je Yeong Sone
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Chang Chen
- Bioinformatics Core, Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA
| | - Anukriti Sharma
- Department of Surgery, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
- Department of Pediatrics, The University of California San Diego and Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sean Polster
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, The University of California San Diego and Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Pharmacology, The University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Kelly C Weldon
- Department of Pediatrics, The University of California San Diego and Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dorothy DeBiasse
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Dongdong Zhang
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Agnieszka Stadnik
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Kristina Piedad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Matthew Hagan
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Abdallah Shkoukani
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Julián Carrión-Penagos
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Dehua Bi
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Le Shen
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Yuan Ji
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Ashley Sidebottom
- Host-Microbe Metabolomics Facility, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Eric Pamer
- Host-Microbe Metabolomics Facility, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Jack A Gilbert
- Department of Surgery, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
- Department of Pediatrics, The University of California San Diego and Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Mark D'Souza
- Host-Microbe Metabolomics Facility, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Dinanath Sulakhe
- Host-Microbe Metabolomics Facility, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA.
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, 5841S. Maryland Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
9
|
Tang AT, Buchholz DW, Szigety KM, Imbiakha B, Gao S, Frankfurter M, Wang M, Yang J, Hewins P, Mericko-Ishizuka P, Leu NA, Sterling S, Monreal IA, Sahler J, August A, Zhu X, Jurado KA, Xu M, Morrisey EE, Millar SE, Aguilar HC, Kahn ML. Cell-autonomous requirement for ACE2 across organs in lethal mouse SARS-CoV-2 infection. PLoS Biol 2023; 21:e3001989. [PMID: 36745682 PMCID: PMC9934376 DOI: 10.1371/journal.pbio.3001989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 01/04/2023] [Indexed: 02/07/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the cell-surface receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). While its central role in Coronavirus Disease 2019 (COVID-19) pathogenesis is indisputable, there remains significant debate regarding the role of this transmembrane carboxypeptidase in the disease course. These include the role of soluble versus membrane-bound ACE2, as well as ACE2-independent mechanisms that may contribute to viral spread. Testing these roles requires in vivo models. Here, we report humanized ACE2-floxed mice in which hACE2 is expressed from the mouse Ace2 locus in a manner that confers lethal disease and permits cell-specific, Cre-mediated loss of function, and LSL-hACE2 mice in which hACE2 is expressed from the Rosa26 locus enabling cell-specific, Cre-mediated gain of function. Following exposure to SARS-CoV-2, hACE2-floxed mice experienced lethal cachexia, pulmonary infiltrates, intravascular thrombosis and hypoxemia-hallmarks of severe COVID-19. Cre-mediated loss and gain of hACE2 demonstrate that neuronal infection confers lethal cachexia, hypoxemia, and respiratory failure in the absence of lung epithelial infection. In this series of genetic experiments, we demonstrate that ACE2 is absolutely and cell-autonomously required for SARS-CoV-2 infection in the olfactory epithelium, brain, and lung across diverse cell types. Therapies inhibiting or blocking ACE2 at these different sites are likely to be an effective strategy towards preventing severe COVID-19.
Collapse
Affiliation(s)
- Alan T. Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David W. Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Katherine M. Szigety
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian Imbiakha
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Siqi Gao
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Maxwell Frankfurter
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Min Wang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Peter Hewins
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Patricia Mericko-Ishizuka
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - N Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Stephanie Sterling
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Isaac A. Monreal
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Julie Sahler
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kellie A. Jurado
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Edward E. Morrisey
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States of America
| | - Sarah E. Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Mark L. Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Chen X, Tang AT, Tober J, Yang J, Leu NA, Sterling S, Chen M, Yang Y, Mericko-Ishizuka P, Speck NA, Kahn ML. Mouse placenta fetal macrophages arise from endothelial cells outside the placenta. Dev Cell 2022; 57:2652-2660.e3. [PMID: 36473461 PMCID: PMC9752200 DOI: 10.1016/j.devcel.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
Placental fetal macrophages (fMacs) are the only immune cells on the fetal side of the placental barrier. Mouse models have not been used to test their function because they have previously been found to have distinct cellular origins and functions in mice and humans. Here, we test the ontogeny of mouse placental fMacs. Using a new Hoxa13Cre allele that labels all placental endothelial cells (ECs), we demonstrate that mouse placenta fMacs do not arise from placental endothelium. Instead, lineage tracing studies using Tie2-Cre and Cx3cr1CreERT2 alleles demonstrate that mouse placental fMacs arise from yolk sac endothelium. Administration of blocking antibodies against CSF1R at E6.5 and E7.5 results in depletion of placental fMacs throughout pregnancy, and this suggests a yolk sac origin, similar to that in human fMacs. This Matters Arising paper is in response to Liang et al., published in Developmental Cell. A response by Liang and Liu is published in this issue.
Collapse
Affiliation(s)
- Xiaowen Chen
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan T Tang
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanna Tober
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jisheng Yang
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Transgenic Mouse Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie Sterling
- Transgenic Mouse Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mei Chen
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yiqing Yang
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia Mericko-Ishizuka
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark L Kahn
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci 2022; 23:ijms23147813. [PMID: 35887162 PMCID: PMC9321930 DOI: 10.3390/ijms23147813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
While blood–brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington’s disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.
Collapse
|
12
|
Kilic T, Okuno K, Eguchi S, Kassiri Z. Disintegrin and Metalloproteinases (ADAMs [A Disintegrin and Metalloproteinase] and ADAMTSs [ADAMs With a Thrombospondin Motif]) in Aortic Aneurysm. Hypertension 2022; 79:1327-1338. [PMID: 35543145 DOI: 10.1161/hypertensionaha.122.17963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aortic aneurysm is a complex pathology that can be lethal if not detected in time. Although several molecular mechanisms and pathways have been identified to be involved in aortic aneurysm development and growth, the current lack of an effective pharmacological treatment highlights the need for a more thorough understanding of the factors that regulate the remodeling of the aortic wall in response to triggers that lead to aneurysm formation. This task is further complicated by the regional heterogeneity of the aorta and that thoracic and abdominal aortic aneurysm are distinct pathologies with different risk factors and distinct course of progression. ADAMs (a disintegrin and metalloproteinases) and ADAMTS (ADAMs with a thrombospondin motif) are proteinases that share similarities with other proteinases but possess unique and diverse properties that place them in a category of their own. In this review, we discuss what is known on how ADAMs and ADAMTSs are altered in abdominal aortic aneurysm and thoracic aortic aneurysm in patients, in different animal models, and their role in regulating the function of different vascular and inflammatory cell types. A full understanding of the role of ADAMs and ADAMTSs in aortic aneurysm will help reveal a more complete understanding of the underlying mechanism driving aneurysm formation, which will help towards developing an effective treatment in preventing or limiting the growth of aortic aneurysm.
Collapse
Affiliation(s)
- Tolga Kilic
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (T.K., Z.K.)
| | - Keisuke Okuno
- Cardiovascular Research Center and Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., S.E.)
| | - Satoru Eguchi
- Cardiovascular Research Center and Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.O., S.E.)
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (T.K., Z.K.)
| |
Collapse
|
13
|
Swamy H, Glading AJ. Is Location Everything? Regulation of the Endothelial CCM Signaling Complex. Front Cardiovasc Med 2022; 9:954780. [PMID: 35898265 PMCID: PMC9309484 DOI: 10.3389/fcvm.2022.954780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances have steadily increased the number of proteins and pathways known to be involved in the development of cerebral cavernous malformation (CCM). Our ability to synthesize this information into a cohesive and accurate signaling model is limited, however, by significant gaps in our knowledge of how the core CCM proteins, whose loss of function drives development of CCM, are regulated. Here, we review what is known about the regulation of the three core CCM proteins, the scaffolds KRIT1, CCM2, and CCM3, with an emphasis on binding interactions and subcellular location, which frequently control scaffolding protein function. We highlight recent work that challenges the current model of CCM complex signaling and provide recommendations for future studies needed to address the large number of outstanding questions.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
14
|
Swamy H, Glading AJ. Contribution of protein-protein interactions to the endothelial barrier-stabilizing function of KRIT1. J Cell Sci 2021; 135:274104. [PMID: 34918736 PMCID: PMC8917353 DOI: 10.1242/jcs.258816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Krev-interaction trapped 1 (KRIT1) is an endothelial scaffold protein that promotes adherens junction (AJ) stability. The precise mechanism by which KRIT1 promotes barrier stabilization is unclear. We tested the ability of a panel of KRIT1 constructs containing mutations that inhibit Rap1 binding, ICAP1 binding, disrupt KRIT1's protein tyrosine binding domain (PTB), or direct KRIT1 to the plasma membrane, either alone or in combination, to restore barrier function in KRIT1-deficient endothelial cells. We found that ablating the 192NPAY195 motif or disrupting the PTB domain was sufficient to restore AJ protein localization and barrier function to control levels, irrespective of the junctional localization of KRIT1 or Rap1 binding. The ability of our KRIT1 constructs to rescue AJ/barrier function in KRIT1 depleted endothelial cells correlated with decreased 1 integrin activity and maintenance of cortical actin fibers. Together, our findings indicate that Rap1 binding, ICAP1 binding, and junctional localization are not required for the ability of KRIT1 to stabilize endothelial contacts, and suggest that the ability of KRIT1 to limit integrin activity may be involved in barrier stabilization.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
15
|
Tang AT, Buchholz DW, Szigety KM, Imbhiaka B, Gao S, Frankfurter M, Wang M, Yang J, Hewins P, Mericko-Ishizuka P, Adrian Leu N, Sterling S, Monreal IA, Sahler J, August A, Zhu X, Jurado KA, Xu M, Morrisey EE, Millar SE, Aguilar HC, Kahn ML. SARS-CoV-2 infection of olfactory epithelial cells and neurons drives acute lung injury and lethal COVID-19 in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.04.471245. [PMID: 34909769 PMCID: PMC8669836 DOI: 10.1101/2021.12.04.471245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Lethal COVID-19 is associated with respiratory failure that is thought to be caused by acute respiratory distress syndrome (ARDS) secondary to pulmonary infection. To date, the cellular pathogenesis has been inferred from studies describing the expression of ACE2, a transmembrane protein required for SARS-CoV-2 infection, and detection of viral RNA or protein in infected humans, model animals, and cultured cells. To functionally test the cellular mechanisms of COVID-19, we generated hACE2 fl animals in which human ACE2 (hACE2) is expressed from the mouse Ace2 locus in a manner that permits cell-specific, Cre-mediated loss of function. hACE2 fl animals developed lethal weight loss and hypoxemia within 7 days of exposure to SARS-CoV-2 that was associated with pulmonary infiltrates, intravascular thrombosis and patchy viral infection of lung epithelial cells. Deletion of hACE2 in lung epithelial cells prevented viral infection of the lung, but not weight loss, hypoxemia or death. Inhalation of SARS-CoV-2 by hACE2 fl animals resulted in early infection of sustentacular cells with subsequent infection of neurons in the neighboring olfactory bulb and cerebral cortexâ€" events that did not require lung epithelial cell infection. Pharmacologic ablation of the olfactory epithelium or Foxg1 Cre mediated deletion of hACE2 in olfactory epithelial cells and neurons prevented lethality and neuronal infection following SARS-CoV-2 infection. Conversely, transgenic expression of hACE2 specifically in olfactory epithelial cells and neurons in Foxg1 Cre ; LSL- hACE2 mice was sufficient to confer neuronal infection associated with respiratory failure and death. These studies establish mouse loss and gain of function genetic models with which to genetically dissect viral-host interactions and demonstrate that lethal disease due to respiratory failure may arise from extrapulmonary infection of the olfactory epithelium and brain. Future therapeutic efforts focused on preventing olfactory epithelial infection may be an effective means of protecting against severe COVID-19.
Collapse
|
16
|
Martin DR, Santamaria S, Koch CD, Ahnström J, Apte SS. Identification of novel ADAMTS1, ADAMTS4 and ADAMTS5 cleavage sites in versican using a label-free quantitative proteomics approach. J Proteomics 2021; 249:104358. [PMID: 34450332 PMCID: PMC8713443 DOI: 10.1016/j.jprot.2021.104358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023]
Abstract
The chondroitin sulfate proteoglycan versican is important for embryonic development and several human disorders. The versican V1 splice isoform is widely expressed and cleaved by ADAMTS proteases at a well-characterized site, Glu441-Ala442. Since ADAMTS proteases cleave the homologous proteoglycan aggrecan at multiple sites, we hypothesized that additional cleavage sites existed within versican. We report a quantitative label-free approach that ranks abundance of liquid chromatography-tandem mass spectrometry (LC-MS/MS)-identified semi-tryptic peptides after versican digestion by ADAMTS1, ADAMTS4 and ADAMTS5 to identify site-specific cleavages. Recombinant purified versican V1 constructs were digested with the recombinant full-length proteases, using catalytically inactive mutant proteases in control digests. Semi-tryptic peptide abundance ratios determined by LC-MS/MS in ADAMTS:control digests were compared to the mean of all identified peptides to obtain a z-score by which outlier peptides were ranked, using semi-tryptic peptides identifying Glu441 -Ala442 cleavage as the benchmark. Tryptic peptides with higher abundance in control digests supported cleavage site identification. We identified several novel cleavage sites supporting the ADAMTS1/4/5 cleavage site preference for a P1-Glu residue in proteoglycan substrates. Digestion of proteins in vitro and application of this z-score approach is potentially widely applicable for mapping protease cleavage sites using label-free proteomics. SIGNIFICANCE: Versican abundance and turnover are relevant to the pathogenesis of several human disorders. Versican is cleaved by A Disintegrin-like And Metalloprotease with Thrombospondin type 1 motifs (ADAMTS) family members at Glu441-Ala442, generating a bioactive proteoform called versikine, but additional cleavage sites and the site-specificity of individual ADAMTS proteases is unexplored. Here, we used a label-free proteomics strategy to identify versican cleavage sites for 3 ADAMTS proteases, applying a novel z-score-based statistical approach to compare the protease digests of versican to controls (digests with inactive protease) using the known protease cleavage site as a benchmark. We identified 21 novel cleavage sites that had a comparable z-score to the benchmark. Given the functional significance of versikine, they represent potentially significant cleavages and helped to refine a substrate site preference for each protease.The z-score approach is potentially widely applicable for discovery of site-specific cleavages within an purified protein or small ensemble of proteins using any protease.
Collapse
Affiliation(s)
- Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Salvatore Santamaria
- Department of Immunology and Inflammation, 5th Floor Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, United Kingdom
| | - Christopher D Koch
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Josefin Ahnström
- Department of Immunology and Inflammation, 5th Floor Commonwealth Building, Hammersmith Hospital Campus, Du Cane Road, W12 0NN London, United Kingdom
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
17
|
Perrelli A, Retta SF. Polymorphisms in genes related to oxidative stress and inflammation: Emerging links with the pathogenesis and severity of Cerebral Cavernous Malformation disease. Free Radic Biol Med 2021; 172:403-417. [PMID: 34175437 DOI: 10.1016/j.freeradbiomed.2021.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity. Three disease genes have been identified: KRIT1 (CCM1), CCM2 and CCM3. Previous results demonstrated that loss-of-function mutations of CCM genes cause pleiotropic effects, including defective autophagy, altered reactive oxygen species (ROS) homeostasis, and enhanced sensitivity to oxidative stress and inflammatory events, suggesting a novel unifying pathogenetic mechanism, and raising the possibility that CCM disease onset and severity are influenced by the presence of susceptibility and modifier genes. Consistently, genome-wide association studies (GWAS) in large and homogeneous cohorts of patients sharing the familial form of CCM disease and identical mutations in CCM genes have led to the discovery of distinct genetic modifiers of major disease severity phenotypes, such as development of numerous and large CCM lesions, and susceptibility to ICH. This review deals with the identification of genetic modifiers with a significant impact on inter-individual variability in CCM disease onset and severity, including highly polymorphic genes involved in oxidative stress, inflammatory and immune responses, such as cytochrome P450 monooxygenases (CYP), matrix metalloproteinases (MMP), and Toll-like receptors (TLR), pointing to their emerging prognostic value, and opening up new perspectives for risk stratification and personalized medicine strategies.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
18
|
Much CD, Sendtner BS, Schwefel K, Freund E, Bekeschus S, Otto O, Pagenstecher A, Felbor U, Rath M, Spiegler S. Inactivation of Cerebral Cavernous Malformation Genes Results in Accumulation of von Willebrand Factor and Redistribution of Weibel-Palade Bodies in Endothelial Cells. Front Mol Biosci 2021; 8:622547. [PMID: 34307446 PMCID: PMC8298835 DOI: 10.3389/fmolb.2021.622547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/21/2021] [Indexed: 01/06/2023] Open
Abstract
Cerebral cavernous malformations are slow-flow thrombi-containing vessels induced by two-step inactivation of the CCM1, CCM2 or CCM3 gene within endothelial cells. They predispose to intracerebral bleedings and focal neurological deficits. Our understanding of the cellular and molecular mechanisms that trigger endothelial dysfunction in cavernous malformations is still incomplete. To model both, hereditary and sporadic CCM disease, blood outgrowth endothelial cells (BOECs) with a heterozygous CCM1 germline mutation and immortalized wild-type human umbilical vein endothelial cells were subjected to CRISPR/Cas9-mediated CCM1 gene disruption. CCM1 -/- BOECs demonstrated alterations in cell morphology, actin cytoskeleton dynamics, tube formation, and expression of the transcription factors KLF2 and KLF4. Furthermore, high VWF immunoreactivity was observed in CCM1 -/- BOECs, in immortalized umbilical vein endothelial cells upon CRISPR/Cas9-induced inactivation of either CCM1, CCM2 or CCM3 as well as in CCM tissue samples of familial cases. Observer-independent high-content imaging revealed a striking reduction of perinuclear Weibel-Palade bodies in unstimulated CCM1 -/- BOECs which was observed in CCM1 +/- BOECs only after stimulation with PMA or histamine. Our results demonstrate that CRISPR/Cas9 genome editing is a powerful tool to model different aspects of CCM disease in vitro and that CCM1 inactivation induces high-level expression of VWF and redistribution of Weibel-Palade bodies within endothelial cells.
Collapse
Affiliation(s)
- Christiane D. Much
- Department of Human Genetics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Barbara S. Sendtner
- Department of Human Genetics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Konrad Schwefel
- Department of Human Genetics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Eric Freund
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Sander Bekeschus
- Centre for Innovation Competence (ZIK) plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Oliver Otto
- Centre for Innovation Competence (ZIK) ‐ Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Center for Mind, Brain and Behavior (CMBB), University Hospital Giessen and MarburgMarburg, Germany
| | - Ute Felbor
- Department of Human Genetics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stefanie Spiegler
- Department of Human Genetics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Lopez-Ramirez MA, Lai CC, Soliman SI, Hale P, Pham A, Estrada EJ, McCurdy S, Girard R, Verma R, Moore T, Lightle R, Hobson N, Shenkar R, Poulsen O, Haddad GG, Daneman R, Gongol B, Sun H, Lagarrigue F, Awad IA, Ginsberg MH. Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. J Clin Invest 2021; 131:139570. [PMID: 34043589 PMCID: PMC8245174 DOI: 10.1172/jci139570] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are common neurovascular lesions caused by loss-of-function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3), and generally regarded as an endothelial cell-autonomous disease. Here we reported that proliferative astrocytes played a critical role in CCM pathogenesis by serving as a major source of VEGF during CCM lesion formation. An increase in astrocyte VEGF synthesis is driven by endothelial nitric oxide (NO) generated as a consequence of KLF2- and KLF4-dependent elevation of eNOS in CCM endothelium. The increased brain endothelial production of NO stabilized HIF-1α in astrocytes, resulting in increased VEGF production and expression of a "hypoxic" program under normoxic conditions. We showed that the upregulation of cyclooxygenase-2 (COX-2), a direct HIF-1α target gene and a known component of the hypoxic program, contributed to the development of CCM lesions because the administration of a COX-2 inhibitor significantly prevented the progression of CCM lesions. Thus, non-cell-autonomous crosstalk between CCM endothelium and astrocytes propels vascular lesion development, and components of the hypoxic program represent potential therapeutic targets for CCMs.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/deficiency
- Apoptosis Regulatory Proteins/genetics
- Astrocytes/pathology
- Astrocytes/physiology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Disease Models, Animal
- Disease Progression
- Endothelial Cells/metabolism
- Hemangioma, Cavernous, Central Nervous System/etiology
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hemangioma, Cavernous, Central Nervous System/physiopathology
- Human Umbilical Vein Endothelial Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice
- Mice, Knockout
- Models, Neurological
- Mutation
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Vascular Endothelial Growth Factor A/biosynthesis
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | | | - Thomas Moore
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | | | - Gabriel G. Haddad
- Department of Pediatrics, and
- Department of Neuroscience, Division of Respiratory Medicine, University of California, San Diego, La Jolla, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Richard Daneman
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | | | | | | | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | | |
Collapse
|
20
|
Snellings DA, Hong CC, Ren AA, Lopez-Ramirez MA, Girard R, Srinath A, Marchuk DA, Ginsberg MH, Awad IA, Kahn ML. Cerebral Cavernous Malformation: From Mechanism to Therapy. Circ Res 2021; 129:195-215. [PMID: 34166073 PMCID: PMC8922476 DOI: 10.1161/circresaha.121.318174] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cerebral cavernous malformations are acquired vascular anomalies that constitute a common cause of central nervous system hemorrhage and stroke. The past 2 decades have seen a remarkable increase in our understanding of the pathogenesis of this vascular disease. This new knowledge spans genetic causes of sporadic and familial forms of the disease, molecular signaling changes in vascular endothelial cells that underlie the disease, unexpectedly strong environmental effects on disease pathogenesis, and drivers of disease end points such as hemorrhage. These novel insights are the integrated product of human clinical studies, human genetic studies, studies in mouse and zebrafish genetic models, and basic molecular and cellular studies. This review addresses the genetic and molecular underpinnings of cerebral cavernous malformation disease, the mechanisms that lead to lesion hemorrhage, and emerging biomarkers and therapies for clinical treatment of cerebral cavernous malformation disease. It may also serve as an example for how focused basic and clinical investigation and emerging technologies can rapidly unravel a complex disease mechanism.
Collapse
Affiliation(s)
- Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC (D.A.S., D.A.M.)
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| | - Aileen A Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| | - Miguel A Lopez-Ramirez
- Department of Medicine (M.A.L.-R., M.H.G.), University of California, San Diego, La Jolla
- Department of Pharmacology (M.A.L.-R.), University of California, San Diego, La Jolla
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Abhinav Srinath
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC (D.A.S., D.A.M.)
| | - Mark H Ginsberg
- Department of Medicine (M.A.L.-R., M.H.G.), University of California, San Diego, La Jolla
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia (C.C.H., A.A.R., M.L.K.)
| |
Collapse
|
21
|
Ren AA, Snellings DA, Su YS, Hong CC, Castro M, Tang AT, Detter MR, Hobson N, Girard R, Romanos S, Lightle R, Moore T, Shenkar R, Benavides C, Beaman MM, Müller-Fielitz H, Chen M, Mericko P, Yang J, Sung DC, Lawton MT, Ruppert JM, Schwaninger M, Körbelin J, Potente M, Awad IA, Marchuk DA, Kahn ML. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature 2021; 594:271-276. [PMID: 33910229 PMCID: PMC8626098 DOI: 10.1038/s41586-021-03562-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/16/2021] [Indexed: 02/02/2023]
Abstract
Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Class I Phosphatidylinositol 3-Kinases/genetics
- Class I Phosphatidylinositol 3-Kinases/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gain of Function Mutation
- Hemangioma, Cavernous, Central Nervous System/blood supply
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/pathology
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/metabolism
- Loss of Function Mutation
- MAP Kinase Kinase Kinase 3/metabolism
- Male
- Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Mice
- Mutation
- Neoplasms/blood supply
- Neoplasms/genetics
- Neoplasms/pathology
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Aileen A Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Yourong S Su
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Castro
- Angiogenesis and Metabolism Laboratory, Max Planck institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Christian Benavides
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - M Makenzie Beaman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Mei Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Mericko
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek C Sung
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael T Lawton
- Department of Neurosurgery, The Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Department of Oncology, Hematology and Bone Marrow Transplantation, Hamburg, Germany
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck institute for Heart and Lung Research, Bad Nauheim, Germany
- Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Nandadasa S, Burin des Roziers C, Koch C, Tran-Lundmark K, Dours-Zimmermann MT, Zimmermann DR, Valleix S, Apte SS. A new mouse mutant with cleavage-resistant versican and isoform-specific versican mutants demonstrate that proteolysis at the Glu 441-Ala 442 peptide bond in the V1 isoform is essential for interdigital web regression. Matrix Biol Plus 2021; 10:100064. [PMID: 34195596 PMCID: PMC8233476 DOI: 10.1016/j.mbplus.2021.100064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Two inherent challenges in the mechanistic interpretation of protease-deficient phenotypes are defining the specific substrate cleavages whose reduction generates the phenotypes and determining whether the phenotypes result from loss of substrate function, substrate accumulation, or loss of a function(s) embodied in the substrate fragments. Hence, recapitulation of a protease-deficient phenotype by a cleavage-resistant substrate would stringently validate the importance of a proteolytic event and clarify the underlying mechanisms. Versican is a large proteoglycan required for development of the circulatory system and proper limb development, and is cleaved by ADAMTS proteases at the Glu441-Ala442 peptide bond located in its alternatively spliced GAGβ domain. Specific ADAMTS protease mutants have impaired interdigit web regression leading to soft tissue syndactyly that is associated with reduced versican proteolysis. Versikine, the N-terminal proteolytic fragment generated by this cleavage, restores interdigit apoptosis in ADAMTS mutant webs. Here, we report a new mouse transgene, Vcan AA, with validated mutations in the GAGβ domain that specifically abolish this proteolytic event. Vcan AA/AA mice have partially penetrant hindlimb soft tissue syndactyly. However, Adamts20 inactivation in Vcan AA/AA mice leads to fully penetrant, more severe syndactyly affecting all limbs, suggesting that ADAMTS20 cleavage of versican at other sites or of other substrates is an additional requirement for web regression. Indeed, immunostaining with a neoepitope antibody against a cleavage site in the versican GAGα domain demonstrated reduced staining in the absence of ADAMTS20. Significantly, mice with deletion of Vcan exon 8, encoding the GAGβ domain, consistently developed soft tissue syndactyly, whereas mice unable to include exon 7, encoding the GAGα domain in Vcan transcripts, consistently had fully separated digits. These findings suggest that versican is cleaved within each GAG-bearing domain during web regression, and affirms that proteolysis in the GAGβ domain, via generation of versikine, has an essential role in interdigital web regression.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Cyril Burin des Roziers
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Paris Descartes University Medical School, 24, Rue du faubourg Saint Jacques, 75014 Paris, France
| | - Christopher Koch
- Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | | | - Dieter R. Zimmermann
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sophie Valleix
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Paris Descartes University Medical School, 24, Rue du faubourg Saint Jacques, 75014 Paris, France
| | - Suneel S. Apte
- Department of Biomedical Engineering-ND20, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| |
Collapse
|
23
|
Fontanil T, Mohamedi Y, Espina-Casado J, Obaya ÁJ, Cobo T, Cal S. Hyalectanase Activities by the ADAMTS Metalloproteases. Int J Mol Sci 2021; 22:ijms22062988. [PMID: 33804223 PMCID: PMC8000579 DOI: 10.3390/ijms22062988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The hyalectan family is composed of the proteoglycans aggrecan, versican, brevican and neurocan. Hyalectans, also known as lecticans, are components of the extracellular matrix of different tissues and play essential roles in key biological processes including skeletal development, and they are related to the correct maintenance of the vascular and central nervous system. For instance, hyalectans participate in the organization of structures such as perineural nets and in the regulation of neurite outgrowth or brain recovery following a traumatic injury. The ADAMTS (A Disintegrin and Metalloprotease domains, with thrombospondin motifs) family consists of 19 secreted metalloproteases. These enzymes also perform important roles in the structural organization and function of the extracellular matrix through interactions with other matrix components or as a consequence of their catalytic activity. In this regard, some of their preferred substrates are the hyalectans. In fact, ADAMTSs cleave hyalectans not only as a mechanism for clearance or turnover of proteoglycans but also to generate bioactive fragments which display specific functions. In this article we review some of the physiological and pathological effects derived from cleavages of hyalectans mediated by ADAMTSs.
Collapse
Affiliation(s)
- Tania Fontanil
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Departamento de Investigación, Instituto Ordóñez, 33012 Oviedo, Spain
| | - Yamina Mohamedi
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
| | - Jorge Espina-Casado
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Álvaro J. Obaya
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Asturiano de Odontología, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| | - Santiago Cal
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain; (T.F.); (Y.M.)
- Instituto Universitario de Oncología, IUOPA, Universidad de Oviedo, 33006 Oviedo, Spain
- Correspondence: (T.C.); (S.C.); Tel.: +34-985966014 (T.C.); +34-985106282 (S.C.)
| |
Collapse
|
24
|
Reconsideration of the Semaphorin-3A Binding Motif Found in Chondroitin Sulfate Using Galnac4s-6st-Knockout Mice. Biomolecules 2020; 10:biom10111499. [PMID: 33143303 PMCID: PMC7694144 DOI: 10.3390/biom10111499] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
The chondroitin sulfate (CS)-rich dense extracellular matrix surrounding neuron cell bodies and proximal dendrites in a mesh-like structure is called a perineuronal net (PNN). CS chains in PNNs control neuronal plasticity by binding to PNN effectors, semaphorin-3A (Sema3A) and orthodenticle homeobox 2. Sema3A recognizes CS-containing type-E disaccharide units (sulfated at O-4 and O-6 of N-acetylgalactosamine). Type-E disaccharide units are synthesized by N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST). In this study, we demonstrated that Sema3A accumulates in the PNNs surrounding parvalbumin cells, even in mice deficient in GalNAc4S-6ST. In addition, there were no differences in the number and structure of PNNs visualized by Cat316 antibody and Wisteria floribunda lectin, which recognize CS chains, between wild type and GalNAc4S-6ST knockout mice. Therefore, we re-examined the Sema3A binding motif found in CS chains using chemically synthesized CS tetrasaccharides. As a result, we found that non-sulfated GalNAc residues at the non-reducing termini of CS chains are required for the binding of Sema3A.
Collapse
|
25
|
Muller WA. Beyond genes and transcription factors: A potential mechanism for the pathogenesis of cerebral cavernous malformations. J Exp Med 2020; 217:e20200858. [PMID: 32941595 PMCID: PMC7537395 DOI: 10.1084/jem.20200858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this issue of JEM, Hong et al. (https://doi.org/10.1084/jem.20200140) identify a major step in the pathogenesis of cerebral cavernous malformations (CCMs), which at the same time offers insight into potential therapy for this disease.
Collapse
|
26
|
Blei F. Update October 2020. Lymphat Res Biol 2020. [DOI: 10.1089/lrb.2020.29092.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Islam S, Watanabe H. Versican: A Dynamic Regulator of the Extracellular Matrix. J Histochem Cytochem 2020; 68:763-775. [PMID: 33131383 DOI: 10.1369/0022155420953922] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Versican is a large chondroitin sulfate/dermatan sulfate proteoglycan belonging to the aggrecan/lectican family. In adults, this proteoglycan serves as a structural macromolecule of the extracellular matrix in the brain and large blood vessels. In contrast, versican is transiently expressed at high levels during development and under pathological conditions when the extracellular matrix dramatically changes, including in the inflammation and repair process. There are many reports showing the upregulation of versican in cancer, which correlates with cancer aggressiveness. Versican has four classical splice variants, and all the variants contain G1 and G3 domains at N- and C-termini, respectively. There are two glycosaminoglycan attachment domains CSα and CSβ. The largest V0 variant contains both CSα and CSβ, V1 contains CSβ, V2 contains CSα, and the shortest G3 variant has neither of them. Versican degradation is initiated by cleavage at a site in the CSβ domain by ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteinases. The N-terminal fragment containing the G1 domain has been reported to exert various biological functions, although its mechanisms of action have not yet been elucidated. In this review, we describe the role of versican in inflammation and cancer and also address the biological function of versikine.
Collapse
Affiliation(s)
- Shamima Islam
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|